
The rise of sparser single-cell RNAseq datasets; consequences and 
opportunities 
 
Gerard A. Bouland1,2,, Ahmed Mahfouz1,2,3,*, Marcel J.T. Reinders1,2,3,*  
1 Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands 
2 Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands 
3.Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2333ZC, The Netherlands 
* Corresponding authors: Ahmed Mahfouz (a.mahfouz@lumc.nl) and Marcel J.T. Reinders (m.j.t.reinders@tudelft.nl) 

 

Abstract 
There is an exponential increase in the number of cells measured in single-cell RNA sequencing (scRNAseq) datasets. 
Concurrently, scRNA-seq datasets become increasingly sparser as more zero counts are measured for many genes. We 
discuss that with increasing sparsity the binarized representation of gene expression becomes as informative as count-
based expression. We show that downstream analyses based on binarized gene expressions give similar results to 
analyses based on count-based expressions. Moreover, a binarized representation scales to 17-fold more cells that can 
be analyzed using the same amount of computational resources. Based on these observations, we recommend the 
development of specialized tools for bit-aware implementations for downstream analyses tasks, creating opportunities 
to get a more fine-grained resolution of biological heterogeneity.   

Introduction 
Since its introduction, single-cell RNA sequencing (scRNAseq) has been vital in investigating biological questions that 
were previously impossible to answer(1–4). Continuous technological innovations are resulting in a consistent increase 
in the number of cells being measured in a single experiment. However, at the same time, datasets have become 
sparser, i.e. no counts measured for an increasing number of genes. This sparsity has generally been seen as a problem, 
especially since standard count distribution models seem to fail in explaining the excess of zeros(5–8). This zero-inflation 
has sparked discussions about whether the excess of zeros can be explained by mainly technological or biological 
factors(5, 8–10). As the field moves towards sparser datasets, it is vital to know what the consequences are of the ever-
increasing abundance of zero measurements. In 2020, Qui et al. (11) proposed to embrace zeros as useful signal and 
developed a clustering algorithm requiring only binarized scRNAseq data (a zero representing a zero count and a one a 
non-zero count). Although this was the first paper explicitly stating zeros (“dropouts”) to be informative, binarization of 
scRNAseq was already used in practice in 2015 to infer gene regulatory networks(12). Since then, several methods have 
employed binarized scRNA-seq data. For instance, for dimensionality reduction that improved cell type classification 
and trajectory inference compared to using counts(13), as well as for differential expression analysis(14).  

Using 52 datasets, published between 2015 and 2021, we show that as the sparsity of scRNAseq data increases, the 
detection pattern of expression (binarized scRNAseq data) becomes as informative as the quantification of expression 
(counts). We explain this by showing that the driving process behind zero-inflation is mainly explained by biological 
heterogeneity. Motivated by these findings, we demonstrate that downstream analyses based on solely the detection 
pattern are in line with those based on quantification. Together with further advantages of binarized scRNAseq data, 
this opens possibilities in analyzing extremely large datasets in an efficient manner. 

More cells, more zeros 
Across the 52 datasets the association between the year of publication and the number of cells shows a Pearson’s 
correlation coefficient of r = 0.57 (Fig. 1a). For instance, the average dataset in 2015 (n = 7) had 704 cells while the 
average dataset in 2020 (n = 5) had 68,100 cells. One consequence of having more cells is that datasets are becoming 
sparser, exemplified by a Pearson’s correlation coefficient of r = -0.72 (Fig. 1b) for the association between the number 
of cells and detection rate. It is likely that this trend will continue over the next years as having a larger number of cells 
has statistical benefits(15, 16).  
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FIGURE 1: Using R-package scRNAseq (v2.8.0), 52 datasets ranging in date of publication from 2015 to 2021 were downloaded. (a)  Scatterplot of the 
number of cells (log scale) against the date of publication. (b) Scatterplot of the detection rate (%) (y-axis) against the number of cells (log scale, x-
axis). 

More zeros, less signal in expression counts 
As zeros become more abundant, the detection pattern might be as informative as the expression counts. Using cells 
from four datasets, with varying degrees of sparsity, we observed a strong correlation (Pearson’s r  ≥ 0.73) between the 
log-normalized expression counts of a cell and its respective binarized variant (Fig. 2). This strong correlation implies 
that the binarized signal captures most of the signal present in the log normalized count data. Interestingly, there was 
a strong correlation between this correlation (between counts and binarized profiles) and the detection rate (Fig. 2, 
mean correlation = -0.76). This indicates that as datasets become sparser, the quantification of expression becomes less 
informative with respect to the detection pattern.  
 

 
FIGURE 2: Pearson correlations per cell between log normalised expression profile and the binarized profile across four different datasets (between 
brackets: detection rate% : median, Q1, Q3) : a)  AztekinTailData(17) (6.3% 4.6%, 8.8%) b) WuKidneyData(18) (4.2%, 3.1%, 5.8%) c) 
MarquesBrainData(19) (10.4% 7.8%, 13.6%) and d) GrunHSCData(20) (2.2%, 0.5%, 4.7%). X-axis represents the correlation, Y-axis the (detection rate 
%) in a cell.  

Expression counts add little to no information on top of the detection pattern 
To test whether counts can actually be discarded in practice, we compared the performance of automatic cell-type 
identification and differential expression analysis methods using counts and binarized data. First, we used two existing 
automatic cell-type identification methods, scPred and SingleR(21, 22). The median F1-score as well as the global 
accuracy were very similar between cell-type identifications based on the binarized data and identifications based on 
the log-normalized count data (Fig. 3a, Fig. 3b). This finding implies that the quantification of expression does not add 
information for cell-type identification. This conclusion was further supported by randomly shuffling the non-zero 
counts, which resulted in an almost similar cell-type identification performance (Fig. 3c, Fig. 3d).  

Next, we evaluated whether counts can also be discarded when pseudobulk data is considered. For each individual, in 
a dataset containing scRNAseq data of the prefrontal cortex of 34 individuals(23), we generated pseudobulk data by 
either taking, for each gene, the mean expression across all cells, or the rate of non-zero values across all cells (detection 
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rate). The Spearman's rank correlation (across all genes) was ≥ 0.99 (Fig. 3e) for every individual, indicating that for 
pseudobulk aggregation, implying that the binarized representation faithfully represents counts.  

To quantify this further, we simulated 10 datasets with muscat(15), each with 50,000 cells and 2,000 genes of which 
25% were differentially expressed between two groups comprised each of 10 individuals (2,500 cells per individual). 
Pseudobulk data for each individual was generated.  Using Limma trend(24) for mean gene expression and t-test for the 
detection rate, we identified differential expressed genes and evaluated whether we found the simulated ones back. 
The F1-score for the count and binarized data representations were similar(Fig. 3f), again indicating that the 
quantification of expression did not add additional information to test for differential expressed genes in pseudobulk 
data. 
  

 
FIGURE 3: (a,b) The performance of cell type identification by SingleR(21) and scPred(22) when applied to binarized data (Binary) or log-normalized 
expression (Counts) for three relatively recent datasets: AD(25), M1(26), PBMC(27). (a) show the median F1-score, and (b) the global accuracy score. 
(c,d) Similar as in (a,b) but now with the non-zero expressions being shuffled. (e) Scatterplot of detection rate (y-axis)  vs mean expression(x-axis) for 
all genes (n = 30.062) of one individual. (f) F1-score indicating how well simulated differentially expressed genes in pseudobulk data can be found 
back when either count data is used or binarized data. 

Zero-inflation is driven by biological heterogeneity  
Whether zero-inflation associates with technical or biological origins is heavily debated(8). One compelling reason for 
this debate is the fact that within a single dataset some genes are zero-inflated, while others are not(5, 8). We argue 
that this observation is related to whether a gene is only expressed in a subpopulation of cells (e.g. marker genes) or 
whether a gene has a stable expression (e.g. housekeeping genes). To substantiate our claim, we used BDA(14) to 
identify the top 100 most differentially expressed genes between two cell populations and the top 100 most stable 
expressed genes in a 10X dataset(26) as well as a Smart-Seq dataset(28). Next, we applied scRATE(5) to identify the best 
distribution model for the observed expression of the identified genes, being either a Poisson, a Negative Binomial or 
their zero-inflated counterparts. A fisher exact test showed that a zero-inflated model was enriched in the top 100 
differentially expressed genes, and a non-zero inflated model was enriched in the top 100 stable expressed genes (Table 
1). Like earlier work (5), we conclude biological heterogeneity to be the main driver of  zero-inflation.  
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TABLE 1: Enrichment of zero-inflated distributions for the top100 differential expressed genes and the enrichment of non-zero inflated distributions 
for the top100 stable genes.  

Platform Top 100 Zero-inflated Not zero-inflated logOR 95%CI p-value 

10x Differentially expressed genes 99 1 5.19 3.36, 8.87 3.03 × 10-25 

Stable genes 35 65 

Smart-seq Differentially expressed genes 97 3 3.70 2.50, 5.36 5.46 × 10-18 

Stable genes 44 56 

Binarized representation allows for highly scalable analyses  
Increasingly larger datasets require increasingly more computational resources. For example, a dataset(29) with 83,262 
cells and 20,138 genes after transformation and normalization requires 5.1 Gigabytes of working memory using 
Seurat(30) and sctransform(31). In contrast, binarizing the same dataset and storing it as bits requires only 300 
Megabytes, which is a 17-fold reduction in storage requirements. This potentially boosts scalability of downstream 
analyses to larger numbers of cells, opening possibilities to get a more fine-grained resolution of biological 
heterogeneity(32). 

Discussion 
In a recent article(8), Jian et al. discuss the “zero-inflation controversy”. They made a distinction between a biological 
zero, indicating true absence of a transcript, and a non-biological zero, indicating failure of measuring a transcript while 
it is present in the cell. Likewise, Sakar and Stephens(33) propose to make a distinction between measurement and 
expression. Following this reasoning, a Poisson model can be used to explain the observed counts, as well as the 
frequency of observed zero counts. In this case, a non-biological zero encodes useful information, i.e. the gene is unlikely 
to be highly expressed. However, this model is not suited for the observed zero-inflation. Instead of resuming to a zero-
inflated model, we argue that zero-inflation is primarily the result of biological heterogeneity. In other words, the zero-
inflation itself is indicative of the multi modal expression of a gene. As such, the binary representation faithfully captures 
the underlying biology, as the presence of a zero is mainly dictated by the relative abundance of the respective gene.  

We showed that analyses based on a binarized representation of scRNAseq data perform on par with count-based 
analyses. Working with binarizing scRNAseq data has clear additional advantages. The first is simplicity. Binarization 
circumvents the need to normalize and transform the scRNAseq data. Hence it avoids making various subjective choices 
and thus improves reproducibility of the subsequent data analyses. Second, binarization alleviate noise, as it is only 
subject to detection noise opposed to quantification and detection noise(13). Third, binarization reduces the amount of 
required storage significantly and allows the analysis of significantly larger datasets. This would, for example, allow for 
a bit implementation of clustering as has been done before in the field of molecular dynamics resulting in a significant 
reduction of run time and peak memory usage compared to existing methods(34). We have shown that sparsity is 
inversely correlated with the amount of additional signal that is captured by the quantification of expression. 
Consequently, binarization will not be useful for all scRNAseq datasets. Previous work suggested that when the 
detection rate becomes >90% binarization does not perform on par with count-based representation for the task of 
dimensionality reduction (13).  At what detection rate binarizing is not useful anymore for other analyses should be 
investigated further.  

Concluding, as binarized representations of scRNAseq data capture the relevant biological signal, there are 
opportunities for binarized data analyses methods so that cells can be put into a context of an extremely large number 
of other cells and be interrogated accordingly.  
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