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Abstract

Extracting information on the selective and demographic past of populations that is contained in

samples of genome sequences requires a description of the distribution of the underlying genealogies.

Using the Laplace transform, this distribution can be generated with a simple recursive procedure,

regardless of model complexity. Assuming an infinite-sites mutation model, the probability of

observing specific configurations of linked variants within small haplotype blocks can be recovered

from the Laplace transform of the joint distribution of branch lengths. However, the repeated

differentiation required to compute these probabilities has proven to be a serious computational

bottleneck in earlier implementations.

Here, I show that the state space diagram can be turned into a computational graph, allowing

efficient evaluation of the Laplace transform by means of a graph traversal algorithm. This general

algorithm can, for example, be applied to tabulate the likelihoods of mutational configurations in

non-recombining blocks. This work provides a crucial speed up for existing composite likelihood

approaches that rely on the joint distribution of branch lengths to fit isolation with migration

models and estimate the parameters of selective sweeps. The associated software is available as an

open-source Python library, agemo.
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1 Introduction1

The Laplace transform is often introduced as a formal tool to solve differential equations. Yet in2

mathematical fields like queuing theory, the integral transform is used to simplify the analysis of the3

studied probabilistic problems. This is due to two key properties of the Laplace. One, the transform4

of the distribution of the sum of independent random random variables becomes the product of their5

respective Laplace transformed marginal distributions. Two, the Laplace transform of a random6

variableX describing the length of an interval, has a clear probabilistic interpretation. Let a Poisson7

process with intensity ω mark this interval, then the Laplace transform, f∗(ω) = E[e−ωX ], is the8

probability of not observing any marks in the considered interval (R̊ade, 1972). If we translate9

this idea to the standard coalescent framework (Kingman, 1982; Hudson, 1983; Tajima, 1983)10

and let the marking process describe the arrival of mutations, then the Laplace transform of the11

distribution of the total branch length gives the probability of not observing any mutations along12

the modelled genealogies. Conversely, the probability of not observing any mutations between two13

coalescence events gives us the transformed distribution of the total branch length spanned by those14

two events. This means that, given a state-space graph that describes all possible transitions during15

the coalescent process (see Fig. 2.1), one can easily write down all associated expressions in the16

Laplace domain (Lohse et al., 2011). This is not the case for the time domain.17

The Laplace transformed description of the distribution of coalescence times has been used to18

tackle two major problems in population genetics: fitting explicit models of population history19

(Lohse et al., 2011; Frantz et al., 2014; Bunnefeld et al., 2015; Lohse et al., 2016) as well as20

estimating sweep parameters (Bisschop et al., 2021). Note that because the Laplace transform can21

be interpreted as the generating function (GF) of a continuous random variable, this method is often22

referred to as the GF approach. These studies have used composite likelihood-based approaches that23

summarize mutational information as counts of the (joint) site frequency spectrum within blocks24

of a fixed length (Bunnefeld et al., 2015). The associated probabilities are given by a multivariate25

Poisson distribution mixed over the joint distribution of branch lengths. The Laplace transform26

is well suited to compute these probabilities because this Poisson distribution can be written as a27

function of the Laplace transform of the branch length distribution. Specifically, the probability of28

observing k mutations along each of the ki branch types is proportional to the kth derivative with29

respect to associated variable in the Laplace domain (Lohse et al., 2011). Previous implementations30

have always used a computer algebra system (CAS) to compute these higher-order derivatives of31

the Laplace transform. Such an approach suffers from an explosion in the number of terms due32

to the product or the Leibniz rule. This computational bottleneck has limited the usability of the33

framework.34

One way to solve the computational bottleneck is to replace the recursive description of the gen-35
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erating function by matrix manipulations. This has been done using phase-type theory (Hobolth36

et al., 2019). Phase-type distributions are the result of a mixture or convolution of exponential37

distributions. The theory provides an alternate way of translating the state transition diagram into38

a description of the branch length distribution of genealogical trees. One of the major computa-39

tional advantages of this description is that the matrices that define the distribution are typically40

preserved up to the point of evaluation (Hobolth et al., 2019). Because computationally efficient41

algorithms for linear algebra operations already exist, phase-type theory lends itself to efficient42

implementations. With increasing sample size however, matrix operations become computationally43

unfeasible. Given the sparsity of most real-world state spaces, graph-based representations of these44

matrices can alleviate this issue to some extent (Røikjer et al., 2022). However, currently no algo-45

rithms have been described to extract information from the joint branch length distribution.46

Graphs reveal the relationships between the base entities or nodes. Therefore, the more complex47

these relationships are, the more connected the graph will be and the more useful a graph-based48

representation becomes. In machine learning for example, computational graphs representing math-49

ematical equations are used to efficiently calculate derivatives (Güne¸ et al., 2018). What I have50

implemented here takes inspiration from automatic differentiation in that we will use the state-space51

graph generated during recursion as a computational graph to avoid both symbolic computation52

and repetitively evaluating the same expressions.53

Here, I present the key algorithms underlying this approach as well as agemo, an open-source54

non-symbolic implementation of the GF framework. The paper is structured as follows. First, I55

will summarize the description of the GF as a large symbolic expression as defined in Lohse et al.56

(2011) and show how the GF can be represented more succinctly. Secondly, I lay out the graph57

traversal algorithm that allows efficient evaluation of the GF. I then show how this algorithm can58

be used to query the joint distribution of branch lengths and tabulate the probabilities of observing59

mutation configuration in blocks of non-recombining sequence.60

2 Methods61

2.1 Recursive description of the branch length distribution in the Laplace62

domain63

Given a sample of n =
∑k

i=1 ni uniquely labeled lineages from k distinct populations, we can64

represent all possible coalescent histories of that sample in a single rooted directed graph (Simonsen65

and Churchill, 1997). By labelling lineages by the samples they subtend, we can associate each node66

of the transition diagram with a vector Ω = (Ω1, ...,Ωk) uniquely describing that state. Here Ωi67

represents all lineages present in deme i. As we move through the graph from the source node,68
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representing the set of all sampled lineages, to the absorbing state or most recent common ancestor69

(mrca), we track the movement and coalescence of lineages. Coalescence events reduce the number70

of lineages in a deme, while events like a population split or migration will move lineages from one71

deme to another. Note that any state where all but Ωi are empty and |Ωi| = 1, can be an absorbing72

state.73

The state space graph as described above can be generated recursively. All state transitions are74

conditionally independent. They only depend on the lineages in the current state and on the set75

of competing processes that define how one moves from one state to the next. Along each path76

through the graph, the time to the mrca is distributed as the sum of the inter-event times. In the77

Laplace domain, the sum of independent random variables is equal to the product of their respective78

Laplace transformed distributions. This general property of generating functions turns this graph79

into more than just a visual aid. The graph is now a description of how to generate the Laplace80

transform of the branch length distributions. Given the expressions that describe the time to go81

from one state to the next, the distribution associated with a single path through the graph can be82

retrieved by multiplying all the expressions associated with the edges found along that path. The en-83

tire Laplace transform is then a simple sum of the equations describing all paths through the graph.84

85

Finally, because of the probabilistic interpretation of the Laplace transform, the expression86

associated with each edge equates to the probability of observing the event of interest before any87

other event happening at rate ω. In the standard coalescent framework, coalescence events are88

exponentially distributed with rate
(
k
2

)
when there are k lineages remaining. So in the Laplace89

domain, the distribution of the waiting time until the next coalescence is given by
(
k
2

)
/(
(
k
2

)
+ ω).90

To incorporate more than one process with an exponentially distributed waiting time, it suffices to91

observe that min(X,Y ) ∼ exp(ωx+ωy) when both X ∼ exp(ωx) and Y ∼ exp(ωy). This means one92

can incorporate as many events with exponentially distributed waiting times as computationally93

possible, the probability of observing one of the competing events first, and therefore the Laplace94

transform of the joint distribution of branch lengths, will still have the same general form.95

f⋆[ω] =
l′iλi∑m

j=0 ljλj +
∑

okωk
with

∑
l′i = li (1)

In this equation, we associate a unique dummy variable (ωk) with each of the branch types along96

which all of the competing processes (λj) happen. Roman letters represent integers that count the97

number of branches of a particular type (oi), or the number of ways a certain (coalescence or other)98

event can modify the current state (lj). Note that in the case of multiple populations, coalescence99

rates are given relative to the rate in a reference population, i.e. λi = Nei/Neref .100

101
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Figure 1: From coalescent state space to equation array: coalescent state space graph for

two populations A and B with 2 and 1 unphased sample(s), respectively. The demographic model

assumes a single mass migration event from population B to A back in time.

Each equation associated with an edge in the state space graph can be encoded as a matrix with102

two rows containing the integer coefficients (l′i, l, o). The first row represents the numerator and103

will only contain a single non-zero value, l′i. The second row represents the denominator. Storing104

the equations in this way ensures that we can efficiently substitute in parameter values by taking105

the dot product with a vector representing a point in parameter space (λ, ω) once the Laplace106

transform needs to be evaluated. Also, storing the equation coefficients in matrix form allows us107

to efficiently perform operations on the equations (see 2.1.1). Therefore, a minimal representation108

of the GF consists of an array containing all unique equations and an array of lists with equation109

indices describing all paths through the graph.110

2.1.1 Discrete events111

For the general description of the GF, we have assumed that all competing processes have expo-112

nentially distributed waiting times. As outlined by Lohse et al. (2011), discrete events that only113

happen once can be included by treating them initially as a competing exponentially distributed114

process with rate δ. The GF parameterised by the discrete time T of the event can be recovered115

by taking the inverse transform of the GF divided by its associated dummy variable (δ). This116

procedure has been used to incorporate population divergence, admixture events, and bottlenecks117

(Lohse et al., 2011; Bunnefeld et al., 2015), as well as selective sweeps (Bisschop et al., 2021).118
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Previous implementations have relied on a CAS to obtain an analytic solution for the inverse119

transform of the GF. However, as long as we limit ourselves to a single discrete event, the GF120

will always be a sum of the products of factors of the form fi(ci) = 1
ci+δ . Using partial fraction121

expansion, we can formulate a closed-form solution to the inverse Laplace with respect to δ, where122

T represents the time to the discrete event. Also, having stored all equation coefficients as an array,123

we can do so in a way that allows for efficient substitution of all parameter values.124

g(T ) = L −1(
1∏k

i=0 fi(x)
) = (−1)k+1

∑
i

e−ciT∏
i ̸=j(fi(x)− fj(x))

(2)

Looking at a single path along the graph, only the equations associated with edges leading up to125

the node representing the discrete event will contain δ. Equations associated with edges past that126

point can be treated as constants. The resulting inverse of this path will therefore be an expression127

given by Eq. 2 times the unchanged equations associated with all edges positioned downstream128

(moving through the graph backwards in time) of the node associated with the discrete event.129

2.1.2 Adding in new events130

Currently, in addition to coalescence, two types of events have been implemented in the Python131

library agemo: unidirectional migration at a constant rate and population splits (forwards in time).132

Because of the recursive description, adding in more event types is straightforward and only requires133

a description of all possible state transitions due to that event given the current configuration of134

lineages. Note that the library does currently not accommodate events that generate cycles in the135

graph. This means that bi-directional migration, for example, is not supported.136

2.2 Graph traversal algorithm137

The one-to-one correspondence between the state space graph and the Laplace transform means138

the state space graph can be thought of as a computational graph. Evaluating the transform at a139

single point s in the Laplace domain equates to substituting the value into the expression associated140

with each edge, followed by multiplying the results along each path and adding the results across141

all paths. This is the general idea that will be used in the next paragraph.142

However, note that in the case of a discrete event and the general form of the inverse (see Eq. 2),143

the graph needs to be modified slightly so that, ultimately, the nodes of the computational graph144

again represent the factors of a multiplication. This is achieved by for each path reducing the part145

of the path leading up to the node associated with the discrete event to a single edge and pairing146

that edge with the result of Eq. 2. Also note that to simplify the evaluation algorithm, equations147

are represented by nodes instead of edges (see Fig. 2.2 C).148
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Figure 2: From coalescent state space to computational graph: setup identical to Fig. 2.1.

A: Unmodified state-space graph. B: collapsed form, grouping all parts of each path that require

inverting with respect to the dummy variable associated with the discrete event. The integers in

red are the indices of the equations containing δ. C: To simplify the formulated algorithms, the

graph gets inverted. The nodes now represent the equations previously associated with the edges.

2.2.1 General algorithm149

Given the computational graph (as described in 2.2 and see Fig. 2.2C), a general algorithm to150

propagate any evaluation of the equations associated with each node is given by Alg. 1. The151

algorithm relies on the fact that, implicitly, the edges of the graph represent multiplication. The152

evaluated values associated with each node do not need to be single floats. They can be the153

coefficients of a generating function, for example, representing the probabilities of seeing particular154

mutation types (see 2.2.2). In these cases, multiplication and addition operators will need to be155

defined for propagation. We can then rely on the commutative property to efficiently traverse156

the graph towards the root. Especially in the case where addition is a less costly operation than157

multiplication (as is the case for polynomials, see 2.2.2), it will pay off to add the values associated158

with the children of a node prior to multiplication.159

2.2.2 Mutation type probabilities160

Given a sample of n lineages, we can distinguish 2n − 2 branch types. Along each of these branch161

types, mutations might occur. Assuming an infinite-site mutation model, the probability of seeing162

ki mutations in short blocks of a given length along each of these i branch types can be derived using163
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Algorithm 1: Propagate values through graph

1 function PROPAGATE;

Input: A (adjacency list of graph), N (evaluated equations for each node), E (topological

sorting of graph)

2 foreach parent in E do

3 children = A[parent];

4 temp = 0;

5 if children then

6 foreach child in children do

7 temp+=N[child];

8 end

9 if parent not root then

10 N[parent] = PRODUCT(temp, N[parent]);

11 else

12 return temp;

13 end

14 end

15 end

Algorithm 2: Product of two truncated Taylor series (Neidinger, 2013).

1 function SERIES PRODUCT;

Input : Two arrays A and B with same shape

Output: array C of same shape as A and B

2 foreach multi-index k do

3 sum = 0;

4 foreach multi-index j ≤ multi-index k do

5 sum = ADD(sum, A[j] ∗B[k − j]);

6 end

7 C[k] = sum;

8 end

9 return C;

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2022. ; https://doi.org/10.1101/2022.05.20.492768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492768
http://creativecommons.org/licenses/by-nc-nd/4.0/


the GF. This is a more general description of the blockwise site frequency spectrum or bSFS as164

introduced by Bunnefeld et al. (2015). The bSFS only distinguishes mutations along branches with165

the same number of descendants. By ignoring both phase and root information, the distinguished166

mutation configurations are essentially instances of the folded (joint) site frequency spectrum for167

blocks of a fixed length. Each mutation type is defined as a vector of the form (k1, ...k2n−2) where168

each entry is a count within the interval [0, 1, 2, ..., kmax
i +1]. kmax

i +1 is used to group all mutation169

configurations with more than kmax
i mutations. Note that the array of all mutation types with170

a non-zero probability is a sparse array. Many of the (
∏n−1

i=1 kmax
i + 2) possible mutation types171

define the presence of mutations along incompatible branch types. Furthermore, because of the172

symmetries inherent to the coalescent, quite a few mutation types will be equally likely.173

The probability of observing mutation configuration k under a specified model is proportional to174

a term in a (truncated) Taylor series expansion (see eq. (1) in Lohse et al. (2011) for details). Any175

naive approach, based on calculating all higher order derivatives using a CAS, will suffer from an176

explosion in the number of terms due to the Leibniz or product rule when differentiating. Generally,177

a CAS will fail to take into account the fact that the same partial derivatives of the functions that178

constitute the expression are computed multiple times. This problem has been well studied for179

the purpose of automatic differentiation algorithms (Neidinger, 1992, 1995; Griewank et al., 2000;180

Bettencourt et al., 2019). In fact, it has been shown that a set of recurrence relations can be defined181

on the coefficients of truncated Taylor series to efficiently compute higher-order derivatives (Nei-182

dinger, 2013). Departing from the elementary functions as represented by a computational graph,183

a complex Taylor series expansion can be performed without recalculating the same derivatives.184

Translating this to the graph traversal algorithm outlined above requires us to first obtain all185

coefficients for a truncated Taylor series of the equation associated with each node in our compu-186

tational graph. We can then use the algorithm defining the product of two truncated Taylor series187

(see Alg. (8) in Neidinger (2013) and Alg. 2) to propagate the coefficients of the series associated188

with each node. Note that adding two truncated Taylor series simply amounts to the pairwise189

addition of all corresponding coefficients. To obtain the higher-order derivatives needed for the190

first step, we could use the recurrence relations defined in Neidinger (2013). Note however, that the191

computational graph representation of the GF we have constructed is not at the level of the elemen-192

tary functions. Because all equations associated with each of the nodes are well characterized, we193

can define a closed-form implementation of the derivatives with respect to the distinguished branch194

types. The equations all fall into one of two categories, depending on whether an inversion step was195

needed. Given a first-degree multivariate polynomial of the form f(x) =
∑

cixi + b, non-inverted196

equations can be written as 1/f(x) (see Eq. 3). Inverted equations on the other hand have building197

blocks that take on the form of ecf(x)/(
∏

fi(x)). Using Alg. 2 and Eq. 4, we can come up with all198

partial derivatives for the inverted equations as well. With s =
∑

ki and x representing the branch199
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type vector,200

∂f(x)−1

∂kixi
= (−1)ss!

cki
i

f(x)2
(3)

∂ecf(x)

∂kixi
= cscki

i ecf(x) (4)

Note that Alg. 2 contains an explicit ADD function. Care needs to be taken when summing (a201

subset of) the coefficients of a Taylor series: these will be both positive and negative, and as such,202

catastrophic cancellation might occur, leading to accuracy loss. To counteract this, I implemented203

the compensated summation algorithm of Ogita-Rump-Oishi (Ogita et al., 2005). The loss of204

precision is bounded by keeping track of small errors and adjusting the result using the error term.205

An alternative way of handling this would be to temporarily increase numeric precision at the206

crucial steps. Lastly, an advantage of using Taylor series coefficients rather than the corresponding207

derivatives is that the coefficients will always be smaller by a factor (
∑

k)!, leading to less cumulative208

rounding error (Neidinger, 2013).209

3 Results and Discussion210

The work presented here constitutes a CAS-independent, open-source implementation of the GF211

approach. A general outline has been given on how the correspondence between the event state-212

space graph and the GF can be used to query the distribution of Laplace-transformed coalescence213

times efficiently. In particular, an algorithm has been laid out to calculate the probability of block-214

wise mutation configurations by propagating the calculation of series coefficients down the graph215

of ancestry states. The fact that this automation does not rely on a CAS and that it has been216

implemented in Python makes agemo an ideal back-end for likelihood calculations.217

agemo relies on numba (Lam et al., 2015) just-in-time compilation to speed up the critical parts218

of the code. Compiling the code using numba has a few consequences. Firstly, compilation happens219

each time the code is run and will require a few seconds. This is generally not an issue given that,220

for a given model, many points in parameter space will be evaluated. Secondly, some numerical221

operations are implemented differently in numba than in numpy. In the case of summation this can222

lead to a loss of precision and has required the implementation of a compensated sum algorithm. A223

potentially faster solution would be to temporarily increase machine precision for the evaluation of224

particular sums. However, this is not possible using numba and would therefore require translating225

part of the code to C.226

To evaluate performance, I calculated the bSFS for an isolation with migration (IM) model227

with 2 populations and 2 lineages in each population. Here two populations are descended from a228
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common ancestral population at some time in the past, and since then unidirectional gene flow is229

assumed to have happened at a constant rate (Nielsen and Wakeley, 2001). When discarding root230

and phase information, this leaves just 4 branch types. For each branch type I set kmax = 4, which231

means that the final result will contain 44 elements. This is the most complex model for which232

there exists a CAS-based implementation. Note that the original Mathematica implementation233

(Lohse et al., 2011) can only calculate the bSFS for a simplified IM model with two Ne parameters,234

meaning that at least two populations must have the same size. An implementation using open235

source CAS Sagemath (The Sage Developers, 0) takes about 75 s for a 3Ne model while agemo236

evaluates a single point in the parameter space in 181ms. Increasing the sample size to 3 lineages237

in each population increases the number of nodes in the graph from 76 to 4449. The bSFS now238

contains 47 elements. Run time goes up accordingly to 134 s.239

This IM model can be simplified to only include migration. We assume migration has been going240

on for an infinitely long time. Without any discrete events the graph is now maximally connected.241

For 2 lineages per population agemo takes 5ms. Table 1 shows how performance scales with an242

increase in the number of samples per population.243

Table 1: Run times migration-only model,

2 populations, unphased and unrooted branchtypes, kmax = 4

samples per population nodes in graph non-zero entries in bSFS size bSFS time

2 30 112 256 5ms

3 196 1408 16384 480ms

4 1106 21952 16777216 52.3 s

I also benchmarked the evaluation time against the simulation-based approach as described244

in Beeravolu et al. (2018). Using msprime (Baumdicker et al., 2022), coalescent trees can be245

simulated under (almost) any demographic model. Without having to simulate mutations, we can246

calculate the probability of observing each mutation type. Given that mutations on each branch247

type happen independently, the probability of seeing mutation configuration (k1, k2, ..., kn) is given248

by the product of n probabilities as given by a Poisson distribution with rate θ/2 ∗ ti. Here, ti is249

the total branch length of branch type i and θ = 4Neµ. When averaged across many replicates, the250

true value will be approximated. Note that particular entries of the bSFS might require fewer/more251

replicates to get at a good approximation than others (Becquet and Przeworski, 2007; Beeravolu252

et al., 2018). For the IM-model, with a 1000 replicates one can already approach the true bSFS quite253

well (Beeravolu et al., 2018). Scaling linearly with the number of replicates, this takes about 450ms.254
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For 3 lineages per population run time goes up to 917ms. With 4 lineages per population, there255

are 412 entries in the bSFS, making a non-sparse approach prohibitively slow. Using simulations,256

run times are the same for both the IM and the migration model. Note that I aimed to make the257

comparison as fair as possible by optimizing the code and compiling the critical parts with numba.258

All calculations have been done on the same MacbookPro (2.2 GHz 6-Core Intel Core i7). Also259

note that the bottleneck of simulating the bSFS is not the actual simulation itself but the inherent260

combinatorial explosion of an ever increasing number of mutation configurations with increasing261

sample size. I attempted to alleviate this by means of sparse matrices, but this came with a speed262

cost.263

This issue is inherent to the way the bSFS is defined and also applies to agemo. In part, this is264

solved by only calculating and storing the values associated with each unique mutation type that265

has a non-zero probability. However, computing the residual probabilities (observing more than266

kmaxi mutations along each branch type i) in the last step currently still requires us to populate an267

array of size
∏

kmaxi
+ 2. Memory usage quickly becomes an issue here, and solving this requires268

a general sparse array implementation of the existing function. This suggests that the bSFS would269

benefit from a dedicated sparse-data structure. Ideally, this data structure would also enable us to270

take advantage of the dependency structure of all higher-order derivatives.271

A last inherent limitation to the GF approach is that although we can include discrete events,272

retrieving the expression parametrized by the time to that discrete event requires us to take an273

inverse Laplace transform. Unfortunately, translating the mathematical description into a compu-274

tational graph does not simplify this issue. As discussed, with the inclusion of discrete events the275

state space graph can no longer be translated into a computational graph without modification.276

A node must be added to the computational graph for each path leading to a discrete event, thus277

increasing the number of nodes and decreasing the connectivity of the graph, making a graph-based278

approach less efficient. agemo will therefore always do better in scenarios without discrete events279

(see Table 1).280

As indicated in the Methods section, extending the GF approach to include new event types can281

easily be done. Because of its recursive nature, it only requires defining a function that describes282

the impact of the event on the extant lineages. All implemented events can then be combined to283

define a structured coalescent model. Note however that the current implementation only contains284

closed-form expressions to efficiently evaluate the GF associated with at most a single discrete285

event.286

The general algorithm outlined here should enable users to query the Laplace transform to287

extract, for example, topology information, the SFS or the time to the first coalescence event.288

These functionalities have not been explicitly implemented yet. But can be computed using the289

described graph and associated expressions. Also, agemo was designed with extensibility in mind.290
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Future work on this library will enable a more diverse range of structured coalescent models as well291

as the ability to dynamically restrict the graph to those paths that are compatible with a specified292

topology.293

The work described in this paper shows significant similarities with recent progress in phase-type294

theory (Røikjer et al., 2022). The authors present a general graph-based description of multivariate295

phase-type distributions and demonstrate the ability of their approach by calculating the SFS for296

an IM-type model sampling 7 lineages from each population. There are two main advantages of297

the phase-type theoretic approach. Firstly, incorporating discrete events does not require taking an298

inverse transform. Second, the paper contains algorithms translating cyclic graphs into an acyclic299

phase-type distribution, thus taking care of issues associated with, for example, bi-directional mi-300

gration. On the other hand, agemo allows users to take full advantage of the information present301

within the joint distribution of coalescence times (e.g. bSFS). Including short-range linkage infor-302

mation comes at a computational cost, limiting the applicability to smaller sample sizes. However,303

previous work has demonstrated that this approach maximizes the information contained in small304

samples compared to relying on the SFS (Bunnefeld et al., 2015; Bisschop et al., 2021). More305

importantly however, both frameworks have (independently) combined the same two basic ingre-306

dients to efficiently describe coalescent models: a recursive state-space construction and a graph307

representation for fast evaluation of the represented distributions.308

Software309

The software is available at http://github.com/LohseLab/agemo. Documentation on how to use310

agemo can be found at https://agemo.readthedocs.io.311
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