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ABSTRACT 

 
The increasing elderly population is casting a heavy burden on healthcare due to chronic, age-
associated diseases. Nutrient limitation is well known to slow the aging process and improve 
health. Regrettably, practicing nutrient restriction to improve health is unachievable for most 
people. Alternatively, pharmacological strategies are being pursued including myriocin which 
increases lifespan in budding yeast. Myriocin impairs sphingolipid synthesis, resulting in lowered 
amino acid pools which aid entry into a quiescent, long-live state. Here we present 
transcriptomic data during 6 h of drug treatment that improve our mechanistic understanding of 
what myriocin does to promote longevity. Specifically, we present a new role for ubiquitin in 
longevity. Previously we found that the methionine transporter, Mup1, traffics to the plasma 
membrane normally in myriocin-treated cells but is not active and is endocytosed sooner than in 
untreated cells. We now show that Mup1 tagged with a deubiquitinase domain (DUB domain) 
blocks myriocin-enhanced longevity. Although proteostasis and the role of ubiquitin in it are 
hallmarks of aging, our finding that deubiquitinating an amino acid transporter is vital for 
longevity in Myriocin-treated cells is novel. Understanding the role of deubiquitination in 
longevity has the potential to identify new strategies and targets for promoting healthy aging.    
 

INTRODUCTION 
 
Aging is widely accepted as a major risk factor for many chronic diseases and resultant 
physiological decline leading to mortality [1]. Research on many fronts is revealing potential 
ways to postpone age-related decline, maintain normal physiological function longer and 
improve healthspan. Some of the most promising research seeks to limit nutrient intake or 
increase daily fasting time as a means to improve healthspan in humans [2-4]. Still, these 
strategies will be difficult for most humans to adhere to in order to gain health benefits. 
Pharmacological agents offer a potential way to obtain the beneficial effects of nutrient 
limitation, but such compounds have yet to be identified although progress is encouraging [1, 5, 
6].   
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We have identified a potential pharmacological agent, the natural product myriocin (Myr, ISP-1), 
that increases chronological lifespan in budding yeasts (Saccharomyces cerevisiae) by more 
than two-fold [7]. Myr works, at least in part, by reducing the free pool of most amino acids 
similar to what amino acid restriction does [5, 8, 9]. Our interest in Myr stems from its target 
enzyme serine palmitoyltransferase (SPT), catalyzing the first and rate limiting step in 
sphingolipid biosynthesis in all eukaryotes [10-12]. In addition, Myr was first identified in a 
search for antibiotics [13] and anti-inflammatory drugs [14].  More recently, it has shown 
beneficial effects in treating age-associated diseases including diabetes, cancers, neurological 
and cardiovascular disorders [15-20] and other diseases including muscular dystrophies, cystic 
fibrosis and retinopathy [21-23] 
 
Sphingolipids serve as both structural components of cellular membranes and as signal or 
regulatory molecules influencing many physiological processes, particularly in mammals [15, 
24-26]. Because most de novo lipid biosynthesis begins in the endoplasmic reticulum and 
continues in the Golgi Apparatus before the terminal products are distributed to cellular 
membranes, Myr treatment has the potential to diminish or enhance a variety of processes. Our 
recent studies identified diminished processes that may foster longer lifespan: newly 
synthesized Mup1, the major high-affinity methionine (Met) transporter, trafficked normally to the 
plasma membrane (PM) but was inactive in drug-treated cells resulting in reduced Met uptake 
as the fraction of active Mup1 was diluted by cell growth and division. Moreover, Mup1 
clearance from the PM began earlier in Myr-treated cells than in untreated cells [7]. Thus, post-
translational effects are vital to drug-induced down-sizing of amino acid pools. 
 
Previously we found that Myr treatment had large, global effects on transcription after 6-7 cell 
doublings [27]. In the present work, we examined mRNA levels during the initial stages of Myr 
treatment to construct an overview of transcriptional changes with the aim of identifying how 
long it takes cells to respond to drug treatment and to determine if transcription plays a 
prominent role in lowering amino acid pools. Additionally, we sought to identify novel factors 
critical for Myr-enhanced lifespan. We find that very few transcripts respond to Myr in the first 4 
h of treatment, but thereafter transcription is strongly up-regulated. We find no indication of 
transcription having a prominent role in maintaining low amino acid pools in Myr-treated cells. 
However, transcript data suggested a novel role for ubiquitin in lifespan and targeted studies 
identified deubiquitination of Mup1 as essential for Myr-enhanced longevity. 
 
 

RESULTS. 

 
Four hours of myriocin treatment induce robust transcriptional changes 
 
To examine transcriptional changes induced by Myr treatment, we diluted stationary phase cells 
(50-60% in Go or quiescent, Q, phase) into fresh culture medium (Time 0), with and without Myr 
treatment. Samples for analysis of mRNA abundance by RNA seq were taken at 1 h intervals 
over a 6 h time course (Figure 1A). Data for the zero time were omitted from this analysis 
because of bias in library sizes which were smaller than expected if most genes were not 
differentially expressed. The normalized RNA seq data for the 1-6 h time course contained 
transcripts, expressed as transcripts per million (TPM), mapped to 6198 genes, 5169 of which 
were uniquely annotated and of sufficient signal intensity for subsequent analysis 
(Supplementary File 1). Filtered data were analyzed by two-way ANOVA with a statistical cutoff 
of ρ = ≤ 0.01 to give a set of 4964 significant genes (Figure 1B). These were further sorted into 
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drug (D), time (T), both drug and time (DxT) and interactions (TxDxI) (Figure 1C, Venn 
diagram).  
 
We analyzed the 1254 genes in the TxDxI group at each time point for statistically significant 
changes (criteria- p ≤ 0.05 Fisher’s protected Least Significant Difference pairwise contrast-
pLSD, and fold change ≥ 2) (Supplementary File 2). A notable result is that few genes are up-
regulated until the 5 and 6 h time points and very few genes are down-regulated at any time 
point (Figure 1D). As we discuss in detail below, up-regulation of genes starting between the 4th 
and 5th h occurs when the majority of cells enter their second cell division cycle. Thus, these 
data explain much of the effect of time and drug components of the interaction gene set.  
 
We recently reported that Myr treatment has a notable effect on the size of most amino acid 
pools which remain significantly smaller in drug-treated cells [7]. To determine if transcription 
has roles in lowering amino acid pools and to gain a global view of significant features of the 
transcriptome, we performed a gene ontology (GO) analysis of genes in the TxDxI sector of the 
Venn diagram. GO terms Membrane and Plasma Membrane are highly enriched (Figure 1E), 
consistent with Myr slowing synthesis of sphingolipids along with synthesis of other lipids and 
membrane-bound proteins in the ER and consequent remodeling of membrane composition 
throughout the cell. Other high scoring terms include Actin Cortical Patch, indicating membrane 
growth and remodeling as well as cell grow and division. The term Oxidation-Reduction Process 
primarily identifies chemical reactions in metabolic pathways which are captured also by the 
KEGG pathway term Metabolic Pathways. Lastly, Endocytosis, another high ranking KEGG 
pathway, has functional links to the terms Membrane, Plasma Membrane and Actin Cortical 
Patch and to Mup1, the major methionine transporter, presented below.  
 
Enriched GO terms in three other sectors of the Venn diagram (Figure 2A) were analyzed 
starting with genes listed in columns labeled Time x Drug and Time (Figure 2B). Our focus was 
on genes matching one of the 10 indicated patterns over the 1-6 h time-frame. Patterns were 
sorted into ones having transcripts that behaved like the diagramed pattern or like its mirror 
image (+ or –, respectively, as indicated in the column labeled ‘Corr’). Only patterns showing 
significantly more genes (indicated by an asterisk, binomial test ρ ≤ 0.05) assigned to them than 
expected by chance were analyzed. Most enriched GO terms in the Time x Drug group 
represent processes requiring many genes including cell growth and division (Figure 2C). The 
genes and GO terms present in all of the patterns analyzed are shown in Supplementary File 2. 
A graph of any gene transcript across the 1-6 h time-frame can be plotted using the Graph 
Reporter tab in Supplementary File 1. 
 
In contrast to the Time x Drug sector, the 1009 genes in the Time sector of the Venn diagram 
fall into multiple patterns with the B1 and B10 patterns being most highly represented. Genes in 
this sector are not significantly changed by Myr but are significantly changed with time and 
serve as an example of time-related changes. All of these patterns will require further effort to 
determine their significance in Myr-induced longevity.  
 
The Drug sector of the Venn diagram contains 401 genes with most (329, Supplementary File 2) 
being up-regulated. As expected, these genes do not strongly associate with any temporal 
pattern (Figure 2B, right-most column). However, these genes do respond to Drug but not to 
Time. Because of our experimental design, we cannot be sure if some genes in this sector are 
driving the changes we see that are associated with time but they could be. The most enriched 
GO terms are Regulation of Transcription, DNA Templated and Nucleus (Figure 2E), indicating 
a strong response to Myr treatment independent of time in culture. 
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In summary, GO term analysis of transcriptional changes in ten patterns during the 1-6 h time 
course of Myr treatment gives little indication of transcriptional involvement in keeping amino 
acid pools low in drug-treated cells. If there is a contribution, it may be overlooked because the 
number of genes involved is too small to achieve statistical significance at the pathway level, or 
transcriptional changes do not fall into any of the 10 patterns we examined.  
 
Correlation analysis of transcriptomics data identifies clues to amino acid metabolism 
 
As another approach to understand effects of Myr on the transcriptome, we analyzed transcript 
data using the R program package of Weighted Gene Correlation Network Analysis, WGCNA 
[28], to identify clusters (modules) of highly correlated genes showing a similar response to Myr 
over the 1-6 h time course. A gene dendrogram produced by average linkage of hierarchical 
clustering revealed many modules with the seven most correlated having from 18 to 2490 genes 
(Supplementary File 3, column L). Examination of the relationship of the modules to free amino 
acid pools over time identified the Brown and Green modules with 1126 and 144 genes, 
respectively, as having a negative correlation to Myr treatment: Myr maintains low pool levels 
but enhances the level of a transcript at one or more time points (Figure 3A). A network 
representing the relationship between genes in the Brown and Green modules includes the 
Turquoise module whose genes interact with both the Brown and Green modules (Figure 3B).  
 
Such negative correlation in a module is exemplified by an Eigengene representing the average 
effect of Myr on genes compared to the untreated drug control (Supplementary File 4). For 
example, the Eigengene representing the Brown module shows that Myr induces transcription 
starting at 4 h (Figure 3C) whereas there is no increase in amino acid pool size in drug-treated 
cells [7]. The highest-ranking GO term in the Brown module is Regulation of Transcription where 
drug treatment enhances transcript levels particularly after 4 h, consistent with the ANOVA 
analysis represented in Figure 1D. A different negative correlation is seen for the Eigengene 
representing the small Green module where genes are up-regulated by Myr from 1-4 h and then 
drop below values in untreated cells (Figure 3E). The main GO term in the Green module is 
Translation (Biological Process, p = 1.7E-88) along with Ribosome Assembly and related 
processes responding to drug-induced slowing of protein synthesis and growth rate [7]. Lastly, 
the large Turquoise module with 2490 genes captures Myr-induced transcriptional events 
involving processes or pathways or cell components each with more than 200 genes (Figures 
3F and 3G). Interestingly, transcripts represented in the Turquoise module rapidly increases 
after 4 h of drug treatment, substantiating the ANOVA analysis represented in Figure 1D. 
Substantial effort will be required to delineate the contribution of these genes to Myr-enhanced 
longevity.  
 
Deubiquitination of Mup1 is essential for Myr-enhanced longevity 
 
A drawback of WGCNA and pathway and pattern analyses is a reduced ability to identify 
significant biological features involving smaller numbers of genes or for genes that do not fit a 
specific pattern across the 1-6 h time-frame. To circumvent these limitations and to discover 
transcript changes with potential roles in lowering amino acid pools, we examined genes with 
the highest possible significance (1E-16) in the Drug, Time and Interactions columns of data 
from the two-way ANOVA analysis of mRNA levels. This approach identified only 16 genes out 
of the 4964 genes (Supplementary File 1, Filter Tab, columns M, N and O). The UBI4 gene 
encoding the major stress-associated ubiquitin captured our attention because stresses of 
various types have known roles in aging and longevity and we previously identified stress 
responses in Myr-treated cells [27, 29]. A defining feature of UBI4 transcript abundance is a 
rapid increase over the 4-6 h time period (Figure 4A), corresponding to the time when Myr has 
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its most significant effect on transcription (Figure 1D). The trajectory of UBI4 transcripts appear 
to be like transcript pattern B4 with 150 genes up-regulated between 4-5 h in the Time x Drug 
column of Figure 2B. The highest-ranking GO term in this group of genes is Protein 
Monoubiquitination (Figure 2C): Protein Polyubiquitination is also found at a lower significance 
level in this group. However, due to the stringent nature of ANOVA analysis, the UBI4 transcript 
does not fit in the B4+ pattern. But it does fits into a unique pattern containing 72 genes 
(Supplementary File 5). Importantly, the GO terms Protein Monoubiquitination and Protein 
Polyubiquitination are also enriched in this group. The potential biological significance of the 
UBI4 transcript pattern may relate to our previous analyses of Mup1-pHluorin trafficking. We 
found that the fluorescent signal decreases from the PM more rapidly, 4-7 h time-frame, in Myr-
treated cells in a dose-dependent manner and requires ubiquitin conjugation for endocytosis to 
occur [7]. 
 
To determine if ubiquitination has roles in Myr-enhanced CLS, we examined untreated ubi4∆ 
cells and found a faster loss of viability compared to BY4741 cells (Figure 4B, 50% survival day 
3 vs day 5, respectively). For Myr-treated cells, 50% survival occurred on day 3-4 for ubi4∆ cells 
vs day 10 for BY4741 cells. Around the 50% survival point, drug-treated ubi4∆ cells appear to 
survive slightly longer than untreated cells, suggesting a small effect of Myr on lifespan. Since 
ubiquitin has many functions, we studied its role in endocytosis of Mup1 using the same strains 
as used in our published analyses of endocytosis [7]. Specifically, CLS was assayed using cells 
with chromosomal MUP1 tagged with pHluorin-UL36 (catalytic active or catalytic dead, CD). 
UL36 is a viral deubiquitinase (DUB) that can reverse localized ubiquitin conjugation activity, 
thus protecting the fusion protein from ubiquitin-mediated degradation or trafficking events [30]. 
We find that while Mup1-UL36 blocks Myr-enhancement of CLS (Figure 4C, dashed blue curve) 
strains lacking the UL36 fusion (dashed black curve) or isogenic strains containing the catalytic 
dead variant (UL36-CD; dashed magenta curve) do not interfere with Myr-induced longevity. To 
establish that deubiquitination is required for drug-enhanced longevity rather than just the lack 
of Mup1 transport activity, we analyzed mup1Δ cells. Myr treatment enhanced CLS in mup1Δ 
cells like it does in BY4741 cells and in control cells in which the MUP1 wild-type allele has 
been used to replace the mutant chromosomal mup1Δ allele (Figure 4D, compare dashed 
lines). We conclude from these data that removal of ubiquitin from Mup1 is essential for Myr-
induced longevity.  
 
 

DISCUSSION 
 
We performed transcriptomics analysis for several reasons including (i) to determine if 
transcription played roles in keeping amino acid pools at a low level in Myr-treated cells, (ii) to 
determine if Myr treatment caused a major transcriptional shift during a specific time-frame and 
(iii) to search for novel processes or pathways required for Myr-enhanced longevity. Amino acid 
pools are lower in Myr treated cells compared to untreated cells after 1 h of treatment [7]. We 
did not identify any indication that initial amino acid pool lowering s driven by transcription. 
However, we cannot eliminate possible effects on some amino acid pools. We were able to 
determine when cells begin responding to drug treatment under our assay conditions (Figure 
1A). Transcripts (genes) changing in a statistically significant way across the initial 6 h of Myr 
treatment were identified by two-way ANOVA analysis (Figure 1B). Significant genes were 
sorted into ones responding primarily to Time (T) or Drug (D) or Interaction (I) (Figure 1C). To 
generate an overview of drug effects over time, we examined the 1254 genes in the TxDxI 
group at each time point for genes with 2-fold changes greater or less than 1 (Figure 1D). 
Surprisingly, very few transcripts that are significant by Interaction respond to Myr until after 4 h 
of treatment which, for the majority of cells, occurs after the first cell division (during the second 
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cell division cycle). The major GO terms in the TxDXI sector of the Venn diagrams reflect 
processes, reactions and compartments related to cell growth and division (Figure 1E). The 
large upsurge of transcripts after 4 h of Myr-treatment along with the cellular processes and 
compartments they represent was also identified by correlation analysis as visualized by the 
Eigengene for the Brown and Turquoise modules (Figures 3C and 3F). The Turquoise module 
being especially significant as it contains nearly half of all transcripts identified as significant by 
two-way ANOVA analysis (Figure 1A). Our data probably underestimate the number of 
significant genes at each time point since only 50-60% of cells are acting in synchrony [7] or that 
temporal blurring distorted temporal assignment.  Nonetheless, this is not likely to change our 
conclusion that Myr causes its greatest effects on transcription after about 4 h of treatment or 
after cells have executed their first cell division.  
 
Possible future studies to better understand Myr-effects on amino acid and other types on 
metabolism are implicated by our transcriptomics data. The GO term Metabolic Pathways (193 
genes) was identified in the Interaction analysis as being highly significant across the 1-6 h 
time-frame (Figures 1D and 1E). GO term analysis of these 193 genes identified KEGG 
pathways for carbon metabolism, secondary metabolites, amino acid metabolism (tryptophan, 
methionine, lysine, arginine, proline, histidine) and other types of metabolism as being 
significantly enriched (Supplementary File 2, Tab “TxDxI 1254”). Several of these pathways 
have known roles in longevity (e.g. Glycogen and Trehalose metabolism), suggesting that the 
Myr-sensitive pathways defined in this work are novel but include elements of pathways defined 
in prior work as having roles in longevity. Endocytosis is another GO term found to be highly 
enriched in the Interaction analysis of transcripts across the 1-6 h time-frame (Figures 1D and 
1E). GO term analysis of this group of 39 genes shows enrichment for genes involved in 
ubiquitin-mediated endocytosis which provide clues for the proteins, lipids and cellular 
machinery controlling Myr-induced endocytosis of Mup1 that we previously observed [7]. The 39 
genes in this group will facilitate understanding the cellular processes controlled by Myr that 
depend on ubiquitin and deubiquitination of Mup1 involved in Myr-enhanced lifespan (Figures 
4B and 4C). 
 
To uncover processes, pathways or cellular compartment related to removal of amino acid 
transporters like Mup1 from the PM, we examined genes with the highest statistical significance 
(E1-16) from the ANOVA analysis of the Time and Drug and Interaction columns because 
genes meeting these criteria would be more likely to have a genuine role in Myr-enhance 
longevity, yet they might not standout as significant using pathway or correlation analyses, 
especially if their expression patterns are unique. One gene, UBI4, in this group of 16 genes 
stood out because of its potential to be essential for removal of Mup1 and other proteins from 
the PM and to be vital for Myr-enhanced longevity. Indeed, the Ubi4 protein proved to be 
required for drug-induced longevity since deleting the gene blocked Myr-enhancement of 
lifespan (Figure 4B). In addition, tagging Mup1 with the UL36 deubiquitination domain blocked 
Myr-enhanced longevity (Figure 4B). A potential limitation of our data is the possibility of the 
UL36 deubiquitinase domain having proximal effects on proteins in the vicinity of the Mup1-
pHluorin-UL36 protein [30, 31]. Futures studies will be required to evaluate if such proximal 
effects are involved in the impairment of Myr-enhanced lifespan. Also, additional amino acid 
transporters tagged with a UL36 domain will need to be examined to determine if they impair 
Myr-enhancement of longevity like UL36-tagged Mup1 does. The outcomes of these studies will 
potentially provide a novel avenue to enhancing longevity and new targets or strategies for 
improving human healthspan. 
 
 

MATERIAL AND METHODS 
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Strains, culture conditions, lifespan assays and statistical significance 
 
Strains (Table 1), culture conditions, lifespan assays and their statistical significance were 
similar to ones described previously [7]. CLS assays were performed at least twice using 
triplicate cultures. Concentrations of Myr used in CLS assays ranged from 475-525 ng/ml 
depending on the sensitive of strains compared to wild-type, prototrophic BY4741. Drug-
sensitivity was measured by culture density (A600nm) after 24 h of growth using cultures started 
at 0.15 A600nm units of cells/ml. All BY4741 yeast strains used for lifespan assays and for RNA 
extraction were made prototrophic by transformation with the pHLUM plasmid (Addgene, 
Watertown, Massachusetts) [32]. The DUB (UL36) fusion yeast strains used in this study were 
generated by homologous recombination in BY4741 and SEY6210 background strains using the 
reagents and strategy previously described (Hepowit et al. 2022). The MUP1 knock-in strain 
(NHY945) was generated in BY4741 by swapping the endogenous MUP1 coding region with 
NATMX (NHY930), shuffling the chromosomally integrated NATMX with URA3 (NHY938.1), and 
snipping out URA3 by homologous reintegration of a PCR-amplified MUP1 coupled with counter 
selection on 5-fluoroorotic acid (5-FOA) synthetic media plate.  
 
Budding yeast mRNA-enriched profiles from 42 individual samples of prototrophic BY4741 cells, 
including 3 replicates of 7 time points and 2 treatments (control and drug-treated) were used. 
Culture conditions were similar to ones described previously (Hepowit et al. 2021, Aging) except 
for the following modifications.  Prototrophic BY4741 yeast cells were grown in 200 ml of SDC 
culture medium in a 1 L flask with the medium heated to 30°C before addition of EtOH (final 
concentration of 0.3% (control samples). For drug-treated samples, myriocin was added after 
addition of EtOH to give final concentrations of 0.3 % EtOH and 700ng/ml myriocin. Lastly, cells 
from a saturated overnight culture were diluted into the 200 ml cultures to give an initial A600nm 
units/ml of 0.15. Flasks were incubated at 30°C and 200 rpm on a rotary shaker. Control cells 
(containing final concentration of 0.3% EtOH) and myriocin-treated cells (final concentrations of 
0.3 % EtOH and 700ng/ml myriocin) were harvested at time 0, 1, 2, 3, 4, 5 and 6 hours (all time 
points for each replication from the same culture flask). 
 
RNA extraction 
 
RNA was extracted from 5 A600nm unit/ml of yeast cells, filtered at time 0 and then every h up 
to 6 h on a membrane filter, as described previously for amino acid extraction [7]. Filtered cells 
were washed once with 5 ml of ice-cold nanopure water and the filter was quickly transferred to 
a chilled 1.5 ml microfuge tube containing 0.5 ml cold nanopure water. Tubes were vortexed 10 
sec followed by centrifugation for 15 sec. Supernatant fluid (450 μl) was transferred to a new 
tube and frozen in a dry-ice EtOH bath followed by storage at -80°C. Cold acid-washed glass 

beads (300 μl, 0.5 mm dia.) were added to a frozen cell pellet followed by addition of 300 μl of 
RLT buffer (RNAeasy mini kit, Qiagen, Germantown, Maryland). Tubes were vortexed 5 min at 
room temperature and placed on ice for 1 min. This cycle was done 4 times followed by addition 
of 300 μl of ice-cold RLT buffer, mixing, and centrifugation at 13,000xg for 2 min at room 
temperature. Supernatant fluid (450 μl) was transferred to a new microfuge tube and then mixed 
with 1 ml of 70% EtOH before transfer to a RNeasy spin column and processed according to the 
manufacturer’s instructions. Processed samples were frozen in a dry-ice EtOH bath and stored at -
80°C. RNA seq was performed on total RNA samples at the Roy J. Carver Biotechnology Center at 
the University of Illinois.  
 
RNA seq analysis 
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RNA sequencing was performed on total RNA samples at the Roy J. Carver Biotechnology 
Center at the University of Illinois. Two different mixes of ERRC spike-in RNA controls were 
added to the samples; one mix for the control samples, and one mix for the drug-treated 
samples. Libraries were constructed with Illumina's 'TruSeq Stranded mRNAseq Sample Prep 
kit'. Each library was quantitated by qPCR and sequenced on one lane for 151 cycles from each 
end of the fragments on a HiSeq 4000 using a HiSeq 4000 sequencing kit version 1. Fastq files 
were generated and demultiplexed with the bcl2fastq v2.17.1.14 Conversion Software (Illumina). 
Each sample's pair of fastq files were run through trimmomatic 0.36 to first remove any 
remaining standard Illumina PE v3 adapters, then trim bases from both ends with quality scores 
below 28, and finally to remove individual reads shorter than 30 bp and their paired read, 
regardless of length (parameters ILLUMINACLIP:/home/apps/trimmomatic/trimmomatic-
0.36/adapters/TruSeq3-PE.fa:2:15:10 TRAILING:28 LEADING:28 MINLEN:30). Paired reads 
per sample were pseudo-aligned to the Yeast R64 transcriptome and 92 ERRC spike-in control 
sequences using Salmon 0.8.2 with parameters -l A --numbootstraps=30 --seqBias –gcBias.   
Resulting FASTQ files mapped to the yeast genome (R64), resulted in count files and 
normalized using the transcripts per million (TPM) algorithm [33] using WebMev [34]. Resulting 
data were downloaded as flat files and loaded into Excel for further analysis. From a total of 
6198 mapped genes, 5169 were uniquely annotated with gene symbols and had sufficient non-
zero readings for further analysis. The filtered data were analyzed by two-way ANOVA for the 
main effects of drug and time, as well as for interaction. Significant by the time term or both the 
drug and time term, data were further analyzed by post-hoc pairwise Fisher’s protected Least 
Significant Difference (pLSD), and log 2-fold change comparison to further isolate the effects of 
drug over time. Template analysis was applied using pre-determined templates (depicted in Fig. 
2) correlated to average expression over time in drug or control conditions. Each gene 
significant by time and/or interaction was correlated to each of the ten templates and was 
assigned to the template with which it had the strongest correlation. Data have been deposited 
in the GEO (GSE199904) [NCBI tracking system #22817261]. 
 
 
Gene regulatory network using WGCNA  
 
The WGCNA (v1.70-3) [28] was used to identify gene modules and build unsigned co-
expression networks, which include negative and positive correlations.  Briefly, WGCNA 
constructs a gene co-expression matrix, uses hierarchical clustering in combination with the 
Pearson correlation coefficient to cluster genes into groups of closely co-expressed genes 
termed modules, and then uses singular value decomposition (SVD) values as module 
eigengenes to determine the similarity between gene modules or to calculate association with 
sample traits (for example, incubation time or amino acid levels). The top 2,000 variable genes 
were used to identify gene modules and network construction. Soft power 8 was chosen by the 
WGCNA function pick SoftThreshold. Then, the function TOMsimilarityFromExpr was used to 
calculate the TOM similarity matrix via setting power = 8, networkType = "signed. The distance 
matrix was generated by subtracting the values from similarity adjacency matrix by one. The 
function flashClust (v.1.01) was used to cluster genes based on the distance matrix, and the 
function cutreeDynamic was utilized to identify gene modules by setting deepSplit =3. 
Cytoscape (v.3.8.2) was applied for the network visualizations. 
 

FIGURE LEGENDS 
 
Figure 1. Summary of transcriptomics data analysis. (A) Outline of experimental design for 
collecting cells, treated or not treated with Myr, for analysis of mRNAs by RNA seq. (B) 
Overview of RNA seq data analysis by two-way ANOVA. (C) Venn diagram summarizing the 
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results of the ANOVA analysis for Drug, Time and Interaction. (D) Diagram summarizing 
analysis of the 1254 genes in the Interaction group of the Venn diagram for ones with log 2-fold 
changes greater than 1 for p-values ≤ 0.05 (pairwise pLSD) at each hourly time point. (E) 
Pathway overrepresentation analysis was performed with DAVID [35] using Gene Ontology 
(GO) [36] analysis of the 1254 genes in the Interaction group. All data for the 5169 RNA seq 
transcripts that passed filtering metrics are shown in Supplementary File 1 which also contains 
the two-way ANOVA results and can be used to sort for genes in each sector of the Venn 
diagram. 
 
Figure 2. Detailed analysis of the Drug, Time and Drug x Time components of the 
transcriptomics data set identified by two-way ANOVA analysis. (A) Diagram of two-way 
ANOVA analysis with results summarized in a Venn diagram showing the number of genes in 
each sector and indicating the three groups of genes (Time, Time x Drug and Drug) that were 
analyzed further for ones matching specific patterns. (B) Summary of genes matching the 10 
indicated patterns. The column labelled “Corr” indicates genes having the same time course (+) 
or the inverse (mirror image) time course (-) of a pattern. Columns labeled Time, Time x Drug 
and Drug indicate the number of genes matching the corresponding pattern or its mirror image. 
Arrows at the top of the columns indicate genes up or down-regulated by drug. Statistically 
significant groups of genes are indicated by bold fond and with an asterisk (*). (C) Summary of 
top enriched GO terms found in specific patterns. Genes and GO analysis of groups indicated 
by an asterisk are listed in Supplementary File 2.    
 
Figure 3. Correlation analysis of transcriptomics data. (A) The 7 color-coded modules 
whose gene members are highly correlated over time (left-hand side of diagram) were analyzed 
for their relationship to each amino acid pool (pool data are from [7]). The degree of correlation 
is indicated by the red-green (correlated-anticorrelated) scale at the right-side of the diagram. 
This figure indicates that the Green and Brown modules are the most anti-correlated (red 
shading) with amino acid pool, most of which are lowered by Myr treatment (right-most column 
labeled “myriocin” at the bottom of the diagram). Thus, genes in the Green module are up-
regulate by myriocin treatment whereas pool size is down regulated. (B) Network diagram 
showing the relationship of genes in the Green and Brown modules which are connected by 
genes in the Turquoise. Genes are indicated by Nodes (circles) and relationships by edges. All 
genes and relationship values are presented in Supplementary File 3. (C) Scatter plot of the 
Brown Eigengene across the 1-6 h time frame. (D) Enriched GO terms found in the Brown 
module. (E) Scatter plot of the Green Eigengene across the 1-6 h time. (F) Scatter plot of the 
Turquoise Eigengene across the 1-6 h time frame. (G) Enriched GO terms found in the 
Turquoise module. Genes used in calculating the mean Eigengene are in Supplementary File 3 
and the 7 mean Eigengene values and their scatter plots are presented in Supplementary File 4. 
 
Figure 4. Ubiquitin plays a central role in Myr-enhanced longevity. (A) UBI4 transcript level 
across the 1-6 h time frame in Myr-treated or untreated cells. (B) CLS assay showing that ubi4Δ 
mutant cells impair Myr-enhancement of lifespan compared to BY4741 wild-type cells. (C) Data 
showing that removing ubiquitin from Mup1 is essential for Myr-enhanced lifespan. CLS assays 
of cells having Mup1-pHlurion tagged with the UL36 deubiquitinase domain (DUB) impair Myr-
enhancement of CLS whereas replacing catalytically active UL36 with a catalytically dead UL36 
domain (UL36-CD) restores Myr-enhanced lifespan. (D) Control lifespan assay to show that 
deleting MUP1 does not impair Myr-enhanced longevity. 
 
Table 1. Strains used in this study 

Strain Genotype Reference 

BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 [37] 
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SEY6210 MATalpha leu2-2,112 ura3-52 his 3delta200 trp1-
delta901 lys2-801 suc2-delta9 
 

[38] 

NHY413 SEY6210 Mup1-pHluorin::NATMX [7] 

NHY414 SEY6210 Mup1-pHluorin::NATMX Vph1-MARS::TRP1 [7] 

NHY447 SEY6210 Mup1-pHluorin-UL36(N-term 15-260 HSV1 
UL36, active)::KANMX 

[7] 

NHY431 SEY6210 Mup1-pHluorin-UL36(N-term 15-260 HSV1 
UL36 C40S, inactive)::KANMX 

[7] 

RCD2073 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 
ubi4∆::KAN 

[39] 

NHY415 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-
pHluorin (NATMX) 

This study 

NHY425 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-
pHluorin-UL36 (KANMX) 

This study 

NHY426 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Mup1-
pHluorin-UL36 catalytic dead (KANMX) 

This Study 

NHY930 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 Δmup1::NATMX This Study 

NHY938.1 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 Δmup1::URA3 This Study 

NHY938.2 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 Δmup1::URA3 This Study 

NHY945 BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 MUP1 knockin This Study 
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