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Abstract

Much effort has been made to understand why foliar microbes live where they do. However,
whether foliar microbiome composition can be predicted is unknown. Here, we determine
the limits of prediction using metabarcoding data of both fungal and bacterial assemblages
that occur within (endophytes) and without (epiphytes) leaves from 59 plant taxa. We built
random forest models for prevalent taxa and quantified the combined predictive power of
24 plant traits, 12 abiotic conditions and 7 additional features. As response variables, we
considered microbial relative and absolute abundances, and occurrences. Most microbial taxa
were too rare to effectively model, but model performance was generally poor even for the
most prevalent and abundant taxa (model R2 was typically <0.1). Fungi were more tractable
for modeling than bacteria. Models of Shannon’s diversity were moderately successful but
those for richness were not. Taxa responded idiosyncratically and non-linearly to variation in
the foliar habitat. When prevalent microbes were included as features in models, performance
improved. Our results suggest that easily measurable aspects of the phyllosphere habitat are
poor predictors of microbiome composition. These results pose a challenge for the study of
microbial biogeography and we discuss possible ways forward.

Introduction1

There is an astonishingly diverse array of microbiota living inside of leaves (henceforth2

endophytes) and on the surface of leaves (epiphytes; Arnold and Lutzoni 2007; Griffin et3

al. 2016; Lodge et al. 1996). Over the past decade, interest in these microbes has grown4

tremendously (Harrison and Griffin 2020), as motivated by the effects of endophytes on host5

plant traits, which can be quite dramatic (Doty 2011; Friesen et al. 2011) and likely scale up6

to influence entire ecosystems (Laforest-Lapointe et al. 2016).7

A primary thrust of research has been to characterize the compositions of foliar micro-8

biomes across various gradients—both biotic and abiotic—in an effort to determine drivers9

of community assembly and describe biogeographic patterns. Indeed, well over a thousand10

papers have linked variation in foliar microbiomes to a bewildering array of habitat char-11

acteristics, including rainfall (Lau et al. 2013), temperature (Oita et al. 2021), host taxon12

(Vincent et al. 2015), floral ‘neighborhood’ (Lajoie and Kembel 2021), the abundances of13

other microbes (Agler et al. 2016), insect herbivore activity (Humphrey and Whiteman 2020),14

the proximity of hosts to cities (Laforest-Lapointe et al. 2017), and even hail (Fernandes et al.15

2011). These are but a smattering of examples—the list of interesting habitat-microbiome16

associations could fill the rest of this manuscript.17

Most of these studies relied on composite response variables, meaning the response was18

neither the abundances nor occurrences of specific microbial taxa, but rather assemblage-wide19

richness, diversity, or estimates of divergence among samples (i.e., ordination-based analyses).20

Moreover, by logistical necessity, all studies have considered only a small subset of the21

numerous dimensions that together compose the foliar habitat. This has precluded accurate22

accounting of the relative importance of various plant traits and abiotic conditions for most23

foliar taxa. Indeed, whether or not the abundances of most taxa can be predicted by a24
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consistent subset of habitat characteristics is unknown. A possible next step is to exhaustively25

characterize foliar habitat variation across host plant taxa growing in different conditions26

and to link habitat characteristics to the abundances of particular microbial taxa.27

Why the focus on prediction?28

Predictive modeling of population dynamics has long-been a driving focus of applied pop-29

ulation ecology, but community and microbial ecologists have tended to focus on pattern30

description (e.g., in species richness or diversity) and on ranking the importance of various31

processes—for example, those that mediate community assembly (Vellend 2010). Understand-32

ing process is akin to prediction, but not quite the same. Even if the relative importance33

of processes behind community assembly are understood, there may be stochastic forces34

at work that have largely unpredictable outcomes or chaotic, deterministic forces that are35

unpredictable without knowledge of antecedent conditions (May 2019). A further challenge36

is that various ecological forces may leave indistinguishable imprints in natural communities,37

precluding accurate quantification of process outside of a manipulative context. This suggests38

that accurate prediction is likely harder than accurately understanding process—a daunting39

prospect indeed.40

A countering argument could be made that assessing the relative importance and contribu-41

tions of confounded processes may be impossible, but prediction of various, useful attributes42

of ecological communities could be within reach. Indeed, at the macro-ecological scale this43

has proven true as many patterns can be reliably observed and thus predicted, but the44

relative importance of the myriad processes underlying them often remain obscure—the45

latitudinal gradient in species richness is a good example (Mittelbach et al. 2007; Pianka46

1966). Similarly, patterns in assemblage diversity, richness, and perhaps even the relative47

abundances of specific taxa could be predictable by various measurable phenomena, be they48

causal or merely correlated. Indeed, the literature is built upon studies that explain some49

variation in community composition in this way (see the examples cited above), though the50

variance explained in response variables often is quite low. Under the predictive paradigm, the51

question becomes: what are the limits of predictive modeling, how can models be optimized,52

and what biology can be learned? We do not mean to suggest that prediction and the53

interrogation of process are necessarily at odds. Indeed, once the limits of prediction are54

known a better accounting of underlying process may be possible.55

To illustrate the possible benefits of the predictive paradigm, consider two possibilities for56

the analyses presented here. It may be that through an comprehensive measurement of plant57

traits and abiotic characteristics we can account for a large proportion of the variation in the58

abundances of many microbial taxa—say 50% or more of the variation in the abundance of59

the 500 most common microbes (while acknowledging the vagueness of the word ‘common’).60

In this case, while parsing deterministic and stochastic forces may still be challenging, it61

suggests there is a firm basis for applied research and for future experimentation to discover62

causal mechanisms. On the other hand, if it is not possible to predict more than a few63

percent of the variation in abundances of common microbes then either the hypothesized64

deterministic forces that were measured are neither causal nor covary with causal phenomena65

or that stochastic and chaotic forces drive the observed variation. This situation would also66
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suggest possible ways forward, through measuring different habitat dimensions that could be67

causal, or by developing better measurement tools, experiments, or theory to determine rates68

of stochastic community divergence.69

Modeling microbiota: tools and challenges70

Most studies linking foliar microbiota to habitat conditions rely on linear modeling or some71

analysis of the variation within a distance (or dissimilarity) matrix made from taxon counts72

within samples (Bowman and Arnold 2021; Gomes et al. 2018; González-Teuber et al. 2020;73

Kembel et al. 2014; Kembel and Mueller 2014; Oita et al. 2021; Vincent et al. 2015). Linear74

modeling has many benefits, including intuitive interpretation of model coefficients and75

a resistance to overfitting. However, it may not perform well when predicting non-linear76

phenomena. Analyzing variation within distance matrices, typically via some combination77

of PERMANOVA and ordination, also has benefits, including the ease with which intuitive78

visualizations can be made of model results. But this approach is limited because it relies on79

describing differences in centroids of points that lie in a space with few dimensions (usually80

two or three). Thus, covariances among many thousands of organisms are decomposed into a81

few dimensions (i.e., eigenvectors) that may only explain a small percentage of the overall82

variation within the matrix and then those dimensions linked to habitat variation (sometimes83

qualitatively, via visual inspection of ordination plots). This technique provides an estimate84

of ‘community structure’ (i.e. patterns of among-sample similarity in assemblage composition)85

but provides no taxon-specific insights. Moreover, decisions must be made regarding the86

choice of matrix decomposition, which determines the relative weight of rare and abundant87

taxa on the analysis and that shapes inferences (Legendre and Gallagher 2001).88

In comparison, machine learning methods, as a broadly-defined suite of approaches,89

include many algorithms that are optimized for prediction, can readily handle non-linear90

relationships, and that do not necessarily rely on distributional assumptions. As such, the91

application of machine learning methods to foliar microbiome data should provide novel92

insights. Here, we use the random forest algorithm because it has interpretable outputs (i.e.,93

the ranking of feature importance), is easy to implement, and provides very strong predictive94

performance (Breiman 2001; Cutler et al. 2007). Random forests are a collection of decision95

trees that split the observations (e.g., taxon abundances) into sets according to values of96

covariates that are each made using a subset of the available data and covariates (henceforth97

referred to as features, as is typical within the machine learning literature). The entire98

ensemble of trees constitutes the forest and prediction is accomplished through aggregating99

and averaging the individual outputs of each tree. Feature importance is typically determined100

via a post-hoc perturbation test, where a feature is permuted, the model retrained, and the101

change in performance recorded.102

Regardless of the analytical approach employed, microbiomes present two hurdles that103

complicate predictive modeling. First, most microbes are rare, meaning they may be104

represented by only a few sequence reads within several samples. Since rare taxa are so105

infrequently observed it is typically impossible to model their relationship with covariates—106

unless, the unlikely scenario occurs of a rare taxon being associated with some similarly107

unusual, but measurable, aspect of the foliar habitat and a large enough sample size has been108
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obtained such that the associated phenomenon can be observed multiple times. Second, it is109

harder to accurately count microbial taxa than it is to count macroscopic organisms. To be110

counted, microbial taxa have to be cultured and colony-forming units tallied, a valuable but111

often logistically challenging endeavor (Carini 2019); or viewed within a sample via microscopy112

or flow cytometry, tools that have not yet been used at scale to ask questions pertaining to113

microbial biogeography; or characterized via sequencing of DNA. For the latter approach,114

the sequences of marker loci that vary among taxa are characterized. Different sequences are115

assigned to different taxa and referred to as operational taxonomic units (OTUs). The number116

of counts output by the sequencing machine for a particular sequence describes that taxon’s117

relative abundance within the sample. While this approach to characterizing microbiomes is118

appealingly cost and time-effective, various laboratory biases must be considered (Nilsson119

et al. 2018) and, even when all is well in the lab, the resulting data suffer from the limitation120

that they describe only relative abundances. That is, sequence count data are compositional121

in nature. Compositional data are interdependent, as sequence counts for one taxon increases122

those for another taxon must decrease (Jackson 1997; Tsilimigras and Fodor 2016). This123

limitation is imposed by the instrumentation because sequencing machines output a finite124

number of reads.125

To circumvent this challenge, internal standards (ISDs) can be added to samples prior to126

sequencing. Since the amount of ISD is standardized among samples, division of sequence127

count data by the ISD places the data on the same scale, which is proportional to abundance128

(henceforth referred to as “absolute” abundance; Tourlousse et al. 2017). The benefits of129

ISDs can be undercut (as reviewed by Harrison et al. 2021c), but their use can lead to novel130

inference.131

The limits of prediction for foliar microbiota132

Here, we determine to what extent the abundances and occurrences of foliar taxa are133

predictable and identify the most influential characteristics of the foliar habitat for fungal134

(ITS) and bacterial (16s) endophytes and epiphytes. We sequenced DNA from 1241 individual135

plants collected from the mountain ranges of Wyoming, U.S.A. (Fig. 1). When building136

models, we considered 24 plant traits, 12 abiotic site characteristics (e.g., rainfall, elevation,137

etc.), aspects of the vegetation matrix surrounding the site, and those metrics pertinent138

to sampling, such as the mass of sampled leaves (Table 1). We ask to what extent model139

performance is shaped by the choice of dataset: either relative or absolute abundance of taxa140

or presence and absence data for occurrence. Finally, we measured the limits of prediction141

for common derived variables, including Shannon’s diversity and richness.142

Methods143

Sampling details144

Sampling took place during the summer of 2018 in six mountain ranges in Wyoming, U.S.A.145

(Fig. 1). Within each locality 2–3 50m by 50m plots were selected. At each locality, plots were146
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selected in the alpine, sub-alpine, and lower sub-alpine/montane forest. The elevation range147

of sampling locations spanned 2120–3419m. A total of twenty plots were sampled. A total148

of 59 plant species were sampled. We attempted to collect 10 individuals from each plant149

species at each site. We obtained leaves or leaflets from 1241 plants. For details regarding150

field protocols, including how plant traits were measured, see the Supplemental Material.151

Sample preparation, sequencing, and bioinformatics152

To separate endophytes from epiphytes, leaves were placed in tubes and agitated in a solution153

of 1×PBS, pure water, and 0.15% Tween 20 for 20 minutes and then sonicated for 5 min.154

The solution was decanted, centrifuged, and lyophilized and constituted our epiphyte (EP)155

samples (see the Supplemental Material). Washed leaves were lyophilized and ground in a156

mixer mill.157

DNA was extracted using Qiagen DNEasy plant kits. Library preparation followed the158

two-step PCR procedure described in Harrison et al. (2021a). To amplify the ITS region, the159

ITS1f-ITS2 primer pair was used and for the 16S locus the 505-806 pair was used (Wang160

and Qian 2009; White et al. 1990). We added an equimolar amount of a synthetic DNA161

internal standard (ISD) to each sample prior to PCR (Tourlousse et al. 2017). Negative162

controls, including for cross-contamination, and positive controls were employed during library163

preparation and sequencing. Psomagen, Inc. (Rockville, MD, USA) performed paired-end164

2×250 sequencing using an Illumina NovaSeq machine.165

For details of bioinformatics see the Supplemental Material. In brief, exact sequence166

variants (ESVs) were determined and clustered by 97% similarity into OTUs. Taxonomic167

hypotheses for OTUs were generated using the SINTAX algorithm (Edgar 2016) and the168

UNITE (for ITS; v7.2; Community 2017) and Greengenes (for 16S; v13.5; DeSantis et al.169

2006) databases.170

Prior to modeling, count data were either Hellinger standardized (for relative abundance171

datasets) or normalized using the internal standard, thus putting all taxa on an equivalent172

scale and avoiding many of the challenges posed by compositionality (Harrison et al. 2021c).173

For ordinations and cluster analyses, data were Hellinger standardized and the Euclidean174

distance was calculated (Legendre and Gallagher 2001). Richness was estimated using the175

breakaway R package (Willis and Bunge 2015), which uses non-linear regression of the ratios176

of taxon frequencies to estimate richness within samples.177

Predictive modeling approach178

To determine the predictability of microbial abundances we used random forest models179

implemented using the ranger R package (v 0.13.1 Wright and Ziegler 2017). We modeled180

four sets of response variables. First, we modeled the absolute and relative abundances of181

prevalent microbial taxa, which were those that occurred in 100 or more individual plants182

(about 10% of samples). 172 fungal and 26 bacterial OTUs met this prevalence threshold.183

Second, we repeated this analysis using qualitative data for occupancy. Third, we asked if184

predictive ability shifted when examining the microbiome of a single host, again we used185
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absolute and relative abundances and occupancy data. Fourth, we modeled Shannon’s186

diversity and estimated richness for both fungi and bacteria.187

We used a rigorous approach to model fitting, tuning, and performance determination188

that was reliant upon the mlr3 R package (v 0.12.0; Lang et al. 2019).189

Models of ISD transformed abundances were repeated while including the abundances190

of other prevalent microbes as features. These microbes were the same as those chosen for191

modeling (see above) and thus represented the most abundant and prevalent taxa. For models192

of bacteria, only co-occurring bacteria were used as features and the same was true for fungal193

models. The purpose of this analysis was to determine if microbial abundances could be194

predicted by the abundances of co-occurring taxa. We conducted this analysis using ISD195

transformed data only to avoid spurious results due to compositionality.196

Results197

Biodiversity and general sequencing results198

After filtering reads, removing non-target taxa (e.g., the host plant), and removing quality199

control sequences, we retained 12,795,691 ITS reads and 5,733,638 16s microbial reads for200

analysis (notably we obtained ~13 million additional plant reads from our 16S data that were201

discarded; Fig. S6). ESVs among these reads were identified and clustered (97% similarity202

threshold) into 3189 fungal OTUs and 2360 bacterial OTUs.203

Most microbial taxa were observed in few plant hosts and were low abundance. Only 172204

fungal taxa and 23 bacterial taxa were present in more than 100 of the individual plants we205

sampled (out of 1241 total plants). More abundant taxa tended to also be more prevalent206

for both bacteria (Pearson’s correlation of median abundance and prevalence, r = 0.49, p <207

0.001) and fungi (r = 0.49, p < 0.001). The strength of this correlation increased when only208

considering those taxa that occurred in 100 or more samples (fungi: r = 0.5; bacteria: r =209

0.76, p < 0.001 in both cases).210

Fungi tended to be more abundant inside rather than outside of leaves, but the opposite211

was true for bacteria (Fig. 2). Many microbial taxa occurred as both epiphytes and endophytes;212

indeed, all fungi that occurred as epiphytes occurred as endophytes (Fig. 3d). However, there213

were many more microbial taxa that were observed solely in epiphyte samples, suggesting214

that our leaf washing protocol to capture epiphytes was successful. The leaf barrier seemed215

to shape bacterial assemblages more than it did for fungi as we observed greater correlation216

in microbiomes between plant compartments (EP versus EN) for the latter (Mantel test of217

Hellinger transformed distance matrices; for bacteria: r = 0.11, p < 0.01 and for fungi: r =218

0.36, p < 0.01).219

Ascomycota was by far the most abundant fungal phylum observed (Fig. 2) and Doth-220

ideomycetes the most abundant class. Proteobacteria and Actinobacteria were typically the221

most abundant bacterial phyla present, but there was more among-host heterogeneity in the222

abundances of bacterial phyla than for fungal phyla. For instance, Tenericutes were orders of223

magnitude more abundant in Primula parryi than in other plant taxa (Fig. 2). Hosts that224

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


were similar in terms of their fungal associates had similar bacterial assemblages, albeit the225

correlation was moderate (EN: r = 0.16, p < 0.01; EP: r = 0.18, p < 0.01). Patterns of host226

generalization shifted depending on microbial taxon and the plant compartment considered.227

For instance, for fungi, a similar degree of host generalization was observed for endophytes228

and epiphytes, but, in contrast, bacterial epiphytes were more generalized than bacterial229

endophytes (Fig. S7).230

Ordinations and associated PERMANOVA analyses suggested greater divergence among231

samples in fungal assemblages compared to bacterial assemblages (Figs.S8– S11) and that232

the two groups of microbes responded to different dimensions of the phyllosphere habitat.233

Specifically, fungal samples weakly clustered by plant compartment (PERMANOVA; R2=234

0.01, p < 0.01) and host life history (R2= 0.02, p < 0.01), and more strongly clustered by235

nominal taxon (R2= 0.17, p < 0.01). In comparison, plant compartment influenced bacteria236

much more than fungi (R2= 0.13, p < 0.01) as did host taxon (R2= 0.30, p < 0.01), but237

host life history was a poor predictor of assemblage dissimilarity (R2= 0.03, p < 0.01). The238

homogeneity of variances assumption of PERMANOVA was violated for these analyses, which239

can lead to less accurate p value determination.240

At the landscape level, most foliar microbial taxa have unpredictable abundances and241

occurrences242

We attempted to predict the abundance and occurrence of microbial taxa that occurred243

within the leaves of Wyoming plants as a function of plant traits and abiotic conditions.244

We considered samples from 59 plant taxa growing at 20 sites spanning the mountains of245

Wyoming. During modeling, we considered microbial taxa that were present in ~10% or more246

of our samples; very rare taxa were not considered because they were not observed enough to247

build informative models. Focal taxa were generalists, often occurring in 40 or more hosts248

(Fig. S7).249

We used the random forest algorithm for predictive modeling and measured model250

performance using a nested resampling procedure. Models were deemed successful if they251

had an R2 of greater than 1%. Using this generous threshold, we could predict the absolute252

abundances of 57 fungal taxa (out of 172) and 4 bacterial taxa (out of 25). The median R2
253

for both fungi and bacteria was 0%. To check that these poor results were not due to model254

misspecification, data that were predictive of the response were simulated and included in a255

test model. Addition of simulated data dramatically increased R2, as expected.256

When the abundances of co-occurring microbial taxa were included in models as features,257

model performance improved, with 114 fungal models and 18 bacterial models having positive258

R2 values. The median improvement in R2 for models that included other microbes as259

features was 0.07 for fungi and 0.08 for bacteria.260

Relative abundances of fungi (Hellinger standardized count data) were easier to predict261

and models output R2 ≥ 0.01 for 155 taxa (the median R2 was 0.11 and the maximum262

was 0.40). But bacterial relative abundances were no easier to predict than their absolute263

abundances—only 12 taxa were predictable (median R2 = 0.03, max = 0.21). More abundant264

taxa were easier to predict, as expected; R2 was positively correlated with the relative265
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abundance of fungi (r = 0.24, p < 0.01) but not significantly for bacteria (r = 0.32, p = 0.33;266

Fig. S12). Surprisingly, R2 was weakly negatively correlated with absolute abundances for267

both bacteria and fungi (Fig. S13).268

Microbial presence within a sample (occupancy) was not easier to predict than abundance.269

To measure the performance of occupancy models, we used the Matthew’s correlation270

coefficient (MCC; Matthews 1975). The MCC takes into account true and false positives and271

negatives, deals well with imbalanced data, and ranges from negative one to one. Values of272

zero denote a model that performs no better than a guess. The median MCC for bacteria273

was zero and for fungi was 0.02. MCC for fungi was over 0.2 for 39 fungi and 1 bacterial274

taxon (an MCC of 0.2 represents modest predictive performance). Models typically did well275

when predicting absences, which was expected given that most microbes were infrequently276

observed. Prediction of presences was much more challenging—the median percentage of277

correctly predicted occurrences was 0% for bacteria and 2% for fungi. MCC was correlated278

with prevalence for both bacteria (R = 0.44, p = 0.03; Fig. S14) and fungi (R =0.29, p <279

0.001).280

For those fungal taxa that had model R2 of ≥ 1% or an MCC ≥ 0.2 we examined which281

model features (predictor variables) were the most important. To do this, we counted the282

number of times a feature was in the top 10 most important for 20% or more of models283

(Fig. 3, S15). Feature importance was determined via permuting each feature, rerunning the284

model, and calculating the decline in R2 or MCC. We did not consider models for bacterial285

taxa, due to their poor performance. The importance of specific features differed among286

taxonomic groups and data sets. For instance, the relative abundances of fungi tended to287

be influenced more by sampling height, elevation, leaf area, leaf density (SLA), and date288

and less by aspects of leaf productivity, such as linear electron flow and Fs, than were fungal289

absolute abundances and occupancy (Tables S2, S1, S3). There was no obvious pattern of290

the relative importance of abiotic versus biotic variables. Instead, most of the features we291

considered were identified as important for at least some taxa and not a single feature was in292

the top 10 most important for all successful models.293

Despite these idiosyncrasies, we uncovered similarities among the best models for As-294

comycetes (12 models of relative abundances that all had R2 > 0.25). For all of these models,295

elevation and shrub richness were important (Table S4), and sampling date, temperature,296

and latitude were often so. Even among these top models, when considering features that297

were often important, the relationship between feature variation and relative abundance298

shifted among taxa (Fig. S16). For instance, some taxa responded sharply negatively to299

increased shrub richness initially and then leveled off as shrub richness increased, others did300

not respond much at all to changes in shrub richness, and still other taxa were positively301

associated with increased shrub richness. Similar patterns were observed for other important302

features and non-linear relationships between features and response variables were common.303

Because host taxa were included as one-hot encoded features in our model, their aggregate304

importance was not represented via the post-hoc perturbation approach we used to estimate305

feature importance. Therefore, modeling was repeated without host taxon and the decline in306

performance recorded. For absolute abundance models of fungi, R2 declined from 0.01-0.09307

with an median decline of 0.01. Models for twenty fungal taxa had R2 values that dropped308

below 0.01 when host nominal taxon was removed. This pattern was mirrored for relative309
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abundance data. For bacteria, the median and mean R2 was unaffected by the inclusion of310

nominal taxon in models.311

When absolute abundance models included the abundances of co-occurring taxa as features,312

those taxa tended to hold great influence over model performance. Indeed, these features313

were selected as the most important in models, typically exceeding host traits and abiotic314

conditions. Influential taxa spanned multiple phyla (Tables S5 & S6).315

Intraspecific trait variation does a poor job of predicting microbial abundances316

To better quantify the associations between microbial abundances and intraspecific variation in317

plant traits, we modeled microbiome variation within specific hosts. We did this because plant318

trait variation was confounded with nominal taxon. We only considered those combinations319

of host and microbe that were sampled at three or more locations, that were in 30% or more320

of hosts sampled, and that were present in at least 30 samples. 110 combinations of fungi321

and 15 geographically widespread host plants met these criteria, but only 9 combinations of322

host and bacterial taxa did. For absolute abundance data, 16 of the fungi-host combinations323

had R2 values between 0.01–0.08 but none of the models for the bacterial combinations324

met with any success. Phenology, relative chlorophyll, and compartment were influential325

features (Table S7). As we found in our models across hosts, model performance was greatest326

for relative abundance data—66 of the fungi-host combinations and 4 of the bacteria-host327

combinations had positive R2 values. For these models, SPAD 420, relative chlorophyll,328

compartment, phenology, and canopy cover were influential features (Table S8).329

We repeated this analysis using occupancy data and noticed some improvement in model330

performance compared to the landscape-wide analysis: 81 combinations of fungal taxon and331

host and 3 bacterial combinations were modestly predictable (MCC ≥ 0.2). Median MCC for332

both bacteria-host combinations and fungi-host combinations was 0.12, as before models were333

challenged to predict microbial presences, not absences. About 4% of bacterial presences334

were correctly predicted and 13% of fungal presences were predicted (these are estimates of335

the median proportion predicted correctly across taxa). Compartment (either EP or EN),336

SPAD 420, tree richness, phenology, relative chlorophyll, and gh were the most important337

features for fungal models (Fig. S9; bacterial models were not considered because so few were338

successful).339

Microbial diversity was predictable but richness was not340

Shannon’s diversity and estimated richness tended to be higher for fungi than bacteria341

(Fig. S17–S20). Patterns in richness and diversity among samples were few, though epiphyte342

diversity tended to be slightly lower than endophyte diversity for bacteria whereas the343

opposite was true for fungi (in many cases these comparisons were not significant, though the344

pattern is suggestive; Tables S10 & S11). No growth habit (i.e., tree, forb, shrub, graminoid)345

was much more diverse than any other, though we did find drastic differences among host346

taxa—particularly for fungi (Fig. S18, S19). The richest plant taxa in terms of fungi (but not347

bacteria) were trees and shrubs (this pattern held for both compartments; Tables S14, S15).348
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Neither fungal nor bacterial richness was predictable (R2 was near zero for both models).349

In contrast, models of Shannon’s diversity were somewhat successful (fungi R2 = 0.13; bacteria:350

R2 = 0.08). Important features for predicting fungal diversity included compartment (EP351

vs. EN), phenology, Juniperus communis (a widespread host plant taxon), and elevation352

(Fig. S21). Important features for bacterial diversity were different than those for fungal353

diversity and included densiometer measurements (canopy cover), date collected, and Primula354

parryi (an unusual plant taxon; Fig. S22). Diversity of both fungi and bacteria varied among355

host nominal taxa, and, indeed, certain taxa were strong predictors of shifts in diversity356

(Fig. S18, S19). When host taxon was omitted from models their performance declined357

slightly (dropping from 13% to 12% median explained variance for fungi and from 8% to 5%358

for bacteria). Inclusion of sampling site in our models, which was a proxy for soil variation359

and other unmeasured abiotic phenomena occurring at the sub-km2 spatial scale did not360

improve predictions.361

We found drastic differences in the ability to predict epiphyte versus endophyte data. For362

example, a model of bacterial endophyte diversity had an R2 of ~0.17 (Fig. S25), but the363

model of bacterial epiphyte diversity had near zero explained variance. Fungal endophyte and364

epiphyte diversity were both predictable (10–14% explained variance), but feature importance365

was shuffled between models (Figs. S23, S24). Elevation and latitude were the most important366

features for epiphytes whereas the number of leaves extracted and two host taxa (Juniperus367

communis and Antennaria media) were the most important for fungi.368

Discussion369

Prediction of natural variation in phyllosphere microbial assemblages appears to be quite370

challenging. We found that only a few percent of foliar microbial taxa have predictable371

abundances or occurrences, even when using powerful machine learning to analyze a large372

dataset of over 1000 individual plants, 59 plant taxa, and 43 covariates that together373

characterized the foliar habitat. Our results are primarily due to the rarity of the majority of374

microbial life—most taxa were represented by a few reads in a few samples, making these375

taxa impractical to model. But predictive ability was low even for those few microbial taxa376

that were quite abundant and prevalent.377

This has important implications for predictive ecology and biogeography—specifically,378

that we should not expect predictive modeling to be successful for most organisms, given that379

they are so infrequently observed. This observation almost seems trivial. However, we suggest380

that the literature does not reflect this inherent limitation within the data. Most publications381

assume that the biogeography of foliar microbiomes (and other microbiomes) is largely defined382

through deterministic, and thus predictable, causes. For example, our expectation for this383

project was that a large proportion of the variation in foliar microbiomes would be ascribable384

to the numerous aspects of the foliar habitat that we measured. However, the nature of385

ecological power laws (and sampling logistics) suggests that hard limits to prediction exist386

for most taxa, which should temper our expectations for the strength of associations between387

microbiome composition and habitat variation. Indeed, we are aware of no publications that388

demonstrate more than a moderate association between foliar microbiome composition and389

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


habitat variation. By moderate association, we refer to such results as estimated R2 values390

from PERMANOVA analysis of dissimilarity matrices less than 0.4. We suggest that stronger391

associations may not be observable, given that most taxa are rare and, as we show here, even392

more abundant taxa are often very challenging to quantitatively predict. We suggest that393

the limits to prediction may be estimated through mathematical means, given estimation394

of the parameters for the distributions underlying the data. Such a theory driven approach395

could precisely bound expectations for microbial biogeography.396

While it seems that precise predictive modeling of rare microbial taxa is out of reach,397

at least for now, we do not suggest that these myriad taxa are unimportant. Indeed, a398

growing body of work demonstrates that low-biomass microbes can perform critical ecological399

functions (Jousset et al. 2017; Kalenitchenko et al. 2018). Moreover, it is unclear if rare taxa400

bloom into abundance given suitable conditions (Shade et al. 2014), just as the seed bank of401

annual plants germinates following spring rainfall. Thus, some of the taxa we deemed rare402

in our snapshot-style study could be more abundant at other times of year or immediately403

following shifts in abiotic conditions or host phenology. This speculation suggests that404

incorporating data from intensive temporal sampling, particularly including sampling across405

host phenology, could improve predictive modeling of microbiome composition, though the406

aforementioned limitations likely will still exist.407

Fungi and bacteria differed in abundances and predictability408

When summarizing the results from our models, we found several interesting patterns in409

predictive performance. Most notably, fungi tended to be easier to predict than bacteria,410

regardless of data set and model choice. This may be due to the much better sequencing411

results we obtained for fungi than bacteria. Plant chloroplast sequences dominated the 16S412

data (Fig. S6), a problem noted elsewhere (Maignien et al. 2014), and that suggests that413

plant chloroplasts are much more common than bacterial endophytes within most leaves.414

Karasov et al. (2019) reported similar findings. They used shotgun metagenomics, controlled415

infections, and qPCR to quantify the ratio of host to bacterial genomes as 1–2.5 within416

the leaves of wild Arabidopsis thaliana and that foliar microbes may not become extremely417

abundant except during infection. Given that A. thaliana is an annual forb with small leaves,418

it seems reasonable that a longer-lived plant with larger leaves could accrue more microbial419

taxa. Still, when taken together, our results and those from Karasov et al. (2019) suggest that420

the ratio of bacteria to host cells within the leaves of healthy plants is probably low, though421

much more quantitatively rigorous work is needed. Unfortunately, we could not compare the422

ratio of fungal to plant reads because we recovered few of the latter due to the specificity of423

our ITS primers.424

Plant traits were only weakly associated with microbiome variation425

We uncovered associations between many plant traits and specific abundant microbial taxa,426

but the associations were typically weak and idiosyncratic. Interestingly, we included 24 plant427

traits in models and yet nominal plant taxon remained modestly important. This suggests a428

weak effect of unmeasured host traits on microbial assemblages, possibly directly, because429
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those traits could influence the ability for a microbe to encounter or live within a plant, and430

indirectly, since plant traits determine, at least in part, where a plant grows, and which431

other microbes might be present in the phyllosphere. While nominal taxon was an important432

feature in models, it is worth reiterating that removing this feature typically led to only a433

modest drop in R2. Thus, our results suggest that trait variation alone is unlikely to explain434

a large fraction of the variation in foliar microbiome assemblages—because nominal taxon is435

a proxy for all unmeasured host phenotypic and genetic variation of relevance to the foliar436

microbiome.437

Perhaps many easily observable plant traits are too far removed from the spatial scale of438

relevance for microbes to be strongly predictive of microbiome variation. Indeed, for many439

microbes a single leaf is the equivalent of the whole state of Wyoming (the study area) for a440

human. Those traits that were important were proxies for microhabitat variation in leaves,441

including leaf productivity (e.g., relative chlorophyll, SPAD 420), specific leaf area, area442

of leaf sampled, and phenology (Tables S2–S9). For logistical reasons, we did not measure443

elemental concentrations in leaves or various phytochemicals, though previous work has shown444

weak associations between these traits and microbial assemblage composition and they could445

be useful to include in future studies (González-Teuber et al. 2020; Kembel 2009; Kembel446

et al. 2014).447

The lack of strong association between variation in plant traits and the microbiome is448

puzzling because numerous experiments have demonstrated, beyond all doubt, that many449

microbes can mediate plant trait expression (Friesen et al. 2011; Hawkes et al. 2021)—in450

some cases, dramatically (e.g., Doty 2011; Doty 2008). This disparity could arise from451

the frequency with which plants encounter microbes in the wild. Indeed, from before the452

day a seed germinates to after its last leaf senesces, plants are continually interacting with453

microbes. Thus, without experimental removal or inoculation of specific taxa, the effects454

of microbes on many, easily-measured plant traits may be very challenging to observe (and455

thus predict), since host plants have never escaped from their microbial influencers. We note456

that these influencers need not be abundant within plants. For example, we have previously457

demonstrated that low biomass foliar microbes can affect plant traits (Harrison et al. 2021b),458

and, in that study, the low biomass microbes were so infrequent within the sequencing data459

as to preclude predictive modeling.460

Perhaps unmeasured ecology is behind poor model performance—including microbe-microbe461

interactions.462

When we repeated modeling while including the abundances of co-occurring microbes as463

features, model performance tended to increase. This was not solely due to the additional464

complexity of models, because the addition of randomized versions of these features did465

not increase model performance. This suggests that microbe-microbe interactions, be they466

antagonistic or mutualistic, direct or indirect, are important determinants of phyllosphere467

microbiomes. Recent work supports this hypothesis (Hassani et al. 2018; Harrison et al.468

2021b), though mechanisms remain uncharacterized.469

During modeling we focused on bottom-up forces, and including top-down pressures470

should improve model performance—after all, predicting the occurrence or abundance of471
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herbivores (e.g., ungulates, insects) would likely fail without considering predators. Indeed,472

Morella et al. (2018) recently demonstrated, in a manipulative setting, that phages can shape473

bacterial assemblage composition within plant leaves.474

We consider the possibility that the abundances and occurrences of many microbial taxa475

within individual leaves and plants is largely unknowable, as driven by the vagaries of dispersal476

and priority effects. Priority effects describe the situation whereby the sequence of encounters477

between microbial taxa and the leaf define the resulting assemblage. (Leopold and Busby478

2020) recently demonstrated priority effects of fungi within the leaves of Populus trichocarpa,479

with order of immigration having effects on microbiome composition one month on.480

Ecological drift is another stochastic force that shapes microbial assemblages via the481

aggregated influence of life history events (i.e., births and deaths; Vellend 2010). Ecological482

drift is notoriously difficult to study and so its influence on microbiome composition is debated483

(Zhou and Ning 2017), however theory from population genetics suggests that the influence484

of drift should decline with population size. Thus, we doubt that ecological drift plays a485

large role in our results, which focus on abundant microbial taxa, because these taxa should486

have high enough population densities when aggregated into samples that drift would have487

negligible influence assuming any differences among taxa in competitive ability or suitability488

to the habitat. However, ecological drift could be important for shaping the abundances of489

rarer taxa or ecologically equivalent taxa within an assemblage.490

Why are absolute abundances harder to predict than relative abundances?491

For all of our analyses, we compared results using relative abundances and absolute abundances.492

Most microbial ecology studies rely on the former, because sequencing machines output relative493

abundance data (Tsilimigras and Fodor 2016). Incorporating internal standards (ISDs) during494

sequencing can allow absolute abundances to be approximated, though the approach is not495

without methodological challenges (Harrison et al. 2021c). We found that relative abundances496

were easier to predict than were absolute abundances, for both bacteria and fungi and497

regardless of scale, except when the abundances of co-occurring microbial taxa were included498

as features in models.499

These results could be driven by biology: specifically, because the absolute abundances500

of microbes may shift in response to co-occurring microbial taxa or numerous unmeasured501

phenomena. Or, perhaps model R2 is higher for relative abundance models, because relative502

abundances are potentially more constrained then absolute abundances.503

The way forward504

Over the past decade, phyllosphere microbial ecologists have explored the deterministic505

factors that shape foliar microbiomes. The numerous associations between plant traits,506

abiotic conditions, and microbial community composition that have been reported suggest507

that deterministic forces do matter. However, many of the associations described have been508

fairly weak, which led us to probe the limits of the approach through the use of a large509

dataset and an explicitly predictive paradigm. Our results were poor, partly because of the510

inherent challenge of predicting abundances and occurrences of rare taxa. However, even for511
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the most well-observed microbial taxa in our survey, modeling was challenging. Our goal512

here was to explore if microbiome composition could be predicted, thus we did not build513

models at various taxonomic levels (e.g., at the phylum or genus level)—such models would514

be a potentially informative, next step.515

The general failure of our models confirms that predictive phyllosphere ecology will516

require more than an encyclopedic characterization of the foliar habitat and its influence on517

microbial taxa. Instead, future work could profitably explore the influence of microbe-microbe518

interactions, top-down pressure (predation, e.g., by phages) and priority effects on foliar519

microbiome community composition. While such work will undoubtedly push the limits of520

prediction past what we present here, we suspect that the long-tailed rank-abundance curves521

typical of foliar microbiomes imply inherent constraints to predictive microbiology do exist.522
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Table 1: Predictor variables (features), including plant traits and abiotic conditions, measured
for this study. Details of measurement and citations explaining the method or supporting
the possible influence of the feature are shown. We apologize to the many scientists whose
work was omitted due to space limitations.

Predictor variable Description Citations

Absorbance of
leaves at 940 nm

Measured using the PhotosynQ multispeQ handheld
spectrophotometer.

(Carvalho and
Castillo 2018;

Sanchez-Azofeifa
et al. 2012)

Ambient humidity Relative humidity (%) (Aung et al. 2018)

Area Leaf area measured in cm2 (Kinkel et al.
1987)

Circumference of
stem

Circumference of trees 1.5 m from the ground (Yu et al. 2021)

Compartment Endophyte (EN) or epiphyte (EP). Putative endophytes
were obtained from washed leaves, while epiphytes were
obtained from the liquid used to wash leaves

(Coleman-Derr
et al. 2016)

Date Julian date of sampling, starting from Jan 1 (Arnold and Herre
2003)

Dead & down The number of dead trees lying on the ground at the
site

Decaying wood
could be an

inoculum source.

Densiometer Densiometer measurements above each of the four floral
composition quadrants, ranges from 0–4, average taken
for each site

An index of
canopy closure at

the site.

Electrochromic
shift (ECS) initial

Measurement of ATP synthase activity. Measured using
the PhotosynQ multispeQ handheld spectrophotometer.

(Cruz et al. 2001;
Kramer et al.

1999; Sacksteder
et al. 2000)

Elevation Measured in meters (Zimmerman and
Vitousek 2012)
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Fs Light-adapted steady state fluorescence. Measured using
the PhotosynQ multispeQ handheld spectrophotometer.

(Genty et al.
1989)

gH Proton conductivity. Measured using the PhotosynQ
multispeQ handheld spectrophotometer.

(Kanazawa and
Kramer 2002)

Habit Growth habit, either shrub, forb, graminoid, or tree (Harrison and
Griffin 2020)

Height of sample Height in meters above ground of the sampling location
on the plant

(Harrison et al.
2016)

Host taxon Specific epithet of the host plant The influence of
host has been

found in all papers
of which we are

familiar, though it
can be quite weak
(Vincent et al.

2015).

Latitude Latitude of site (Arnold and
Lutzoni 2007)

Longitude Longitude of site (Wu et al. 2013)

Leaf temperature
differential

Contactless temperature (leaf surface temperature) mi-
nus ambient temperature. Measured using the Photo-
synQ multispeQ handheld spectrophotometer.

–

Leaves extracted Number of leaves or leaflets from which DNA was ex-
tracted

(Arnold et al.
2000)

Linear electron
flow (LEF)

Measurement of the movement of electrons from water
to NADP+ during photosynthesis. Measured using the
PhotosynQ multispeQ handheld spectrophotometer.

(Genty et al.
1989)

Light intensity
PAR

Photosynthetically active radiation. Fraction of light
(400–700nm) important for photosynthesis. Measured
using the PhotosynQ multispeQ handheld spectropho-
tometer.

(Carvalho and
Castillo 2018;

Fahimipour et al.
2018)

Mass extracted Grams of leaf material from which DNA was extracted. (Kinkel et al.
1987)
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Moran’s
eigenvector map
(MEM) 1, 2

Two MEMs created from latitude and longitude data of
each site.

(Bowman and
Arnold 2021)

Phenological
status

Categorical. One of fruiting, vegetative, flowering. (Cook et al. 2012)

Phi NO Non-regulatory energy dissipation. Measured using the
PhotosynQ multispeQ handheld spectrophotometer.

–

Phi NPQ Measurement of non-photochemical quenching. Mea-
sured using the PhotosynQ multispeQ handheld spec-
trophotometer.

–

Plant volume Volume of a box that could fit over the plant (Rho et al. 2018)

Precipitation Mean precip. during April (the month prior to the start
of sampling)

(Zimmerman and
Vitousek 2012)

qL Photosystem II redox state from the “lake” model. Mea-
sured using the PhotosynQ multispeQ handheld spec-
trophotometer.

(Kramer et al.
2004)

Relative
chlorophyll
intensity

A parameter derived by the multispeQ describing ab-
sorbance intensity of chlorophyll.

(Sanchez-Azofeifa
et al. 2012)

Relative
chlorophyll

A parameter derived by the multispeQ from absorbance
measurements at 650 and 940 nm that provides an esti-
mate of chlorophyll concentration

(Sanchez-Azofeifa
et al. 2012)

Shannon’s veg.
diversity

Vegetation diversity from Daubenmire plots within each
site

(Griffin and
Carson 2018;
Lajoie and

Kembel 2021)

Shrub richness The number of shrub species at the site (Griffin and
Carson 2018;
Lajoie and

Kembel 2021)

Specific leaf area
(SLA)

Leaf area divided by leaf mass (Knoth et al. 2013;
Liu et al. 2019)

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


Slope percentage The slope of the site measured in percent –

SPAD intensity at
420

Special Products Analysis Division (SPAD) - estimation
of relative chlorophyll content from absorbance measure-
ments. SPAD is a constant times relative chlorophyll
content. This constant is defined by the multispeQ
and approximates a proprietary constant from a Konica-
Minolta chlorophyll measurement device. Because of
high correlation of the measurement for different wave-
lengths only 420 nm was used.

(Sanchez-Azofeifa
et al. 2012)

Temperature Ambient temperature in degrees Celsius. Measured
using the PhotosynQ multispeQ handheld spectropho-
tometer.

(Zimmerman and
Vitousek 2012)

Temperature one
month prior

Average temperature in April, the month before sam-
pling started

(Zimmerman and
Vitousek 2012)

Time of day Sampling time (Hubbard et al.
2017)

Thickness Leaf thickness in µm (González-Teuber
et al. 2020)

Leaf toughness Measured in g with Chatillon penetrometer (Arnold and Herre
2003)

Tree richness Number of tree species within plot (Griffin and
Carson 2018;
Lajoie and

Kembel 2021)

Water retention Ability of a leaf to hold a water droplet as a function of
leaf angle, measured in degrees.

(Doan et al. 2020)

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


A
qu

ile
gi
a
ca
er
ul
ea

A
lp
in
e:
T
he

B
ea
rt
oo

th
m
ou

nt
ai
ns

S
ub

-a
lp
in
e:
C
la
rk
's
F
or
k

M
on

ta
ne
:
W

in
d
R

iv
er

ra
ng

e

P
ri
m
ul
a
pa

rr
yi

P
ol
em

on
iu
m

vi
sc
os
um

sa
m
pl
in
g
lo
ca
tio
n

Sa
m
pl
ed
ve
ge
ta
tio
n

as
se
m
bl
ag
es

a)
c)

b)

Figure 1: Example plant taxa sampled (a) and sampling locations in Wyoming,
U.S.A (b). Each star denotes a sampling region—at each region, sampling
took place at three different elevations. Sites were chosen within the alpine,
sub-alpine and montane vegetation zones (examples shown in c). The portion
of the map shaded blue approximately denotes the geographical extent of the
vegetation types surveyed. Plant taxa sampled included dominant trees, shrubs,
and forbs, along with interesting less common plants, with the goal of sampling
~80% of above-ground biomass. The map shown is from 1876, several years
before Wyoming became a state. Political jurisdictions of the day are shown
along with the portion of the state occupied by the Union-Pacific railroad
(delineated in pink lines at the bottom of the map). All photographs by J. G.
Harrison; map is part of the public domain.
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Figure 2: Biodiversity of phyllosphere microbes across 59 plant taxa collected
from the mountain ranges of Wyoming, U.S.A. Hash marks are superimposed
on epiphyte data. Data shown are median estimates of the relative abundances
of phyla across samples. An internal standard (ISD) was included in each
sample and used to place abundances on a standard scale (see main text).
Panel a) shows abundance by phylum and host taxon for bacteria. Panel b)
shows abundance by phylum and compartment for bacteria. Panels c) and d)
repeat this motif for fungi.
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Figure 3: Most microbial taxa, be they fungal (a) or bacterial (c), had unpre-
dictable abundances, in part because most taxa occurred in very few samples.
Feature importances from models of fungal relative abundance are shown as a
heatmap (b), with features that were more important for certain taxa shaded
more darkly. Heatmaps were not generated for bacteria, because models for
these taxa had poor performance. Features chosen were in the top ten most
important for successful models (those models with an R sq over 1%) and were
important for at least 20% of all successful models (thus those features that were
important for isolated taxa are not shown here, for the sake of visualization).
Only the fungal classes that each had at least five successful models are shown.
For a similar figure, but for fungal occurrence models, see Fig. S15. Importantly,
when models were rerun while including the abundances of certain co-occurring
microbial taxa, model performance improved, though not beyond what is shown
here. Microbial abundance features were typically some of the most influential
in the model (see main text). d) Venn diagrams showing the number and
proportion of microbial taxa that occurred as epiphytes (EP) or endophytes
(EN) or both.
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Supplementary Material

Field sampling details

Sampling locations were chosen to maximize geographical coverage within the state, facilitate
reasonable access, and ensure specific vegetation assemblages were sampled. Climate data for
each site from the month prior to sampling were downloaded from PRISM (PRISM Climate
Group, Oregon State University, http://prism.oregonstate.edu). To control for the effect
of aspect, all plots were located on west-facing slopes.

Plant taxa were chosen to ensure that approximately 80% or more of the biomass at each
site was sampled (as visually estimated) and to maximize the phylogenetic and phenotypic
breadth surveyed. Samples were collected using flame sterilized forceps, bagged, stored on
ice, and frozen within approximately 12 hours of collection using a battery-powered freezer.
At least three leaflets were sampled from most individuals, except for plant taxa with very
large leaves, where a single leaf was removed for DNA extraction. Because of the necessity of
sampling different numbers of leaves among taxa, the mass of leaf material from which DNA
was extracted was included in models.

Within each plot, two transect tapes were placed along the cardinal axes with the
intersection of the two tapes in the center of the plot. These tapes served as a Cartesian
coordinate system. For focal plant taxa, random coordinates were generated and the nearest
individual to those coordinates was sampled. If a plant taxon only occurred in a portion of the
plot, individuals were sampled haphazardly. To characterize overall vegetation composition
in each plot, all plant taxa within four randomly located 1m quadrats were assigned to one
of the following cover classes: ≤0.1%, 0.1–5%, 5–25%, 26–50%, 51–75%, 76–95%. Data from
each quadrat were aggregated by site and floral diversity (exponentiated Shannon’s) was
calculated from the upper values of the ranges for each cover class.

For each focal plant, phenology, height, width at widest point, the width perpendicular
to this point, and the product of these measurements, were collected. For trees, trunk
diameter at ~1.5m above the ground was also measured. A leaf proximal to those sampled for
DNA extraction was removed for measurement of leaf area, specific leaf area (also known as
density), leaf toughness (using a Chatillon 516-0500 force gauge), and water drop retention
ability. The leaf was chosen such that it was the approximately equal in size and shape to
those chosen for DNA extraction. It was not practical to perform DNA extraction on the
same leaf used for these measurements due to contamination concerns. Water drop retention
ability was the angle (in degrees) at which a droplet of water (4–5µl) placed on the leaf
surface began to move. Leaves were dried, digitally imaged, and leaf area was measured
using imageJ (Schneider et al. 2012). The same leaves were weighed and specific leaf area
(SLA) calculated. Additionally, for each focal individual, the Photosynq multispeQ (East
Lansing Michigan, USA) portable flurometer and spectrophotomer (Kuhlgert et al. 2016) was
used to measure relative chlorophyll content, leaf surface temperature, photosynthetically
active solar radiation (PAR) in the vicinity of the leaf, various metrics of light absorbance
and photosynthesis by the leaf, and ambient weather conditions (e.g., humidity; Table 1).
In addition, to characterize and account for spatial relatedness among sampling locations
during modeling, distance-based Moran’s eigenvector maps (MEM) were calculated at the
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site level using the dbmem function of the adespatial R package (Dray et al. 2016). The
geodesic distance between sites was used generate a distance matrix, which was decomposed
using dbmem, and the top two MEMs included in all models.

Epiphyte removal

We removed epiphytes via washing leaves using detergent and water (see main text). Evidence
for the success of this procedure includes the number of taxa that were observed within
epiphyte samples that did not appear in endophyte samples (Fig. 3). Additionally, a subset
of leaves (n = 84) were washed twice and the solution from the second rinse sequenced. On
average, slightly fewer sequencing reads were obtained from secondary rinses then primary
rinses and ordinations showed that rewashed samples were different than washed samples for
bacteria (Fig. S1 –S4). Fungal ordinations showed a general overlap of rewashed samples with
both epiphyte and endophyte samples, suggesting that fungi did not differ as much among
compartments as did bacteria, possibly because fungi were harder to wash off or because they
grew both within and without leaves (see main text).

Library preparation details

DNA was extracted using Qiagen DNEasy plant kits (plate format). Libraries were prepared
using a two-step procedure described in Harrison et al. (2021a). For bacteria, the 16S (V4)
locus was amplified using the 515-806 primer pair (Wang and Qian 2009), while for fungi the
ITS1 locus was amplified using the ITS1f-ITS2 primer pair (White et al. 1990). We used
shortened variants of the molecules presented in (Tourlousse et al. 2017) as internal standards
(see Harrison et al. 2021a, for details). To account for cross-contamination, short synthetic
sequences were added to each well of the 96-well plates used during library preparation. By
tracking these known sequences, we were able to identify instances of cross-contamination
and remove those samples from analysis (see Harrison et al. 2021a). We added an equimolar
amount (~0.18 pg, which translates into ~209–215 million molecules depending on the ISD;
we had an ISD for each locus) of a synthetic DNA internal standard (ISD) to each sample
prior to PCR. ISDs were inspired by (Tourlousse et al. 2017) and consisted of synthetic DNA
(matching no known organisms) that was placed in between primer sequences.

Libraries were created using duplicate PCR reactions consisting of 6 µl of 0.01 pg µL−1

coligos and 0.03 pg µL−1 of the ISD and 30 ul of template. Template was normalized to
10 ng µL−1. 6 µl each of 0.25 µm forward and reverse primers, 0.3 µl Kapa HiFi HotStart
DNA polymerase (New England BioLabs, Ipswich, MA, U.S.A.), 0.45 µl 10 M dNTPs, 3 µl
5x KAPA HiFi HotStart PCR buffer (New England BioLabs, Ipswich, MA, U.S.A.), 3.25 µl
of water, and 2 µl of template were mixed and used for the first round of PCR. The PCR
recipe was: denaturation at 95°C for 3 min, followed by 15 cycles of 98°C for 30 s, 62°C for
30 s, and 72°C for 30 s, and a final 5 min extension at 72°C. Amplicons were cleaned using
Axygen AxyPrep MagBead (24 µl; Corning; Glendale, Arizona, U.S.A). Reaction volume for
the second round of PCR was 15 µl. 0.5 µl each of 10 µm flowcell primers, 0.3 µl Kapa HiFi
HotStart DNA polymerase, 0.45 µl 10 M dNTPs, 3 µl 5x KAPA HiFi HotStart PCR buffer,
0.75 µl of water, and 10 µl of cleaned product from the first round of PCR were mixed for the
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second round of PCR. Denaturation at 95°C for 3 min, was followed by 19 cycles of 98°C
for 30 s, 55°C for 30 s, and 72°C for 30 s, and a final 5 min extension at 72°C. Products
were again cleaned using magnetic beads, normalized, pooled, and sent off for sequencing
by psomagen, Inc. (Rockville, MA, U.S.A.). Library success was determined via qPCR
and by using a Bio-Analyzer (Agilent, Santa Clara, CA, U.S.A). Aside from sequencing, all
laboratory work was conducted at the Genome Technologies Laboratory at the University of
Wyoming (Laramie, WY, U.S.A.).

Since each PCR replicate was tagged with a unique molecular identifier, we were able to
compare replicates. Sequence counts for PCR replicates were highly correlated and so were
combined in downstream analyses.

0.1 Bioinformatics

Paired-end sequences were merged using vsearch v2.9.0 (Rognes et al. 2016). Some ITS
reads did not overlap and thus were trimmed to a fixed length and concatenated. Reads
with more than a single possible error were removed. Exact sequence variants (ESVs) were
determined via vsearch and then these variants clustered by 97% similarity. We decided to
combine ESVs in this way because we recovered many tens of thousands of ESVs and treating
each of these ESVs individually was unwieldy. The large number of ESVs we recovered was
at least partially due to the extreme sequence depth possible with the NovaSeq and the
patterned flow cell of this machine may also have contributed (Singer et al. 2019). Taxonomic
hypotheses were generated using the SINTAX algorithm (Edgar 2016) and the UNITE (for
ITS; v7.2; Community 2017) and Greengenes (for 16S; v13.5; DeSantis et al. 2006) databases.

Modeling estimated proportion data

Division by the ISD cannot estimate the probability that a zero is biological or due to low
sequencing depth; therefore, a zero before normalization is a zero afterwards. To circumvent
this issue we also attempted to model all data using a hierarchical Bayesian model that shares
information among replicates within a sampling group (in our case, a sampling group was a
host taxon and compartment at a site) to estimate the probability of observing a taxon in
each sample; overall results were similar to those presented here for models of individual taxon
abundances and diversity (see the Supplemental Material; Harrison et al. 2020b; Harrison
et al. 2020a).

We also modeled count data using a hierarchical Bayesian approach implemented via
the CNVRG R package (v. 1.0.0; Harrison et al. 2020b). This method estimates taxon
proportions within a sample as parameters of a multinomial distribution with a Dirichlet prior,
which is used to share information among samples within treatment groups (Harrison et al.
2020a). Treatment groups were the combination of host taxon and compartment at individual
sites. For example, we shared information among the ten EN samples from a particular
plant taxon at a location. The benefit of the CNVRG approach is the information sharing
among samples within a treatment group and the ability to pass uncertainty in microbial
abundances to downstream analyses. Our rationale was that sharing of information could be
useful for estimating the probability of observing rare taxa when there was extreme variation
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in sequencing depth among samples. This style of modeling, since it relies on proportional
data, avoids the issues imposed by rarefaction.

When using proportional abundances extracted from our hierarchical Bayesian approach
in our random forest, model performance was generally poor for fungi, with R2 exceeding
1% for only 8 fungi. All 23 bacteria had model R2 of between 5–9%. The similarity among
bacteria likely is due to the constraints imposed by prior structure of the hierarchical model,
given the relatively low read count for many bacterial taxa in many samples.

0.2 Machine learning details

We used a rigorous approach to model fitting, tuning, and performance determination that
was reliant upon the mlr3 R package (v 0.12.0; Lang et al. 2019). mlr3 provides an interface
to assist with the considerable programmatic bookkeeping needed to run many thousands
of models using different parameters and datasets. Our general approach was to split the
data into many testing and training datasets, then train the model on those data, tune the
hyper-parameters of the model and then assess model performance. Imputation was done
within each sub-dataset, as was hyper-parameter tuning, thus avoiding information from the
training data leaking into the testing data.

Feature engineering included conversion of categorical covariate data to numeric data via
one-hot encoding, imputation of missing data, and scaling and centering data (conversion to
z scores). Features were built to stratify data during splitting into testing and training sets
to ensure similarity between both datasets. For example, a feature describing if a focal taxon
was above its median abundance in a sample was used to ensure that neither the testing
nor the training data were under-representative of the focal taxon’s variation in abundance.
Plant compartment (either EP or EN) was also used during stratification, because a priori
analysis suggested it was an important determinant of microbiome composition.

Correlation of features was examined and one of a group of highly correlated features
were included in models (e.g., elevation was included but not atmospheric pressure; Fig. S5).
The exception to this were several features that were correlated with elevation, such as mean
temperature and tree and shrub species richness within sampling plots. These features were
retained since they varied among lower elevation sites and because they were of general
interest to us.

Hyper-parameter tuning was performed using the “AutoTuner” function of mlr3 using the
hyperband tuning algorithm (Li et al. 2017), which adaptively allocates compute resources to
better explore higher performing portions of parameter space. Hyper-parameters considered
during tuning were the number of trees in the ensemble (50–400), the fraction of the samples
used for each tree (0.01–0.3), the minimum node size (1–25; meaning how many samples are
retained in the “leaves” of the trees), and the splitting rule used for designating splits in
decision trees. Both the “extratrees” and “variance” split rules were considered. The former
institutes the “extremely randomized trees” approach of Geurts et al. (2006), where splits in
the trees are assigned randomly. The “variance” splitting rule determines splits such that
variance in the response is minimized within each group delineated by the split and trees are
built using subsets of the data. A nested resampling approach (using mlr3; three outer splits
and four inner splits) was used to determine an unbiased estimate of model performance.
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0.3 Supplemental results and discussion

Our poor results likely overestimate our ability to predict microbiome composition. This is
because much of our sequencing data was composed of extremely rare genetic material that
was removed during the bioinformatics prior to modeling. Between both loci surveyed, over
500,000 unique sequences were obtained, most of which were discarded during filtering (a
process referred to as “denoising”, a standard step to remove possible technically-derived
variants). While it is reasonable to assume a subset of these unique sequences were artifacts of
PCR, it seems certain that some were biologically-derived. Unfortunately, current technology
precludes accurate provenance determination of infrequent sequences, consequently the current
standard is to discard these data.

Because we used the Novaseq platform, which improves upon older Illumina technology
through the use of a patterned flow cell that can better distinguish between clusters during
sequencing-by-synthesis, we may have obtained sequences from more rare taxa than is typical
(a possibility suggested in Singer et al. 2019). However, the rank abundance curves that we
observed for our data generally match those reported in the literature—with few abundant
taxa and many rare taxa (Figs. S31 & S32). Indeed, this pattern is ubiquitous in ecology
(Hubbell 2001), though perhaps microbial assemblages tend to have a longer tail of rare taxa
than do macrobial assemblages (Locey and Lennon 2016).

There was an interesting disparity in overall abundance between bacteria and fungi when
moving between plant compartments. Bacteria tended to be more abundant on the surfaces of
leaves compared to their interiors, but the opposite was true for fungi (an inference that was
made possible through the use of an internal standard). This result affords ample opportunity
for speculation regarding mechanism. Perhaps fungi can better survive the plant’s immune
system than bacteria or perhaps the result is because some fungi possess better tools, such as
appressoria, to make their way into leaves. More simply, perhaps fungi have a harder time
growing on the surface of the leaf than do bacteria. We suggest that culturing studies that
simulate growth inside versus outside of a leaf (e.g., by varying ultraviolet light exposure, diel
cycles in abiotic conditions, and nutrient availability) could provide insight into our results.

We also found that leaf area and Moran’s eigenvector maps were influential features
in our models, as might be expected if dispersal was important (though, of course, these
same features are confounded with potentially important variation in the foliar habitat),
yet these features collectively explained only a small proportion of microbiome variation. If
dispersal and priority effects are key to understanding patterns of variation among microbial
taxa then this adds impetus to the study of dispersal rates and distances, taxon-specific
propagule counts, and spore persistence among microbes, as without this basic natural history
knowledge parameterizing theory will not be possible (i.e., island biogeographic theory).

We do not think that problems with the ISD itself caused the failure of our absolute
abundance models because models were taxon-specific and samples that did not include the
ISD (for instance, due to poor sequencing) were omitted from analysis. That is, variation in
a single microbial taxon was modeled after dividing the sequence counts for that taxon by
the counts for the ISD—thus, stated colloquially, models compared apples to apples. This
approach was necessary because inter-taxon comparisons are not reliable due to copy-number
variation (CNV) and likely differences among taxa in ISD commutability, which describes
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the similarity in behaviour between the ISD and a particular taxon during extraction and
PCR (Harrison et al. 2021c). CNV could vary among samples for a single microbial taxon,
but this should have influenced both relative and absolute abundances similarly and thus
seems unlikely to be the primary reason absolute abundance models performed so badly when
co-occurring microbes were not included as features. We note that without an ISD we would
not have trusted the results from models that included co-occurring microbes as features,
because of the spectre of compositionality.
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Table S1: Number of times a feature was in the top ten most im-
portant for models of fungal abundance (ISD standardized) at the
landscape level and which had an R2 > 0.01. Only the top fifteen
most important features are shown. 57 taxa out of 172 that met our
modeling requirements were predictable.

Feature Num. of times in top ten most important.

Shannon’s flora 23

Mean temp. April 23

Light intensity PAR 22

Sla 21

Shrub richness 20

Habit:forb 20

Elevation 19

Ambient humidity 19

MEM2 18

Ambient temperature 18

Height of sample 17

Precip. in April 16

LEF 15

Julian date 15

Fs 15

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


Table S2: Number of times a feature was in the top ten most important
for models of fungal relative abundance (Hellinger standardized) at
the landscape level and which had an R2 > 0.01. Only the fifteen
most important features are shown. 155 taxa out of 172 that met our
modeling requirements were predictable.

Feature Num. of times in top ten most important.

Height of sample 94

Elevation 81

Leaf area 73

Sla 72

Julian date 63

Longitude 60

Latitude 55

Precip. in April 53

Habit:tree 53

Shannon’s flora 52

Shrub richness 51

MEM2 51

Mean temp. April 50

Plant volume 49

Ambient temperature 45

35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


Table S3: Number of times a feature was in the top ten most important
for models of fungal occurrence with an MCC of 0.2 or greater. Only
the fifteen most important features are shown. 39 taxa out of 172 that
met our modeling requirements were predictable.

Feature Num. of times in top ten most important.

Height of sample 41

Leaf area 40

Sla 37

Elevation 35

Plant volume 25

Mean temp. April 25

Longitude 25

MEM2 20

Latitude 19

Julian date 19

Shrub richness 16

Ambient humidity 16

Precip. in April 15

Dead and down 15

Shannon’s flora 14
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Table S4: Features ranked by the number of times they were in the top
ten most influential for only those models of relative abundances that
had an R2 > 0.25. Models for fifteen fungal taxa had such high R2

values and 12 of those taxa were hypothesized to be within Ascomycota.
The other three taxa were not placed within a phylum via a SINTAX
query of the UNITE database (see main text). Only the top 20 features
are shown. Notably, no single fungal taxon was predictable at an
R2 > 0.25 when using ISD transformed data (absolute abundance)
without including co-occurring microbes.

Feature Num. of times in top ten most important.

Shannon’s flora 3

Ambient temperature 4

Taxon: Pinus contorta 4

Densitometer 5

Habit:tree 5

MEM1 5

Slope perc. 5

Leaf area 6

Height of sample 7

Tree richness 7

Longitude 8

Sla 8

Dead and down 9

MEM2 9

Precip. in April 9

Latitude 10

Mean temp. April 10

Julian date 11

elevation 12

Shrub richness 12
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Table S7: Number of times a feature was in the top ten most important
for models of fungal abundance (ISD standardized) that were limited
to a single host taxon and which had an R2 > 0.01. Only the fifteen
most important features are shown. Models were successful for 16 out
of 110 combinations of host and microbial taxon.

Feature Num. of times in top ten most important.

Rel. chlorophyll intensity 13

Compartment: EN 13

Phenology: fruiting 12

Tree richness 11

SPAD 420 intensity 11

Phenology: vegetative 11

Leaves extracted 11

Densitometer 9

Slope perc. 7

gH. 7

Absorbance 940 5

Latitude 4

Height of sample 4

Shrub richness 3

Julian date 3
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Table S8: Number of times a feature was in the top ten most important
for models of fungal relative abundance (Hellinger transformed) that
were limited to a single host taxon and which had an R2 > 0.01. Only
the fifteen most important features are shown. Models were successful
for 66 out of 110 combinations of host and microbial taxon.

Feature Num. of times in top ten most important.

SPAD 420 intensity 63

Rel. chlorophyll intensity 59

Compartment: EN 57

Phenology: vegetative 55

Densitometer 55

Phenology: fruiting 54

gH. 54

Tree richness 53

Shrub richness 53

Leaves extracted 41

Slope perc. 25

MEM1 8

Julian date 8

Dead and down 8

Phenology: flowering 7
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Table S9: Number of times a feature was in the top ten most important
for models of fungal occupancy that were limited to a single host
taxon and that had an MCC greater than 0.2. The fifteen most
important features are shown. Models were successful for 81 out of
110 combinations of host and microbial taxon.

Feature Num. of times in top ten most important.

SPAD 420 intensity 42

Compartment: EN 42

Tree richness 40

Rel. chlorophyll intensity 38

gH. 38

Phenology: vegetative 37

Densitometer 37

Shrub richness 36

Phenology: fruiting 33

Leaves extracted 26

Slope perc. 16

Phenology: flowering 6

Julian date 6

Plant volume 4

Dead and down 4

Table S10: Differences in estimated fungal Shannon’s diversity by compartment and host
growth habit. EN refers to endophytes and EP refers to epiphytes. The estimated difference
in diversity is shown with 95% confidence intervals and a p value adjusted for multiple
comparisons.

Comparison diff lwr upr p adj

EN graminoid-EN
forb

17.43 -371.38 406.25 1.00

EN shrub-EN forb -83.72 -314.04 146.61 0.96
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EN tree-EN forb -273.27 -511.74 -34.79 0.01

EP forb-EN forb 383.26 195.33 571.18 0.00

EP graminoid-EN
forb

380.05 -4.34 764.44 0.06

EP shrub-EN forb 150.86 -78.93 380.66 0.49

EP tree-EN forb 116.34 -128.20 360.87 0.84

EN shrub-EN
graminoid

-101.15 -512.03 309.73 1.00

EN tree-EN
graminoid

-290.70 -706.21 124.80 0.40

EP forb-EN
graminoid

365.82 -22.88 754.52 0.08

EP graminoid-EN
graminoid

362.62 -150.73 875.97 0.39

EP shrub-EN
graminoid

133.43 -277.15 544.01 0.98

EP tree-EN
graminoid

98.90 -320.11 517.91 1.00

EN tree-EN shrub -189.55 -462.52 83.42 0.41

EP forb-EN shrub 466.97 236.85 697.10 0.00

EP graminoid-EN
shrub

463.77 57.07 870.46 0.01

EP shrub-EN
shrub

234.58 -30.84 500.00 0.13

EP tree-EN shrub 200.05 -78.23 478.33 0.36

EP forb-EN tree 656.53 418.24 894.81 0.00

EP graminoid-EN
tree

653.32 241.96 1064.68 0.00

EP shrub-EN tree 424.13 151.61 696.65 0.00

EP tree-EN tree 389.60 104.54 674.66 0.00

EP graminoid-EP
forb

-3.21 -387.48 381.07 1.00
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EP shrub-EP forb -232.39 -461.99 -2.80 0.04

EP tree-EP forb -266.92 -511.27 -22.58 0.02

EP shrub-EP
graminoid

-229.19 -635.58 177.21 0.68

EP tree-EP
graminoid

-263.72 -678.62 151.19 0.53

EP tree-EP shrub -34.53 -312.37 243.31 1.00

Table S11: Differences in estimated bacterial Shannon’s diversity by compartment and host
growth habit. EN refers to endophytes and EP refers to epiphytes. The estimated difference
in diversity is shown with 95% confidence intervals and a p value adjusted for multiple
comparisons.

Comparison diff lwr upr p adj

EN graminoid-EN
forb

38.43 -60.14 137.00 0.94

EN shrub-EN forb 11.21 -47.09 69.51 1.00

EN tree-EN forb -15.59 -75.79 44.60 0.99

EP forb-EN forb 7.37 -39.82 54.57 1.00

EP graminoid-EN
forb

-15.29 -112.12 81.55 1.00

EP shrub-EN forb -18.55 -76.31 39.20 0.98

EP tree-EN forb -7.85 -69.43 53.73 1.00

EN shrub-EN
graminoid

-27.22 -131.32 76.89 0.99

EN tree-EN
graminoid

-54.02 -159.20 51.16 0.78

EP forb-EN
graminoid

-31.05 -129.37 67.26 0.98

EP graminoid-EN
graminoid

-53.72 -183.39 75.96 0.91
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EP shrub-EN
graminoid

-56.98 -160.78 46.82 0.71

EP tree-EN
graminoid

-46.28 -152.25 59.70 0.89

EN tree-EN shrub -26.80 -95.69 42.08 0.94

EP forb-EN shrub -3.84 -61.71 54.04 1.00

EP graminoid-EN
shrub

-26.50 -128.96 75.97 0.99

EP shrub-EN
shrub

-29.76 -96.53 37.00 0.88

EP tree-EN shrub -19.06 -89.16 51.04 0.99

EP forb-EN tree 22.97 -36.81 82.75 0.94

EP graminoid-EN
tree

0.30 -103.25 103.86 1.00

EP shrub-EN tree -2.96 -71.38 65.46 1.00

EP tree-EN tree 7.74 -63.94 79.42 1.00

EP graminoid-EP
forb

-22.66 -119.24 73.92 1.00

EP shrub-EP forb -25.93 -83.25 31.40 0.87

EP tree-EP forb -15.22 -76.40 45.95 1.00

EP shrub-EP
graminoid

-3.26 -105.42 98.89 1.00

EP tree-EP
graminoid

7.44 -96.93 111.80 1.00

EP tree-EP shrub 10.70 -58.94 80.34 1.00

Table S12: Differences in estimated bacterial richness by compartment and host growth habit.
EN refers to endophytes and EP refers to epiphytes. The estimated difference in richness is
shown with 95% confidence intervals and a p value adjusted for multiple comparisons. The
random forest model for 16s richness was not successful (R2~=0).
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Comparison Diff. Lower
bound

Upper
bound

Adj. p

forb EP-forb EN 0.76 0.37 1.15 0.00

graminoid
EN-forb EN

-0.46 -1.31 0.40 0.74

graminoid EP-forb
EN

0.74 -0.00 1.48 0.05

shrub EN-forb EN 0.14 -0.36 0.63 0.99

shrub EP-forb EN 0.82 0.37 1.28 0.00

tree EN-forb EN 0.18 -0.31 0.67 0.96

tree EP-forb EN 0.74 0.26 1.23 0.00

graminoid
EN-forb EP

-1.22 -2.06 -0.38 0.00

graminoid EP-forb
EP

-0.02 -0.75 0.71 1.00

shrub EN-forb EP -0.62 -1.10 -0.15 0.00

shrub EP-forb EP 0.07 -0.36 0.49 1.00

tree EN-forb EP -0.58 -1.05 -0.12 0.00

tree EP-forb EP -0.02 -0.48 0.44 1.00

graminoid
EP-graminoid EN

1.20 0.15 2.25 0.01

shrub
EN-graminoid EN

0.59 -0.30 1.48 0.48

shrub
EP-graminoid EN

1.28 0.41 2.15 0.00

tree EN-graminoid
EN

0.63 -0.26 1.52 0.38

tree EP-graminoid
EN

1.20 0.31 2.09 0.00

shrub
EN-graminoid EP

-0.61 -1.40 0.18 0.28
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shrub
EP-graminoid EP

0.08 -0.68 0.85 1.00

tree EN-graminoid
EP

-0.56 -1.35 0.22 0.37

tree EP-graminoid
EP

0.00 -0.78 0.79 1.00

shrub EP-shrub
EN

0.69 0.16 1.22 0.00

tree EN-shrub EN 0.04 -0.52 0.60 1.00

tree EP-shrub EN 0.61 0.05 1.16 0.02

tree EN-shrub EP -0.65 -1.17 -0.12 0.00

tree EP-shrub EP -0.08 -0.60 0.44 1.00

tree EP-tree EN 0.57 0.01 1.12 0.04

Table S13: Differences in estimated fungal richness by compartment and host growth habit.
EN refers to endophytes and EP refers to epiphytes. The estimated difference in richness is
shown with 95% confidence intervals and a p value adjusted for multiple comparisons. The
random forest model for 16s richness was not successful (R2~=0).

Comparison Diff. Lower
bound

Upper
bound

Adj. p

forb EP-forb EN -0.36 -0.65 -0.07 0.00

graminoid
EN-forb EN

-0.40 -0.99 0.18 0.41

graminoid EP-forb
EN

-0.23 -0.81 0.36 0.94

shrub EN-forb EN 0.02 -0.32 0.36 1.00

shrub EP-forb EN 0.02 -0.32 0.36 1.00

tree EN-forb EN 0.07 -0.29 0.43 1.00

tree EP-forb EN 0.19 -0.18 0.56 0.75

graminoid
EN-forb EP

-0.04 -0.63 0.54 1.00
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graminoid EP-forb
EP

0.13 -0.45 0.72 1.00

shrub EN-forb EP 0.38 0.04 0.73 0.01

shrub EP-forb EP 0.38 0.04 0.72 0.02

tree EN-forb EP 0.43 0.07 0.79 0.01

tree EP-forb EP 0.55 0.18 0.93 0.00

graminoid
EP-graminoid EN

0.18 -0.60 0.95 1.00

shrub
EN-graminoid EN

0.43 -0.18 1.04 0.40

shrub
EP-graminoid EN

0.42 -0.19 1.03 0.43

tree EN-graminoid
EN

0.47 -0.15 1.09 0.29

tree EP-graminoid
EN

0.60 -0.03 1.23 0.08

shrub
EN-graminoid EP

0.25 -0.36 0.86 0.92

shrub
EP-graminoid EP

0.24 -0.37 0.86 0.93

tree EN-graminoid
EP

0.30 -0.33 0.92 0.83

tree EP-graminoid
EP

0.42 -0.21 1.05 0.46

shrub EP-shrub
EN

-0.01 -0.40 0.38 1.00

tree EN-shrub EN 0.05 -0.36 0.45 1.00

tree EP-shrub EN 0.17 -0.24 0.58 0.92

tree EN-shrub EP 0.05 -0.35 0.46 1.00

tree EP-shrub EP 0.18 -0.24 0.59 0.90

tree EP-tree EN 0.12 -0.30 0.55 0.99
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Table S14: Median fungal epiphyte richness of host plants. Only the
top 20 most rich are shown.

Host taxon Median richness Habit

Unknown fir 40.48 tree

Wyethia amplexicaulis 41.71 forb

Arnica cordifolia 44.00 forb

Potentilla pulcherrima 44.59 forb

Abies concolor 47.95 tree

Picea engelmannii 48.80 tree

Helianthella uniflora 53.11 forb

Symphoricarpos albus 53.65 shrub

Pseudotsuga menziesii 54.34 tree

Unknown Spruce 56.14 tree

Ribes montigenum 61.44 shrub

Sedum lanceolatum 62.49 forb

Eriogonum umbellatum 62.95 forb

Minuartia obtusiloba 73.93 forb

Abies grandis 76.98 tree

Juniperus communis 77.00 shrub

Poa wheeleri 82.10 graminoid

Vaccinium membranaceum 88.62 shrub

Pinus contorta 123.15 tree

Paxistima myrsinites 212.51 shrub
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Table S15: Median fungal endophyte richness of host plants. Only
top 20 most rich host taxa shown.

Host taxon Median richness Habit

Symphoricarpos albus 42.38 shrub

Vaccinium scoparium 42.51 shrub

Ribes montigenum 43.73 shrub

Sedum lanceolatum 46.32 forb

Heracleum maximum 46.55 forb

Unknown fir 48.45 tree

Fragaria virginiana 49.56 forb

Pinus contorta 56.62 tree

Pseudotsuga menziesii 60.44 tree

Eriogonum umbellatum 61.35 forb

Astragalus kentrophyta 63.22 forb

Juniperus communis 74.34 shrub

Minuartia obtusiloba 77.87 forb

Poa pratensis 80.95 graminoid

Abies grandis 83.27 tree

Osmorhiza depauperata 89.40 forb

Vaccinium membranaceum 93.71 shrub

Abies concolor 119.11 tree

Antennaria media 179.80 forb

Paxistima myrsinites 289.50 shrub
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Figure S1: Boxplot showing read abundances from samples that were washed
multiple times to determine the efficacy of our epiphyte removal technique.
Data were divided by the internal standard to place them on a standard scale.
For bacterial data, see Fig. S2

51

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


EN EP rewash

−
2

−
1

0
1

2

lo
g 

10
 IS

D
 n

or
m

al
iz

ed
 c

ou
nt

s

Figure S2: Boxplot showing read abundances from samples that were washed
multiple times to determine the efficacy of our epiphyte removal technique.
Data were divided by the internal standard to account for compositionality.
For fungal data see, Fig. S1

52

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●● ●

●

●

●

●

●

●

● ● ●● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●●●●

●

● ●●●
●

●

●

●

●●●

●

● ●

●

●

●●●●

●

●●

●

●

●
●●

●

●

●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●

●●●●●●●●
● ●●

●

●

●

●●● ●●
●●

●

●

● ●● ●●

●

●

●

●
●●

●

●

●

●

●

●●●
●

●

●

●

●
● ●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

● ●●

●

●

●

●●●●● ●●●
●

●●

●

●

●
●●

●

●

●

● ●● ●

●

●

●●

●

−0.2 0.0 0.2 0.4 0.6 0.8

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

PCoA 1

P
C

oA
 2

EN
EP
rewash

Figure S3: Principal coordinates ordination of samples that were washed
multiple times to determine the efficacy of our epiphyte removal technique.
Data were Hellinger transformed bacterial count data converted to a Euclidean
distance matrix. A PERMANOVA by treatment (one of “EP”,“EN”,“rewash”)
was significant.
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Figure S4: Principal coordinates ordination of samples that were washed
multiple times to determine the efficacy of our epiphyte removal technique.
Data were Hellinger transformed fungal count data converted to a Euclidean
distance matrix. A PERMANOVA by treatment (one of “EP”,“EN”,“rewash”)
was not significant.
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Figure S5: Pearson’s pairwise correlations among features used in random forest
models of microbial relative abundances. Blue denotes positive correlation and
red negative correlation. The strength of association is denoted via shading, as
shown in the sidebar. Question marks denote instances where missing data in
the features being associated coincided, thus preventing accurate correlation
assessment. For a description of features, see Table 1.
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Figure S6: Read count data from various sources (e.g., plant, microbes) shown
as abundances (divided by the ISD), logged abundances (natural log), and
proportions. “modeled” refers to those taxa that were included in modeling
efforts. “rare” refers to those taxa that were not modeled.
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Figure S7: Frequency distribution of host use for fungal (left) and bacterial
(right) taxa considered for our random forest analyses. These taxa were the
most prevalent, and some of the most abundant, in our dataset.
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Figure S8: Principal coordinates analysis ordination of 16s (bacterial) data color-
coded to reflect samples differing by plant life history. Data were normalized
by the internal standard, Hellinger transformed, and converted to a Euclidean
distance matrix. A PERMANOVA by treatment had an R2 =~0.03 (p = 0.001),
but the homogeneity of variances assumption of this test was violated.
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Figure S9: Principal coordinates analysis ordination of 16s (bacterial) data
color-coded to reflect samples differing by compartment, either epiphyte (EP)
or endophyte (EN). Data were normalized by the internal standard, Hellinger
transformed, and converted to a Euclidean distance matrix. A PERMANOVA
by treatment had an R2 =~0.13 (p = 0.001), but the homogeneity of variances
assumption of this test was violated.
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Figure S10: Principal coordinates analysis ordination of ITS (fungal) data
color-coded to reflect samples differing by compartment, either epiphyte (EP)
or endophyte (EN). Data were normalized by the internal standard, Hellinger
transformed, and converted to a Euclidean distance matrix. A PERMANOVA
by treatment had an R2 =~0.01 (p = 0.001), but the homogeneity of variances
assumption of this test was violated.
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Figure S11: Principal coordinates analysis ordination of ITS (fungal) data
color-coded to reflect samples differing by life history. Data were normalized
by the internal standard, Hellinger transformed, and converted to a Euclidean
distance matrix. A PERMANOVA by treatment had an R2 =~0.02 (p = 0.001),
but the homogeneity of variances assumption of this test was violated.
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Figure S12: Relationship between R2 values of random forest models for the
relative abundance of each microbial taxon (Hellinger standardized data) and
mean relative abundance. This relationship shows if model performance was
influenced by taxon relative abundance. Pearson’s correlation coefficients are
shown. The correlation between fungal abundance and R2 was significant,
but the correlation between bacterial abundance and R2 was not (sample size
differed drastically between these comparisons, thus influencing p values, see
main text).
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Figure S13: Relationship between R2 values of random forest models for the
absolute abundance of each microbial taxon (abundances normalized by the ISD)
and mean absolute abundance. This relationship shows if model performance
was influenced by taxon abundance. Pearson’s correlation coefficients are
shown. The correlation between fungal abundance and R2 was significant,
but the correlation between bacterial abundance and R2 was not (sample size
differed drastically between these comparisons, thus influencing p values, see
main text).
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Figure S14: Relationship between Matthew’s Correlation Coefficient (MCC)
values of random forest models for the occurrence of each microbial taxon
and prevalence (how many samples the microbial taxon was observed within).
Pearson’s correlation coefficients are shown. The correlation between fungal
abundance and R2 was significant (p < 0.01), but the correlation between
bacterial abundance and R2 was not (p = 0.11; sample size differed drastically
between these comparisons, thus influencing p values, see main text).
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Figure S15: Heatmaps of feature importance for models of fungal occupancy
(a) and absolute abundance (b). Heatmaps were not generated for bacteria,
because bacterial assemblage variation was generally unpredictable. Features
chosen were in the top ten most important for successful models (those models
with an R sq over 1% or an MCC greater than 0.2) and were important for at
least 20% of all successful models (thus those features that were important for
isolated taxa are not shown here, for the sake of visualization).
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Figure S16: Partial dependence plots showing the modeled relationship between
each feature (x axis; z score standardized) and the relative abundance of a
fungal taxon (y axis). Each line shows the response curve for a different fungal
taxon. Feature-taxon relationships shown are from the best performing models,
each of which had an R2 > 0.25. Axis dimensions are standardized among plots
to aid visual comparison. Because so few models were successful for fungal
absolute abundances and bacteria we omit analogous figures for them.
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Figure S17: Shannon’s diversity of bacterial (a) and fungal (b) assemblages
from epiphyte (EP) and endophyte (EN) samples of various plant taxa grouped
by growth habit (forb, graminoid, shrub, or tree). Diversity estimates were
exponentiated to convert them into species equivalents. Boxplots denote in-
terquartile ranges, with a horizontal bar illustrating the median. Whiskers
extend from the 10th to the 90th quantiles of the data. For Tukey’s HSD
comparisons among groups see Tables S10 and S11.
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Figure S18: Shannon’s diversity of bacterial assemblages by host for
epiphyte (EP) and endophyte (EN) samples. Diversity estimates
were exponentiated to convert them into species equivalents and
were calculated from ISD normalized count data. Boxplots denote
interquartile ranges, with a horizontal bar illustrating the median.
Whiskers extend from the 10th to the 90th quantiles of the data.
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Figure S19: Shannon’s diversity of fungal assemblages by host for epiphyte (EP)
and endophyte (EN) samples. Diversity estimates were exponentiated to convert
them into species equivalents and were calculated from ISD normalized count
data. Boxplots denote interquartile ranges, with a horizontal bar illustrating
the median. Whiskers extend from the 10th to the 90th quantiles of the data.
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Figure S20: Estimated richness of ITS and 16S OTUs as a function of host
compartment and life history. For details of richness estimation see main text.
Results from a Tukey’s HSD test are shown in Tables S13 and S12.
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Figure S21: Feature importance plot for a random forest model of fungal
Shannon’s diversity.

71

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


phenology_vegetative

Relative_Chlorophyll

lat

height_sample

phenology_flowering

SPAD_420_intensity

Ambient_Temperature

area_cm2

phenology_fruiting

shrubRich

precip_april_in.x

slope_perc

julianDate

densitometer

taxon_final_Primulaparryi

0 1000 2000 3000 4000
Importance

Figure S22: Feature importance plot for a random forest model of bacterial
Shannon’s diversity.
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Figure S23: Feature importance plot for a random forest model of fungal
endophyte Shannon’s diversity.
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Figure S24: Feature importance plot for a random forest model of fungal
epiphyte Shannon’s diversity.
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Figure S25: Feature importance plot for a random forest model of bacterial
endophyte Shannon’s diversity.
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Figure S26: Partial dependence plot (PDP) of the most influential continuous
features used by a random forest model of fungal Shannon’s diversity. PDPs
show the relationship between a feature and the response across both of their
ranges.

76

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.20.492878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492878
http://creativecommons.org/licenses/by/4.0/


2283

2284

2285

2286

2287

2288

0 1 2
Densitometer

P
ar

tia
l d

ep
en

de
nc

e

2284

2285

2286

2287

2288

2289

−1 0 1
Collection date

P
ar

tia
l d

ep
en

de
nc

e

2284

2286

2288

−1 0 1 2
Slope %

P
ar

tia
l d

ep
en

de
nc

e

2284

2285

2286

2287

2288

−1 0 1 2
Precipitation in April

P
ar

tia
l d

ep
en

de
nc

e

2281

2283

2285

2287

−1 0 1 2
Shrub richness

P
ar

tia
l d

ep
en

de
nc

e

2250

2260

2270

2280

2290

0 5 10 15
Leaf area

P
ar

tia
l d

ep
en

de
nc

e

Figure S27: Partial dependence plot (PDP) of the most influential continuous
features used by a random forest model of bacterial Shannon’s diversity. PDPs
show the relationship between a feature and the response across both of their
ranges.
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Figure S28: Partial dependence plot (PDP) of the most influential continuous
features used by a random forest model of fungal endophyte Shannon’s diversity.
PDPs show the relationship between a feature and the response across both of
their ranges.
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Figure S29: Partial dependence plot (PDP) of the most influential continuous
features used by a random forest model of fungal epiphyte Shannon’s diversity.
PDPs show the relationship between a feature and the response across both of
their ranges.
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Figure S30: Partial dependence plot (PDP) of the most influential continuous
features used by a random forest model of bacterial endophyte Shannon’s
diversity. PDPs show the relationship between a feature and the response
across both of their ranges. A PDP from the model of bacterial ephiphyte
diversity is not provided because the model had poor predictive performance.
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Figure S31: Rank abundance histograms for ISD transformed data. Locus and
compartment are shown in each plot. Frequency refers to the number of taxa
within a given abundance class. A single random sample was chosen from each
sampling location and host, thus some hosts are represented more than once
since they occurred at multiple sites.
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Figure S32: Rank abundance histograms for Hellinger transformed data. Locus
and compartment are shown in each plot. Frequency refers to the number of
taxa within a given abundance class. A single random sample was chosen from
each sampling location and host, thus some hosts are represented more than
once since they occurred at multiple sites.
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