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ABSTRACT

In complex tissues containing cells that are difficult to dissociate, single-nucleus RNA-sequencing (snRNA-seq)
has become the preferred experimental technology over single-cell RNA-sequencing (scRNA-seq) to measure gene
expression. To accurately model these data in downstream analyses, previous work has shown that droplet-based
scRNA-seq data are not zero-inflated, but whether droplet-based snRNA-seq data follow the same probability
distributions has not been systematically evaluated. Using pseudo-negative control data from nuclei in mouse
cortex sequenced with the 10x Genomics Chromium system, we found that snRNA-seq data follow a negative
binomial distribution, suggesting that parametric statistical models applied to scRNA-seq are transferable to
snRNA-seq. Furthermore, we found that the quantification choices in adapting quantification mapping strategies
from scRNA-seq to snRNA-seq can play a significant role in downstream analyses and biological interpretation. In
particular, reference transcriptomes that do not include intronic regions result in significantly smaller library sizes
and incongruous cell type classifications. We also confirmed the presence of a gene length bias in snRNA-seq data,
which we show is present in both exonic and intronic reads, and investigate potential causes for the bias.

Keywords: gene expression, single-cell RNA-sequencing, single-nucleus RNA-sequencing, zero-inflation, negative
binomial distribution, Poisson distribution, binomial distribution

INTRODUCTION

Single-nucleus RNA-sequencing (snRNA-seq) is a com-
mon experimental technology to profile gene expres-
sion in frozen cells or cells that are hard to dissoci-
ate, such as in brain tissue (Lake et al., 2016; Slyper et
al., 2020). Previous studies have shown that snRNA-
seq offers substantial advantages over single-cell RNA-
sequencing (scRNA-seq), including reduced dissocia-
tion bias (Habib, Li, et al., 2016; Bakken et al., 2018) and
the ability to capture rare cell types (Wu et al., 2019).
However, several questions remain on the degree to
which existing tools used to analyze scRNA-seq data
can be used in application of snRNA-seq data, includ-
ing, (i) what is an appropriate genomic unit (e.g. exonic
regions, intronic regions, etc) to quantify reads for down-
stream analysis and (ii) what are appropriate probability
distribution(s) to model measurement error or noise. We
begin by discussing these two topics in greater detail.

A standard approach to remove ribosomal RNA
(rRNA) from scRNA-seq and snRNA-seq protocols,
such as droplet-based technologies with unique molecu-
lar identifiers (UMIs) from the 10x Genomics Chromium

system (Zheng et al., 2017), is to select polyadenylated
RNA (polyA) transcripts using oligo (dT) primers. Dur-
ing the process of transcription, the gene is converted
into a precursor mRNA (referred to as pre-mRNA) that
contains both exonic and intronic regions. Mature
mRNA is formed after the intronic regions have been
spliced out of pre-mRNA, leaving only exonic regions.
RNA processing happens in the nucleus so we expect
mRNA existing outside the nucleus to be without in-
trons, which have been experimentally verified (Cooper,
Hausman, 2007; Ding et al., 2020; Lee et al., 2020). Hence,
raw sequencing reads from scRNA-seq protocols are typ-
ically quantified using reference genomes or transcrip-
tomes with only exonic regions, which has been shown
to be sufficient for downstream analyses such as accu-
rately classifying cell types (Habib, Avraham-Davidi, et
al., 2017; Bakken et al., 2018; Ding et al., 2020). However,
it is unclear whether it is also sufficient to quantify reads
from snRNA-seq protocols to only exonic regions for
downstream analyses. If not, then how should intronic
regions be incorporated, that is, whether reads should be
quantified with exonic and intronic regions separately or
mapped to full-length spliced and unspliced transcripts
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Figure 1. Overview of computational workflow to create pseudo-negative control snRNA-seq data Raw sequencing
reads (FASTQ files) from N = 2 mouse mouse cortices (Ding et al., 2020) were processed with salmon alevin to
perform quantification mapping with four ways for how to include exonic and intronic regions in a reference
transcriptome, referred to as (i) transcripts, (ii) preandmrna, (iii) introncollapse, or (iv) intronseparate (see Table S1 for details).
This results in four matrices of unique molecular identifier (UMI) counts with genes along the rows and nuclei along the
columns. Next, we apply quality control metrics to filter out low-quality nuclei and lowly expressed genes. Finally, we
stratify the nuclei by cell type (C = 7) and biological replicate (N = 2). Pseudo-negative control data represents analyses
performed on these stratified subsets where we expect less biological variation within a cell type than across cell types.

(pre-mRNA) in snRNA-seq data. For example, previ-
ous work has shown these choices need to be carefully
considered for RNA velocity with scRNA-seq (Soneson
et al., 2021) and may be also necessary for obtaining
high-quality results downstream with snRNA-seq data
(Bakken et al., 2018).

Furthermore, when considering quantified reads from
intronic regions with snRNA-seq data, it has been previ-
ously suggested that there is a gene length bias (Cham-
berlin, Quinlan, 2020). The source of this bias may lie
with the enriched pre-mRNA in snRNA-seq data, as
scRNA-seq data sequenced under UMI-based protocols,
such as CEL-Seq, SMARTer, and CEL-Seq with InDrop,
are not believed to exhibit a length bias (Phipson et al.,
2017); we note this has not been specifically investigated
with the 10x Genomics Chromium system. However,
the extent to which reads from intronic versus exonic
regions contribute to the length bias and the potential
causes of the bias are not well understood. In addition,
it is unclear whether the length bias is a function of the
full length of the unspliced transcript, consisting of both
exonic and intronic regions, or the length of the spliced
transcripts, consisting of exonic regions.

Next, given that an appropriate unit of quantification
has been determined, another question is the choice
of probability distributions to model snRNA-seq data.
Much progress has been made on investigating the ap-
propriateness of distributions to model scRNA-seq data
(Hafemeister, Satija, 2019; Townes et al., 2019; Svens-
son, 2020; Choi et al., 2020; Ahlmann-Eltze, Huber, 2021;
Sarkar, Stephens, 2021; Jiang et al., 2022; Choudhary,
Satija, 2022) and an open question is whether similar
distributions can be used to model measurement error
or noise in Chromium-based scRNA-seq data. In the
context of scRNA-seq, previous work has argued that in-
tronic reads represent experimental and transcriptional
noise (Harati et al., 2014) and are not usable in gene
quantification (Zhao et al., 2018). As snRNA-seq en-
riches for transcripts in the nucleus with both mRNA

and pre-mRNA, and scRNA-seq enriches for mostly ma-
ture mRNA, it is unclear if the measurement error in
observed in snRNA-seq data is likewise affected by the
inclusion of the intronic reads.

Furthermore, the consequences on the choice of ap-
propriate probability distributions to model measure-
ment error are not well understood. Previous work has
demonstrated that Chromium-based scRNA-seq data
with UMIs are not zero-inflated and can be accurately
modeled using Poisson, negative binomial, or multi-
nomial distributions (Townes et al., 2019; Hafemeister,
Satija, 2019; Svensson, 2020). This was demonstrated
using negative control data, where no biological het-
erogeneity is expected, by adding a controlled amount
of RNA to each droplet. However, to the best of our
knowledge, there has been no comparable analysis for
the analysis of Chromium-based snRNA-seq data while
mapping reads to both introns and exons.

In this paper, we first evaluate the choice of probabil-
ity distributions to model measurement error in snRNA-
seq data by creating pseudo-negative control datasets.
Next, we evaluate reference transcriptomes, which dif-
fer in how to include exonic and intronic regions, used
in quantification mapping tools and consider the impact
on cell type classification in downstream analyses. Then,
we investigate and confirm the existence of a gene length
bias in both intronic and exonic reads.

RESULTS

Throughout, we used snRNA-seq data from two mouse
cortices (Ding et al., 2020) measured on the 10x Ge-
nomics Chromium platform (Zheng et al., 2017). We
begin by creating pseudo-negative control datasets
(Figure 1) by working with subsets of mouse cortex
cell types to identify more homogenous populations of
cells, where we expect less biological variation within
a cell type than across cell types (Figure S1). Through-
out, we use italicized font when referring to datasets or
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different types of reference transcriptomes, referred to
as transcripts, preandmrna, introncollapse, and intronsep-
arate. These reference transcriptomes differ in how to
include exonic and intronic regions used in the salmon
alevin (Srivastava et al., 2019) tool to perform quantifi-
cation mapping of raw sequencing reads.

Chromium-based single-nucleus RNA-seq data are
not zero-inflated

We begin by considering a pseudo-negative control
dataset made with the preandmrna reference transcrip-
tome, which uses mRNA and pre-mRNA (Table S1).
However, at the end of this section, we show consistent
results with the other reference transcriptomes. Here,
we use the pseudo-negative control data to investi-
gate whether the same probability distributions used to
model measurement error in Chromium-based scRNA-
seq can be used for Chromium-based snRNA-seq data.

Common distributions to model measurement error
in scRNA-seq with UMI counts include the binomial,
Poisson, and negative binomial (NB) distributions (Grün
et al., 2014; Vieth et al., 2017; Svensson, 2020; Choudhary,
Satija, 2022). Historically, it has been argued the scRNA-
seq are “zero-inflated”, where the fraction of observed
zeros in the single-cell counts is larger than what is ex-
pected under a specific distribution, such as the NB (Pier-
son, Yau, 2015; Risso et al., 2018; Jiang et al., 2022). The
NB distribution has two parameters: a mean (or rate)
parameter (µ) and a dispersion parameter (φ). This dis-
persion parameter can be estimated as an overall disper-
sion parameter for a given dataset or it can be estimated
for each gene (or feature). Historically in application of
bulk RNA-sequencing data, the interpretation of the φ
parameter is to quantify how much extra biological vari-
ation is observed on top of technical variation (Robinson
et al., 2010). However, in our application of snRNA-seq
negative control data, we aim to estimate the parame-
ters µ and φ to investigate if the NB distribution can
be used to accurately capture the measurement error or
technical variation observed from snRNA-seq data. For
a random variable X that follows a NB with a given µ
and a dataset-specific φ, the variance is

Var[X] = µ +
1
φ
· µ2

and the probability of observing a zero count is given by

P(X = 0|µ, φ) = 1− φ

φ + µ

For a given cell type, we can compute for each gene (1)
the empirical mean and empirical variance (commonly
referred to as the “mean-variance relationship”) (Chen
et al., 2014) and (2) the empirical mean and observed
fraction of zero counts. We compare these observed
quantities, the empirical variance and the observed frac-

tion of zero counts, to what we expect them to be un-
der the binomial, Poisson, and NB distributions. We
also consider a NB distribution with a gene-specific dis-
persion parameter φ. Considering all four of these dis-
tributions, we calculate the Bayesian information cri-
terion (BIC) (Burnham, Anderson, 2004) to assess the
best model fit, where we sum up the log-likelihood
across genes and assume the genes are independent.
Lastly, we create quantile-quantile plots from a Pear-
son’s goodness-of-fit test under the Poisson model to
assess the fit of the Poisson distribution to the observed
counts.

Using these pseudo-negative control datasets with
the excitatory neurons (Figure 2a-d), inhibitory neu-
rons (Figure 2e-h) and astrocytes (Figure 2i-l), we found
the empirical behavior of Chromium-based snRNA-seq
UMI counts is closely approximated by standard prob-
ability distributions (Figure 2a,e,i) and are not zero-
inflated (Figure 2b,f,j). Most genes exhibit variances
and fraction of zero counts that can be approximated
by a binomial or Poisson distribution, but the NB dis-
tribution provides the best fit using BIC (Figure 2c,g,k).
As noted in Figure 2a-b, the binomial and Poisson dis-
tributions provide nearly indistinguishable theoretical
fits, but differ from the NB distribution at higher em-
pirical means. However, the difference in BIC between
the negative binomial distribution and the binomial or
Poisson distribution is driven primarily by a few genes
(Supplementary Figure S10). The largest BIC values,
and therefore the poorest fit, was found for the NB dis-
tribution with gene-specific overdispersion parameters
(“G-S negative binomial”), which indicates that the gain
in likelihood from having an overdispersion parame-
ter for every gene is outweighed by the BIC penalty
on the increase in the number of parameters. Using a
Pearson’s goodness-of-fit test under a Poisson model,
we also found that the gene counts exhibit deviations
from the Poisson distribution (Figure 2d,h,i), which fur-
ther suggest that the Poisson distribution does not ade-
quately capture the technical variation in the counts. In
addition to cell types, we found that these results also
hold true across different biological replicates (the two
mouse cortices), and reference transcriptomes (Figures
S2, S3, S4; Table S2).

Reference transcriptomes with intronic regions
increases the total number of mapped reads

We continue with the same snRNA-seq data from the
mouse cortex (Ding et al., 2020), but here we consider
four reference transcriptomes (transcripts, preandmrna, in-
troncollapse, and intronseparate), which differ in how to
include exonic and intronic regions, used for quantifi-
cation mapping with the salmon alevin (Srivastava
et al., 2019) tool. The transcripts reference uses only the
spliced transcripts as target sequences, while the other
three quantification references additionally incorporate
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Figure 2. Chromium-based single-nucleus RNA-seq data is not zero-inflated Using subsets of cell types, (a-d)
Excitatory neurons, (e-h) Inhibitory neurons, and (i-l) Astrocytes, from Cortex 1 in the mouse cortex dataset (Ding et al.,
2020), the leftmost column shows the log-transformed empirical mean (x-axis) and variance (y-axis) for each gene (black
dots) with the theoretical variance (colored lines). The second column shows the log-transformed empirical mean (x-axis)
and observed fraction of zeros (y-axis) for each gene (black dots) with the expected fraction of zeros under each
distribution (colored lines). The third column shows BIC value across all genes (assuming the genes are independent) for
each distribution: negative binomial (NB) with one overdispersion parameter estimated for the dataset, binomial (Binom),
Poisson (Pois), and NB with gene-specific overdispersion parameters (G-S NB). The rightmost column shows the
quantile-quantile plot under the Poisson model with the theoretical chi-squared quantile on the x-axis and the observed
chi-squared statistic on the y-axis. Reads were quantified with the preandmrna reference transcriptome.

intronic regions as target sequences in different ways
(Table S1). We evaluate how the choice of the reference
transcriptome can impact the total number of mapped
reads, and the number of mapped reads to subsets of
genes including protein coding genes and pseudogenes.

We found that the library size for the transcripts ref-
erence was smaller than the library sizes for the other
three references (Figure 3a). We observe a similar dis-
parity between references for the number of reads in
protein-coding genes (Figure 3b). Interestingly, we
found a decrease in the number of reads mapping to pro-
cessed pseudogenes in the references with intronic reads
(Figure 3c). This may occur if true pre-mRNA reads are
mapped to other regions like processed pseudogenes in
the transcripts reference due to the lack of intronic target
sequences, but are correctly mapped to the intronic re-

gions of genes in the other references. However, only mi-
nor differences in the number of mapped reads appear
between the three references that incorporate intronic
regions (preandmrna, introncollapse, and intronseparate).
Finally, we also found an increase mapped reads to long
non-coding RNA and antisense for the references that
included intronic regions (Figure S5). This suggests that
for snRNA-seq, the primary difference with respect to
total mapped reads is driven by the incorporation of in-
tronic regions in target sequences or not, rather than the
specific ways in which they are incorporated.

Reference index impacts cell type classification

An example of how the lower mapping rate in the tran-
scripts reference affects downstream analysis is in appli-
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Figure 3. Incorporating intronic regions into reference transcriptomes leads to larger total mapped reads and reads
mapping to protein coding genes Left and right columns represent two biological replicates (mouse Cortex1 (left) and
Cortex2 (right)) that were sequenced and quantified using four reference transcriptomes (does not include intronic reads:
transcripts; includes intronic reads: preandmrna, introncollapse, intronseparate). Boxplots of the number of (a) total UMIs for
each nuclei (or library sizes), (b) reads mapped to protein-coding genes, and (c) reads mapped to processed pseudogenes.

cation of cell type classification. To demonstrate this, we
used the reference-based cell type annotation algorithm
SingleR (Aran et al., 2019) to identify cell types using
each of the four reference transcriptomes. We compared
these cell type classification labels to the labels provided
by the authors of the original paper (Ding et al., 2020)
(Figure 4a). We found that for the most common cell
types (as classified by Ding et al., 2020), there is a high
level of agreement with the SingleR cell type classifica-
tion across most refence transcriptomes. However, we
observe a higher discordance to the cell type classified
by Ding et al., 2020 in the transcripts reference, especially
for certain cell types. For instance, among the nuclei

labeled as astrocytes by the authors, more nuclei are la-
beled as quiescent neural stem cells (qNSCs) instead of
astrocytes by SingleR in the transcripts reference com-
pared to the others (preandmrna, introncollapse, and in-
tronseparate). Because SingleR is a reference-based al-
gorithm, it depends on reads mapping to known marker
genes to accurately classify cell types. Upon further
inspection of the marker genes for astrocytes and qN-
SCs, we found more reads mapping to astrocyte marker
genes compared to qNSC marker genes for only the ref-
erences that include intronic reads, among the nuclei
labeled as astrocytes by the authors (Figure 4b). In con-
trast, using the transcripts reference, the ratio of counts
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Figure 4. Choice of reference index can impact the classification of cell types in scRNA-seq data (a) For each cell type
(labeled facets, classified by Ding et al., 2020), the bar plots show the number of nuclei that are assigned to different cell
types by the reference-based SingleR annotation algorithm in each reference (transcripts, preandmrna, introncollapse, or
intronseparate). Excitatory neurons and inhibitory neurons are combined into one cell type named ‘Neurons’ as the
training dataset used in SingleR does not distinguish between them. (b) For the nuclei classified as astrocytes by Ding
et al., 2020, the ratio of UMI counts in astrocyte marker genes to UMI counts in qNSC marker genes is elevated in reference
indices that incorporate intronic regions (preandmrna, introncollapse, intronseparate) versus those that do not (transcripts).

in astrocyte marker genes compared to qNSC marker
genes is close to 1 on average for the astrocyte nuclei,
resulting in some of these nuclei being classified as astro-
cytes and others classified as qNSCs by SingleR. This
result indicates that the increase in mapping rate with
the inclusion of intronic reads, as described in the previ-
ous section, does not occur uniformly across all marker
genes, and real biological signal may be lost when in-
tronic reads are not included.

We also observed major differences in cell type classi-
fication between references for the oligodendrocyte pro-
genitor cell (OPC) cell type. In the transcripts reference,
most of the OPC nuclei are classified into one of several
cell types, while with the other references, nearly half of
the OPC nuclei were not assigned a label. Cells are not
assigned a label by SingleR when there is not enough
signal to unambiguously assign a cell type classification,
for example, when a given cell or nuclei has an expres-
sion profile equally similar to two or more cell types
(Aran et al., 2019). Therefore, we observe that quantifi-
cation choices can also influence cell type classification
in less apparent ways, namely by determining whether
a cell type label is assigned or not.

Similar to the number of mapped reads, the major dif-
ferences in cell type classification remain between the
choice of reference transcriptome to include intronic re-

gions or not, with more minor differences among using
references that include intronic regions. This shows that
the specific ways of defining intronic regions in the refer-
ence transcriptome is less consequential than the choice
to include or not include intronic regions.

Chromium-based snRNA-seq data exhibit a gene
length bias

In this section, we continue with the same snRNA-seq
data (Ding et al., 2020), but here we show that there is
a gene length bias, namely we observe a higher level of
expression for genes that are longer compared to genes
that are shorter. This is surprising because it is assumed
that scRNA-seq and snRNA-seq UMI-based protocols,
unlike full-length transcript protocols, do not exhibit a
gene length bias due to the polyA selection on the 3’ end
of the mRNA molecule (Phipson et al., 2017; Vallejos
et al., 2017; Zheng et al., 2017). Nevertheless, a length
bias has been previously described in snRNA-seq data
(Chamberlin, Quinlan, 2020) and has been suggested to
be caused by internal poly-A priming (below).

We begin by grouping genes into ten bins by their
preandmrna length, with each bin containing the same
number of genes. The ‘preandmrna’ length refers to the
full gene length, which includes both the intronic and
exonic regions of a gene (see Supplementary Figure
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Figure 5. Chromium-based snRNA-seq data exhibit a gene length bias Genes are binned by their length into ten
equally-sized bins (x-axis) where the smallest bin number corresponds to the shortest genes and the largest bin number
corresponds to the longest genes. Using gene counts derived from either the preandmrna (red) or transcripts (blue)
reference transcriptome, the distribution of gene counts across nuclei (y-axis) are shown with the median (solid points),
and the 25th and 75th percentile (dashed lines). Genes are binned (x-axis) using the full gene length with both exons and
introns, referred to as the ‘preandmrna length’.

S6a for a comparison between ‘transcript’ length and
‘preandmrna’). Most importantly, we observe a gene
length bias, where the number of total counts per gene
(sum of counts across all nuclei) increases with the gene
length using both the transcripts and preandmrna refer-
ences (Figure 5). The bias is stronger in the preandmrna
reference, which suggests that the intronic reads play
a major role in the length bias. We observe a similar
trend using the introncollapse and intronseparate refer-
ences (Supplementary Figure S6b-c).

Next, we explore potential causes for this bias. One
previously described mechanism that could explain the
length bias is internal priming (Chamberlin, Quinlan,
2020; Interpreting Intronic and Antisense Reads in 10x Ge-
nomics Single Cell Gene Expression Data 2020; Svoboda
et al., 2021). Here, the poly(dT) primer primes at an in-
ternal poly-A sequence rather than the poly-A mRNA
tail. The end result is that a single transcript can erro-
neously get counted multiple times if there are multi-
ple stretches of poly-A sequences. Now, internal poly-
A sequences can theoretically occur in either exonic
or intronic regions, but intronic regions are typically
longer and thus more likely to contain internal poly-A
sequences (Sakharkar et al., 2004). Thus, the effect of in-
ternal priming is likely to be stronger for intronic reads
than exonic reads, which would then explain the result
in Figure 5 with a greater length bias for the preandmrna

reference than the transcripts reference.
However, we found that internal priming does not

fully explain the observed length bias. Using the pre-
andmrna reference (Figure 6a), we found that given
the same preandmrna gene length, genes with at least
one internal poly-A 8-mer have higher expression than
genes without any poly-A 8-mers on average. This sup-
ports the idea that internal poly-A priming is driving
at least some portion of the gene length bias. However,
we also see that among genes that do not have any in-
ternal poly-A 8-mers, a length bias can still be observed
(blue line). This result holds true for different poly-A
n-mer cut-offs (poly-A 6-mers, 10-mers, and 12-mers)
(Supplementary Figure S7).

Applying the same analysis with the transcripts refer-
ence (Figure 6b), we observe that first, in comparison
to the preandmrna reference, there is less of a difference
between genes with internal poly-A 8-mers and genes
without internal poly-A 8-mers. This suggests that, as ex-
pected, internal priming explains less of the bias among
the exonic reads. Second, for the genes without any in-
ternal poly-A 8-mers, there is still a clear length bias, sim-
ilar to what we saw in the preandmrna reference. As the
transcripts reference only includes exonic regions, this
suggests that a significant portion of the length bias ob-
served in the preandmrna reference that is not explained
by internal priming actually resides in the exonic reads.
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Figure 6. Comparison of gene length bias for genes with and without internal poly-A sequences Each point is a
different gene and are colored red if they have at least one internal poly-A 8-mer and blue if they do not and a loess curve
is drawn for each set of genes. The x-axis uses the full gene length with both exons and introns (’preandmrna’ gene
length). The y-axis plots the sum of reads across all nuclei (base-10 log scale) from the (a) preandmrna reference or (b)
transcripts reference.

To further investigate mechanisms, we compared the
strength of the bias when using the preandmrna length,
where we include both intronic and exonic regions, ver-
sus the transcript length, where we only include the ex-
onic regions. As the exonic region is a subset of the full
gene, these two lengths are correlated (Supplementary
Figure S6a), hence we would expect a length bias with
both. The respective strengths of the bias, however, can
tell us whether the causal mechanisms behind the bias is
something we should expect to scale with the preandm-
rna length or the transcript length.

We found that the preandmrna reference exhibits a
length bias that is more correlated with the preandm-
rna length than the transcript length. Under a base-10
log scale, the overall Pearson’s correlation coefficient
(r) between the counts and the preandmrna length is
r = 0.68, while r = 0.37 between the counts and the tran-
script length (Supplementary Figure S9a,b). In compar-
ison, with the transcripts reference, r = 0.39 between the
counts and the preandmrna length and r = 0.38 between
the counts and the transcript length (Supplementary
Figure S9c,d). This suggests that part of the length
bias lies with the intronic reads in the preandmrna ref-
erence and is correlated with the length of the intronic
region, something that a mechanism like internal prim-
ing would be consistent with. However, there is another
part of the length bias that lies with the exonic reads and
is less correlated with either the preandmrna or tran-

script length. This reinforces our previous conclusion
that there are likely multiple sources for the length bias,
which may be different for intronic reads versus exonic
reads.

DISCUSSION

Droplet-based snRNA-seq technologies are becoming
the preferred technology to profile gene expression in
frozen cells or cells that are hard to dissociate. With these
new data come new statistical challenges that need to be
addressed, including how to model these data. Here, we
demonstrate that Chromium-based snRNA-seq data are
not zero-inflated and follow a negative binomial (NB)
distribution. These data can also be approximated by
binomial and Poisson distributions. Our results suggest
that statistical methods that depend on these assump-
tions, such as tools for batch correction (Satija et al., 2015)
or differential expression analysis (Robinson et al., 2010;
Anders, Huber, 2010; Risso et al., 2018) commonly used
for scRNA-seq, can likewise be used for snRNA-seq. As
a general example, our results demonstrate that a NB
generalized linear model g(Y) = Xβ can be used for
snRNA-seq data, where Y are the counts and X are the
variables of interest.

Furthermore, we show that choices in the reference
transcriptomes used to perform quantification mapping
of snRNA-seq data can impact both the fraction of reads
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mapped and downstream analyses, such as cell type
classification. This is meaningful as different annotated
cells can result in different biological interpretations
of the same data. Standard quantification tools used
for scRNA-seq are therefore not sufficient for analyzing
snRNA-seq and the incorporation of intronic regions in
the quantification of scRNA-seq data is an important
consideration. In addition, we show that the choice of
how intronic reads are included in quantification is less
important than the choice to do so. Both in terms of li-
brary size and cell type classification, we found similar
performance using reference transcriptomes that incor-
porate intronic regions.

With respect to cell type classification, we note that
the higher agreement with cell type labels derived by the
Ding et al., 2020 authors in the reference transcriptomes
that incorporate intronic regions (preandmrna, introncol-
lapse, and intronseparate) is not surprising given that they
also include intronic regions in their quantification tool
(Ding et al., 2020). However, we do not claim that con-
cordance between the cell type labels imply that our as-
signed cell type labels are “correct.” Instead, we simply
demonstrate that there are significant differences in cell
type classification that arise from the choice to include
or not include intronic regions in quantification. Since
the disparities in mapping rate between references that
do not include intronic regions (transcripts) compared
to those that do (preandmrna, introncollapse, and intron-
separate) lead to differences in counts that do not occur
uniformly across all marker genes.

Across the references, we also observe a gene length
bias in snRNA-seq. This bias is strongest when intronic
regions are included, which may partly explain why
a length bias has not been previously described with
scRNA-seq data using the same sequencing technology.
However, we also showed how the bias is not limited to
intronic regions and is present in exonic regions, as well.
Previously proposed mechanisms like internal priming
do not fully explain the observed bias, particularly for
exonic regions, and we leave further investigation of po-
tential causes to future work.

Our work comes with limitations. First, as we use
experimental mouse cortex nuclei data for our analysis,
we can only create “pseudo-negative” control datasets
that are not completely biologically homogeneous. For
this reason, our results can be considered as a maximum
bound on the amount of overdispersion. Since we have
found that Chromium-based snRNA-seqdata follow a
NB distribution and can be approximated by the bino-
mial or Poisson distribution in many cases, we expect
that the true measurement error should be even lower
than what we have found. Negative controls of technical
replicates have previously been generated to study tech-
nical variability in scRNA-seq data (Zheng et al., 2017)
and a similar dataset for snRNA-seq can, in principle, be
used to verify our conclusions.

Other limitations are that we only investigated one
high-throughput experimental technology to capture
gene expression (10x Genomics Chromium). We also
only considered nuclei from two biological replicates
(two mouse cortices) from one study. However, we
do not expect our results on the distributions for mea-
surement error of snRNA-seq dataset to change with
droplet-based protocols with UMIs, as similar analyses
for scRNA-seq found consistent results across three plat-
forms (Svensson, 2020).

We note that the magnitude and nature of the effect
of quantification choices on downstream analyses may
vary depending on the dataset. As we observed in our
dataset, some cell type classifications appear to be more
affected by the inclusion of intronic reads than others.
However, since we also observed large disparities in
library size depending on whether intronic reads are
included in the reference transcriptome and this phe-
nomenon is likely to be agnostic to different snRNA-seq
datasets, our results suggest that quantification choices
will be informative for downstream analyses of snRNA-
seq data. Given the relative ease of including introns
in quantification with tools like salmon alevin and
the significant loss in information when they are not in-
cluded, the inclusion of intronic reads is a crucial step in
the analysis of snRNA-seq data.

METHODS

Data

The mouse whole cortex nuclei dataset was generated
by Ding et al., 2020 using the 10x Genomics Chromium
platform (Zheng et al., 2017). Two experiments were per-
formed, resulting in two biological replicates (Cortex1
and Cortex2). Each of these experiments was run on a
platform with two flow cells with four lanes each, result-
ing in eight SRA files for each experiment. After running
salmon alevin (Srivastava et al., 2019) to map the
reads with the different transcriptome indices described
in the next section, we read in the nucleus × gene
UMI count matrices as a SingleCellExperiment
object using the tximeta (Love et al., 2020) and
SingleCellExperiment R packages (A Lun, Risso,
2020).

Quantification with four sets of reference indices

We started with Sequence Read Archive (SRA) data
downloaded from the Gene Expression Omnibus with
accession number GSE132044 and converted them into
FASTQ files using the SRA toolkit. The FASTQ files,
along with a reference transcriptome, are fed into
alevin for quantification (Srivastava et al., 2019). To
create the reference transcriptome, we processed Gen-
code reference files, in particular the GRCm38 primary
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assembly FASTA file and the Gencode vM25 gene anno-
tation GTF file.

In total, four reference transcriptomes were created.
Each of these reference transcriptomes differ in that they
incorporate intronic regions into its target sequences in
different ways. We define the following types of target
sequences. First, we start with the transcript sequences,
which are defined from the downloaded genome se-
quence and GTF file and consist of the exonic regions
for each transcript. These are what we call “spliced
transcripts” and each transcript is a separate target se-
quence. We can create “unspliced transcripts” as target
sequences by re-adding the intronic regions between any
two exonic regions in a transcript. The length of each un-
spliced transcript must therefore be greater than or equal
to its corresponding spliced transcript. Lastly, intronic
regions for a given transcript or gene can themselves be
used as target sequences. Based on the work of Soneson
et al., 2021, we define the introns in two ways: “separate”
or “collapse.” In the “separate” approach, the intron tar-
get sequences are defined as the intronic regions from a
transcript of a given gene. In the “collapse” approach,
the intron target sequences are defined to be the intronic
regions of a gene that are not exonic in any isoforms of
the gene. Thus, while the “separate” approach allows
for intron target sequences to overlap with exonic re-
gions of other transcripts, the “collapse” approach does
not. For all intronic target sequences, a flanking length
of 50bp (read length) is also added to account for reads
that map to exon/intron junctions.

The different target sequences used to create the ref-
erence transcriptome form the basis of our four distinct
quantification reference transcriptomes, which are sum-
marized in Table S1. In all four references, the complete
genome sequence was also added to the reference tran-
scriptome to create a decoy-aware transcriptome and
minimize the spurious mapping of reads to intergenic
regions.

Preprocessing and quality control

For quality control, we use perCellQCMetrics from
the scater R package (McCarthy et al., 2017). The qual-
ity control procedure removes nuclei with low library
sizes or few expressed genes and discards genes with
zero counts across all nuclei. After these steps, the num-
ber of genes × number of nuclei is 27651× 5612 for the
transcripts reference, 31701 × 5680 for the preandmrna
reference, 31670× 5686 for the introncollapse reference,
and 31661 × 5686 for the intronseparate reference. The
quantification and preprocessing steps are summarized
in Figure 1.

For exploratory analysis, we run principal compo-
nent analysis (PCA) on the log normalized counts. The
counts are normalized using size factors computed by
calculateSumFactors from the scran R package
(ATL Lun et al., 2016) and PCA was performed using

the scater R package (McCarthy et al., 2017).

Description of methods for distribution plots

We first remove the major sources of biological varia-
tion by subsetting the nuclei by cell type and biolog-
ical replicate (Figure S1) in order to obtain a pseudo-
negative control dataset. Each nucleus × gene matrix
subset is then downsampled to remove variability due
to differences in sequencing depth and obtain compara-
ble library sizes across nuclei.

Given a downsampled m× n matrix Mt with m genes
and n nuclei of a given cell type t, we calculate the
following values. Let xij be the number of reads for
gene i and nuclei j. For every gene i, the empirical

mean is defined as x̄i =
∑n

j=1 xij
n , the empirical vari-

ance is defined as s2
i =

∑n
i=1(xij−x̄i)

2

n , and the empiri-
cal probability or fraction of zero droplets is given by

P(xi = 0) =
∑n

j=1 1(xij=0)
n .

The theoretical variances and probability of zero
droplets is computed for each distribution using parame-
ters estimated from the data. To estimate the parameters
for a binomial distribution, Xi ∼ Binom(n, pi), let n̂ be

the median column sum of Mt and p̂i =
∑n

j=1 xij

∑m
i=1 ∑n

j=1 xij
. For

a Poisson distribution, Xi ∼ Poisson(λi), let λ̂i = n̂ ∗ p̂i.
For a negative binomial (NB) distribution with an over-
all dispersion parameter, Xi ∼ NB(φ, µi), where φ is the
dispersion parameter and µi is the mean, let µ̂i = n̂ ∗ p̂i.
To estimate φ̂, note that σ2 = µ+ µ2/φ. Therefore, using
the empirical means and variances for every gene i, we
can estimate φ̂ as the maximum likelihood coefficient
from the following linear regression: s2

i = x̄i + x̄2
i /φ.

For a negative binomial distribution with gene-specific
dispersion parameters, Xi ∼ NB(φi, µi), let µ̂i = n̂ ∗ p̂i.
We estimate φ̂i as the maximum likelihood estimate of a
generalized linear model g(E(Xi)) = β0 with the nega-
tive binomial family, where each observation is a dif-
ferent nucleus and a separate model is estimated for
every gene using the mgcv package (SN Wood, 2017).
This is what we refer to as the gene-specific (G-S) nega-
tive binomial distribution. After the parameters for each
distribution have been estimated, we can compute the
theoretical variances and probability of zero droplets,
P(Xi = 0), under each distribution. We also calculate
the log-likelihood (LL) under each distribution for each
gene.

The BIC log-likelihoods are computed using the for-
mula BIC = k log(n)− 2 log(L), where k is the number
of parameters, n is the number of observations, and L
is the maximum likelihood (Schwarz, 1978). The BIC
is calculated using the log-likelihood of the sum across
all genes (assuming independence of genes) and obser-
vations. Code used to perform these computations is
adapted from Townes et al., 2019 and all plots are gener-
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ated using the ggplot2 R package (Wickham, 2016).
For the goodness-of-fit tests, a Pearson’s chi-squared

statistic was computed for every gene i. The formula for

the Poisson distribution is given by X2 = ∑j
(xij−µ̂ij)

2

µ̂ij
,

where the sum is over nuclei of a given cell type and bio-
logical replicate. µ̂ij is the maximum likelihood estimate
of the Poisson mean, and is given by µ̂ij = ĉjλ̂i, where

ĉj = ∑i xij is the column sum for cell j and λ̂i =
∑j xij

∑j ∑i xij

is the empirical rate at which reads maps to gene i. If
the counts xij are independent and follow a Poisson dis-
tribution with mean µij, then the statistics follow a chi-
squared distribution with n− 1 degrees of freedom (Mar-
ioni et al., 2008).

When µij is small (µij <≈ 1), as is often the case with
snRNA-seq counts, the distribution of the chi-squared
statistics is not well-approximated by the chi-squared
distribution (G Wood, 2002). We found this in our ap-
plication of snRNA-seq data as well (Figure S8a), where
we ran the goodness-of-fit test on counts simulated from
a Poisson distribution. We plot the quantile-quantile
plots from a Poisson goodness-of-fit test for five dif-
ferent counts matrices, each with 21483 rows and 347
columns, which roughly corresponds to the number of
genes (rows) and nuclei (columns) we encounter in our
snRNA-seq dataset after restricting to a given cell type
and cortex. Each counts matrix follows a Poisson dis-
tribution with a different mean parameter µ, ranging
from 0.1 to 1.0. We observe that as µ decreases, the
chi-squared statistics from the goodness-of-fit test in-
creasingly deviate from the theoretical quantiles of a
chi-squared distribution, which indicates that directly
applying such a test to sparse counts matrices with low
means is not a reliable test to assess the distributional fit.

To address this, we use grouped chi-squared tests fol-
lowing the method proposed by (G Wood, 2002). We
first remove genes whose counts are too sparse and the
number of cells we would need to group is more than
what is available in our data. For the remaining genes,
we use a grouped version of goodness-of-fit tests, where
we first group the counts of r nuclei (G Wood, 2002). Let
yik = ∑j xij be the sum of the counts of the r nuclei in
the kth group and let µ̂ik be the corresponding empiri-
cal mean for yik. Since the sums of independent Poisson
are also Poisson distributed, the chi-squared statistic fol-

lows a similar formula, X2 = ∑k
(yik−µ̂ik)

2

µ̂ik
, and is approx-

imated by a chi-squared distribution with nk − 1, where
nk is the number of groups. We show that by apply-
ing this grouping procedure to simulated counts from
a Poisson distribution, we get the expected results from
the goodness-of-fit test (Figure S8b).

To determine the size of the group r, we choose r =
1

2µ̂min p , where µ̂min = mini

(
∑i µ̂ij

n

)
, the smallest average

empirical mean across genes, and p = 0.25. This ensures
that the component variance of the chi-squared statistic

is, on average, no larger than 2(1 + p), where 2 is the
true theoretical variance of a χ2

1 distribution.
For visualization purposes, the limits of the axes of

the quantile-quantile plots are fixed to constant values
across different cell types and reference transcriptomes.

Cell type classification

For our analysis on distributions, we separate the
mouse cortex nuclei using cell type labels computa-
tionally generated by (Ding et al., 2020). We compare
these cell type labels to cell type labels generated us-
ing the SingleR R package and the built-in reference
MouseRNAseqData() (Aran et al., 2019). Specifically,
SingleR cell type labels are generated by comparing
gene expression to the expression profile of the refer-
ence cells across marker genes. Each mouse cortex nu-
clei is assigned a cell type label based on similarity with
Spearman correlation and labels are pruned by discard-
ing ambiguous labels.

Gene length bias

We define the gene length to be either the ‘preandm-
rna’ length, which is the full-length transcript with both
exonic and intronic regions, or the ‘transcript’ length,
which is the transcript with only exonic regions. For
each gene, we calculate the sum of the expression counts
across all nuclei in the dataset.

To count the number of poly-A sequences for each
gene, we first count the number of poly-A n-mers in
every transcript for a given gene. Then we summarize at
the gene-level by taking the maximum number of poly-
A n-mers across all transcripts (spliced and unspliced)
for a given gene. This allows us to separate genes into
two groups, that is, genes that do not have any poly-A
n-mers for any of its transcripts and genes that have at
least one poly-A n-mer in at least one of its transcripts.

Code availability

The code used to produce our analyses is available at
https://github.com/stephaniehicks/quantify-snrna.
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SUPPLEMENTAL TABLES

Reference
transcriptome

Target sequences Decoy sequence

transcripts - spliced transcripts (mRNA): exonic regions of transcripts genome
preandmrna - spliced transcripts (mRNA): exonic regions of transcripts

- unspliced transcripts (pre-mRNA): full-length transcripts
with both exonic and intronic regions

genome

introncollapse - spliced transcripts (mRNA): exonic regions of transcripts
- introns “collapse”: intronic regions extracted after
collapsing all transcripts of a gene

genome

intronseparate - spliced transcripts (mRNA): exonic regions of transcripts
- introns “separate”: intronic regions extracted separately
from each transcript isoform

genome

Supplementary Table S1. Summary of the reference transcriptome indices used in the quantification mapping
tool. Reads are mapped to the target sequences in the reference transcriptome index. The reference transcriptome
is augmented with decoy sequences, which mitigates the spurious mappings of reads that map better to the decoy
sequences than the target sequences. In all reference transcriptomes, we provide the complete genome sequence
as a decoy sequence to exclude reads coming from unannotated intergenic regions.
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Reference
transcriptome

Cortex Cell type Binomial BIC Poisson BIC Negative binomial BIC G-S negative binomial BIC

introncollapse cortex 1 Astrocyte 993419 994418 991867 1193864
introncollapse cortex 1 Endothelial 234996 235300 234517 330478
introncollapse cortex 1 Excitatory neuron 6474847 6482392 6455055 6803449
introncollapse cortex 1 Inhibitory neuron 3581353 3584667 3555615 3848241
introncollapse cortex 1 Microglia 256956 257307 257095 358419
introncollapse cortex 1 Oligodendrocyte 535866 536436 533698 683139
introncollapse cortex 1 OPC 461936 462359 461431 607060
introncollapse cortex 2 Astrocyte 2666923 2670728 2662550 2927818
introncollapse cortex 2 Endothelial 542565 543105 539433 697640
introncollapse cortex 2 Excitatory neuron 11711494 11728897 11683105 12043936
introncollapse cortex 2 Inhibitory neuron 4539321 4546039 4521629 4829075
introncollapse cortex 2 Microglia 188159 188338 187988 272574
introncollapse cortex 2 Oligodendrocyte 1708922 1711333 1703927 1933407
introncollapse cortex 2 OPC 1018338 1019629 1015129 1221247
intronseparate cortex 1 Astrocyte 986476 987473 985101 1191448
intronseparate cortex 1 Endothelial 235401 235705 235055 332604
intronseparate cortex 1 Excitatory neuron 6389834 6397368 6370397 6719898
intronseparate cortex 1 Inhibitory neuron 3547860 3551170 3522505 3819202
intronseparate cortex 1 Microglia 255988 256339 256139 357593
intronseparate cortex 1 Oligodendrocyte 526794 527363 524856 674236
intronseparate cortex 1 OPC 459010 459434 458400 604232
intronseparate cortex 2 Astrocyte 2681434 2685245 2677201 2949769
intronseparate cortex 2 Endothelial 537555 538094 534376 693649
intronseparate cortex 2 Excitatory neuron 11849547 11866993 11820394 12189465
intronseparate cortex 2 Inhibitory neuron 4433085 4439780 4416641 4728909
intronseparate cortex 2 Microglia 185954 186133 185790 269697
intronseparate cortex 2 Oligodendrocyte 1712508 1714920 1707753 1946260
intronseparate cortex 2 OPC 1014401 1015691 1011366 1221197
preandmrna cortex 1 Astrocyte 970362 971355 969064 1179284
preandmrna cortex 1 Endothelial 232215 232517 231903 328997
preandmrna cortex 1 Excitatory neuron 6254964 6262467 6237851 6594304
preandmrna cortex 1 Inhibitory neuron 3494344 3497646 3470333 3772494
preandmrna cortex 1 Microglia 269287 269639 269516 377338
preandmrna cortex 1 Oligodendrocyte 528615 529182 526990 679862
preandmrna cortex 1 OPC 460119 460541 459689 609461
preandmrna cortex 2 Astrocyte 2634890 2638678 2631783 2920277
preandmrna cortex 2 Endothelial 545678 546217 542573 704570
preandmrna cortex 2 Excitatory neuron 11726064 11743467 11699089 12081464
preandmrna cortex 2 Inhibitory neuron 4422193 4428876 4406762 4728743
preandmrna cortex 2 Microglia 182586 182763 182515 266519
preandmrna cortex 2 Oligodendrocyte 1718763 1721169 1714387 1963111
preandmrna cortex 2 OPC 1017102 1018389 1014503 1230944
transcripts cortex 1 Astrocyte 526735 527646 526823 682108
transcripts cortex 1 Endothelial 164601 164891 164089 236886
transcripts cortex 1 Excitatory neuron 2730423 2737008 2730496 3032500
transcripts cortex 1 Inhibitory neuron 1599691 1602611 1597088 1854117
transcripts cortex 1 Microglia 134590 134902 134892 194633
transcripts cortex 1 Oligodendrocyte 227464 227969 227209 313821
transcripts cortex 1 OPC 220195 220570 220440 312221
transcripts cortex 2 Astrocyte 1256567 1259985 1257531 1487992
transcripts cortex 2 Endothelial 302298 302793 301089 407283
transcripts cortex 2 Excitatory neuron 4782069 4797207 4786965 5126102
transcripts cortex 2 Inhibitory neuron 1887368 1893215 1888198 2155326
transcripts cortex 2 Microglia 87661 87822 87733 131771
transcripts cortex 2 Oligodendrocyte 816042 818225 816071 1000431
transcripts cortex 2 OPC 519215 520371 519276 675279

Supplementary Table S2. BIC log-likelihoods for each reference transcriptome, cortex, and cell type
combination. The BIC log-likelihood are generally lowest for the negative binomial distribution or the binomial
distribution, with similar BIC values for the Poisson distribution and higher values for G-S negative binomial,
primarily due to the BIC penalty on the number of parameters. Negative binomial refers to a negative binomial
distribution with one overdispersion parameter for all genes. G-S negative binomial refers to a negative binomial
distribution with gene-specific overdispersion parameters.
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SUPPLEMENTAL FIGURES

Supplementary Figure S1. Principal components analysis to identify sources of biological variation among nuclei
The first two principal components from principal component analysis (PCA), which was performed on the normalized
log-transformed counts using each reference transcriptome (rows). In the left column, we observe that in all references,
the main source of variation is explained by the different cell types (colors are cell type labels as classified by Ding et al.,
2020). In the right column, we also observe some minor variation by biological replicates (mouse cortices). (a, b)
transcripts reference (c, d) preandmrna reference (e, f) introncollapse reference (g, h) intronseparate reference.
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Supplementary Figure S2. Chromium-based scRNA-seq data is not zero-inflated using the ‘transcripts’ reference
Similar to Figure 2 with subsets of cell types from Cortex 1, but using the transcripts reference transcriptome in the
quantification mapping tool. (a-d) Excitatory neurons (e-h) Inhibitory neurons (i-l) Astrocytes.
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Supplementary Figure S3. Chromium-based scRNA-seq data is not zero-inflated using the ‘introncollapse’
reference Similar to Figure 2 with subsets of cell types from Cortex 1, but using the introncollapse reference transcriptome
in the quantification mapping tool. (a-d) Excitatory neurons (e-h) Inhibitory neurons (i-l) Astrocytes.
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Supplementary Figure S4. Chromium-based scRNA-seq data is not zero-inflated using the ‘intronseparate’
reference Similar to Figure 2 with subsets of cell types from Cortex 1, but using the intronseparate reference transcriptome
in the quantification mapping tool. (a-d) Excitatory neurons (e-h) Inhibitory neurons (i-l) Astrocytes.
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Supplementary Figure S5. Number of mapped reads to gene sets stratified by reference transcriptomes Similar to
Figure 3, but now showing boxplots of the number of mapped reads to (a) protein coding genes, (b) long non-coding
RNA, (c) antisense, and (d) processed pseudogene. For each gene type, the boxplots are faceted by the two biological
replicates (Cortex1 and Cortex2).
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Supplementary Figure S6. Correlation between preandmrna and transcript length and comparison of gene length
bias across references with intronic reads (a) For every gene, the preandmrna length is plotted on the x-axis and the
transcript length is plotted on the y-axis. (b-c) A similar gene length bias is observed across the three references with
intronic regions (outliers not included for boxplots). The sum of counts across all nuclei is plotted on the y-axis and genes
are binned into ten equally-sized bins by their (b) preandmrna length or (c) transcript length.
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Supplementary Figure S7. Comparison of gene length bias for genes with and without internal poly-A sequences
under different reference transcriptomes and n-mer cut-offs Each point is a different gene, with the sum of counts
across all nuclei plotted on the y-axis (base-10 log scale). Genes are colored red if they have at least one internal poly-A
n-mer and blue if they do not. A loess curve is drawn for each set of genes. The x-axis uses the full gene length with both
exons and introns (’preandmrna’ gene length). Each column corresponds to a different poly-A n-mer cut-off (a, e, i, m)
poly-A 6-mer, (b, f, j, n) poly-A 8-mer, (c, g, k, o) poly-A 10-mer, (d, h, l, p) poly-A 12-mer. Each row corresponds to a
different reference transcriptome (a, b, c, d) transcripts, (e, f, g, h) preandmrna, (i, j, k, l) introncollapse, (m, n, o, p)
intronseparate.

Kuo et al. | 2022 | bioRχiv | Page S10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492835doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492835
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure S8. Comparison of grouped versus ungrouped Poisson chi-squared tests Using matrices of
simulated Poisson counts with different µ parameters (µ = 0.1, 0.3, 0.5, 0.7, 1.0 from left to right), the quantile-quantile
plots from an (a) ungrouped Poisson chi-squared test and (b) grouped Poisson chi-squared test are compared.
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Supplementary Figure S9. Comparison of correlations between length and counts for the preandmrna and
transcripts references Each point is a different gene, with the length (base-10 log scale) on the x-axis and the counts
(base-10 log scale) on the y-axis. The length is defined as either the full gene length with both exons and introns
(’preandmrna’ length) or the length with only exons (’transcripts’ length). The counts are defined as the sum of reads
across all nuclei under a given reference transcriptome (preandmrna or transcripts). Pearson’s correlation coefficient (r) is
calculated for each scatter plot. (a) ’preandmrna’ length and preandmrna reference (r = 0.68) (b) ’transcript’ length
(r = 0.37) and preandmrna reference (c) ’preandmrna’ length and transcripts reference (r = 0.39) (d) ’transcript’ length and
transcripts reference (r = 0.38).

Kuo et al. | 2022 | bioRχiv | Page S12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492835doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492835
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure S10. Assessment of probability distribution fits for each gene using negative
log-likelihoods For each gene (a dot in either the box plot or the scatter plot), the negative log-likelihood (LL) under
each distribution is calculated and compared. (a) Box plots of the negative log-likelihoods for each distribution (b) The
negative log-likelihood for every gene under the negative binomial distribution (x-axis) versus the binomial distribution
(y-axis) (c) The negative log-likelihood for every gene under the negative binomial distribution (x-axis) versus the Poisson
distribution (y-axis) (d) The negative log-likelihood for every gene under the negative binomial distribution (x-axis)
versus the negative binomial distribution with gene-specific overdispersion parameters (y-axis). For each gene (black dot),
if the negative LL fit is the same for each distribution, we expect it to fall along the black line (y=x).
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