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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor 

prognosis. Drug resistance is the major cause for therapeutic failure in PDAC patients 

with progressive disease. The mechanisms underlying resistance formation are 

complex and remain poorly understood. 

To gain insights into molecular changes during the formation of resistance to oncogenic 

MAPK pathway inhibition we utilized short-term passaged primary tumor cells from ten 

PDACs of genetically engineered mice. We followed gain and loss of resistance upon 

MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome 

sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass 

spectrometry data. 

We found that resistant cell populations under increasing MEKi treatment evolved by 

the expansion of a single clone but were not a direct consequence of known resistance-

conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation 

of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory 

elements known to be active in murine PDAC cells. Both DNA methylation changes 

and MEKi resistance were transient and reversible upon drug withdrawal. The effector 

caspase CASP3 is one of the 114 genes for which transcriptional downregulation 

inversely correlated with the methylation status of the associated DNA region. CASP3 

inactivation in resistant cells led to attenuation of drug-induced apoptosis which could 

be reversed by DNA methyltransferase inhibition with remarkable sensitivity 

exclusively in the resistant cells.  

Overall, our data provide a context for characterization and targeting of epigenetically 

mediated resistance mechanisms in PDAC. 
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Introduction 

Overcoming treatment resistance is a critical challenge for improving the prognosis for 

patients with pancreatic ductal adenocarcinoma (PDAC). Genetically, only four non-

targetable genes (KRAS, TP53, CDKN2A, SMAD4) are known to be recurrently 

mutated in PDAC so far. Many low frequency alterations found in various genes reflect 

a remarkable inter- and intra-individual tumor heterogeneity(1-3). Despite major 

advances in defining the genomic landscape of PDAC, the inherent and acquired 

resistance mechanisms during tumor evolution and upon therapeutic perturbations 

remain a considerable challenge. 

Oncogenic KRAS mutations represent a therapeutic target in PDAC. While direct 

inhibitors for the most frequent KRAS G12D and G12V variants are still lacking, potent 

and specific inhibitors for the downstream effector mitogen-activated protein kinase 

(MAPK) signaling pathway exist, including highly selective inhibitors against MEK, a 

component of the MAPK pathway(4). However, despite promising results in preclinical 

model systems(5-7), MEK inhibitors (MEKi) have failed in clinical trials due to rapid 

induction of resistance(8-11). Several cellular processes including mitochondrial 

function, nucleotide synthesis, protective autophagy or the deregulation of YAP, SHP 

or ERBB have been reported to be involved in MEKi resistance(12-19). However, their 

clinical relevance and the underlying regulatory circuits still remain to be identified. 

Growing evidence supports a concept where tumor cells utilize epigenetic mechanisms 

to adapt to varying conditions, including MEKi treatment of PDAC(20-22). Mutations 

affecting epigenetic readers and writers such as enzymes controlling histone 
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modifications and DNA methylation are frequently found in PDAC and other 

cancers(2,23,24). 

In this study, we focus on longitudinal characterization of molecular alterations 

underlying MEKi resistance. We combine multi-omics technologies on the genetic, 

epigenetic, transcriptomic and protein levels in primary genetically engineered mouse 

model (GEMM)-derived PDAC cells, thereby minimizing interindividual genetic and 

epigenetic heterogeneity typically confounding patient-derived tumor analyses. We 

address adaptive epigenetic changes under therapeutic pressure and identify a 

vulnerability of MEKi-induced resistant PDAC cells to DNA methyltransferase inhibitors 

(DNMTi). We found adaptive DNA hypermethylation in cells that acquired MEKi 

resistance and characterized its dynamics upon drug withdrawal. 

Methods 

Generation of primary murine PDAC cell lines 

Tumor pieces derived from Ptf1awt/Cre; Kraswt/LSL-G12D; Trp53loxP/loxP mice were 

incubated at 37°C and 5% CO2 in high-glucose Dulbecco's Modified Eagle's Medium 

(DMEM) (Thermo Fisher Scientific) containing 10% fetal bovine serum (Thermo Fisher 

Scientific), 1% penicillin/streptomycin (Thermo Fisher Scientific), and 1% non-essential 

amino acids (Sigma-Aldrich) until tumor cells emigrated. PCR-based mycoplasma 

testing was performed on a regular basis. Cell lines #1, #3, #4, #5 and #8 were derived 

from male mice and cell lines #2, #6, #7, #9 and #10 from female mice. All cell lines 

used are available from the corresponding author upon reasonable request. 

MEKi resistance induction in primary murine PDAC cell line 

MEKi resistance was induced in ten different low-passage cell lines (< 4-12 passages). 

Therefore, cells were treated with increasing doses of trametinib (LKT) until they grew 
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in 100x of their IC50 (800 nM to 4200 nM trametinib). One batch of each cell line was 

cultivated with 100x IC50 of trametinib in the culture medium (termed resistant 

hereafter) with medium exchange every 2-3 days on a regular basis. Another batch 

was kept under drug withdrawal and samples were named according to their passage 

number in drug-free medium (Px). 

Cell viability assays 

Cell viability assays were performed with four to six different cell lines. Cell numbers 

were optimized for 80% confluency in 96- or 384-well plates, respectively. Drugs 

targeting different epigenetic modifiers (trametinib (LKT), decitabine (Sigma-Aldrich), 

JQ1 (Cayman), suberoylanilide hydroxamic acid (SAHA) (Selleckchem), mocetinostat 

(Selleckchem) dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich) were printed in 

the indicated logarithmic concentration ranges using the D300e Digital Dispenser 

(Tecan). The DMSO concentration in each well was adjusted to the highest value on 

the plate which was set to < 0.1% of the assay volume. Sealed plates were frozen 

at -80°C until use.  

Cells were detached by 0.05% trypsin - ethylenediamine tetraacetic acid (EDTA) (1x) 

(Thermo Fisher Scientific) and recovered by centrifugation. Optimized cell numbers for 

80% confluency at the end of experiment were seeded with the Multidrop Combi 

Dispenser (Thermo Fisher Scientific) onto the pre-printed plates and incubated at 37°C 

and 5% CO2. 

Cell viability was determined using the CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega) according to manufacturer’s instruction. The luminescence signal was 

measured with a Tecan Spark® 10 M multiplate reader (Tecan) for 500 ms. 
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Data were normalized to the signal of DMSO treated cells. IC50 determination was 

performed using the Graph Pad Prims v. 7.03 ‘log (inhibitor) vs. response (three 

parameters)’ equation. 

Synergism was analyzed by applying the Loewe (25) method implemented in 

Combenefit v. 2.02 (26). 

Extraction of total protein and Simple Western analysis 

For total protein isolation, RIPA buffer (Cell Signaling Technology) containing 

protease- and phosphatase-inhibitor cocktails (Sigma-Aldrich) was used to lyse 

Dulbecco's phosphate-buffered saline (DPBS)-washed (Thermo Fisher Scientific) cell 

pellets on ice for 20 min. To remove debris, lysates were centrifuged at 4°C and full-

speed for 10 min. Afterwards, the protein concentration was determined with the Pierce 

BCA Protein Assay Kit (Thermo Fisher Scientific).  

If nothing else indicated 0.2 mg/ml protein per 12-230 kDa capillary were used in a 

Simple Western analysis using the Wes instrument (ProteinSimple) as suggested by 

the manufacturer’s protocol. Antibodies against the following proteins were used in the 

indicated dilutions: ERK1/2 (#4695, RRID:AB_390779, Cell Signaling Technology, 

1:50), JUN (#9165, RRID:AB_2130165, Cell Signaling Technology, 1:50), p-JUN 

(#9164, RRID:AB_330892, Cell Signaling Technology, 1:5), p-ERK1/2 (#4376, 

RRID:AB_331772, Cell Signaling Technology, 1:15), Vinculin (#13901, 

RRID:AB_2728768, Cell Signaling Technology, 1:30,000). 

CASP3 activity assay 

CASP3 activity was assessed in 96-well plates using duplicates for control conditions 

and triplicates for drug treatments. Parental and resistant cells of three different lines 

were tested. Compounds were pre-printed with the D300e Digital Dispenser (Tecan), 
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normalized for DMSO content. The following drug concentrations were used: 

trametinib (LKT) 100x IC50 of each individual cell line, decitabine (Sigma-Aldrich) 

0.5 µM, trametinib 0.3 µM + decitabine 0.5 µM. Optimized cell numbers for each cell 

line to reach 80% confluency at the end of experiment were seeded and incubated for 

the indicated time points. The Caspase-Glo® Assay (Promega) was applied according 

to manufacturer’s instructions. It contains a CASP3/7 specific luminogenic substrate 

and luminescence was detected with a Tecan Spark® 10 M multiplate reader (Tecan). 

Signals were corrected for viable cells measured by CellTiter-Glo® Luminescent Cell 

Viability Assay (Promega) as described in ‘Cell viability assays’. 

Flow cytometric quantification of cell death  

Appropriate cell numbers to reach 80% confluency at the end of experiment were 

individually determined for each of the three tested cell lines and seeded in 12-well 

plates pre-printed with the following drug concentrations: trametinib (LKT) 100x IC50 

in each individual cell line, decitabine (Sigma-Aldrich) 0.5 µM, trametinib 0.3 µM + 

decitabine 0.5 µM (D300e Digital Dispenser (Tecan). DMSO concentrations per well 

were normalized to the highest concentration on the plate. After incubation for 84 h, 

cells were detached by accutase (Sigma-Aldrich) and stained with the FITC Annexin V 

Apoptosis Detection Kit I (BD Bioscience) using Annexin V-FITC and PI both 1:40 for 

15 min at room temperature protected from light. Fluorescence was analyzed by flow 

cytometry on a FACS Aria system (BD Bioscience). The percentage of each cell 

population was determined with the FlowJo software v. 10.5.3 (Becton, Dickinson and 

Company). 
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Cytogenetic analysis 

Parental cells of cell lines #3 and #9 were treated with colcemid for 4 h prior to harvest. 

Culture solution was centrifuged, the cell pellet was resuspended in a hypotonic 75 mM 

KCl-solution and incubated for 20 min at 37°C. After centrifugation, cells were 

resuspended by dropwise adding 8 ml of an ice-cold fixative solution (3:1 mixture 

methanol and acetic acid). Cells were washed 3 times in 8 ml ice-cold fixative solution 

for 10 min each and dropped onto a fat-free and watered glass slide that was then 

air-dried overnight at 60°C. Chromosomes were stained with Giemsa and examined 

under the microscope using 140x magnification.  

Patient-derived xenografts 

All mice experiments were carried out by D. Behrens at EPO GmbH, Berlin-Buch, and 

performed according to the German Animal Protection Law with approval from the 

responsible authorities. The in vivo procedures were consistent and in compliance with 

the UKCCCR guidelines. Already established patient-derived xenografts of pancreatic 

adenocarcinoma from three different male patients at passage number 2 were received 

from ARC-NET, University of Verona. The materials used have been collected under 

Program 1885 protocol 52438 on 23/11/2010 and Program 2172 protocol 26773CE 

23/05/2012. The protocols include informed consent of the patients and were approved 

by the local ethics committee of the Integrated University Hospital Trust of Verona. At 

the time of surgery patient 1 was 59 years old, patient 2 65 years and patient 3 53 

years. Mice were maintained in the pathogen-free animal facility following institutional 

guidelines and with approval from the responsible authorities. The animals were 

housed under pathogen-free conditions in individually ventilated cages under 

standardized environmental conditions (22°C room temperature, 50 ± 10% relative 
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humidity, 12 hours light-dark rhythm). They received autoclaved food and bedding 

(Ssniff) and acidified (pH 4.0) drinking water ad libitum. 

Tumor pieces of 3 mm3 were transplanted subcutaneously into NOD/SCID-mice with 

knocked IL2γ receptor (NSG mice) within 24 h after explant from donor mice. 

Remaining tumor tissue was preserved in DMSO or snap-frozen for later propagation 

or analyses. Engrafted tumors at a size of about 1 cm3 were surgically excised and 

fragments of 2 - 3 mm3 re-transplanted into immune deficient NMRI:nu/nu mice for 

further passage. Tumors were passaged not more than 10 times.  

For drug screening studies tumor material was implanted subcutaneously into 

appropriate cohorts of NMRI:nu/nu mice (n=3 per treatment group). At advanced tumor 

size (200 mm³), mice were randomized and treated with 1 mg/kg trametinib (p.o., 

daily), 0.2 mg/kg decitabine (s.c., three times weekly). To further mouse cohorts the 

combinations of trametinib and decitabine were applied. Tumor size was measured 

with a caliper instrument and monitored during the entire experiment with the 

measurements of two perpendicular tumor diameters using the spheroid equation: 

tumor volume = [(tumor width)2 x tumor length] x 0.5. Treatment was continued over a 

period of two weeks unless tumor size exceeded 10% of animal body weight or animals 

showed loss of more than 15% body weight. Six hours after last treatment animals 

were sacrificed and tumor samples preserved for further analyses. 

Mass spectrometry 

Sample preparation 

Cell pellets of parental, resistant and P12 cells of six different lines were resuspended 

in 100 μl 50 mM ammonium bicarbonate and 0.1% sodium deoxycholate (NaDOC) for 

cell lysis. Samples were sonicated on ice for 10 min and centrifuged (16,000 g, 15 min, 
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4°C). Protein concentration was determined via Bradford assay. Due to a very low 

concentration, technical replicates were pooled. The samples were ridded of remaining 

viscosity with 10 impulses at 5% power by ultrasonic homogenization via Sonopuls HD 

200 MS 72 (Badelin) and centrifuged (16,000 g, 15 min, 4°C). Protein amount was 

determined via amino acid analysis. DTT (5 mM) was added to the sample for 

reduction (30 min, 60°C), followed by iodoacetamide (15 mM) for alkylation (30 min, 

room temperature, in the dark). Lysed proteins were tryptically digested over night at 

37°C (trypsin/protein ratio 1/24). For acidification, trifluoroacetic acid (TFA) (0.5%) was 

added (30 min, 37°C), samples were centrifuged (10 min, 16,000 g) for removal of 

NaDOC and supernatant transferred to glass vials, dried in a vacuum centrifuge, and 

dissolved in 0.1% TFA. A sample amount corresponding to 275 ng was used for one 

liquid chromatography tandem-mass spectrometry (LC-MS/MS) measurement.  

LC-MS/MS parameters 

LC–MS/MS analysis was performed on a LTQ Orbitrap Elite instrument (Thermo Fisher 

Scientific) coupled online to an upstream-connected Ultimate 3000 RSLCnano high-

performance liquid chromatography system (Dionex). Samples were measured in a 

shuffled manner. Peptides dissolved in 0.1% TFA were pre-concentrated on a C18 trap 

column (Acclaim PepMap 100; 100 μm × 2 cm, 5 μm, 100 Å; Thermo Fisher Scientific) 

within 7 min at a flow rate of 30 μl/min with 0.1% TFA. Peptides were then transferred 

to an in-house packed C18 analytical column (ReproSil®-Pur from Dr. Maisch HPLC 

GmbH, Ammerbuch, Germany, 75 μm × 40 cm, 1.9 μm, 120 Å). Peptides were 

separated with a gradient from 5%–40% solvent B over 98 min at 300 nl/min and 65°C 

(solvent A: 0.1% formic acid; solvent B: 0.1% formic acid, 84% acetonitrile). Full-scan 

mass spectra in the Orbitrap analyzer were acquired in profile mode at a resolution of 

60,000 at 400 m/z and within a mass range of 350 - 2000 m/z. MS/MS spectra were 
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acquired in data-dependent mode at a resolution of 5,400. For MS/MS measurements, 

the 20 most abundant peptide ions were fragmented by collision-induced dissociation 

(normalized collision energy (NCE) of 35) and measured for tandem mass spectra in 

the linear ion trap. 

Protein identification and quantification 

Proteins were identified with Proteome Discoverer v. 1.4 (Thermo Fisher Scientific). 

Spectra were searched against the UniProtKB/Swiss-Prot database (Release 

2018_11; 53,780 entries) using Mascot v. 2.5 (Matrix Science, London, UK). 

Taxonomy setting was Mus musculus and mass tolerance was 5 ppm and 0.4 Da for 

precursor and fragment ions, respectively. Dynamic and static modifications were 

considered for methionine (oxidation) and cysteine (carbamidomethyl), respectively. 

The FDR was calculated with the Proteome Discoverer Target Decoy PSM Validator 

function, and identifications with a FDR > 1% were rejected. The software Progenesis 

QI v. 2.0.5387.52102 (Nonlinear Dynamics) was used for label-free quantification. The 

obtained raw files were aligned to a reference run and a master map of common 

features was applied to all experimental runs to adjust for differences in retention time. 

Ion charge states of 2+, 3+, and 4+ with a minimum of three isotope peaks were 

considered, and raw ion abundances were normalized for automatic correction of 

technical or experimental variations between runs. Quantified features were identified 

using the obtained Proteome Discoverer identifications. All non-conflicting peptides 

were considered for protein quantification.  

Statistics  

Progenesis calculates statistical significance of measured differences (ANOVA p-

value) and ratios of means (fold changes). However, when more than two different 
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groups are processed with the software, the resulting p-values only state that a 

significant difference between two of those groups exists. Similarly, only maximal fold 

changes are calculated. Application of a post-hoc test was therefore necessary. 

Normalized protein abundances were obtained from Progenesis and analyzed by 

applying ANOVA followed by Tukey’s honest significant difference (HSD) method. Fold 

changes between groups were determined based on normalized abundances while 

ANOVA was calculated using arcsinh-transformed data for consistency with the 

Progenesis QI software. The FDR was controlled by adjusting ANOVA p-values using 

the method of Benjamini and Hochberg (27). For proteins with adjusted ANOVA p-

values below the significance level of α=0.05, the TukeyHSD method was applied to 

further characterize the identified differences in abundance levels between groups. 

Proteins were considered differentially abundant between groups with a log2 fold 

change ≥ 1 or ≤ -1 and an adjusted p-value < 0.05. 

Isolation of nucleic acids 

DNA and RNA were isolated using the Maxwell® RSC Cultured Cells DNA and the 

Maxwell® RSC simplyRNA Cells Kit (Promega) according to manufacturer’s 

instruction. Nuclease-free water was used for DNA elution. 

RNA-sequencing 

Sequencing 

RNA-sequencing of parental, resistant and P12 cells of six different cell lines was 

performed by CeGaT (Tübingen). In addition, P5 cells of cell lines #3, #7 and #9 were 

sequenced. For library preparation the TruSeq Stranded mRNA Kit (Illumina) was used 

with 100 ng input RNA and 2x 100 bp were sequenced on a HiSeq 4000 (Illumina) or 

a NovaSeq 6000 system (Illumina).  
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Read processing and quantification 

Demultiplexing of the sequencing reads was performed with Illumina CASAVA v. 2.17 

or bcl2fastq v. 2.19. Adapters were trimmed with Skewer v. 0.1.116 or 0.2.2(28). 

Transcripts were quantified using the quasi-mapping approach of salmon v. 0.12 (29). 

TXImport v. 1.6(30) and DESeq2 v. 1.18(31) were used to import transcript-level 

counts, convert them to gene-level counts and perform differential expression analysis 

between all four cell states (parental, resistant, P5, P12). Results were multiple test-

corrected by the Benjamini-Hochberg method. 

Principal component analysis 

Principal component analysis (PCA) was performed on the normalized gene-level 

counts of all expressed genes. 

Hierarchical clustering 

Hierarchical clustering of significantly differentially expressed genes (Benjamini-

Hochberg adjusted p-value < 0.01; log2 fold change > 1 or log2 fold change < -1) 

between parental versus the union of resistant, P5, P12 and resistant versus the union 

of parental, P5, P12 was computed by the ward.D2 method. Additionally, the same 

method was used to cluster samples based on PDAssigner genes(32) or PDAC 

subtype associated genes defined by Bailey et. al.(33) and Moffitt et al.(34). 

Gene set enrichment analysis 

GSEA(35) was performed using default settings and gene set permutation. 

Score to define reverting Transcripts 
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In order to identify differentially expressed genes that show a similar expression pattern 

in parental and P12 samples, a score was defined based on the log2 fold change 

between parental/P12 and resistant samples. 

The score was defined as follows: 
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where 2 ( , )log FC A B  describes the log2 fold change between A and B. Genes were only 

considered if the log2 fold change between parental and resistant cell state was 

reasonably large. 

Whole genome bisulfite sequencing 

Sequencing and alignment  

Whole genome bisulfite sequencing (WGBS) of parental, resistant and P12 cells of cell 

lines #3 and #9 was performed at the Genomics and Proteomics Core Facility of the 

German Cancer Research Center (GPCF DKFZ, Heidelberg) using the TruSeq DNA 

PCR-free Methyl protocol (Illumina) for library preparation. A HiSeq X machine 

(Illumina) was used for 150 bp paired-end sequencing. Reads were mapped using 

bwa-meth v. 0.2.0(36) on the GRCm38 assembly with added PhiX genome as a 

sequencing control.  

Calculation of methylation levels 

CpG methylation levels were computed using an in-house script filtering reads with a 

mapping quality < 30 and bases with base quality < 17. 
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Differentially methylated region detection 

The BSmooth algorithm of bsseq v. 1.10(37) was used to detect DMRs between 

parental and resistant samples, with every DMR containing a minimum of four CpGs 

and a minimum difference in methylation level of 0.4.  

Nearest genes 

For each DMR, the nearest flanking genes were determined by finding the nearest 

TSSs to each region using BEDTools closest v. 2.27(38).  

Integration with RNA-seq data 

Expression changes of the two nearest genes of every DMR were assessed from RNA-

sequencing data as described above. Genes with a log2 fold change > 1 were defined 

as upregulated in resistant cells, those with a log2 fold change < -1 as downregulated 

in resistant cells. 

Genomic regions 

The localization of DMRs relative to genes and CpG islands was performed using 

BEDTools intersect v. 2.27 (Quinlan and Hall, 2010). Reference data were taken from 

Ensembl build 93(39) (genes) and the UCSC database (CpG islands). 

Reference data for shore and shelve regions were created using BEDTools flank 

v. 2.27(38), shores were defined as regions up to 2000 bp away from CpG islands and 

shelves as regions up to 2000 bp away from shores. 

Methylation score to define reverting DMRs 

A score was used to model the methylation changes between parental, resistant and 

P12 cells, where scores > 0.5 indicate that the P12 methylation is closer to the parental 

level, scores < 0.5 indicate the P12 methylation is closer to the resistant level. 
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where ( , )A B  describes the difference in methylation between A and B. A cut-off of 

0.44 (90% quantile) was used to define DMRs as reverting. 

Conservation 

The UCSC liftOver tool was used together with the mm10ToHg38 liftOver chain in 

order to identify regions in the human genome that are associated with the murine 

DMRs. The minimum ratio of bases that need to remap to define a region as valid 

liftOver was set to 0.5. 

Regulatory Regions 

Overlaps between DMRs and transcription factor binding sites, miRNA target regions 

and VISTA enhancers were computed using BEDTools intersect v. 2.27(38). 

Reference data were taken from the Ensembl regulation build 93(39). 

The findMotifsGenome script from homer v. 4.9 was used in order to find enrichment 

of known binding motifs from the homer library(40). The script was used with standard 

parameters (-size 200 -cpg) on the GRCm38 assembly, comparing reverting DMRs to 

random background sequences. 

Overlap with chromatin marks from PDAC organoids 

Organoid data available from Roe et al.(41) were used to check whether DMRs overlap 

with open chromatin or enhancer regions. 

Analysis was performed on the following organoids 

H3K27ac-ChIP-seq: 
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- N5, N6 – normal pancreatic organoids(42) 

- T3, T6, T19, T23, T33, T34 – tumor organoids 

ATAC-seq: 

- N5, N6 – normal pancreatic organoids(42) 

- T3, T6, T23 – tumor organoids 

Reads were aligned with BWA-MEM v. 0.7.17(43) against the GRCm38 genome. 

Duplicate reads were further removed using Samtools v. 1.9. 

Identification of ChIP-seq and ATAC-seq peaks was performed using MACS2 

v. 2.1.2(44,45) callpeak function with default settings. Resulting narrowPeak files were 

further merged with BEDtools merge v. 2.27(38) and overlapped with the DMRs using 

BEDtools intersect to analyze how many peaks from tumor and normal organoids are 

located within the DMRs separately for H3K27ac ChIP-seq and ATAC-seq peaks. 

Enrichment analysis  

In order to detect possible enrichment of TFBS as well as ATAC-seq and ChIP-seq 

peaks in DMRs compared to the remaining genome, every DMR was matched with 1 

million randomly picked genomic regions with similar length and CpG-count. The 

occurrence of the features of interest was then compared between DMRs and the 

average of the randomly chosen regions. The occurrence of the features of interest 

was then compared between DMRs and the average of the randomly chosen regions. 

A feature was defined as significantly enriched if its occurrence in the DMRs was larger 

than in the average of random regions in at least 95%, 99% or 99.9% of all 

comparisons (significance level < 0.05, < 0.01 or < 0.001). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492826doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492826
http://creativecommons.org/licenses/by/4.0/


19 

 

Targeted deep bisulfite sequencing 

Targeted deep bisulfite sequencing was performed as described elsewhere(46). DMRs 

for validation were selected based on the following criteria: Proportion of 

hypermethylated DMRs reflects that of identified DMRs (> 90%), reversion in P12, 

conserved in humans, preferentially DMRs with at least one flanking transcript showing 

reverted expression in P12. Primer sequences are listed in Supplemental Table S1. 

The MiSeq (Illumina) run was conducted by the BioChip-Laboratory of the Essen 

University Hospital. Amplikyzer2 v. 1.2.0 was used for analysis. Due to the much higher 

coverage compared to WGBS, DMRs were classified as positively validated at a 

minimum methylation difference of 0.2.  

Whole genome sequencing 

Sequencing and genome mapping 

The Genomics and Proteomics Core Facility of the German Cancer Research Center 

(GPCF DKFZ, Heidelberg) performed the library preparation for WGS of parental and 

resistant cells of cell lines #3 and #9 as well as a control tail samples corresponding to 

line #3 with the TruSeq DNA PCR-free Kit (Illumina) and the 150 bp paired-end 

sequencing on a HiSeq X (Illumina).  

Reads were aligned to the mouse reference genome GRCm38 using BWA-MEM 

v. 0.7.15(43) with default settings. Duplicate reads were marked with sambamba 

v. 0.6.5(47). 

Variant Calling 

Variants and small InDels were called in a two-step process. First, candidate variants 

were called using freebayes v. 1.1.0(48) with parental and resistant tumor samples as 

well as a normal tail tissue. 
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In a second step, variants were validated and readjusted using Varlociraptor 

v. 1.1.1(49). The validated variants were separated into different groups according to 

their change in VAF between parental and resistant samples. Variants were defined 

as present in parental (VpPs) if they drop to a VAF of 0 from parental to resistant. 

Variants with a VAF > 0.1 in resistant and a VAF of 0 in parental were defined as 

present in resistant (VpRs). Variants with a VAF > 0 in both parental and resistant 

tumor samples were defined as present in parental and resistant (VpPRs). 

VpPs and VpRs were validated in P5 and P12 tumors using the available WGBS data. 

Since the technical differences between WGBS and WGS affect the comparability of 

results from both methods, validation was performed solely on WGBS samples. VAFs 

in WGBS samples were called using Varlociraptor v. 1.1.1(49), with VpPs and VpRs 

from WGS as candidate variants. To adjust for bisulfite conversion, only A > T and 

T > A variants covered > 15x were kept for WGBS validation.  

Data management and annotation  

Snakemake v. 5.10(50) was used as workflow management system for the complete 

computational analysis. 

Data management and visualization was performed using bcftools v. 1.9(51) and 

python v. 3.7 libraries seaborn v. 0.9 and pandas v. 0.24. 

Variants were annotated using Jannovar v. 0.25(52) with the GRCm38 annotation 

database as well as SIFT scores (Ng and Henikoff, 2003) (Download source: 

http://sift.bii.a-star.edu.sg/sift4g/public//Mus_musculus/GRCm38.83.zip). 

To compare SNV positions between both mouse lines, the closest variant positions 

between both variant calls were identified using BEDtools closest v. 2.27(38). 
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Statistics 

Replicates were performed as indicated in the figure legends. For statistical analyses 

R v. 3.6.0(53) and GraphPad Prism v. 7.03 were used. The applied test is described 

in the figure legends, respectively. 

Data Availability 

Proteomics data have been deposited as a complete submission in the 

ProteomeXchange Consortium via the PRIDE partner repository 

(http://www.proteomexchange.org; data set identifier: PXD018093 and 

10.6019/PXD018093). The .msf files obtained in Proteome Discoverer were converted 

into the mzIdentML standard format using ProCon PROteomics Conversion tool 

version 0.9.718 (PubMed ID 26182917). The RNA-seq generated during this study are 

available at GEO: GEO: GSE146348. The accession number for WGBS and WGS 

data deposited on ENA is: PRJEB37018.  

Code Availability 

The custom code generated and used during the current study is available from the 

corresponding author on request. 

Results 

MEKi resistance in PDAC is reversible upon drug withdrawal 

To model MEKi resistance in PDAC, we used primary low-passage cells derived from 

spontaneous PDAC of ten different Ptf1awt/Cre; Kraswt/LSL-G12D; Trp53loxP/loxP mice, which 

develop aggressive and therapy-resistant tumors resembling key aspects of human 

PDAC(54,55). 
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All primary cells lines (n=10) were sensitive to MEKi with an IC50 in the low nanomolar 

range (5.44 nM to 41.91 nM, median 12.70 nM) (Supplemental Table S2). To induce 

MEKi resistance, cells were treated with increasing trametinib doses over 3 to 4 months 

until they proliferated at 100-fold of the original IC50 dose (Fig. 1A). Resistance 

induction was successful in all 10 cell lines (Fig. 1B) and was accompanied by a strong 

block of ERK phosphorylation, underpinning the specificity of trametinib and 

suggesting a drug efflux independent resistance mechanism (Fig. 1C). To study the 

effect of drug withdrawal, one batch of resistant cells from each line was cultivated 

without MEKi and samples were collected after 5 (P5) and 12 passages (P12) of drug 

withdrawal (Fig. 1A). Thereby a reversibility of the resistant phenotype was observed 

correlating with the duration of drug-free time (Fig. 1D).  

We compared the expression profiles associated with acquired MEKi resistance by 

performing RNA-seq of six matched parental, resistant and reverting cell states. 

Results of principal component analysis (PCA) over all expressed genes showed that 

the reverting states (P5 and P12) had a transcriptional profile more similar to the 

parental cells (Fig. 1E). The inter-individual variability explained considerably less of 

the transcriptional variation as opposed to the treatment. A similar sample separation 

could be observed on the protein level measured by mass spectrometry (Fig. 1F). 

Whole genome sequencing-based mutation analysis of MEKi-resistant cells  

Genetic and non-genetic alterations may contribute to the development of a resistant 

phenotype(56). To determine whether genetic alterations were associated with MEKi 

resistance, we performed whole genome sequencing (WGS) of two matched pairs of 

parental and resistant cell states with a median coverage of 40x. Compared to their 

treatment-naïve counterparts, resistant cells of lines #3 and #9 harbored 3657 and 

3204 unique single nucleotide variants (SNVs), respectively. These variants are 
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referred to as ‘variant present in resistant’ (VpR) (Fig. 2A,B, Supplemental Tables S4 

and S5). A smaller number of variants was present in the parental, but could not be 

detected in the resistant cells (‘variant present in parental’, VpP) (131 in cell line #3 

and 837 in cell line #9). Less than 1% of the VpRs were located in the coding regions 

(CDS) (36 in #3 and 23 in #9) (Supplemental Tables S4 and S5). Of these, 25 (cell line 

#3) and 19 (cell line #9) were nonsense or missense mutations, respectively 

(Supplemental Tables S4 and S5). 

SIFT prediction to assess the impact of these VpRs revealed 12 and 9 possibly 

deleterious variants for cell lines #3 and #9, respectively (Fig. 2A,B, Supplemental 

Tables S4 and S5). The putative variant effect supposed by Jannovar(52) was 

moderate for those classified as deleterious by SIFT. None of them were found in both 

cell lines or affected the same genes. None of the genes affected by the VpRs are 

known to be involved in the RAS-dependent MEKi targeted MAPK or in the 

phosphoinositide 3-kinase (PI3K) pathway. In accordance, none of the mutant genes 

was listed in the COSMIC database to confer therapy resistance to human cancer cells. 

In addition to SNVs, small insertions and deletions (InDels) were called. However, we 

found none of the genes affected to be involved in re-activation or bypassing of the 

MEK pathway (Supplemental Tables S4 and S5). Overall, we did not identify any 

genetic variant that might explain the resistant phenotype.  

Whole genome sequencing reveals clonal expansion during acquired MEKi 

resistance  

We next addressed whether MEKi resistance evolves by expansion of a subclone from 

the parental cells. Therefore, the distribution of the allele fraction of all variants found 

in resistant cells only (VpRs) was analyzed revealing a variant allele fraction (VAF) 

peak at around 0.25 in both cell lines (Fig. 2C,D). A potential explanation is the 
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presence of this SNVs on one allele on a genetic background of four alleles e.g. in cells 

with tetraploidy as consequence of genome duplication. Polyploidization can be found 

in approximately 50% of human PDAC(57). By performing a cytogenetic analysis of 

metaphase chromosomes, we found in median 77 and 70 chromosomes per cell in 

parental cells of lines #3 and #9, respectively, which is in concordance with a near 

tetraploid karyotype (Supplemental Table S6). Evaluation of the VAF per chromosome 

revealed a lower chromosome count for chromosomes 9, 12 or 13 of cell line #3 or 

chromosomes 5 or 19 of #9 with VAF peak > 0.25, (Supplemental Fig. S1A,B). Taken 

together, the observed VAF distribution peak at 0.25 in these nearly tetraploid cells 

suggests that the cells with acquired MEKi resistance are the result of clonal expansion 

of a single cell clone. Furthermore, most VpRs must have occurred after the incomplete 

genome duplications. 

We next investigated whether a small proportion of parental cells that do not carry the 

VpRs might have survived the MEKi treatment and then overgrown the VpR-containing 

resistant cells upon drug withdrawal. Therefore, we evaluated the VpR and VpR allele 

fractions in whole genome bisulfite sequencing (WGBS) data available for parental, 

resistant and reverting (P12) cells. Due to cytosine conversion by bisulfite modification, 

only a subset of 354 or 279 VpRs and 10 or 36 VpPs were available for further 

evaluation in cell lines #3 and #9, respectively. Nearly all VpRs were present in P12 

cells with a VAF distribution similar to the resistant cells (Fig. 2E-G and Supplemental 

Fig. S1C,E). Furthermore, all but 2 VpPs, were absent in P12 cells (Supplemental 

Fig. S1D,F). Thus, despite rebounding MEKi susceptibility, the resistant genotype 

persists in P12 cells. 

Overall, MEKi resistance is based on clonal expansion of a single cell clone, without 

evidence for mutations or structural variation in genes that could mediate MEKi-
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induced resistance. Loss of resistance upon drug withdrawal does not occur by 

outgrowth of parental cells. 

MEKi resistance is associated with DNA hypermethylation  

To address the potential involvement of epigenetic mechanisms in transcriptional 

variability, we applied a targeted drug screening approach addressing key epigenetic 

regulators including chromatin readers, histone modifiers and DNA methyltransferases 

in MEKi-resistant cells. We found a strong effect of the DNMTi decitabine on the viability 

of resistant but not parental cells (Fig. 3A-C). The difference was by far more 

pronounced compared to inhibitors of other epigenetic regulators such as 

bromodomain and extracellular terminal (BET) proteins, class I-specific or pan-histone 

deacetylases (HDAC), suggesting that MEKi-induced formation of resistance involves 

critical changes in DNA methylation (Fig. 3A,B). 

To assess MEKi treatment-induced alterations in genome-wide DNA methylation, we 

performed whole genome bisulfite sequencing of two cell lines, each at four different 

states: parental, resistant and reverting cells at P5 and P12. Overall gene body and 

promotor methylation levels between all four cell states remained unchanged (Fig. 3D). 

We defined differentially methylated regions (DMRs) with a minimum CpG-count of 

four and a minimal difference in methylation level of 0.4. Thereby, 2191 DMRs 

relatively equally distributed over all chromosomes were found when comparing 

parental and resistant cells (Fig. 3E,F and Supplemental Table S7). These DMRs 

covered a total of 38,031 CpGs with a mean CpG content per DMR of 17 (min=4, 

max=178) and an average length of 794 bp (min=12 bp, max=4157 bp) (Supplemental 

Table S7). Remarkably, more than 96% of these DMRs were hypermethylated in the 

resistant cells (Fig. 3F,G). The nucleotide sequence of the majority of 1756 DMRs was 

conserved in humans based on the UCSC liftover tool corresponding to a degree of 
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conservation > 76% (Fig. 3H and Supplemental Table S7). 43.37% were located in 

ocean areas of the genome, while 39.25% and 6.12% were present in the CpG island 

flanking shores and shelves, respectively. Only 8.26% of all DMRs overlapped with a 

CpG island (Fig. 3I). Approximately one third (29.53%) of the DMRs was located in 

intergenic regions, while the others were present in intragenic, predominantly intronic 

regions (65.95%) (Fig. 3J).  

We next addressed whether the DMR methylation is correlated with the expression of 

neighboring genes. We annotated two flanking genes to each DMR based on the 

nearest transcription start site (TSS) in each direction. Gene expression was correlated 

using RNA-seq data of the matching cell line (Fig. 3K and Supplemental Table S7). 

More than half (61%) of the flanking genes were not differentially expressed between 

parental and resistant cells. One-third of genes flanking hypomethylated DMRs was 

upregulated and about 25% of genes associated with hypermethylated DMRs were 

downregulated. Limiting the analysis to genes located downstream of each DMR, the 

overall inverse correlation remained poor independent of the DMR position in the 

genome (Supplemental Fig. S2A,B). Focusing only on genes whose TSS was located 

less than 7.5 kb downstream of a DMR resulted in a higher negative correlation of DNA 

methylation and transcript level for DMRs associated with island, ocean as well as 

intragenic regions (Fig. 3L,M). In summary, we identified extensive hypermethylation 

following acquired MEKi resistance, supporting epigenetic plasticity in our model 

system.  

A DMR subset reverts upon MEKi withdrawal  

We next addressed the question if DMRs involved in MEKi resistance may revert upon 

drug withdrawal (Fig. 4A). We identified 217 DMRs, from here on referred to as 

reverting DMRs, whose methylation status correlated with MEKi sensitivity at all stages 
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analyzed (Fig. 4B,C and Supplemental Table S7). This correlation was further 

supported by the observation that the degree of methylation in P5 cells with 

intermediate resistance phenotype was always between the value of the resistant cells 

and the P12 cells (Supplemental Fig. S2C,D).  

We validated a set of 15 selected DMRs in four additional cell lines in parental, resistant 

and P12 states using targeted deep amplicon bisulfite sequencing(46). Ten out of 15 

DMRs were differentially methylated between parental and resistant cells in at least 

two of four cell lines used for validation. In addition, eight of these 10 DMRs showed a 

reverting DNA methylation in the P12 state (Fig. 4D-F and Supplemental Fig. S2E and 

S3). In particular, the DNA methylation levels of reverting DMRs in cell lines #3 and #9 

remained at P12 levels or below even after 40 passages under MEKi withdrawal 

(Fig. 4E and Supplemental Fig. S3). 

Comparing various features of reverting and non-reverting DMRs, we found the 

proportion of hypomethylated DMRs to be the same in both groups (Fig. 4G). The 

number of human-mouse conserved DMRs was slightly lower in the reverting DMRs 

(Fig. 4H). Reverting DMRs were more frequently located in the ocean than non-

reverting DMRs (80.18% vs. 42.65% in non-reverting DMRs), while they were 

underrepresented in shores (Fig. 4I). Notably, none of the reverting DMRs overlapped 

with a CpG island. In exonic regions, reverting DMRs were less frequent (0.92%) 

compared to non-reverting DMRs (4.91%) (Fig. 4J).  

In silico evaluation of regulatory relevance of reverting DMRs  

To investigate the potential relevance of the reverting DMRs, we analyzed their 

co-localization with miRNA target regions, VISTA enhancers and transcription factor 

binding sites (TFBS) as annotated by Ensembl. (Fig. 5A and Supplemental Table S7). 

Compared to randomly selected regions with similar length and CpG content, only 
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TFBS were significantly enriched in all 2191 DMRs and even more pronounced in the 

217 reverting DMRs (Fig. 5B).  

The activity of regulatory elements is highly tissue- as well as context-specific and their 

deregulation is often observed in cancer. Therefore, we aligned the identified DMRs 

with sequences reported to represent open chromatin (assay for transposase-

accessible chromatin and sequencing (ATAC-seq)) or potential active enhancer sites 

(chromatin immunoprecipitation and sequencing (ChIP-seq) for H3K27ac) in murine 

pancreas cells(41). These data were obtained from murine organoids, similar to our 

model, derived from PDAC of KPC mice (Kraswt/LSL-G12D; Trp53wt/LSL-R172H; Pdx1-Cre). 

We found that 28.5% of all 2191 DMRs overlapped with ATAC-seq peaks, which 

comprise only about 0.8% of the genome, while 3% of the genome, but 69.3% of all 

DMRs overlapped with H3K27ac ChIP-seq peaks (Fig. 5C and Supplemental 

Table S7). Thus, DMRs were significantly enriched for open and/or active (H3K27ac 

histone occupied) chromatin regions compared to random regions of similar length and 

CpG content (Fig. 5D,E). In both cases, this enrichment was even more pronounced 

for reverting DMRs. More than 90% of TFBS-containing reverting DMRs overlapped 

with a H3K27ac-marked region, which underlines their potential regulatory relevance 

in MEKi-resistant PDAC cells (Fig. 5F).  

Using two independent enrichment analysis tools, we found that binding motifs for 

proteins belonging to the activator protein 1 (AP1) family were amongst the top 

enriched TFBS (Fig. 5G,H). It is well documented that AP1 binding to its respective 

motif is strongly dependent on the methylation status of its recognition site and 

proximity(58,59). AP1 is a protein dimer formed by members of the JUN, FOS and ATF 

families. Notably, JUN was among the proteins regulated in MEKi-treated PDAC cells. 

Resistant cells displayed both an increased total protein expression and enhanced 
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JUN phosphorylation at Ser73 (Supplemental Fig. S4). Furthermore, different 

AP1/JUN expression signatures were enriched in the parental cell lines (Fig. 5I,J). 

In conclusion, MEKi resistance is associated with DNA hypermethylation at regulatory 

elements including TFBS and active enhancer sites located in open chromatin. We 

identified the AP1 transcription factor complex as a potentially crucial factor in 

mediating MEKi-induced resistance. 

CASP3 down-regulation counteracts treatment-induced apoptosis in MEKi-

resistant cells  

The AP1 transcription factor family is involved in apoptosis where CASP3 activation is 

the final step in the apoptosis signaling cascade. Two of the DMRs whose methylation 

correlates with the MEKi sensitivity were located in close proximity downstream of the 

Casp3 locus (DMR_2004, DMR_2005; Fig. 6A and Supplemental Table S7). Inversely 

correlating with DMR hypermethylation, Casp3 mRNA and CASP3 protein expression 

were significantly reduced in MEKi-resistant cells compared to their naïve counterparts, 

while reaching their original level in reverting P12 cells (Fig. 6B,C).  

Functional annotations revealed an overlap of both DMR_2004 and DMR_2005 with 

active enhancers (H3K27ac marked) and open chromatin suggesting their relevance 

for Casp3 transcriptional regulation (Supplemental Table S7). Furthermore, Gene Set 

Enrichment Analysis (GSEA) of KEGG pathways in the parental cells showing Casp3 

expression revealed an enrichment for genes involved in apoptosis compared to 

resistant cells with decreased CASP3 expression levels (FDR < 0.05, NES=-1.827) 

(Fig. 6D). 

Notably, CASP3 activity was induced in the parental cell lines upon MEKi treatment 

but down-regulated in the MEKi-resistant cells (Fig. 6E-G). In contrast, MEKi 
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withdrawal was accompanied by an increasing basal CASP3 activity in the resistant 

cells, which could be further enhanced by DNMTi treatment. The DNMTi effect on the 

CASP3 activity of the parental cells was only marginal, which is in accordance with the 

previously shown cell viability data. A combined treatment with MEKi and DNMTi 

induced the activity of CASP3 in MEKi-resistant cells similar as DNMTi alone, whereas 

the impact on the parental cells was comparable to MEKi treatment alone (cell lines #3 

and #9, Fig. 6E,G) or even stronger (cell line #4, Fig. 6F). Finally, FACS analysis using 

an Annexin V/propidium iodide co-staining confirmed the suppression of apoptosis by 

CASP3 inactivation as a potential MEKi resistance mechanism in PDAC (Fig. 6H and 

Supplemental Fig. S5).  

To evaluate the synergism between MEKi and DNMTi we performed in vitro cell viability 

assays. In resistant cells, a synergistic effect of MEKi and DNMTi was observed even 

at low doses of DNMTi. Synergism in the parental cells was only observed at high 

DNMTi concentrations (Fig. 6I,J and Supplemental Fig. S6A-F).  

Our data revealed that MEKi resistance was accompanied by a downregulation of 

CASP3 together with a loss of activity which recovered after drug withdrawal. MEKi-

induced apoptosis was impaired in the resistant cells but could be overcome by 

concomitant DNMTi treatment. In addition, we investigated the effect of MEKi and 

DNMTi inhibition using a human in vivo setting. We treated three different PDX models 

with either MEKi, DNMTi or a combination of both and observed a synergistic effect in 

all three models (Fig. 6K and Supplemental Fig. S6G,H). Overall, our data show a key 

relevance of DNA methylation for maintaining MEKi resistance in PDAC, which results 

in a remarkable DNMTi vulnerability. 
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Discussion 

PDACs are characterized by a remarkable resistance to virtually all therapeutic 

strategies. Several aspects challenge the unravelling of underlying mechanisms(60). 

A key limitation of studies in advanced PDAC is the lack of longitudinal sample 

acquisition in individual treated patients due to anatomical, ethical and logistical 

reasons among others.  

Here, we utilized an in vitro model based on low-passage primary cells derived from 

tumors of a genetically engineered PDAC mouse model(54) to analyze molecular 

changes that arise under MEK inhibition. The use of tumor cell populations with the 

same genetic background minimizes the influence of confounding factors such as inter-

individual heterogeneity or contaminating non-tumor cells, the latter being a major 

concern when using primary PDAC tumor tissue. Consequently, our model cannot 

account for non-tumor cell-intrinsic mechanisms such as involvement of the tumor 

microenvironment(61). However, the observation that we were able to induce MEKi 

resistance in all ten cell lines suggests that, at least in our model system, resistance 

formation is mediated by tumor cell intrinsic mechanisms.  

Using WGS, we clearly demonstrate that the resistant cell clones evolve from a single 

precursor cell in the parental cell population. It is not possible to distinguish whether 

the genetic variants observed in the resistant cells were already present in the parental 

cells or arose during MEKi treatment or a combination of both. The observed clonality 

strongly indicates that the parental cell population is composed of cells with different 

abilities to adapt to MEKi treatment with single cells having the potential to develop a 

resistance phenotype.  

In a human PC-9 lung cancer model Hata et al.(62) compared gefitinib resistant cells 

harboring a resistance mediating EGFR mutation with resistant cells that expanded 
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under treatment without such mutations. Gefitinib-resistant EGFR mutant PC-9 cells 

had a similar transcriptional profile to their parental gefitinib-naive cell pool(62). In 

contrast, transcriptomic differences found between our mouse parental and MEKi-

resistant cells were also described for PC-9 cells without EGFR resistance 

mutation(62). Furthermore, it took about four month from the onset of drug exposure 

to a fully MEKi-resistant cell population(62). This is a similar time frame to that 

observed for the PC-9 lung cells without a known resistance-mediating EGRF 

mutation(62). Whereas PC-9 cell pools harboring an EGFR resistance mediating 

mutation, developed resistance within 6 weeks(62). Given the similar proliferation rates 

of cells in our PDAC mouse model and the PC-9 cells this argues against a mutation 

in a classical resistance gene as underlying cause of MEKi resistance. Consistently, 

using WGS we did not detect mutations in genes involved in re-activation or bypassing 

of the targeted MAPK pathway in the resistant cells. Although this approach cannot 

definitively rule out the presence of such mutations, it provides clues for the presence 

of alternative mechanisms that confer MEKi resistance to cells. This is further 

supported by the observation that cells lose their resistance phenotype during drug 

withdrawal without re-gaining the parental genotype. As it is unlikely that the formation 

of resistance is a direct consequence of mutations in genes involved in drug resistance, 

we hypothesize that the predisposition of the originating cell could be due to an 

epigenetic plasticity that enables it to adapt better to the environmental conditions than 

other cells e.g. by DNA methylation changes. Whether this plasticity is the 

consequence of sequence alterations already present in the parental cell or due to 

stochastic epigenetic variation remains to be determined. An example for an epigenetic 

factor contributing to phenotypic adaptation upon drug treatment is described in a study 

by Wang et al.(21) showing that modulation of histone methylation is involved in MEKi 

resistance. 
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As DNA methylation is an important epigenetic mediator already known to be involved 

in the progression of PDAC or other tumors, as well as the formation of distant 

metastases, we determined DNA methylation changes in our PDAC model(63). To our 

knowledge, we provide the first WGBS dataset of therapy-resistant PDAC, albeit in 

murine cells, which provides an unbiased and comprehensive view at the dynamic 

changes of the methylome in cells in response to drug exposure and subsequent drug 

withdrawal. The differentially methylated regions showed a high degree of 

conservation between the mouse and human genome and overlapped with known 

regulatory elements like TFBS and potential enhancer sites, which supports their 

functional relevance in gene regulation. We could also identify a subset of reverting 

DMRs whose gain and loss of methylation reflected gain and loss of the resistant 

phenotype. Among these reverting DMRs, binding sites for the dimeric transcription 

factor complex AP1 were significantly enriched. Its DNA hypermethylation, as present 

in the resistant cell states, is known to prevent AP1 binding(58,59).  

We identified a potential Casp3 enhancer, whose methylation status correlated 

inversely with CASP3 expression and was dependent on MEKi-presence in the culture 

medium. A functional role of the methylation is supported by the results from DNMTi 

treatment which results in CASP3 re-activation in resistant cell lines. Deregulation of 

CASP3 is a common mechanism for tumor cells to mediate therapy resistance(64-68). 

Here, we show the association of CASP3 activity and methylation of distal DNA regions 

related to modulation of treatment-induced apoptosis.  

It is a matter of debate if DNA methylation changes are causally involved in the 

regulation of gene expression or if they develop downstream of transcription factor-

mediated gene regulation(69). Interestingly, the DNA methylation changes that occur 

during drug exposure and resistance formation are almost exclusively DNA 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492826doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492826
http://creativecommons.org/licenses/by/4.0/


34 

 

hypermethylation events. Such de novo methylation of previously unmethylated CpGs 

depends on the activity of methyltransferases DNMT3A und DNMT3B. Therefore, 

blocking de novo methylation could prevent or impede the formation of MEKi resistance 

in PDAC cells or primary tumors. Indeed, the synergistic effect of combined MEKi and 

DNMTi treatment observed in resistant PDAC cells strongly suggest that MEKi 

resistance is attenuated by decitabine treatment. Decitabine is an inhibitor that blocks 

the activity of both de novo methyltransferases and of the maintenance 

methyltransferase DNMT1. It will be interesting to evaluate if drug resistance in general 

is associated with DNA hypermethylation or if this observation is restricted to MEK 

inhibitors in PDAC cells.  

Overall, our results of a MEKi adaptive DNA hypermethylation landscape in a single 

cell clone support epigenetic plasticity of tumor cells as a driver in PDAC therapy 

resistance. The remarkable DNMTi sensitivity might inspire new combinatory 

therapeutic approaches to overcome therapy resistance in PDAC. 
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Figures 

 

Fig. 1. Acquired MEKi resistance is reversible after drug withdrawal 

(A) Timeline of resistance formation and drug withdrawal classified by different 

passages (P) without constant MEKi treatment. (B) Bars represent the mean of two 

(na= two replicates in parental, three in resistant) or three independent cell viability 

measurements after 72 h in 300 nM MEKi ± SD. Statistics was calculated by a two-

tailed unpaired Student’s t-test on the log2 transformed DMSO-normalized values. (C) 

ERK phosphorylation in parental compared to MEKi-resistant cell states (p < 0.0001, 

two-tailed paired Student’s t-test on the log2 transformed ratios). (D) Resistance 

reversibility upon drug withdrawal. The mean of three independent experiments after 

72 h incubation ± SD is shown for cell line #3 as representative example. (E) Principal 
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component analysis of RNA-seq data between parental (dark blue), resistant (red) and 

reverting (P5 and P12; light blue) cell states. (F) Principal component analysis of all 

abundances identified by MS with more than one unique peptide. 
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Fig. 2. MEKi resistance is based on clonal expansion, while reversion upon drug 

withdrawal is independent of a parental outgrowth 

(A,B) Circos plots displaying VpRs or VpPs in cell lines #3 (A) and #9 (B). Genes 

predicted as deleterious by SIFT are named. (C,E) Kernel density estimation (kde) for 

the VAF of VpRs in comparison to variants present in parental and resistant (VpPRs) 

for cell line #3 (C) or #9 (D). (E,F) Density plot for the VAF of VpRs in resistant 

compared to P12 in cell line #3 (E) or #9 (F). Only A > T and T > A variants called by 

WGS and validated by WGBS are shown. (G) Model of cell population dynamics during 

gain and loss of MEKi resistance in PDAC.
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Fig. 3. Whole genome bisulfite sequencing revealed DMRs mainly 

hypermethylated in MEKi resistant cells 

(A,B) Cell viability screen using inhibitors that target different epigenetic mechanisms 

in parental (A) or resistant cells (B). Dose response curves for cell line #3 determined 
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after 72 h using the CellTiter-Glo® cell viability assay are shown. (C) The IC50 of 

DNMTi was significantly lower in six matched-pairs of parental versus resistant cells 

(two-tailed paired Student’s t-test). (D) Mean gene body methylation levels in parental, 

resistant, P5 and P12 cell states of cell lines #3 and #9. (E) Mean methylation levels 

of all DMRs and their flanking regions (± 2 kb) in the four indicated cell states of two 

different cell lines (#3, #9). S indicates the DMR start and E its end. (F) Circos plot 

indicates the chromosomal location of 2191 DMRs between two parental and resistant 

cell lines (circle A). A scoring function was developed to define 217 reverting DMRs 

whose methylation pattern in P12 resembles that of parental cells (circle B). Circle C 

displays 15 DMRs that were validated by targeted deep bisulfite sequencing. (G) 

Proportion of DMRs hypo- or hypermethylated in resistant cells. (H) Degree of mouse-

human DMR-sequence conservation according to the UCSC liftover tool. (I,J) Relative 

location of DMRs in relation to CpG islands (I) or genes (J). 
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Fig. 4. Distinct DMRs revert after MEKi withdrawal 

(A) Representative Integrative Genomics Viewer snapshot of reverting DMR_1716 in 

the parental (dark blue), resistant (red), P5 (light blue) and P12 (blue) cell states of cell 
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lines #3 and #9 (upper row and lower row, respectively). 13 of 16 CpGs are shown. (B) 

Mean methylation levels of the reverting DMRs and their 2 kb up- and downstream 

regions of cell lines #3 and #9 in the parental, resistant, P5 and P12 cells (S: Start 

DMR; E: End DMR). (C) Methylation pattern of 217 reverting DMRs divided into hypo- 

(blue) and hypermethylated (red) regions. (D,E) Methylation pattern of DMR_929 in 

four independent cell lines compared to the WGBS samples based on the average 

methylation b-value in the region (D) or CpG wise (E). In addition, P40 samples of lines 

#3 and #9 previously analyzed by WGBS were included in the validation. (F) Example 

of 4/15 DMRs validated by targeted deep bisulfite sequencing in four independent cell 

lines. Non-reverting DMR_1998 served as a negative control. (G-J) Comparison of 

reverting and non-reverting DMRs based on methylation change in resistant cells (G), 

sequence conservation in human (H) and their relative location to CpG islands (I) or 

genes (J).
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Fig. 5. Functional relevance of DMRs and DNA methylation in MEKi resistance 

(A) Percent of DMRs overlapping with the indicated feature. (B) TFBS were 

significantly enriched in all as well as in reverting DMRs compared to 106 random 

regions of similar length and CpG count (** significance level < 0.01; * significance 

level < 0.05). (C) Percent of DMRs that overlap with an ATAC-seq or ChIP-seq 
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H3K27ac peak found in at least 2 organoids by Roe and co-workers (41). (D,E) 

Enrichment for ATAC-seq (D) or H3K27ac (E) peaks relative to 106 random regions of 

similar length and CpG count (*** significance level < 0.001; ** significance 

level < 0.01). (F) Venn diagram of reverting DMRs’ overlap with TFBS and/or H3K27ac 

peaks. (G) Enrichment of TFBS for the indicated transcription factors in the 217 

reverting DMRs compared to 1974 non-reverting DMRs. (H) Enrichment of TFBS 

motifs from the homer database between the reverting DMRs and random background 

sequences. (I) NES of AP1 related gene expression signatures that are significantly 

(FDR < 0.25) different between parental and resistant cells based on GSEA of RNA-

seq data. (J) Enrichment plot of the AP1_Q6 gene expression signature.
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Fig. 6. Adaptive CASP3 regulation and apoptosis during gain and loss of MEKi 

resistance 

(A) Methylation pattern of DMR_2004 and DMR_2005 that were hypermethylated in 

resistant cells and reverted upon MEKi withdrawal in P12. (B) Casp3 mRNA expression 
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measured by RNA-seq in six matched pairs of parental, resistant and P12 cells. The 

adjusted p-values based on a differential gene expression analysis using DESeq2 are 

shown. (C) Mass spectrometry revealed a reverting CASP3 protein expression in six 

matched pairs of parental, resistant and P12 cells. Significance was determined by 

ANOVA and Tukey post-hoc test. (D) GSEA of RNA-seq data revealed a significantly 

enriched KEGG pathway apoptosis gene set in parental compared to resistant cells. 

(E-G) CASP3 activity assay after incubation with the indicated compounds. (H) FACS 

analysis of Annexin V-FITC/PI co-stained parental (upper row) or resistant cells (lower 

row) of line #9 upon 84 h of indicated treatment. (I,J) Synergy analysis of MEKi plus 

DNMTi using the Loewe method of the Combenefit software shown for cell line #3 

parental (I) and resistant (J). (K) Growth curves of PDX treated with MEKi, DNMTi or 

the combination. Solid lines represent the mean tumor volume of three mice per 

treatment group ± SEM. Statistical significance versus control was determined using a 

two-tailed unpaired Student’s t-test.  
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