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Abstract 

Recent studies have emphasized the importance of single-cell spatial biology, yet 
available assays for spatial transcriptomics have limited gene recovery or low spatial 
resolution. Here we introduce CytoSPACE, a method for aligning single-cell and spatial 
transcriptomes via convex linear optimization. Across diverse platforms and tissue 
types, we show that CytoSPACE outperforms previous methods with respect to noise-
tolerance, accuracy, and efficiency, enabling improved analysis of spatial 
transcriptomics data at single-cell resolution. 
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Main 
 

Single-cell spatial organization is a key determinant of cell state and function. For 
example, in human tumors, local signaling networks differentially impact individual cells 
and their surrounding microenvironments, with implications for tumor growth, 
progression, and response to therapy1-6. While spatial transcriptomics (ST) has become 
a powerful tool for delineating spatial gene expression in primary tissue specimens, 
commonly used platforms, such as 10x Visium, remain limited to bulk gene expression 
measurements, where each spatially-resolved expression profile is derived from as 
many as 10 cells or more7.  

 
Accordingly, a number of computational methods have been developed to infer 

cellular composition in a given bulk ST sample8-23. Most such methods use reference 
profiles derived from single-cell RNA sequencing (scRNA-seq) data to deconvolve ST 
spots into a matrix of cell type proportions. However, these methods lack single-cell 
resolution, hindering the discovery of spatially-defined cell states, their interaction 
patterns, and their surrounding communities (Supplementary Fig. 1).  

 
To address this challenge, we developed cellular (Cyto) Spatial Positioning 

Analysis via Constrained Expression alignment (CytoSPACE), an efficient 
computational approach for mapping individual cells from a reference scRNA-seq atlas 
to precise spatial locations in a bulk ST dataset (Fig. 1a, Supplementary Fig. 1). Unlike 
related methods24,25, we formulate single-cell/spot assignment as a convex optimization 
problem and solve this problem using a novel application of the Jonker-Volgenant 
shortest augmenting path algorithm26. Our approach guarantees an optimal mapping 
result while exhibiting improved noise tolerance (Methods). The output is a 
reconstructed tissue specimen with both high gene coverage and spatially-resolved 
scRNA-seq data suitable for downstream analysis, including the discovery of context-
dependent cell states. On both simulated and real ST datasets, we find that 
CytoSPACE substantially outperforms related methods for resolving single-cell spatial 
composition. 
 

CytoSPACE proceeds in four main steps (Fig. 1a). First, to account for the 
disparity between scRNA-seq and ST data in the number of cells per cell type, two 
parameters are required: (i) the fractional abundance of each cell type within the ST 
sample and (ii) the number of cells per spot. The former is determined using an external 
deconvolution tool, such as Spatial Seurat14, RCTD18, SPOTlight20, cell2location27, or 
CIBERSORTx28. By default, the latter is directly inferred by CytoSPACE using an 
approach for estimating RNA abundance (Methods). Once both parameters are 
estimated, the scRNA-seq dataset is randomly sampled to match the predicted number 
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of cells per cell type in the ST dataset. Up-sampling is done for cell types with 
insufficient representation, either by drawing with replacement or by introducing 
placeholder cells (Methods). Finally, CytoSPACE assigns each cell to spatial 
coordinates in a manner that minimizes a correlation-based cost function constrained by 
the inferred number of cells per spot via a shortest augmenting path optimization 
algorithm. An efficient integer programming approximation method that yields 
comparable results is also provided29 (Methods).  
 
 To assess the performance of CytoSPACE, we began by simulating ST datasets 
with fully defined single-cell composition. For this purpose, we leveraged previously 
published mouse cerebellum (n = 11 major cell types) and hippocampus (n = 17 major 
cell types) data generated using Slide-seq, a platform with high spatial resolution 
(approximately single cell) but limited gene coverage30 (Fig. 1b). To increase 
transcriptome representation, we first replaced each Slide-seq bead with a single-cell 
expression profile of the same cell type derived from an scRNA-seq atlas of the same 
brain region31 (Methods). We then superimposed a spatial grid with tunable dimensions 
in order to pool single-cell transcriptomes into pseudo-bulk transcriptomes. This was 
done across a range of realistic spot resolutions (mean of 5, 15, and 30 cells per spot). 
To guarantee a unique spatial address for every cell in the scRNA-seq query dataset, 
we created a paired scRNA-seq atlas from the cells underlying each pseudo-bulk ST 
array. Finally, to emulate technical and platform-specific variation between scRNA-seq 
and ST datasets, we added noise in varying amounts to the scRNA-seq data 
(Supplementary Fig. 2; Methods).  
 

Next, we evaluated methods for CytoSPACE parameter inference. For cell type 
enumeration, we employed Spatial Seurat, which showed strong concordance with 
known proportions in simulated ST datasets (Supplementary Fig. 3a). To approximate 
the number of cells per spot, we implemented a simple approach based on RNA 
abundance estimation, which was significantly correlated with ground truth expectations 
in simulated ST samples (Supplementary Fig. 3b, Methods).  
 

We then benchmarked CytoSPACE against two recently described algorithms for 
scRNA-seq and ST alignment: Tangram, which integrates scRNA-seq and ST data via 
maximization of a spatial correlation function using nonconvex optimization24; and 
CellTrek, which uses Spatial Seurat14 to identify a shared embedding between scRNA-
seq and ST data and then applies random forest modeling to predict spatial 
coordinates25. We also assessed two naïve approaches, Pearson correlation and 
Euclidean distance. To compare outputs, each cell was assigned to the spot with the 
highest score (all approaches but CellTrek) or the spot with the closest Euclidean 
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distance to the cell’s predicted spatial location (CellTrek only). Further details are 
provided in Methods. 

 
Remarkably, across multiple evaluated noise levels and cell types, CytoSPACE 

achieved significantly higher precision than other methods for mapping single cells to 
their known locations in simulated ST datasets (Fig. 1c,d; Supplementary Figs. 4 and 
5). This was true for multiple spatial resolutions independent of brain region, both for 
individual cell types and across all evaluable cells (Fig. 1d and Supplementary Fig. 5). 
We also observed similar results with an independent method for determining cell type 
abundance in ST data (RCTD18), demonstrating robustness (Supplementary Fig. 6). 
These data highlight the potential of CytoSPACE to deliver improved spatial mapping of 
scRNA-seq data. 
 

To evaluate performance on real ST datasets, we next examined primary tumor 
specimens from three types of solid malignancy: melanoma, breast cancer, and colon 
cancer. In total, six scRNA-seq/ST combinations, encompassing six bulk ST samples (n 
= 4 Visium; n = 2 legacy ST), including one HER2+ formalin fixed paraffin embedded 
(FFPE) breast tumor specimen and three scRNA-seq datasets from matching tumor 
subtypes, were analyzed32-35. All cell types in each scRNA-seq dataset were aligned by 
CytoSPACE (Fig. 2a and Supplementary Fig. 7) and compared to Tangram and 
CellTrek (Supplementary Fig. 7). Notably, CytoSPACE was substantially more efficient 
than other methods, processing a Visium-scale dataset in approximately 5 minutes on a 
single CPU core (Supplementary Fig. 8a). This was true regardless of whether we 
applied shortest augmenting path or integer programming approximation approaches, 
both of which achieved comparable results (Supplementary Fig. 8b). To quantitatively 
compare the recovery of cell states with respect to spatial localization patterns in the 
tumor microenvironment (TME), we dichotomized assigned cells into two groups within 
each cell type by their proximity to tumor cells. We then assessed whether gene sets 
marking TME cell states with known localization were skewed in the expected 
orientation (Fig. 2b; Methods).  

 
We started by considering T cell exhaustion, a canonical state of dysfunction 

arising from prolonged antigen exposure in tumor-infiltrating T cells36. Consistent with 
expectation, CytoSPACE recovered spatial enrichment of T cell exhaustion genes37 in 
CD4 and CD8 T cells mapped closest to cancer cells in all six scRNA-seq and ST 
dataset combinations (Fig. 2c,d; Supplementary Fig. 9a). In contrast, Tangram and 
CellTrek produced single cell mappings with significantly lower enrichment of T cell 
exhaustion genes in the expected orientation, with 25% to 33% of cases showing 
enrichment in the opposite direction, away from the tumor core (Fig. 2d; 
Supplementary Fig. 9a).  
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To demonstrate applicability to other spatially-biased cell states, we next 

extended our analysis to diverse TME lineages, identifying cell type-specific genes that 
vary in expression as a function of distance from tumor cells. To validate our results, we 
considered two recently defined cellular ecosystem subtypes in human carcinoma, CE9 
and CE104. These “ecotypes,” which were also observed in melanoma, each 
encompass B cells, plasma cells, CD8 T cells, CD4 T cells, and 
monocytes/macrophages with stereotypical spatial localization. CE9 cell states are 
preferentially localized to the tumor core whereas CE10 states are preferentially 
localized to the tumor periphery4 (Fig. 2e). Using marker genes specific to each state4, 
we asked whether single cells mapped by each method were consistent with CE9 and 
CE10-specific patterns of spatial localization (Fig. 2e). Indeed, as observed for T cell 
exhaustion factors, CytoSPACE successfully recovered expected spatial biases in CE9 
and CE10 cell states across lymphoid and myeloid lineages (Fig. 2f), significantly 
outperforming Tangram and CellTrek in both the magnitude and orientation of marker 
gene enrichments (Fig. 2g; Supplementary Fig. 9b,c). As further validation, we 
analyzed predicted spatial localization patterns of TREM2+ and FOLR2+ macrophages, 
which were recently shown to localize to the tumor stroma and to the tumor mass, 
respectively, across diverse cancer types6 (Supplementary Fig. 10a). Only 
CytoSPACE recapitulated these prior findings with statistical significance 
(Supplementary Fig. 10b). Moreover, when inferred spatial locations were projected 
onto scRNA-seq data, single cells generally failed to organize as a function of distance 
from tumor cells (Supplementary Fig. 11). These data underscore the ability of 
CytoSPACE to accurately identify spatially-resolved cell states, including those not 
discernible from scRNA-seq data alone. 
 
 In summary, CytoSPACE is a new tool for aligning single-cell and spatial 
transcriptomes via convex linear optimization. Unlike related methods, CytoSPACE 
ensures a globally optimal single-cell/spot alignment conditioned on a correlation-based 
cost function and the number of cells per spot. Moreover, it can be readily extended to 
accommodate additional constraints, such as the fractional composition of each cell 
type per spot (e.g., as inferred by RCTD18 or cell2location27). In contrast, CellTrek is 
dependent on the co-embedding learned by Spatial Seurat, which can erase subtle, yet 
important biological signal (e.g., cell state differences), as was recently shown38. While 
Tangram is robust in idealized settings, it cannot guarantee a globally optimal solution. 
While CytoSPACE requires two input parameters, both parameters can be reasonably 
well-estimated using standard approaches, suggesting they are unlikely to pose a major 
barrier in practice. Furthermore, on both simulated and real datasets, CytoSPACE was 
substantially more accurate and efficient than related methods. As such, we anticipate 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.488356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.488356


 6 

that CytoSPACE will prove immediately useful for deciphering single-cell spatial 
variation and community structure in diverse physiological and pathological settings.   
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Figure 1: Development and technical assessment of CytoSPACE. a, Schematic of a 
typical CytoSPACE workflow. Given an ST dataset 𝐴 and an annotated scRNA-seq 
dataset 𝐵 where the latter covers major cell types in 𝐴, CytoSPACE consists of the 
following key steps: (1) application of an existing ST deconvolution method (e.g., Spatial 
Seurat, RCTD) to estimate cell type fractions in 𝐴 using reference profiles from 𝐵, (2) 
estimation of the number of cells per spot in 𝐴, (3) sampling of 𝐵 to match the inferred 
number of cells per cell type in 𝐴, and (4) alignment of single-cell and spatial 
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transcriptomes (𝐴 ® 𝐵) using shortest augmenting path-based optimization. b–d, 
Technical assessment of CytoSPACE. The labels 𝑎$, 𝑎&, . . . , 𝑑$, 𝑑& denote individual 
single cells of cell type 𝑎, 𝑎, . . . , 𝑑, 𝑑, respectively. b, Framework for evaluating 
CytoSPACE using simulated ST datasets with fully-defined single-cell composition and 
spot resolution (Methods). c, Heat maps depicting CytoSPACE performance for 
aligning scRNA-seq data (with 5% added noise) to spatial locations in ST datasets 
simulated with 5 cells per spot, on average (Methods). Only cell types with distinct 
spatial structure are shown here for clarity. For all evaluated cell types, see 
Supplementary Figure 4. d, Performance across distinct methods, mouse brain 
regions, and noise levels for assigning individual cells to the correct spot in simulated 
ST datasets (Methods). Each point represents a single cell type (mouse cerebellum, n 
= 11; mouse hippocampus, n = 17). The box center lines, box bounds, and whiskers 
indicate the medians, first and third quartiles and minimum and maximum values within 
1.5× the interquartile range of the box limits, respectively. Statistical significance was 
assessed relative to CytoSPACE using a two-sided paired Wilcoxon test and reported 
as the maximum P value per noise level (*P < 0.05, ***P < 0.001).   
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Figure 2: Single-cell cartography of TME communities. a, Heat maps showing 
diverse scRNA-seq tumor atlases mapped onto clinically-matched ST target datasets by 
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CytoSPACE. Details of scRNA-seq and ST datasets are provided within the first and 
second set of parentheses, respectively. Only cell types analyzed in subsequent panels 
are shown (for all mapped cell types, see Supplementary Fig. 7). N/A, missing from 
author-supplied scRNA-seq annotations; BRCA, breast cancer; CRC, colorectal cancer; 
FFPE, formalin-fixed paraffin embedded. b–g, Identification, validation, and 
benchmarking analysis of tumor-associated cell states. b, Procedure for evaluating 
whether cell-type-specific states are preferentially localized to the tumor core or 
periphery. Differentially expressed genes (DEGs) were identified between cells stratified 
into two groups based on their distance from tumor cells (Methods) and assessed for 
spatial enrichment by pre-ranked gene set enrichment analysis (GSEA). c–d, 
Evaluation of T cell exhaustion. c, Spatial enrichment of T cell exhaustion genes in 
melanoma-associated CD4 and CD8 T cell transcriptomes mapped by CytoSPACE to a 
melanoma specimen profiled by ST (slide 1, Thrane et al.). NES, normalized enrichment 
score. d, Same as c but showing CD4 and CD8 T cell enrichment scores for 6 
evaluated scRNA-seq/ST pairs (n = 12 values per box) across 3 methods. e, Schematic 
of TME communities with expected localization to the tumor core (CE9) and periphery 
(CE10) in carcinomas and melanoma. f, Bubble plot showing whether CE9 and CE10-
specific cell states are enriched within the tumor core (orange) or periphery (blue) in 
single cells mapped to ST spots by CytoSPACE. The NES and statistical significance of 
pre-ranked GSEA are denoted by bubble color and size, respectively. Single-cell RNA-
seq datasets without annotated plasma cells are indicated by gray boxes. g, Same as f 
but comparing NES across 3 methods (n = 54 values per box). To unify the expected 
enrichment direction of CE9 and CE10 cell states, normalized enrichment scores for the 
latter were multiplied by –1. In d and g, the box center lines, box bounds, and whiskers 
denote the medians, first and third quartiles and minimum and maximum values, 
respectively. Group comparisons in d and g were determined relative to CytoSPACE via 
a two-sided, paired Wilcoxon test (**P < 0.01, ****P < 0.0001).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.488356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.488356


 12 

Methods 
 
CytoSPACE analytical framework. CytoSPACE leverages convex linear optimization 
to efficiently assign single-cell transcriptomes to spatial transcriptomics data. To 
formulate the assignment problem mapping individual cells in scRNA-seq data to spatial 
coordinates in ST data, let an 𝑁 × 𝐶 matrix 𝐴	denote single-cell gene expression profiles 
with 𝑁 genes and 𝐶 cells; let an 𝑀 × 𝑆 matrix 𝐵 denote gene expression profiles of 
spatial transcriptomics (ST) data with 𝑀 genes and 𝑆 spots; and let 𝐺 be the vector of 
length 𝑔 that contains the subset of desired genes shared by both data sets. For both 
gene expression profile matrices, values are first normalized to counts per million (or 
transcripts per million for platforms covering the full gene body) and then transferred 
into log2 space. Next, we estimate the number 𝑛2, 𝑠 = 1,⋯ , 𝑆,	of cells contributing RNA 
content in the 𝑠78	spot of ST data (see “Estimating the number of cells per spot”). We 
assume that the 𝑠78	spot contains 𝑛2 sub-spots that can each be assigned to a single 
cell, and build an 𝑀 × 𝐿 matrix 𝐵: by replicating the 𝑠78 column of 𝐵, 𝑛2 times, where 𝐿 =
∑ 𝑛2<
2=$  denotes the total number of estimated sub-spots in the ST data. As described in 

the following sections, we then sample the scRNA-seq matrix 𝐴 such that the total 
number of cells, with cell types represented according to their inferred fractional 
abundances, matches the total number of columns in 𝐵: , yielding an 𝑁 × 𝐾 matrix 𝐴̅, 
where 𝐾 = 𝐿. Define an assignment 𝑥 ≔ [𝑥CD], 𝑘 = 1,⋯ , 𝐾 and 𝑙 = 1,⋯ , 𝐿, such that 
𝑥CD = 1 if the 𝑘78 cell in the scRNA-seq data is assigned to the 𝑙78 sub-spot in the ST 
data, and 𝑥CD = 0 otherwise. We find the optimal cell/sub-spot assignment 𝑥∗ that 
minimizes the following linear cost function: 
 

𝑥∗ = argmin 𝐶𝑜𝑠𝑡(𝑥) = argminTT𝑑CD𝑥CD

U

D=$

V

C=$

, 

subject to: 

T𝑥CD = 1,			
U

D=$

𝑘 = 1,⋯ ,𝐾, T𝑥CD = 1,			
V

C=$

𝑙 = 1,⋯ , 𝐿,	 

 
where 𝑑CD denotes the distance between the gene expression profiles of the 𝑘78 cell and 
the 𝑙78 sub-spot. The above constraints guarantee that each cell is only assigned to one 
sub-spot and each sub-spot only receives one cell. In general, 𝑑CD can be obtained 
using any metric that quantifies the similarity between the gene expression profiles of 
the reference and target data sets. We examined different similarity metrics for 
simulated data and selected Pearson correlation as below due to its robustness to 
noise: 

𝑑CD = −𝑐𝑜𝑟𝑟(𝐴̅CZ, 𝐵:DZ), 
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where 𝐴̅CZ and 𝐵:DZ denote the 𝑘78 and 𝑙78 columns of expression matrices 𝐴̅ and 𝐵: , 
respectively, for the shared genes in 𝐺.	 
 
We provide two possible solvers for CytoSPACE, both of which will return the globally 
optimal solution of the above problem as formulated. The first of these implements the 
shortest augmenting paths-based Jonker-Volgenant algorithm, in which we solve the 
dual problem of the above formulation defined as: 
 

max			 \T𝑢C +T𝑣D

U

D=$

V

C=$

`, 

subject to: 
𝑟CD ≔ 𝑑CD − (𝑢C + 𝑣D) ≥ 0, 𝑙 = 1,⋯ , 𝐿,								𝑘 = 1,⋯ , 𝐾, 

 
where for the dual variables 𝑢C and 𝑣D, the reduced cost 𝑟CD is defined as 𝑑CD − (𝑢C +
𝑣D).	The dual problem reformulates our optimization task to find an alternative reduction 
of the cost function with maximum sum and non-negative reduced costs. In summary, 
this algorithm constructs the auxiliary network (or equivalently a bipartite graph) and 
determines from an unassigned row 𝑘 to an unassigned column 𝑗 an alternative path of 
minimal total reduced cost and uses it to augment the solution26. In practice, despite 
time complexity 𝑂(𝐿d), the Jonker-Volgenant algorithm is significantly faster than the 
majority of available algorithms for solving the assignment problem. By default, 
CytoSPACE calls the lapjv solver from the lapjv software package (version 1.3.14) in 
Python 3, which makes use of AVX2 intrinsics for speed 
(https://ms609.github.io/TreeDist/reference/LAPJV.html)26. With this solver, CytoSPACE 
runs in approximately 5 minutes on a single core using a 2.4 GHz Intel Core i9 chip for a 
standard 10x Visium sample with an estimated average of 5 cells per spot.  
 
We provide an alternate solver based on the cost scaling push-relabel method29 using 
the Google OR-Tools software package in Python 3. This solver is an integer 
programming approximation method in which exact costs are converted to integers with 
some loss of numerical precision and which runs with time complexity 𝑂(𝐿e log(𝐿𝐶)), 
where 𝐶 denotes the largest magnitude of an edge cost. In practice, this solver is 
approximately as fast as the Jonker-Volgenant based solver detailed above. However, 
for very large numbers of cells to be mapped, it can offer faster runtimes. Furthermore, 
it is supported more broadly across operating systems, so we recommend this solver for 
users working on systems which do not support AVX2 intrinsics as required by the lapjv 
solver. For users who wish to obtain the exact results of lapjv on operating systems that 
do not support the lapjv package, an equivalent but considerably slower solver 
implementing the Jonker-Volgenant algorithm is provided via the lap package (version 
0.4.0), which has broad compatibility. 
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Estimating cell type fractions. To overcome variability in cell type fractional 
abundance between a given ST sample and a reference scRNA-seq dataset, the first 
step of CytoSPACE requires estimating cell type fractions in the ST sample (Fig. 1a). Of 
note, only global estimates for the entire ST array are required and these may be 
obtained by combining spot-level fractions by cell type. Many deconvolution methods 
have been proposed to determine cell type composition from ST spots14,20,27,28, and any 
such method can be deployed for this purpose. In this paper, we used Spatial Seurat14 
from Seurat version 3.2.3 for our primary analyses and show that correlations between 
estimated and true fractions of distinct cell types are high in simulated data 
(Supplementary Fig. 3a). After loading raw count matrices, we performed 
SCTransform() and RunPCA() with default parameters, followed by 
FindTransferAnchors() in which the preprocessed scRNA-seq and ST data served as 
the reference and query respectively. We then obtained spot-level predictions by 
TransferData() and obtained global predictions by summing prediction scores per cell 
type across all spots and scaling the sum of cell type scores to one.  
 
In addition to Spatial Seurat, we tested the performance of RCTD18 for estimating global 
cell type fractions as input to CytoSPACE (Supplementary Fig. 6). RCTD version 2.0.0 
(package spacexr in R) was employed with doublet_mode = ‘full’ and otherwise default 
parameters to obtain cell type fraction estimates per spot, followed by summing spot 
normalized result weights per cell type across all spots and scaling the sum to one. 
 
Estimating the number of cells per spot. The number of detectably expressed genes 
per cell (‘gene counts’) tightly corresponds to total captured mRNA content, as 
measured by the sum of unique molecular identifiers (UMIs) per cell39. As gene counts 
are routinely used as a proxy for doublets or multiplets in scRNA-seq experiments, we 
hypothesized that the sum of UMIs per ST spot may reasonably approximate the 
number of cells per spot, as required for the second step of CytoSPACE (Fig. 1a). To 
test this hypothesis while blunting the effect of outliers and technical variation, we first 
normalized UMIs to counts per million per spot and then performed log2 adjustment. We 
then estimated the number of cells per ST spot by fitting a linear function through two 
points: for the first point, we assumed that the minimum number of cells per spot is one 
and that this minimum in cell number corresponds to the minimum sum of UMIs in log2 
space. For the second point, we assumed that the mean number of cells per spot 
corresponds to the mean sum of UMIs in log2 space and set this value according to user 
input. For 10x Visium samples in which spots generally contain 1-10+ cells per spot, we 
employed a mean of 5 cells per spot throughout this work. For legacy ST samples with 
larger spot dimensions, we selected a mean of 20 cells per spot. The number of cells for 
every spot was calculated from this fitted function. In support of our hypothesis, for 
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simulated ST datasets, we found that the Pearson correlation between the estimated 
and real number of cells ranged between 0.80 and 0.93, depending on the dataset and 
spot resolution evaluated, validating our approach (Supplementary Fig. 3b). 
 
Harmonizing the number of cells per cell type. The third step of CytoSPACE 
equalizes the number of cells per cell type between the query scRNA-seq dataset and 
the target ST dataset (Fig. 1a). This is accomplished by sampling the former to match 
the predicted quantities in the latter using one of the following methods: 
 
Duplication. Let 𝑛𝑢𝑚2i,C and 𝑛𝑢𝑚<j,C denote the real and estimated number of cells per 
cell type 𝑘 in scRNA-seq and ST data, respectively. For cell type 𝑘, if 𝑛𝑢𝑚2i,C <
	𝑛𝑢𝑚<j,C, CytoSPACE retains all available cells in the scRNA-seq data and, also, 
randomly samples 𝑛𝑢𝑚<j,C − 𝑛𝑢𝑚2i,C cells from the same 𝑛𝑢𝑚2i,C cells. Otherwise, it 
randomly samples 𝑛𝑢𝑚<j,C from the 𝑛𝑢𝑚2i,C available cells with cell type label 𝑘 in the 
scRNA-seq data. By default, CytoSPACE applies this method for real data to ensure all 
cells assigned are biologically appropriate. 
 
Generation. Here, when 𝑛𝑢𝑚2i,C < 	𝑛𝑢𝑚<j,C, instead of duplicating cells, new cells of a 
specific type are generated with independent random gene expression levels by 
sampling each gene from the gene expression distribution of cells of the same type 
uniformly at random. We used this method for benchmarking simulations to avoid bias 
in measuring precision owing to the presence of duplicated cells (Fig. 1b-d; 
Supplementary Figs. 4, 5, and 6). 
 
Simulation framework. To evaluate the accuracy and robustness of CytoSPACE (Fig. 
1b), we simulated ST datasets with known single-cell composition using Slide-seq 
datasets of mouse cerebellum and hippocampus sections30. Let 𝑆𝑙 be an 𝑀 × 𝐵 gene 
expression matrix of a Slide-seq puck with 𝑀 genes and 𝐵 beads. To create a higher 
gene coverage version of 𝑆𝑙, denoted 𝑆𝑐, we used scRNA-seq datasets of the same 
brain regions31 to replace 𝑆𝑙 beads with single-cell transcriptomes. Following quality 
control, in which outlier cells with >1,500 genes were removed, we matched each bead 
in the Slide-seq datasets with the nearest cell of the same cell type in the scRNA-seq 
dataset by Pearson correlation. We did this separately for each mouse brain region. As 
single cells may be matched with more than one bead, to obtain unique single-cell 
transcriptomes, we permuted genes between cells of the same cell type. For each cell, 
we replaced 20% of its transcriptome, with genes randomly selected per cell, with that 
of another randomly selected cell of the same cell type such that the latter is not a 
duplicate of the former. For simplicity, we matched the number of beads present in the 
two tissues by randomly sampling beads from the hippocampus data down to the 
number present in the cerebellum data. 
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Having created an	𝑆𝑐 matrix for each brain region, we next sought to generate ST 
datasets with defined spot resolution. For this purpose, we imposed an 𝑚 × 𝑛 spatial 
grid over the entire puck. In each grid spot 𝑥lm, 𝑖 = 1,⋯ , 𝑛, 𝑗 = 1,⋯ ,𝑚, we calculated the 
sum of raw counts 𝑆𝑐:::lm of the cells located within the grid-spot 𝑥lm. Since the spatial 
resolution of ST data varies depending on the technology used, we simulated ST 
datasets with an average of 5, 15, and 30 cells per spot.  
 
Finally, in order to (1) leverage the scRNA-seq data underlying each 𝑆𝑐 matrix as a 
query dataset and (2) emulate technical variation between platforms, we added noise to 
the scRNA-seq data in defined amounts. To this end, we selected a percentage of 
genes 𝑝 to perturb, then randomly selected a corresponding subset of genes from each 
cell to which noise was added from the exponentiated Gaussian distribution 2q(r,$). We 
considered noise perturbations for the following values of 𝑝: 5%, 10%, and 25%. 
Despite the addition of noise, UMAP plots of perturbed transcriptomes remained similar 
to the original data, implying maintenance of biologically-realistic data structure 
(Supplementary Fig. 2).  
 
Benchmarking analysis with simulated datasets. To benchmark CytoSPACE against 
Tangram, CellTrek, and two naïve distance metrics on simulated ST data, each 
approach was applied as follows: 
 
CytoSPACE. For each ST resolution and scRNA-seq noise level, we estimated the 
fractional abundance of known cell types in the ST sample via Spatial Seurat, as 
described in “Estimating cell type fractions”. We then ran CytoSPACE with the 
“generated cells” option and with the lapjv solver implemented in Python (package lapjv, 
version 1.3.14). 
 
Tangram. To ensure a fair comparison with CytoSPACE, we ran Tangram (version 
1.0.2) with the same input cells mapped by CytoSPACE, including cells newly 
generated after resampling to match predicted cell type numbers. We also provided a 
normalized vector of CytoSPACE’s cell number per spot estimate as the density prior 
(density_prior argument). We trained Tangram on CPM-normalized scRNA-seq data in 
two ways: (1) using all available genes per cell and (2) using the top marker genes 
stratified by cell type. To identify marker genes using Seurat (version 4.1.0), we applied 
NormalizeData() with default parameters and FindAllMarkers() with only.pos = TRUE, 
min.pct = 0.1, and logfc.threshold = 0.25. The top 100 genes by average log2 fold 
change were then selected for each cell type.  
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CellTrek. Given that CellTrek heavily duplicates input cells (by default) and also filters 
input cells based on whether mutual-nearest neighbors are identified between cells and 
spots25, we provided CellTrek (version 0.0.0.9000) with all cells present in each 
simulated ST dataset (without the newly generated cells mapped by CytoSPACE and 
Tangram). After single cells were assigned to spatial coordinates, we selected the 
closest ST spot for each cell via Euclidean distance. As the CellTrek wrapper does not 
handle ST input without associated h5 and image files, we modified the code to 
accommodate ST datasets from other sources. CellTrek was run with default 
parameters, with the exception of (1) limiting the repel functionality (repel_r = 0.0001), 
as this parameter forces imputed spatial coordinates to arbitrarily deviate from their 
original predictions, and (2) setting spot_n to twice the mean number of cells per spot 
for each spatial resolution tested. 
 
In addition to the above methods, we tested Euclidean distance and Pearson 
correlation. Here, each cell was assigned to the spot that either minimized distance or 
maximized correlation, respectively. All ground truth cells were evaluated without 
resampling and input datasets were CPM normalized and log2-adjusted prior to 
analysis. 
 
Performance assessment. To determine the accuracy of single-cell mapping (Fig. 1d, 
Supplementary Figs. 5 and 6), we classified assigned locations that exactly matched 
ground truth spots as correct. Letting 𝑇𝑃2i denote the number of correct assignments, 
we defined single-cell precision (𝑃𝑟2i) as  
 

𝑃𝑟2i =
𝑇𝑃2i

𝑁𝑜.		𝑢𝑛𝑖𝑞𝑢𝑒	𝑚𝑎𝑝𝑝𝑒𝑑	𝑐𝑒𝑙𝑙𝑠	𝑤𝑖𝑡ℎ	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

 
Of note, since generated cells (see “Harmonizing the number of cells per cell type”) did 
not have a corresponding ground truth location, they were excluded from this 
calculation. Separately, although CellTrek can assign the same cell ID 𝑖 to multiple 
spots, any cell of ID 𝑖 mapped to the correct spot at least once was considered correct. 
This was done without inflating the denominator or penalizing incorrect mappings for 
other cells with ID 𝑖. 
 
ST datasets for TME community analysis. Melanoma ST data generated by Thrane 
et al.33 were downloaded from https://www.spatialresearch.org/resources-published-
datasets/doi-10-1158-0008-5472-can-18-0747/. Pre-processed spatial transcriptomics 
datasets of breast cancer (Visium fresh-frozen and FFPE) and colorectal cancer (fresh-
frozen) specimens were downloaded from 10x Genomics 
(https://www.10xgenomics.com/spatial-transcriptomics/). Annotations of regions 
containing tumor cells were downloaded from 10x Genomics for the Visium FFPE 
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breast cancer sample and shared by 10x Genomics upon request for the Visium fresh-
frozen breast cancer sample analyzed in this work. A pre-processed Visium array of a 
fresh/frozen TNBC specimen (1160920F) was obtained from Wu et al.35 along with 
tumor boundaries.  
 
scRNA-seq tumor atlases. All analyzed tumor scRNA-seq data, which were 
downloaded as preprocessed count (UMI-based) or transcript (non-UMI-based) 
matrices, were selected and curated to clinically-match the ST specimens analyzed in 
this work (see “Molecular classification of breast cancer specimens”). Additionally, 
author-supplied annotations were used for all scRNA-seq reference datasets analyzed 
in Figure 2, with the following modifications. For the melanoma dataset generated by 
Tirosh et al.34, we excluded normal melanocytes and divided T cells into CD4 and CD8 
subsets by the expression of CD8A/CD8B and CD4/IL7R, respectively, as previously 
described4. For the breast cancer dataset from Wu et al.35 and in the colorectal cancer 
dataset from Lee et al.32, the authors’ annotations were mapped to the major cell types 
analyzed in Figure 2. Of note, we excluded T cells that could not be confidently 
classified as CD8 or CD4 T cells and myeloid cells that could not be confidently 
classified as monocytes/macrophages or dendritic cells.  
 
Molecular classification of breast cancer specimens. When available, author 
annotations were used to determine estrogen receptor (ER) and human epidermal 
growth factor receptor 2 (HER2) enrichment status for each scRNA-seq and ST tissue 
breast cancer sample. For the FFPE breast cancer specimen from 10x Genomics 
without receptor status annotation, we examined the expression of ESR1 (ER) and 
ERBB2 (HER2) genes. We reclassified the FFPE breast cancer ST specimen as 
HER2+/ER- based on high expression of ERBB2 without appreciable ESR1 expression. 
 
Mapping of single-cell transcriptomes onto tumor ST samples. For the analyses in 
Figure 2 and Supplementary Figures 7–10, CytoSPACE, Tangram, and CellTrek were 
applied as follows: 
 
CytoSPACE. Cell type fractions were computed using Spatial Seurat (“Estimating cell 
type fractions”) and CytoSPACE was run with the “duplicated cells” option and the lapjv 
solver as implemented in the lapjv Python package on a single CPU core. For all Visium 
samples, we set the mean number of cells per spot to 5, while for legacy ST samples 
(melanoma ST data), we set this parameter to 20. 
 
Tangram. As input, we analyzed the same single-cell transcriptomes mapped by 
CytoSPACE, including duplicates, along with a density prior (density_prior argument) 
determined by the number of cells per spot estimated by CytoSPACE. Since Tangram 
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performed best with all genes when used for simulated ST datasets (Fig. 1d, 
Supplementary Figs. 5 and 6), we ran Tangram (version 1.0.2) on CPM-normalized 
scRNA-seq data with 24 CPU cores on all available genes. Other parameters were set 
to default. 
 
CellTrek. Given CellTrek’s internal filtering mechanism (see “Benchmarking analysis 
with simulated datasets”), we provided all cells in the corresponding scRNA-seq atlases 
as input (without duplication or down-sampling). For Visium samples, we ran CellTrek 
(version 0.0.0.9000) with default parameters with 24 CPU cores (reduction='pca', 
intp=T, intp_pnt=10000, intp_lin=F, nPCs=30, ntree=1000, dist_thresh=0.4, 
top_spot=10, spot_n=10, repel_r=5, repel_iter=10, keep_model=T) and then assigned 
cells from raw output coordinates to their nearest spot by Euclidean distance. For the 
legacy ST samples (melanoma), we modified the code to handle inputs without h5 and 
image files, as detailed above. To fit the larger spot resolution in the legacy ST 
datasets, we fixed spot_n to 40. Other parameters were the same as above. 
 
Running time analysis. To evaluate the efficiency of CytoSPACE in practice and 
benchmark against Tangram and CellTrek, we recorded running times for each method 
across all scRNA-seq tumor atlas/ST pairs tested (n = 4 pairs with Visium ST data, n = 
2 pairs with lower resolution legacy ST data) (Supplementary Fig. 8a) with parameter 
details as described above. For CytoSPACE, we report running times for both exact 
(shortest augmenting path via the lapjv solver) and integer approximation solvers, and 
both with and without a Spatial Seurat preprocessing step for obtaining input cell type 
fractional abundances. Data loading and file writing steps were excluded from running 
times for all methods. Methods were tested on comparable though not identical 
systems, with CytoSPACE, Spatial Seurat preprocessing steps, and Tangram tested on 
a computing cluster providing Intel E5-2640v4 (2.4 GHz base and 3.4 GHz max 
frequencies, with an associated 128 GB RAM), Intel 5118 (2.3 GHz base and 3.2 GHz 
max frequencies, with an associated 191 GB RAM), and AMD 7502 (2.5 GHz base and 
3.35 GHz max frequencies, with an associated 256 GB RAM) processors, and with 
CellTrek tested on a server with an Intel E5-2680v3 processor and an associated 230 
GB RAM. With the exception of CytoSPACE, in which the core mapping function uses 
only a single core, all methods were provided with 24 cores.  
 
Validation of alternative solver. To verify that the integer approximation solver we 
provide as a fast alternative to the recommended exact solver (lapjv) yields comparable 
results, we measured the proportion of single cells mapped to the same location across 
the two solver methods. For each scRNA-seq tumor atlas/ST pair tested, we mapped 
the same single cells after preprocessing for duplication and downsampling to match 
the estimated cell type fractions in tissue via CytoSPACE with exact and integer 
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approximation solvers, and we report the percentage of cells mapped to the same spot 
in each method (Supplementary Fig. 8b). For duplicated cells, no distinction was made 
between the copies. 
 
Spatial enrichment analysis. To determine whether single cells mapped to ST spots 
showed enrichment of known spatially-resolved gene expression programs, cells were 
first partitioned into two groups (‘close’ and ‘far’) based on their distance from cancer 
cells. For breast cancer ST samples, all of which were profiled by 10x Visium, we 
used tumor boundary annotations determined by a pathologist in order to group cells. 
For melanoma and CRC datasets, the mean Euclidean distance of each TME cell to 
the nearest five tumor cells (mapped by the respective alignment method) was 
determined. For the melanoma dataset, melanoma cells were considered as tumor 
cells, while in the CRC dataset, tumor epithelial cells were considered for the purpose 
of identifying tumor locations in tissue. For each TME cell type, the resulting 
distances were median-stratified into ‘close’ and ‘far’ groups. This was done for two 
main reasons. First, the CRC sample lacked tumor boundary annotations. Second, 
while melanoma datasets included such annotations, the low spatial resolution of the 
legacy ST platform prevented precise co-registration with spatial spots at the 
tumor/stroma interface. That said, spatial enrichment results were comparable 
regardless of which distance method we employed for the melanoma datasets (data 
not shown).  
 
To quantify spatial enrichment, we used pre-ranked gene set enrichment analysis 
(GSEA) implemented in fgsea (v1.14.0). As input, all spatially-mapped single-cell 
transcriptomes were loaded by cell type into Seurat v4.1.0 (min.cells = 5) and 
normalized with NormalizeData(). For each method and cell type, we then generated 
a gene list ranked by log2 fold-change for the identity classes “near” and “far” using 
FoldChange(). If fewer than 10 cells of a cell type were assigned to spots within one 
partition by at least one method, we excluded that cell type from the enrichment 
analysis. As CytoSPACE and Tangram were each run with the same scRNA-seq 
input, prior to running Seurat and fgsea, we performed random sampling of cells 
mapped by CellTrek in order to match the number of cells per cell type mapped by 
CytoSPACE and Tangram. This was done as described in “Harmonizing the number 
of cells per cell type - Duplication” in order to ensure a fair comparison among 
methods. Gene sets for T cell exhaustion and CE9/CE10-associated cell states were 
derived by Zheng et al.37 and Luca et al.4, respectively.  
 
Spatially-resolved macrophage states. To evaluate the spatial localization of 
TREM2+ and FOLR2+ macrophages6 (Supplementary Fig. 10), single-cell 
transcriptomes annotated as “Macrophages/Monocytes” were mapped to ST spots as 
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described above (“Mapping of single-cell transcriptomes onto tumor ST samples”) 
and ordered based on their spatial distance (Euclidean) from tumor cells. All cells 
were processed with Seurat as described in “Spatial enrichment analysis”. To 
calculate distance, we used the same metric described for melanoma and CRC 
datasets (“Spatial enrichment analysis”). For cells mapped within tumor boundaries 
annotated by a pathologist (breast cancer datasets), distances were set to zero. We 
then divided cells into ‘near’ (distance = 0) and ‘far’ (distance > 0) groups and 
calculated the log2 fold change of each gene using FoldChange() in Seurat 
(Supplementary Fig. 10b).  
 
Statistics. All statistical tests were two-sided unless stated otherwise. The Wilcoxon 
test was used to assess statistical differences between two groups. Linear concordance 
was determined by Pearson (r) correlation or Spearman correlation (ρ), and a two-sided 
t test was used to assess whether the result was significantly non-zero. All statistical 
analyses were performed using R v3.5.1 and 4.0.2+, Python 3.8, MATLAB_R2019a, 
and Prism 9+ (Graphpad Software, La Jolla, CA). 
 
Code availability. CytoSPACE v1.0 was coded in Python and used to generate the 
results in this work. It is freely available, along with documentation, vignettes, and 
helper R scripts for creating CytoSPACE inputs and for estimating cell type fractions 
with Seurat, at https://github.com/digitalcytometry/cytospace.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.488356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.488356


 22 

References 

1. Keren, L., et al. A Structured Tumor-Immune Microenvironment in Triple 
Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 
1373-1387 e1319 (2018). 

2. Schürch, C.M., et al. Coordinated Cellular Neighborhoods Orchestrate 
Antitumoral Immunity at the Colorectal Cancer Invasive Front. Cell 182, 1-19 
(2020). 

3. Jackson, H.W., et al. The single-cell pathology landscape of breast cancer. 
Nature 578, 615-620 (2020). 

4. Luca, B.A., et al. Atlas of clinically distinct cell states and ecosystems across 
human solid tumors. Cell 184, 5482-5496.e5428 (2021). 

5. Grünwald, B.T., et al. Spatially confined sub-tumor microenvironments in 
pancreatic cancer. Cell 184, 5577-5592.e5518 (2021). 

6. Nalio Ramos, R., et al. Tissue-resident FOLR2+ macrophages associate with 
CD8+ T cell infiltration in human breast cancer. Cell 185, 1189-1207.e1125 
(2022). 

7. Hu, J., et al. Statistical and machine learning methods for spatially resolved 
transcriptomics with histology. Comput Struct Biotechnol J 19, 3829-3841 (2021). 

8. Edsgard, D., Johnsson, P. & Sandberg, R. Identification of spatial expression 
trends in single-cell gene expression data. Nat Methods 15, 339-342 (2018). 

9. Halpern, K.B., et al. Paired-cell sequencing enables spatial gene expression 
mapping of liver endothelial cells. Nat Biotechnol 36, 962-970 (2018). 

10. Halpern, K.B., et al. Single-cell spatial reconstruction reveals global division of 
labour in the mammalian liver. Nature 542, 352-356 (2017). 

11. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell 
transcriptomes using Scanorama. Nat Biotechnol 37, 685-691 (2019). 

12. Moncada, R., et al. Integrating microarray-based spatial transcriptomics and 
single-cell RNA-seq reveals tissue architecture in pancreatic ductal 
adenocarcinomas. Nat Biotechnol 38, 333-342 (2020). 

13. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression 
cartography. Nature 576, 132-137 (2019). 

14. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-
1902 e1821 (2019). 

15. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat Rev Genet 20, 257-272 
(2019). 

16. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for 
spatially resolved transcriptomic studies. Nat Methods 17, 193-200 (2020). 

17. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.C. Identification of spatially 
associated subpopulations by combining scRNAseq and sequential fluorescence 
in situ hybridization data. Nat Biotechnol (2018). 

18. Cable, D.M., et al. Robust decomposition of cell type mixtures in spatial 
transcriptomics. Nature Biotechnology 40, 517-526 (2022). 

19. Dong, R. & Yuan, G.C. SpatialDWLS: accurate deconvolution of spatial 
transcriptomic data. Genome Biol 22, 145 (2021). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.488356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.488356


 23 

20. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded 
NMF regression to deconvolute spatial transcriptomics spots with single-cell 
transcriptomes. Nucleic Acids Res 49, e50 (2021). 

21. Svensson, V., Teichmann, S.A. & Stegle, O. SpatialDE: identification of spatially 
variable genes. Nat Methods 15, 343-346 (2018). 

22. Lohoff, T., et al. Integration of spatial and single-cell transcriptomic data 
elucidates mouse organogenesis. Nature Biotechnology (2021). 

23. Dries, R., et al. Giotto: a toolbox for integrative analysis and visualization of 
spatial expression data. Genome Biology 22, 1-31 (2021). 

24. Biancalani, T., et al. Deep learning and alignment of spatially resolved single-cell 
transcriptomes with Tangram. Nature Methods 18, 1352-1362 (2021). 

25. Wei, R., et al. Spatial charting of single-cell transcriptomes in tissues. Nature 
Biotechnology (2022). https://doi.org/10.1038/s41587-022-01233-1 

26. Jonker, R. & Volgenant, A. A Shortest Augmenting Path Algorithm for Dense and 
Sparse Linear Assignment Problems. Computing 38, 325-340 (1987). 

27. Kleshchevnikov, V., et al. Cell2location maps fine-grained cell types in spatial 
transcriptomics. Nature Biotechnology (2022). https://doi.org/10.1038/s41587-
021-01139-4 

28. Newman, A.M., et al. Determining cell type abundance and expression from bulk 
tissues with digital cytometry. Nat Biotechnol 37, 773-782 (2019). 

29. Goldberg, A.V. & Kennedy, R. An efficient cost scaling algorithm for the 
assignment problem. Math. Program. 71, 153–177 (1995). 

30. Rodriques, S.G., et al. Slide-seq: A scalable technology for measuring genome-
wide expression at high spatial resolution. Science 363, 1463-1467 (2019). 

31. Saunders, A., et al. Molecular Diversity and Specializations among the Cells of 
the Adult Mouse Brain. Cell 174, 1015-1030 e1016 (2018). 

32. Lee, H.-O., et al. Lineage-dependent gene expression programs influence the 
immune landscape of colorectal cancer. Nature Genetics 52, 594-603 (2020). 

33. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially 
Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage 
III Cutaneous Malignant Melanoma. Cancer Research 78, 5970-5979 (2018). 

34. Tirosh, I., et al. Dissecting the multicellular ecosystem of metastatic melanoma 
by single-cell RNA-seq. Science 352, 189-196 (2016). 

35. Wu, S.Z., et al. A single-cell and spatially resolved atlas of human breast 
cancers. Nature Genetics 53, 1334-1347 (2021). 

36. Wherry, E.J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. 
Nature Reviews Immunology 15, 486-499 (2015). 

37. Zheng, C., et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by 
Single-Cell Sequencing. Cell 169, 1342-1356.e1316 (2017). 

38. Tyler, S.R., Bunyavanich, S. & Schadt, E.E. PMD Uncovers Widespread Cell-
State Erasure by scRNAseq Batch Correction Methods. bioRxiv, 
2021.2011.2015.468733 (2021). 

39. Gulati, G.S., et al. Single-cell transcriptional diversity is a hallmark of 
developmental potential. Science 367, 405-411 (2020). 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.488356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.488356

