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Abstract

Sequence-based deep learning models, particularly convolutional neural networks (CNNs),

have shown superior performance on a wide range of genomic tasks. A key limitation of

these models is the lack of interpretability, slowing their broad adoption by the genomics

community. Current approaches to model interpretation do not readily reveal how a model

makes predictions, can be computationally intensive, and depend on the implemented

architecture. Here, we introduce ExplaiNN, an adaptation of neural additive models1 for

genomic tasks wherein predictions are computed as a linear combination of multiple

independent CNNs, each consisting of a single convolutional filter and fully connected

layers. This approach brings together the expressivity of CNNs with the interpretability of

linear models, providing global (cell state level) as well as local (individual sequence level)

insights of the biological processes studied. We use ExplaiNN to predict transcription factor

(TF) binding and chromatin accessibility states, demonstrating performance levels

comparable to state-of-the-art methods, while providing a transparent view of the model’s

predictions in a straightforward manner. Applied to de novo motif discovery, ExplaiNN

detects equivalent motifs to those obtained from specialized algorithms across a range of

datasets. Finally, we present ExplaiNN as a plug and play platform in which pre-trained TF

binding models and annotated position weight matrices from reference databases can be

combined in a simple framework. We expect that ExplaiNN will accelerate the adoption of

deep learning by biological domain experts in their daily genomic sequence analyses.
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Introduction

High-throughput genomics methods such as ATAC-seq2 or ChIP-seq3, which respectively

assess genome-wide accessibility of chromatin and binding of transcription factors (TFs),

allow functional annotation of DNA elements. The sheer scale of the data generated by

these methods precludes manual analyses. Machine and deep learning have become

pervasive in large-scale genomic analyses due to their ability to identify meaningful features

in massive datasets (reviewed in 4,5). For instance, deep learning models have shown

superior performance in predicting chromatin accessibility states6–9, gene expression

levels10–12, and TF binding sites (TFBSs; reviewed in 13).

While increasingly complex models are now feasible, some are opaque; they do not readily

reveal the features and properties that underlie their predictions14. For genomics, there are

multiple approaches to improve the interpretability of deep learning models, of which we

focus on filter visualization and attribution methods.

For convolutional neural networks (CNNs) and related models, a powerful interpretation

approach is to visualize the filters of the first convolutional layer as position weight matrices

(PWMs), a common format in bioinformatics to represent TFBS patterns15, by separately

aligning the set of sequences activating each filter16. The resulting filter PWMs can be

compared to reference TF binding profile databases like JASPAR17 for biological insights.

While filter visualization provides an overview of the genomic features that the model has

learned in the first layer, the success of this approach is highly dependent on model

architectural choices such as max pooling or filter sizes18. Moreover, it is difficult to interpret

how the model combines the learned motifs within the deeper layers. Furthermore, to gain

interpretability at a global level (i.e. how each filter influences the model’s predictions), the

filters must be nullified sequentially, which is both computationally intensive and dependent

on arbitrary thresholds8,9.

Attribution methods quantify the importances of individual nucleotides in the input sequences

using forward- (e.g. in silico mutagenesis6,19) or back-propagation20,21. These importance

scores can be the basis for further clustering of activating sub-sequences into PWMs22,

which, as with filter visualization, can in turn be compared to known TF motifs for biological

insights. Although attribution methods provide local interpretability by identifying important

nucleotides in the input sequences, quantifying the contribution of each feature to the overall

model’s predictions (i.e. global interpretability) remains challenging23. Noteworthy, neither

approach is transparent as to how a model makes predictions.
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Unlike deep learning models, linear models are interpretable and transparent: the basis on

which they make predictions and the importance of the features they learn are clear. Agarwal

and colleagues recently introduced neural additive models (NAMs), which combine features

of deep learning and linear models1. NAMs compute predictions as a linear combination of

outputs from independent deep learning models, each tuned to one input feature, resulting in

the levels of explainability much appreciated in linear models without compromising on

accuracy.

In this study, we present ExplaiNN (explainable neural networks), a fully interpretable and

transparent, sequence-based deep learning model for genomic tasks inspired by NAMs. We

evaluate ExplaiNN on different tasks, demonstrating that it performs as well as

state-of-the-art models and allows a similar interpretability to more complex approaches,

both locally and globally, but in less time and with more ease. Next, we show that the quality

of the motifs learned by the convolutional filters of ExplaiNN is equivalent to those

discovered by de novo tools on the same data. Finally, we showcase the application of

ExplaiNN as a plug and play platform for JASPAR PWMs and pre-trained deep learning

models with which to interpret genomic data in a transparent manner.
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Results

ExplaiNN is a glass box deep learning model for genomics

ExplaiNN is a fully interpretable and transparent deep learning approach for genomic tasks

trained on one-hot encoded sequences inspired by NAMs1. Predictions are computed as a

linear combination of multiple independent CNNs (hereafter referred to as units), each of

which consisting of one convolutional layer with a single filter followed by exponential

activation, which has been seen to improve the motif representations learnt by CNN filters24,

and two fully connected layers (Fig. 1A). ExplaiNN provides global interpretability, as the

filter of each unit can be readily mapped to a TF profile from JASPAR using Tomtom25

(Methods), thus assigning a biological interpretation to that unit. Besides, the weights of

each unit from the final linear layer can be visualized, akin to linear models. ExplaiNN also

provides local interpretability by multiplying the output of each unit by the weight of that unit

for each input sequence (hereafter referred to as unit importance scores; Methods).

As a proof of concept, we applied ExplaiNN to predict the binding of 50 TFs to open

chromatin regions (OCRs) from a reference dataset describing the binding of 163 TFs to

>1.8M 200-bp long OCRs that we repurposed for this study26 (Methods). A key

hyperparameter in ExplaiNN is the number of independent units to be used. To assess the

impact of this hyperparameter on model performance, we trained multiple ExplaiNN models

using increasing numbers of units (from 1 to 200). As expected, the performance of

ExplaiNN improved with the number of units used, plateauing at around 100 units (Fig. 1B).

For comparison, we evaluated four additional models on the same dataset (Methods): a

CNN with one convolutional layer (CNN1); a CNN1 with exponential activation function

(CNN1Exp); a deep CNN with three convolutional layers (DeepCNN); and DanQ7, a hybrid

deep learning model with convolutional and recurrent layers. Although simpler, ExplaiNN

outperformed all three CNN models as measured by average area under the precision-recall

curve (AUPRC) and, when using more than 100 units, nearly reached the performance of

the more complex DanQ (Fig. 1B). Focusing on the ExplaiNN model trained with 100 units, it

outperformed the DeepCNN model for most TFs, performing only slightly worse than DanQ

(Fig. 1C).

Next, we visualized the filters of each ExplaiNN model and assigned them TF binding modes

from JASPAR, which we defined based on the hierarchically clustered groups of

DNA-binding profiles included in the database (Table S1; Methods). As with performance,

the number of binding modes recovered by the model increased with the number of units
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used (Fig. 1D). For comparison, we provide the number of binding modes recovered by the

DeepCNN and DanQ when applying filter visualization, as we did with ExplaiNN, or when

using TF-MoDISco22 clustering on DeepLIFT21 attribution scores (Methods). Out of 33

different binding modes associated with the set of 50 TFs analyzed, ExplaiNN models

trained with 100 and 300 units recovered 19 and 21, respectively, which is a similar number

as DanQ (19 when applying filter visualization and 20 when using DeepLIFT and

TF-MoDISco) and greater than obtained for the DeepCNN model (Fig. 1E).

An advantageous feature of ExplaiNN is that one can readily visualize the final linear layer

weights for global interpretation purposes (Fig. 1F; Methods). For instance, units with filters

annotated as FOX motifs had high positive weights for predicting the FOXA1 class. Similarly,

CEBP-, CTCF-, and Ets-like units had high positive weights associated with predicting the

classes of CEBP factors, CTCF, and Ets family members, respectively. However, some units

had negative weights for predicting the class of their annotated TFs (Fig. 1F; highlighted with

arrows). To delve further into the contribution of each unit to the prediction of each class, we

computed unit importance scores (Methods). Visualization of the importance scores of a

FOX-like unit in a heatmap confirmed its importance for predicting the FOXA1 and AR

classes (Fig. 1G; top panel), in agreement with the observation that FOXA1 helps shape AR

signaling in prostate cells27. Visualizing unit importance scores also revealed why several

CTCF-like units had negative weights for predicting the CTCF class: the importances of

these units for the CTCF class were negligible, suggesting that the model was not using

them to make predictions for that class (Fig. S1). The same was true for units annotated as

CEBP and Ets with negative weights for those classes (Fig. S1). Finally, we calculated the

impact from nullifying the FOX-like filters in the DanQ model one at a time (Fig. 1G; bottom

panel; Methods) and, as expected, the impact scores from the filter nullification process

were consistent with the unit importance scores.

Taken together, these analyses demonstrated that ExplaiNN performs comparably to more

complex models, at least for TF binding prediction. In addition, ExplaiNN provided local and

global interpretation quickly and readily compared to using DeepLIFT followed by

TF-MoDISco or filter visualization and nullification.

ExplaiNN cannot capture nonlinear interactions between motifs

Given the architecture of ExplaiNN, in which each unit filter is independent of the rest, we

expected that it would not be able to learn nonlinear interactions between pairs of TF motifs,

including additive and multiplicative effects28. In contrast, DeepSTARR is a CNN trained on
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STARR-seq data to predict the activities of Drosophila developmental and housekeeping

enhancers that can capture these types of interactions29. For each pair of motifs analyzed,

the authors of DeepSTARR performed a distance dependence analysis by sliding one along

randomly generated sequences within which they embedded the second motif. Accounting

for additive effects, they observed that the output of DeepSTARR increased when the two

motifs were proximal, suggesting that the model had learned nonlinear interactions. To check

whether this was also the case for ExplaiNN, we trained it on the same dataset and

compared its performance to DeepSTARR by calculating the Pearson correlation coefficient

(PCC) between predicted and actual enhancer activities (Methods). ExplaiNN performed

worse than DeepSTARR on both developmental (PCC = 0.61 vs. 0.68) and housekeeping

(PCC = 0.71 vs. 0.74) enhancers, which we attributed to the greater presence of nonlinear

interactions in this particular dataset. Next, following the specifications from DeepSTARR,

we performed a distance dependence analysis between the housekeeping TFs Dref, Ohler1,

and Ohler6 (Methods). As a negative control, we slid the 5-mer GGGCT. As expected,

DeepSTARR was able to learn distance dependencies between the three motifs (Fig. S2).

This was not true for ExplaiNN: during the analysis, the resulting model outputs using the

three motifs were similar to sliding GGGCT (Fig. S2). Therefore, as anticipated based on the

model architecture, ExplaiNN is not suitable for nonlinear tasks such as detecting motif

interactions.

ExplaiNN learns high-quality motifs comparable to de novo motif discovery tools

De novo motif discovery methods continue to emerge and improve30–34. With the dramatic

escalation in the size of datasets, the execution time of these methods is increasingly a

limitation. Furthermore, many de novo motif discovery methods are assay-specific, as

exemplified by the DREAM5 challenge evaluation on protein binding microarray (PBM)

data35, requiring an extensive adjustment of parameters for their application to different

assays. We sought to explore the capacity of ExplaiNN for efficient de novo motif discovery

within a unified platform. For each of the 163 TFs from the previous dataset, we trained a

model with 100 units and then visualized the filters and importance scores of each unit,

resulting in 100 PWMs for each TF (Methods). As expected, PWMs derived from visualizing

filters associated with important units performed better: for 139 TFs (85.3%), the best

performing PWM was derived from the filter of one of the 10 most important units (Fig. 2A).

Next, we applied STREME33, a state-of-the-art method for de novo motif discovery, on the

same sequences used for training the ExplaiNN models to discover 100 motifs for each TF

(Methods). Pairwise comparison of the performances of the best PWMs obtained by each

method revealed subtle differences (Fig. 2B), although PWMs discovered by STREME were
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superior for TFs with small training datasets (Fig. 2C). Notably, the execution times exhibited

by the two methods differed greatly, with ExplaiNN being >100 times faster for TFs with large

training datasets of ≥50,000 sequences (Fig. 2D). These differences were consistent with a

previous report related to the benefits of GPU-enabled de novo motif discovery32.

Motivated by the success of ExplaiNN in discovering motifs in in vivo data and to

demonstrate its capacity on data from various assays, we benchmarked ExplaiNN against

other de novo methods, but this time using in vitro data (Methods). We downloaded publicly

available HT-SELEX36, PBM37, and SMiLE-seq38 data for the TF GATA3, as well as the

PWMs discovered in these datasets by three assay-specific de novo motif discovery

methods: Autoseed39 (HT-SELEX), Seed-and-Wobble40 (PBM), and a hidden Markov model

(HMM) approach (SMiLE-seq). The performance of the best PWMs derived with ExplaiNN

was consistent regardless of the type of assay (Fig. 2E), as were their logos (Fig. 2F).

Focusing on specific assays, the capacity of ExplaiNN to discover de novo motifs in the in

vivo and SMiLE-seq data, as measured by the performance of the best PWMs derived, was

comparable to that of STREME and the HMM-based method, respectively, while

outperforming Autoseed and Seed-and-Wobble in their corresponding assays (Fig. 2E). All

GATA3 logos were very similar to each other, and were also similar to the logo from JASPAR

for this TF profile (MA0037.4), derived originally by applying RSAT34 on a mouse Gata3

ChIP-seq data from ReMap41 (Fig. 2F). Taken together, this supports the potential of

ExplaiNN as a fast, universal method for de novo motif discovery.

ExplaiNN recapitulates the cis-regulatory lexicon of immune cell differentiation

To further explore the capabilities of ExplaiNN on distinct data types, we compared its

performance against AI-TAC in predicting chromatin accessibilities in 81 immune cell types

from 6 different lineages9. We started with an exploratory analysis to determine the optimal

number of units to train ExplaiNN. Saturation in model performance by means of average

PCC between predicted and actual ATAC signals, as well as in the number of well-predicted

sequences, occurred at ~250 units (Fig. 3A; Methods), however, we decided to use 300

units, which is the same number of convolutional filters used in the first layer of AI-TAC. The

performance of ExplaiNN by means of average PCC was comparable to that of AI-TAC

(1-2% difference; Fig. 3A), and the PCCs of individual sequences correlated well between

the two models (Fig. 3B), however, AI-TAC correctly predicted more sequences (Fig. 3A).

Next, we visualized both the filters and weights of each unit of the ExplaiNN model,

identifying the same lineage-specific TF motifs reported in AI-TAC without having to undergo

the computationally intensive process of filter nullification (Fig. 3C): NFE2, NFI, and GATA
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(in stem cells); POU, EBF, and PAX (in B cells); TCF3, TCF7, Ets, and AP1 (in T cells); NR1

(nuclear receptor type 1), TBX, and REL (in innate lymphoid cells); and SPI, Krüppel zinc

fingers, and CEBP (in myeloid cells). Moreover, we visualized the importances of each unit

to understand their influence on the model’s predictions. For example, CEBP- and PAX-like

units were important for predicting accessibility in most cell types of the myeloid and B

lineages, respectively (Figs. 3D and E). Taken together, using ExplaiNN, we replicated the

results of AI-TAC without the need to apply complex and time-consuming interpretation

techniques by simply visualizing the weights and importances of each unit.

ExplaiNN is suitable for the analysis of single-cell chromatin accessibility data

Single-cell (sc) sequencing methods enable profiling of a wide range of genomic information

in individual cells (reviewed in 42), including chromatin accessibility. To explore the utility of

ExplaiNN for deciphering cis-regulatory properties from granular sc data, we reanalyzed a

recent scATAC-seq dataset cataloging 228,873 OCRs across 15,298 human pancreatic islet

cells that were grouped into 12 clusters based on their accessibility profiles43. We trained a

ExplaiNN model with 400 units (i.e. the number of units at which model performance

plateaued) on the sc data to predict the activity of each OCR across the 12 clusters, and

visualized both the filters and weights of each unit. We observed that the weights of some

units exhibited cell type-specific patterns that had also been found using chromVAR44 in the

original study (Fig. 4A). For instance, PDX-like units had high positive weights for beta and

delta cells, MAF-like units for alpha and beta cells, HNF1-like units for alpha and gamma but

not for ductal cells, and FOX-like units for alpha, beta and gamma cells. However, there

were also differences: some units did not exhibit high positive weights in expected cell types

(e.g. Ets-like units had negative weights in endothelial cells), while others exhibited cell

type-specific patterns not reported in the original study (Fig. 4A). Next, we visualized the

importances of each unit for their contributions to the physiological stratification of the cells,

finding that RFX-like units were important for predicting OCRs in hormone-high (i.e. alpha,

beta, and delta type 1 cells) but not in hormone-low cells (i.e. alpha, beta, and delta type 2

cells) (Fig. 4B). It was the opposite for AP1-like units: they were important for hormone-low

but not hormone-high cells (Fig. 4C). Taken together, ExplaiNN was able to reproduce and

expand on the results from the original study while demonstrating its utility for the analysis

and interpretation of scATAC-seq data.

ExplaiNN as a plug-and-play platform for TF motifs and deep learning models

In ExplaiNN, a key step during model interpretation is annotating each unit to ease biological

interpretation. Given that ExplaiNN models can be conceptualized as a PWM scanning layer
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feeding into fully connected layers, we reasoned that initializing the weights of each unit filter

with a JASPAR profile would facilitate the interpretation process because the biological

annotations of the units would be known beforehand. To confirm this, we trained ExplaiNN

models with increasing numbers of units (from 300 to 1,492) on the AI-TAC dataset in which

the filter weights of each unit had been initialized with JASPAR profiles (Fig. 5A; Methods).

During training, the filter weights were frozen to prevent them from being refined (i.e. the

models were only allowed to learn the weights of the fully connected and final linear layers).

These JASPAR-initialized, frozen models, even the largest attempt with 1,492 units,

performed much worse than both AI-TAC and an ExplaiNN model with 300 units trained from

scratch (Fig. 5B). Still, the importances of some units were informative. For example, a unit

whose filter weights had been initialized with the profile of Lef1 (MA0768.2) was important

for predicting accessibility in T cells (Fig. S3), in agreement with the role of this TF in

establishing T cell identity45. We attributed the overall poor performance of these frozen

models to the fact that many JASPAR profiles used to initialize the filters might be from TFs

irrelevant to immune cells and, therefore, a refinement process would be required to allow

them to better resemble the motifs of relevant TFs. Indeed, unfreezing the filter weights

during training improved the performance of the model, approaching that of AI-TAC (Fig.
5B). Allowing refinement resulted in >35% of the filters undergoing substantial changes; their

visualization as PWMs revealed that they had become different from the original JASPAR

profiles used for their initialization (Tomtom25 q-value >0.05). For example, a unit whose filter

weights had been initialized with the profile of TFAP2C (MA0815.1), and whose importance

across the different immune lineages when freezing the filter weights during training was

null, became important for predicting accessibility in B cells. Its filter was refined to such an

extent that when visualized as a PWM it resembled the motif of EBF1, an important TF for

maintaining B cell identity46 (Fig. 5C).

A limitation of the JASPAR-initialization-and-freezing approach was the inability to

distinguish between TFs from the same family (i.e. TFs sharing the same class of

DNA-binding domain), as they often have highly similar DNA-binding specificities47. In order

to generate individual units that provide greater resolution, we implemented a transfer

learning strategy (Fig. 5D; Methods): We pre-trained 350 single-task DanQ models, each

predicting the binding of a single TF to the mouse genome, and initialized an ExplaiNN

model with 350 units in which we replaced the layers of each unit with one of the pre-trained

DanQ models. Akin to NAMs, we initialized a second model in which we added two fully

connected layers after the DanQ models. The AUPRCs of the pre-trained DanQ models

ranged from 0.51 (E4f1) to 0.96 (Snai2), with a median of 0.78 across all models (Table S2).

Then, we fine-tuned both ExplaiNN models on the AI-TAC dataset, freezing the pre-trained
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DanQ models (i.e. their weights were not modified). The performance of the fine-tuned

models almost reached that of AI-TAC (PCC = 0.341 vs. 0.345 for AI-TAC). Next, we

visualized the importances of each DanQ model unit in the ExplaiNN model without fully

connected layers, allowing us to disambiguate the contribution of individual TF family

members (Methods). For instance, the Irf4 and Irf8 units were important for predicting

accessibility in different immune lineages (Fig. 5E), in agreement with the distinct roles of

these TFs: Irf4 regulates B, T, myeloid, and dendritic cell differentiation48, while Irf8 regulates

B and myeloid cell lineages49. Similarly, the Pax5 unit was important for predicting

accessibility in B cells, consistent with the role of this TF in establishing B lineage identity

and function50; in contrast, the importances of the Pax3 and Pax7 units across immune

lineages were negligible, in agreement with their role in regulating myogenesis51 (Fig. 5F).

Finally, we applied UMAP52 to cluster the sequences based on their unit outputs in the

second ExplaiNN model, resulting in three main clusters that were associated with ATAC

signals in alpha/beta T, myeloid, and B cells (Figs. 5G and S4). The outputs of some units

were in strong agreement with a biologically relevant cluster. For example, the Bcl11b unit

outputs were confined within the boundaries of the alpha/beta T cell cluster, consistent with

its role in the differentiation and survival of these lymphocytes53, the Cebpa unit outputs

within the myeloid cluster, in agreement with its role in myeloid differentiation54, and the Ebf1

unit outputs within the B cluster (Figs. 5G and S4). Taken together, replacing the units of

ExplaiNN with pre-trained high-resolution TF binding models achieved performance levels

comparable to state-of-the-art deep learning models while providing the additional value of

gaining insights into the roles of individual TFs. This flexibility of incorporating different

components into ExplaiNN offers the potential for increased performance while retaining

interpretability.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.20.492818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492818
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

ExplaiNN is an explainable deep learning approach designed for straightforward discovery of

genomic features contributing to model performance for a broad range of predictive tasks

related to DNA sequence data. Inspired by the recently introduced NAMs method, the

architecture of ExplaiNN is based on multiple, simple, independent CNN units that recognize

sequence patterns. The outputs of these units are subsequently combined in a manner akin

to classic regression analysis techniques. We benchmarked ExplaiNN on diverse tasks,

including sequence-based prediction of TF binding, chromatin accessibility, both from bulk

and single-cell data, enhancer activity, and de novo motif discovery. Through this array of

diverse applications, ExplaiNN performed comparably to leading methods specialized for the

independent tasks.

ExplaiNN combines the expressiveness of CNNs and interpretability of linear models, thus

providing a transparent and interpretable view of the model’s decision making without

sacrificing predictive capacity. While deep learning models have been successful at

revealing novel biological insights from high-throughput sequencing data, outperforming

traditional PWM-based approaches such as motif enrichment analysis, their adoption in the

genomics field remains largely in the hands of deep learning experts. This is in part a

consequence of their perceived opaque nature and lack of consensus on best practices for

their interpretation, making it difficult for the non-specialist to apply these methods routinely.

There is a growing need for deep learning models that are explainable and easy to use14.

ExplaiNN is one such approach. Because of its linearity, it can be conceptualized as a

simple combination of TF binding motifs, either discovered de novo or user-provided,

however, for this very reason, it excludes higher-order interactions between them (e.g. TF

cooperativity). It may therefore be surprising to some that in practice ExplaiNN performs so

well across a wide range of predictive tasks. One reason behind this could be that excluding

higher-order interactions acts as a regularizer leading to more accurate predictions than

multi-layer CNN models on simple tasks such as TF binding prediction. Another reason

could be that the presence of higher-order interactions in the genomics explored datasets

could be marginal, in agreement with recent studies suggesting that cis-regulatory logic may

be simpler than believed55,56. Alternatively, these kinds of complex interactions may be highly

specific to individual enhancers, and thus not detectable by models generalized for analysis

across the genome. As exemplified by the DeepSTARR analysis in this report, comparisons

between ExplaiNN and non-linear models can enable researchers to assess the benefit from

allowing non-linear interactions. In such cases where there is not substantial benefit, the use

of the simpler, readily interpretable method may be preferred.
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The emergence of new methods for regulatory sequence analysis is a recurrent process. An

important early approach to identifying recurring subsequences associated with TFBSs used

the expectation-maximization algorithm to learn a PWM from a set of unaligned regulatory

sequences57. These individually learned PWMs could then be used in a linear model to make

predictions regarding various properties of a given sequence58. ExplaiNN could be perceived

as a direct extension of this approach, wherein a large number of PWMs are simultaneously

learned, and their activation values linearly combined to make predictions in an end-to-end

fashion.

As a simple linear model, ExplaiNN has the potential to be applied to multiple problems. This

flexibility offers the opportunity for users to become proficient with the system as they work

across or within topics. As presented here for de novo motif discovery, the flexibility to apply

ExplaiNN to both ChIP-seq data and multiple special classes of in vitro TF binding data has

the promise to reduce the number of methods that must be mastered.

There remains an ample variety of potential directions for further development of ExplaiNN,

split between enhanced technical capabilities and user empowerment. It should be possible

to integrate a more complex model architecture within the system to account for the “missing

complexity” (e.g. non-linearity). As implemented, ExplaiNN cannot address analyses

requiring large receptive fields (e.g. Basenji59 or Enformer12), but it should be possible to

implement such capacity within the system. Incorporating more advanced visualization

techniques and data processing tools would ease the adoption of ExplaiNN by scientists

working on applied problems who currently rely on heritage methods for regulatory sequence

analysis.

The software for using ExplaiNN is provided open-source in a well-documented repository,

and it is our hope that it will lead to or inspire widespread use of interpretable deep learning

methods.
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Online methods

Model architectures

Unless otherwise specified, each ExplaiNN unit consisted of:

● 1st convolutional layer with 1 filter (19x4), batch normalization, exponential activation

and max pooling (7x7);

● 1st fully connected layer with 100 nodes, batch normalization, ReLU activation and

30% dropout; and

● 2nd fully connected layer with 1 node, batch normalization and ReLU activation.

In the 1st convolutional layer, exponential activation was used (as opposed to ReLU), as it

has been shown to significantly improve the recovery of biologically meaningful motifs from

the filters24. The final layer of ExplaiNN is linear: one fully connected output layer with n

outputs (e.g. 50 in the initial TF binding prediction task or 81 when predicting chromatin

accessibility states across immune cells).

For the CNN1 and CNN1Exp architectures, we used the following specifications:

● 1st convolutional layer with 100 filters (19x4), batch normalization, ReLU (for CNN1)

or exponential (for CNN1Exp) activation and max pooling (7x7);

● 1st fully connected layer with 1000 nodes, batch normalization, ReLU activation and

30% dropout;

● 2nd fully connected layer with 1000 nodes, batch normalization, ReLU activation and

30% dropout; and

● Fully connected output layer with 50 outputs.

For the DeepCNN (adapted from Basset8):

● 1st convolutional layer with 100 filters (19x4), batch normalization, ReLU activation

and max pooling (3x3);

● 2nd convolutional layer with 200 filters (7x1), batch normalization, ReLU activation,

and max pooling (3x3);

● 3rd convolutional layer with 200 filters (4x1), batch normalization, ReLU activation,

and max pooling (3x3);

● 1st fully connected layer with 1000 nodes, batch normalization, ReLU activation and

30% dropout;

● 2nd fully connected layer with 1000 nodes, batch normalization, ReLU activation and

30% dropout; and
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● Fully connected output layer with 50 outputs.

For DanQ7:

● 1st convolutional layer with 320 filters (26x4), ReLU activation, 20% dropout, and

max pooling (13x13);

● 2 bi-directional LSTM layers with hidden state size 320 and 50% dropout;

● 1st fully connected layer with 925 nodes and ReLU activation; and

● Fully connected output layer with 1 or 50 outputs (depending on the task).

For DeepSTARR29:

● 1st convolutional layer with 256 filters (7x4), padding of size 3, batch normalization,

ReLU activation function and max pooling (2x2);

● 2nd convolutional layer with 60 filters (3x1), padding of size 1, batch normalization,

ReLU activation function and max pooling (2x2);

● 3rd convolutional layer with 60 filters (5x1), padding of size 2, batch normalization,

ReLU activation function and max pooling (2x2);

● 4th convolutional layer with 120 filters (3x1), padding of size 1, batch normalization,

ReLU activation function and max pooling (2x2);

● 1st fully connected layer with 256 nodes, batch normalization, ReLU activation

function and 40% dropout;

● 2nd fully connected layer with 256 nodes, batch normalization, ReLU activation

function and 40% dropout; and

● Fully connected output layer with 2 outputs.

The AI-TAC architecture was provided by Maslova and colleagues9. All architectures were

implemented using the PyTorch framework60.

Interpretability with ExplaiNN

First, we converted the filter of each unit into a PWM by following the specifications from the

AI-TAC manuscript: For each filter, we built a position frequency matrix (PFM) by aligning all

19-mers (i.e. 19 bp-long DNA sequences) activating that filter’s unit by ≥50% of its maximum

activation value in correctly predicted sequences. The resulting PFM was then transformed

into a PWM by setting the background uniform nucleotide frequency to 0.25. Next, the PWM

derived from each filter was mapped to one or more profiles from the vertebrate collection of

the JASPAR 2020 database17 using Tomtom25 (version 5.3.0; q-value ≤0.05), which, in turn,
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were used to annotate that filter’s unit. For example, a unit whose filter’s PWM were similar

to the profiles of members from the SOX TF family would be annotated as “SOX-like”.

For global interpretability, we visualized the weights of each unit in the final linear layer of the

model (e.g. using a heatmap). Usually, these weights were associated with the importance of

the unit for each task. In some cases, however, they were highly positive or negative for a

task in which the unit was not activated by the input sequences. To overcome this limitation

and obtain more fine-grained unit importances, for each unit and for each task, we computed

the product of the unit’s activation for each sequence with the final layer weight for that task,

and visualized them (e.g. using a boxplot). For visualization, for each unit, we only included

the products from correctly predicted sequences activating that unit’s filter by ≥50% of its

maximum activation value. In addition, for each unit and for each task, the median of these

products was used to assess the importance of that unit for that task.

Interpretability with DeepLIFT and TF-MoDISco

For each correctly predicted sequence in the test set, we generated DeepLIFT21 importance

scores with 10 reference sequences using the Captum library61. We used TF-MoDISco22 with

default settings to obtain motifs from DeepLIFT importance scores.

Training, validation and test datasets

To obtain human in vivo TF binding data, we repurposed a previously described data matrix

aggregating the binding of 163 TFs to 1,817,918 200-bp-long DNase I hypersensitive sites

(DHSs) in 52 cell and tissue types62. For each TF-DHS pair, a “1” was used to indicate that

the DHS was accessible and bound by the TF (i.e. the DHS and at least one ChIP-seq peak

summit of that TF from ReMap 201841 overlapped), a “0” that the DHS was accessible but

not bound by the TF, and a null sign (“∅”) that it was not accessible to the TF for binding (i.e.

unresolved). For the CNN1, CNN1Exp, DeepCNN, DanQ, and ExplaiNN models predicting

the binding of 50 TFs, we extracted a slice of the matrix including the row vectors of the 50

TFs, removing any column vectors with unresolved elements. The resulting resolved regions

for all 50 TFs were randomly split into training (80%), validation (10%) and test (10%) sets

using the “train_test_split” function from scikit-learn63 (datasets were always randomly split in

this way). For de novo motif discovery, since the number of bound versus unbound regions

of all TFs were imbalanced, we subsampled the set of unbound regions to a 50:50 ratio for

each TF while accounting for their %GC content distributions. The resulting datasets were

randomly split into training (80%), validation (10%) and test (10%) sets while maintaining an

equal proportion of bound and unbound regions.
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Mouse in vivo TF binding data was obtained as follows: First, we downloaded non-redundant

mouse ChIP-seq peaks for 350 DNA-binding TFs64 from ReMap. We resized each ChIP-seq

peak to 201 bp by extending its summit 100 bp in both directions. Furthermore, we retrieved

an atlas of 1,802,604 DHS regions in the mouse genome65, which we also resized to 201 bp

around the center of each DHS. In both cases, we applied BEDTools slop66. We then created

a set of negative sequences for each TF by subsampling non-overlapping regions from the

DHS atlas while matching the %GC content distribution of its ChIP-seq peaks. The resulting

sequences for each TF were randomly split into training (80%), validation (10%) and test

(10%) sets while keeping the same ratio between positive and negative sequences.

PBM data was downloaded from UniPROBE37 (Gata3; UP00032; clone ID pTH1024). Probe

signal intensities were quantile normalized (QN) using the “quantile_transform” function from

scikit-learn. Probes were 60 bp long, including both the de Bruijn and linker sequences. The

arrays AMADID #015681 and #016060 were used for training and validation, respectively.

HT-SELEX36 and SMiLE-seq38 data were retrieved from the Sequence Repository Archive

(run ids: ERR1003435, ERR1003437, ERR1003439, ERR1003441, and SRR3405148). For

HT-SELEX data, we treated each cycle as an independent class as in Asif and Orenstein67,

thereby removing the need for negative sequences. Reads were randomly split into training

(80%) and validation (20%) sets while preserving the proportions between reads from each

cycle. For SMiLE-seq data, reads were left- and right-clipped 7 and 64 bp, respectively, for a

final length of 30 bp corresponding to the randomized DNA. A set of negative sequences

were obtained by dinucleotide shuffling using BiasAway68 (version 3.3.0). Sequences were

randomly split into training (80%) and validation (20%) while maintaining an equal proportion

between positives and negatives.

Binarised human pancreatic islet scATAC-seq data was obtained from 43. Data was denoised

by training PeakVI69 with 21 latent dimensions using scvitools70. The denoised profiles were

used to compute the mean accessibility of each peak in the 12 clusters identified in the

original study. Peaks were resized to 600 bp around the center of each peak using BEDTools

slop. Peaks from chromosome 1 were used for validation, peaks from chromosomes 10, 11,

and 12 for testing, and peaks from the remaining chromosomes for training.

The AI-TAC and DeepSTARR datasets were obtained from the original publications, and we

used the same data splits.
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Model training

Unless otherwise specified, we trained all models using the Adam optimizer71. We applied

one-hot encoding to convert nucleotides into 4-element vectors (i.e. A, C, G, and T), set the

learning rate to 0.003 and batch size to 100, and used an early stopping criteria to prevent

overfitting when the model performance on the validation set did not improve. The training

and validation sets included the reverse-complement of each sequence. Sequences with Ns

were discarded.

De novo PWMs

For each of the 163 TFs from the data matrix, we trained one ExplaiNN model with 100 units

using its training and validation sets, and then visualized the filters and importance scores of

each unit, resulting in 100 PWMs per TF. As baseline, we applied STREME33 (version 5.3.0)

on the set of training sequences of each TF to also generate 100 PWMs: We set the fraction

of sequences held-out for p-value computation to 0 (option --hofract), the maximum length of

the PWMs to 19 bp (i.e. the filter size in ExplaiNN; option --maxw), and the number of output

PWMs to 100 (option --nmotifs). Next, for each TF and for each of its PWMs, we evaluated

the PWM performance by keeping the score of the best hit from scanning that PWM along

both strands of each sequence in the test set and computing the AUPRC.

Like above, for each GATA3 in vitro assay (i.e. HT-SELEX, PBM and SMiLE-seq), we trained

one ExplaiNN model with 100 units using the training and validation sets, and visualized the

filters of each unit, resulting in 100 PWMs for each assay. However, the task of the ExplaiNN

model trained on HT-SELEX data was multiclass classification: the model tried to predict the

cycle of origin of each input read, with the expectation that the last cycles would be enriched

for bound sequences of the TF. In addition, for PBM data, the task of the ExplaiNN model

was to infer QN intensity signals of each probe.

For each TF and for each assay, the best PWM was selected based on its performance on

the corresponding validation set.

Plug-and-play

First, we resized all 746 profiles from the JASPAR 2020 vertebrate collection to 19 bp. Then,

we applied a farthest point sampling procedure to remove profile redundancy based on

Tomtom similarities starting from the most dissimilar profile. This resulted in four different

sets of non-redundant profiles of sizes 150, 250, 375 and 500. Next, we computed the

reverse complement of each profile, doubling the number of profiles in each non-redundant
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set to 300, 500, 750 and 1000, and raising the number of profiles in the JASPAR 2020

vertebrate collection to 1492. We trained ExplaiNN models with increasing numbers of units

(300, 500, 750, 1000, and 1492) on the AI-TAC dataset in which the filter weights of each

unit were initialized with those JASPAR profiles. To initialize filter weights with profiles from

JASPAR, we followed the specifications from DanQ: We reformatted JASPAR profiles as

PWMs using Biopython72 and then converted them to filter weights by subtracting 0.25 from

the probability of each nucleotide at each PWM position. During training, nullification of

gradients could be applied to freeze the filter weights.

For each of the 350 TFs from the mouse in vivo TF binding data, we trained a DanQ model

using the training and validation sets of that TF, and assessed its performance by computing

the AUPRC on the test set. We then scored the sequences from the AI-TAC dataset keeping

the outputs from each model (pre- or post-sigmoid). Next, we combined the outputs of each

sequence in one fully connected layer with 81 output nodes. Alternatively, each DanQ output

could be embedded in its own fully-connected neural network with one layer and 200 nodes,

resulting in 350 processed outputs ultimately combined in one fully connected layer with 81

outputs.

UMAP clusters were obtained and plotted using the UMAP Python library52 (version 0.5.2).
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Code availability

ExplaiNN is open-source software distributed under the MIT license. It is available on GitHub

(https://github.com/wassermanlab/ExplaiNN) accompanied by the IPython notebooks that we

used for the different experiments.

Data availability

The TF binding matrices, and the code for generating them, are available on GitHub as 2D

numpy arrays73 (https://github.com/wassermanlab/TF-Binding-Matrix). The filter weights from

JASPAR profiles, and the code for generating them, are also available on GitHub as pickles

(https://github.com/wassermanlab/PWM-to-filter-weights).
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Figures

Fig. 1: The ExplaiNN model and its application to TFBS prediction in OCRs. (A)

ExplaiNN takes as input one-hot encoded DNA sequences. Architecturally, it is composed of

multiple independent CNNs (i.e. units), each of which comprising one convolutional layer

with a single filter, batch normalization, exponential activation, and max pooling, and two fully

connected layers with batch normalization, ReLU activation, and dropout. The final linear

layer of ExplaiNN (i.e. the output) combines the outputs from each unit (denoted here using

Xs). (B) Performances (AUPRC; y-axis) of ExplaiNN models trained using increasing

numbers of units (x-axis) on predicting the binding of 50 TFs in OCRs (green line). The

performances of DanQ7, a deep CNN with 3 convolutional layers (i.e. DeepCNN), and two

shallow CNNs with 1 convolutional layer (i.e. CNN1 and CNN1Exp featuring an exponential

activation function instead of ReLU) are provided as baselines (gray lines). (C) Pairwise

comparison of the individual performances (AUPRC) of the 50 TFs from the previous dataset

between the ExplaiNN model trained using 100 units and either DanQ (green dots) or the

DeepCNN (gray dots). (D) Number of binding modes (y-axis) detected with ExplaiNN using

increasing numbers of units (x-axis). (E) Number of binding modes detected with DanQ, the

DeepCNN, and ExplaiNN trained using 100 and 300 units on the previous dataset using

either filter visualization or TF-MoDISco22 clustering on DeepLIFT21 attribution scores

(pinstriped). The 50 TFs in the dataset are represented by 33 unique binding modes (dashed

line), some of which are detected using different combinations of models and interpretive

approaches (green); other detected binding modes (i.e. different from those 33) are shown in

grey. (F) Heatmap of the final linear layer weights of the ExplaiNN model trained using 100

units, with rows representing units with assigned biological annotations based on their

Tomtom25 similarity to known TF profiles from the JASPAR database17 and columns

representing the 50 TFs predicted by the model. More than one filter can learn the same TF

motif representation, but some may not contribute to the model’s predictions (black arrows).
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(G) (top) Visualization of importance scores for a unit annotated as FOXA1 from the

ExplaiNN model trained using 100 units. This unit contributes the most to the prediction of

FOXA1 binding. (bottom) Filter nullification analysis for the seven DanQ filters annotated as

FOX TFs. The results are consistent with the unit importance scores. AUPRC, area under

the precision-recall curve; CNN, convolutional neural network; OCR, open chromatin region;

ReLU, rectified linear unit; TF, transcription factor; TFBS, TF binding site.

Fig. 2: De novo motif discovery with ExplaiNN. (A) Average performances (AUPRC;

y-axis) by rank (x-axis) of PWMs derived from training ExplaiNN models with 100 units on in

vivo datasets of 100 TFs and then visualizing the filter of each unit (i.e. 100 PWMs per TF).

The rank of each PWM is given by the importance of its unit. The gray dots indicate the rank

of the best performing PWM for each TF. (B) Pairwise comparison of the individual

performances (AUPRC) of the best PWMs derived for each TF from the previous dataset

using ExplaiNN (y-axis) or STREME (x-axis). (C) Performance difference (i.e. ΔAUPRC) of

the previous PWMs (x-axis) is plotted with respect to the dataset size of the corresponding

TF (x-axis). (D) Execution time (in seconds; y-axis) of the de novo motif discovery

application of ExplaiNN (green dots) and STREME (gray dots) is plotted with respect to the

dataset size of the corresponding TF (x-axis). (E) Performances (AUPRC; y-axis) of PWMs

derived from different experimental assay datasets related to the TF GATA3 by different

methods (x-axis), including ExplaiNN (green bars) and four assay-specific methods (grey

bars). (F) GATA3 logos derived from the dataset of each experimental assay using ExplaiNN

or the assay-specific method. The JASPAR17 logo for this TF profile (MA0037.4), derived by

applying RSAT34 on the mouse Gata3 ChIP-seq data from ReMap41, is shown at the top.

AUPRC, area under the precision-recall curve; HMM, hidden Markov model; PBM, protein

binding microarray; PWM, position weight matrix; S&W, Seed-And-Wobble; TF, transcription

factor.

Fig. 3: Application of ExplaiNN in predicting chromatin accessibility in the mouse
immune system. (A) Performances (average PCC; y-axis; green) and number of

well-predicted sequences (secondary y-axis; gray) for ExplaiNN models (solid lines) with

increasing numbers of units (x-axis) and AI-TAC (dashed lines) trained on OCRs in 81

immune cell types from 6 different lineages9. (B) Pairwise comparison of the individual

performances (PCC) of the OCRs from the previous dataset between the ExplaiNN model

trained using 300 units (y-axis) and AI-TAC (x-axis). The Pearson correlation coefficient (R)

of the individual OCR performances between the two methods is shown at the lower right

corner. (C) Heatmap of the final linear layer weights of the ExplaiNN model trained using 300

units, with columns representing units with assigned biological annotations based on their
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Tomtom25 similarity to known TF profiles from the JASPAR database17 and rows representing

the 81 immune cell types coloured by lineage: stem cells (navy blue), B cells (turquoise),

alpha/beta (forest green) and gamma/delta T cells (olive green), innate lymphoid cells (pink),

and myeloid cells (purple). The logos derived from visualizing the filters of selected

lineage-specific units are shown at the right. (D and E) Visualizations of importance scores

coloured by lineage for two units from the previous model annotated as CEBP and PAX,

revealing their importance to the prediction of chromatin accessibilities in myeloid54 and B

cell lineages, respectively. The logos of the filters of these units are shown at the top. OCR,

open chromatin region; PCC, Pearson correlation coefficient; TF, transcription factor.

Fig. 4: ExplaiNN analysis and interpretation of scATAC-seq data of human pancreatic
islets. (A) Heatmap of the final linear layer weights of an ExplaiNN model with 400 units

trained on OCRs from human pancreatic islet sc data43, with rows representing units with

assigned biological annotations based on their Tomtom25 similarity to known TF profiles from

the JASPAR database17 and columns representing the 12 clusters of cells based on their

accessibility profiles and coloured by cell type: alpha type 1 cells (purple), beta type 1 cells

(navy blue), delta type 1 cells (turquoise), alpha type 2 cells (forest green), beta type 2 cells

(light green), delta type 2 cells (yellow), acinar cells (olive green), ductal cell (orange),

endothelial cells (red), gamma cells (brown), immune cells (dark brown), stellate cells (gray).

The logos derived from visualizing the filters of selected units are shown at the right. (B and

C) Visualizations of importance scores coloured by cell cluster for two units from the

previous model that were annotated as RFX and AP1 (TRE site), revealing their respective

importance to the prediction of chromatin accessibilities in hormone-high and hormone-low

cells. OCR, open chromatin region; scATAC-seq, single-cell ATAC-seq; TF, transcription

factor.

Fig. 5: Initializing ExplaiNN with JASPAR profiles and DanQ models. (A) Schematic

representation of the proposed ExplaiNN model in which the convolutional filters of each unit

are initialized with JASPAR17 profiles. (B) Performances (average PCC; y-axis) and number

of well-predicted sequences (secondary y-axis; black dots) for different models trained on

OCRs from the AI-TAC dataset9: an ExplaiNN model with 300 units (green) and different

ExplaiNN models trained with increasing numbers of units (300, 500, 750, 1000, 1492)

initialized with JASPAR profiles (light green). The filters from the JASPAR-initialized

ExplaiNN models could be freezed during training (pinstriped). The performance of AI-TAC is

provided as baseline (gray). (C) Refinement example for a filter whose weights had been

initialized with the JASPAR profile of TFAP2C (MA0815.1). Freezing the filter weights during

training was detrimental (top): the importance scores of that filter’s unit across all immune
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lineages was null. However, if filter weight refinement was allowed during training (i.e. no

freezing; bottom), that filter was modified until it resembled the motif of EBF1, an important

TF for maintaining B cell identity46, and that same unit became important for predicting

accessibility in B cells. (D) Schematic representation of the proposed transfer learning

strategy in which ExplaiNN units are replaced with pre-trained DanQ7 models that can be

followed (right) or not (left) by fully connected layers. (E and F) We used the transfer learning

strategy on the left to train one ExplaiNN model with 350 units on the AI-TAC dataset in

which the units had been replaced with 350 different pre-trained DanQ models, each

predicting the binding of a single TF to the mouse genome. During the training process of

the ExplaiNN model, the DanQ models were frozen (i.e. their weights were not modified).

Unit importance scores of DanQ models belonging to different members of the IRF and PAX

TF families are shown. (G) We repeated the same process but using the transfer learning

strategy on the right: each unit was replaced with a pre-trained DanQ model but adding two

fully connected layers after each model. Then, we applied UMAP52 to cluster the OCRs

based on their unit outputs. (top) UMAP clusters display cell-type specificity (e.g. alpha/beta

T and myeloid cells). (bottom) The outputs of the Bcl11b and Cebpa DanQ model units

strongly agree with their biologically relevant clusters. OCR, open chromatin region; PCC,

Pearson correlation coefficient; TF, transcription factor; UMAP, uniform manifold

approximation and projection.

Fig. S1: From top to bottom, visualization of importance scores for three units annotated as

CTCF, one unit annotated as CEBP, and one unit annotated as Ets from an ExplaiNN model

trained using 100 units on predicting the binding of 50 TFs in OCRs. OCR, open chromatin

region.

Fig. S2: Cooperativity (residual fold change; y-axis) plotted as a function of distance (x-axis)

between the motifs of the housekeeping TFs Dref (top row), Ohler1 (middle row), and Ohler6

(bottom row) for DeepSTARR29 (left column) and ExplaiNN (right column). The 5-mer

GGGCT is provided as a negative control (blue). TF, transcription factor.

Fig. S3: Visualization of importance scores coloured by lineage of a unit from an ExplaiNN

model initialized with 300 JASPAR profiles and trained on the AI-TAC dataset9 with freezing.

The unit, which corresponded to the JASPAR profile of Lef1 (MA0768.2), was important for

predicting accessibility in T cells, in agreement with the role of this TF in establishing T cell

identity45. TF, transcription factor.
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Fig. S4: We trained one ExplaiNN model with 350 units on the AI-TAC dataset9 in which the

units had been replaced with 350 different pre-trained DanQ7 models, each predicting the

binding of a single TF to the mouse genome. During the training process of the ExplaiNN

model, the DanQ models were frozen (i.e. their weights were not modified). TF, transcription

factor.

Tables

Table S1: List of TF binding modes used in this study.

Table S2: Individual performances of 350 DanQ models trained on mouse in vivo binding

data in predicting DNA binding of their respective TFs.
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