
 1 

Ecological Dynamics Imposes Fundamental 1 

Challenges in Microbial Source Tracking 2 

Xu-Wen Wang1, Lu Wu2, Lei Dai2,3, Xiaole Yin4, Tong Zhang4, Scott T. Weiss1 & Yang-Yu 3 

Liu1  4 

1Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s 5 

Hospital and Harvard Medical School, Boston, MA, 02115, USA. 6 
2CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic 7 

Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China. 8 
3University of Chinese Academy of Sciences, Beijing 100049, China. 9 
4Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil 10 

Engineering, The University of Hong Kong, Hong Kong, China. 11 

ABSTRACT 12 
Quantifying the contributions of possible environmental sources (“sources”) to a specific microbial 13 

community (“sink”) is a classical problem in microbiology known as microbial source tracking 14 

(MST). Solving the MST problem will not only help us understand how microbial communities 15 

were formed, but also have far-reaching applications in pollution control, public health, and 16 

forensics. Numerous computational methods, referred to as MST solvers hereafter, have been 17 

developed in the past and applied to various real datasets to demonstrate their utility across 18 

different contexts. Yet, those MST solvers do not consider microbial interactions and priority 19 

effects in microbial communities. Here, we revisit the performance of several representative MST 20 

solvers. We show compelling evidence that solving the MST problem using existing MST solvers 21 

is impractical when ecological dynamics plays a role in community assembly. In particular, we 22 

clearly demonstrate that the presence of either microbial interactions or priority effects will render 23 

the MST problem mathematically unsolvable for any MST solver. We further analyze data from 24 

fecal microbiota transplantation studies, finding that the state-of-the-art MST solvers fail to 25 

identify donors for most of the recipients. Finally, we perform community coalescence 26 

experiments to demonstrate that the state-of-the-art MST solvers fail to identify the sources for 27 

most of the sinks. Our findings suggest that ecological dynamics imposes fundamental challenges 28 

in solving the MST problem using computational approaches.  29 
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INTRODUCTION 30 
Estimating the contributions or mixing proportions of different source microbial communities 31 

(“sources”) to a specific microbial community (“sink”) is known as the microbial source tracking 32 

(MST) problem1–3. Historically, MST was framed in the context of quantifying the input of various 33 

sources of fecal contamination to manage and remediate water pollution4. Recently, MST has been 34 

used in many other contexts such as healthcare5,6 and forensics7. This is largely due to the advances 35 

in metagenomics and next-generation sequencing technologies, which have enabled us to collect 36 

microbiome data at an unprecedented speed8–11 and provide deep insights into the roles of microbes 37 

in the integrity of their environments or the well-being of their hosts12–14. Despite these advances, 38 

much remains unclear regarding how the microbial communities were formed in the first place 39 

and how microbes migrate across different habitats. Understanding the origins of microbial 40 

communities by solving the MST problem is crucial for us to reveal their assembly rules, prevent 41 

future instances of contamination, and inform disease prevention.  42 

 Mathematically, the MST problem can be formalized as follows. Consider a sink 43 

community represented by a composition vector x, where x! corresponds to the relative abundance 44 

of species-𝑗, 1 ≤ 𝑗 ≤ 𝑁. Let 𝐾 be the number of known sources to this sink community. Each 45 

known source is represented by a composition vector y(a), where y!
(a) is the relative abundance of 46 

species-j in source-a	(1 ≤ a	≤	𝐾). In addition to the 𝐾 known sources, we assume there is an 47 

unobserved source labeled as (𝐾 + 1 ). Our goal is to estimate the contributions or mixing 48 

proportions of the (𝐾 + 1) source communities to form the sink community, i.e., inferring 	𝑚$ 49 

(𝑎 = 1,⋯ ,𝐾 + 1) that satisfy ∑ 	𝑚$𝒚($)%&'
$(' = 𝒙 and ∑ 	𝑚$

%&'
$(' = 1.  50 

 Previous MST studies typically aimed at defining source-specific indicators (microbial or 51 

chemical) with appropriate detection techniques1,3. Recently, numerous computational methods 52 

based on machine learning or Bayesian modeling, referred to hereafter as MST solvers, have been 53 

developed to infer the contributions of different sources to a sink community2,4.  Here we introduce 54 

three representative MST solvers. The first solver is based on the classification analysis in machine 55 

learning, e.g., using the Random Forest (RF) classifer15. In this case, each source represents a 56 

distinct class and RF will classify the sink into different classes with different probabilities. The 57 

probabilities of the sink belonging to the different classes can be naturally interpreted as the mixing 58 

proportions or contributions of those sources to the sink. Beyond the simple classification analysis, 59 

more advanced statistical methods based on Bayesian modeling have been developed. For example, 60 

SourceTracker is a Bayesian MST solver that explicitly models the sink as a convex mixture of 61 
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sources and infers the mixing proportions via Gibbs sampling16. Due to its computational 62 

complexity, SourceTracker is only applicable to small- or medium-size datasets with a small 63 

number of sources. FEAST (fast expectation-maximization for microbial source tracking17) is a 64 

more recent statistical method. FEAST also assumes each sink is a convex combination of sources. 65 

But it infers the model parameters via fast expectation-maximization, which is much more scalable 66 

than Markov Chain Monte Carlo used by SourceTracker.  67 

 Both SourceTracker and FEAST have shown promising performance in synthetic datasets 68 

and offered biologically meaningful interpretations when applied to real datasets under certain 69 

contexts. Yet, the synthetic datasets used to validate these MST solvers were all generated from 70 

statistical distributions, rather than dynamics models in community ecology. Hence, the ecological 71 

dynamics driving the community assembly is completely ignored. We hypothesize that, after 72 

considering the ecological dynamics, the power of those MST solvers might be significantly 73 

restricted.  74 

 Here we consider two factors that heavily affect the ecological dynamics and community 75 

assembly: (1) microbial interactions; (2) priority effects. Microbial interactions are ubiquitous. 76 

They can be mediated by direct secretion of substances such as bacteriocins18,19, ecological 77 

competition between the microbes20, metabolite exchange21, or the host’s immune system 78 

modulation22–24. In the presence of microbial interactions, the final composition of the sink 79 

community will in general be fundamentally different from its initial one, i.e., the one right after 80 

the source mixing, which is typically not available to us (see Fig.1). Consequently, the source 81 

contributions (or mixing proportions) estimated by applying MST solvers to the final sink 82 

community will be significantly different from the source contributions estimated by applying 83 

MST solvers to the initial sink community. 84 

 Ecological theory suggests that the establishment of new species in a community can 85 

depend on the order and/or timing of their arrival, a phenomenon known as priority effects25–28. 86 

This phenomenon is actually ubiquitous in animal29,30, plant31, and microbial communities28,32,33.  87 

Mechanisms of priority effects and evidence for their importance have been heavily studied for 88 

microbial communities inhabiting a range of environments, including the mammalian gut34–37, the 89 

plant phyllosphere38–40 and rhizosphere41,42, soil43, freshwaters44 and oceans45,46. For example, it 90 

has been pointed out that priority effects probably shape the human gut microbiome during early 91 

childhood47. In particular, the infant’s exposure history and the patterns of dispersal from various 92 

sites in or on their mother could mediate the observed mutual exclusion between Bacteroides spp., 93 

Escherichia spp. and lactic acid producers such as Bifidobacterium spp. and Lactobacillus spp47.  94 
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In the presence of priority effects, even if the mixing proportions (source contributions) are exactly 95 

the same, sink communities resulting from mixing the same set of sources but with different mixing 96 

orders could be drastically different (see Fig.1). Thus, for the different sink communities, the 97 

source contributions estimated by MST solvers will also be quite different, contradicting the truth.  98 

 To test our hypothesis, in this work we first systematically examined the impact of 99 

microbial interactions and priority effects on the performance of existing MST solvers using 100 

synthetic data generated by a classical population dynamics model in community ecology. We 101 

found that those solvers fail in the presence of microbial interactions or priority effects. We offered 102 

mathematical explanations for the failures. We then applied FEAST and SourceTracker, the two 103 

state-of-the-art MST solvers, to analyze data from two fecal microbiota transplantation (FMT) 104 

studies, finding that it fails to identify donors for most of the recipients. To experimentally validate 105 

our hypothesis, we performed community coalescence experiments, where fecal samples from 24 106 

healthy individuals (i.e., sources) were mixed and cultured ex vivo to form 481 sink communities. 107 

We found that FEAST and SourceTracker fail to identify sources for most of the sinks. These 108 

results underscore the fundamental challenges imposed by ecological dynamics in solving the 109 

MST problem using computational approaches. 110 

 111 

RESULTS 112 
Impact of microbial interactions on MST.  113 
To illustrate the impact of microbial interactions on MST, we simulated source and sink 114 

communities as the steady states of a classical population dynamics model in community ecology 115 

--- the Generalized Lotka-Volterra (GLV) model: d𝑋!/d𝑡 = 𝑋!&𝑟! + ∑ 𝑎!" 	𝑋"#
"$% ,, 𝑖 = 1,⋯ ,𝑁. Here 116 

𝑋)  is the abundance (or biomass) of species-𝑖 and 𝑟)  is its intrinsic growth rate. The microbial 117 

interaction matrix 𝐀 = 6𝑎)!7 ∈ ℝ*×* can be represented by an ecological network 𝒢(𝐀): there is 118 

a directed edge (𝑗 → 𝑖) in the network if and only if 𝑎)! ≠ 0. And 𝑎)! > 0 (< 0, or = 0) means 119 

that species-𝑗  promotes (inhibits or does not affect) the growth of species-i, respectively. To 120 

generate the matrix 𝐀, we first generate the underlying network 𝒢(𝐀) using a random graph 121 

model48 with 𝑁  nodes (species) and connectivity 𝐶  (representing the probability of randomly 122 

connecting two nodes). Then for each link (𝑗 → 𝑖) ∈ 𝒢(𝐀) with 𝑗 ≠ 𝑖, we draw 𝑎)! from a normal 123 

distribution ℕ(0, 𝜎,). Here, the standard deviation 𝜎 of this normal distribution can be considered 124 

as the characteristic inter-species interaction strength. Despite its simplicity, the GLV model has 125 
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been successfully applied to describe the population dynamics of various microbial communities, 126 

from the soil49 and lakes50 to the human gut51,52. 127 

 We generated three source communities, 𝑆', 𝑆, and 𝑆-, each with 30 species drawn from a 128 

pool of 𝑁 = 90 species. To simplify the MST problem, we ensured the three sources do not share 129 

any common species, and the intrinsic growth rates of all species were set to be identical (𝑟) = 0.5 130 

for 𝑖 = 1,⋯ ,𝑁). The composition vectors of 𝑆', 𝑆, and 𝑆- (denoted as 𝒚('), 𝒚(,), 𝒚(-), respectively) 131 

were obtained by running the GLV model until a steady state was reached and then normalizing 132 

the steady-state abundance of each species by the total biomass of the community (see SI Sec.1 133 

for details).  134 

 To systematically examine the impact of microbial interactions on MST, we tuned the 135 

connectivity 𝐶  of the ecological network 𝒢(𝐀)  and the characteristic inter-species interaction 136 

strength 𝜎 in the GLV model. For a given pair of (𝐶, 𝜎), we simulated 100 sink communities with 137 

the initial composition vector 𝒙(0) given by a random mixture of the three source communities, 138 

i.e., 𝒙(0) = 	𝑚'𝒚(') +𝑚,𝒚(,) +𝑚-𝒚(-) , where 𝑚$ ’s were drawn from uniform distribution 139 

𝒰(0,1) with the constraint that ∑ 𝑚$ = 1$ . The final composition of each sink was obtained by 140 

running the GLV model until a steady state. Note that to disentangle the impacts of microbial 141 

interactions and priority effects on MST, here we assume a simultaneous mixing, i.e., all the 142 

sources (and their species) are available at the same time to avoid priority effects.   143 

 We found that, with identical intrinsic species growth rates, both FEAST and 144 

SourceTracker can achieve very high accuracy (with the coefficients of determination of the 145 

estimated proportions 𝑅, = 1) in the absence of microbial interactions: 𝐶 = 0 (Fig.2a) or 𝜎 = 0 146 

(Fig.2b). This can be explained as follows. First, in the absence of microbial interactions and with 147 

identical intrinsic species growth rates, the final composition of each sink will be identical to its 148 

initial composition (right after the mixture of the three sources). Second, the three sources do not 149 

share any common species, hence the MST problem becomes trivial for those solvers that assume 150 

each sink is a convex combination of sources. Note that even in this ideal case, the classification-151 

based MST solver (i.e., RF) does not perform very well. This is because, as the combination of 152 

different sources, the sink community’s composition does not necessarily need to be similar to the 153 

composition of any source.  154 

 Interestingly, with a nonzero 𝐶  or 𝜎 , none of the three MST solvers can successfully 155 

estimate the source contributions (indicated by 𝑅, ≈ 0). This implies that the existing MST solvers 156 

will completely fail as long as microbial interactions are present, and even in the absence of priority 157 

effects (see Fig.2a,b).  158 
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The unsolvability of the MST problem in the presence of microbial interactions can be 159 

conceptually explained as follows. Any microbial interactions will drive the sink community to 160 

evolve from its initial state to its final state (Fig.2c,d). The final state will be generally different 161 

from the initial one. There are two exceptions. First, the initial sink community is already at its 162 

steady state and hence will not change over time. This case almost never happens, because the 163 

initial sink is obtained by mixing multiple sources. Even though the sources are at their respective 164 

steady states, simply mixing them will not lead to another steady state. The interactions among the 165 

species across different sources will affect the assembly of the sink community. Some source-166 

specific species might even diet out due to competition. Second, the system has a periodic 167 

trajectory in the state space, and the initial and final states happen to be identical. This coincidence 168 

generally will not happen for an unspecific time interval between the initial and final states. (See 169 

SI Sec.2 for a more mathematical explanation on the difference between the initial and final states 170 

of the sink community, using generic population dynamics models.) Since the initial and final 171 

states of the sink community are different, the source contributions estimated by applying any 172 

MST solver to the final sink community will also be different from that estimated by applying the 173 

MST solver to the initial sink community. We can avoid this issue by inferring the initial state 174 

from the final state. But this is impossible if the system is globally stable, i.e., any feasible initial 175 

state will result in the same final state. Even if such global stability does not exist, inferring the 176 

initial state from the final one would typically require detailed knowledge of the ecological 177 

dynamics, which is not known a priori. All these factors suggest that without a prior knowledge 178 

on the ecological dynamics, the MST problem is mathematically unsolvable in the presence of 179 

microbial interactions.  180 

 181 

Impact of priority effects on MST.  182 
To examine the impact of priority effects on MST, we again simulated three source communities 183 

𝑆', 𝑆, and 𝑆- whose species collections do not have any overlap (30 species for each source). The 184 

final compositions of sources were obtained by running the GLV model until reaching a steady 185 

state and then normalizing the steady-state abundance of each species by the total biomass of the 186 

community (see SI Sec. 1 for details). For each of the 3! = 6 mixing orders, we generated a sink 187 

by mixing three sources with equal proportion ('
-
, '
-
, '
-
), then ran the GLV model to obtain its final 188 

composition. For comparison purposes, we also generated a sink through simultaneous mixing of 189 

the three sources with equal proportion ('
-
, '
-
, '
-
). We visualized the compositions of the three 190 
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sources and the seven sinks using the t-distributed stochastic neighbor embedding (t-SNE) method, 191 

finding that the compositions of the seven sinks are clearly different (see Fig.3a). We then ran 192 

FEAST, the fastest MST solver, to estimate the contributions of the three sources to each sink, 193 

finding that the contributions are different for different sinks, despite the true mixing proportions 194 

being exactly the same (Fig.3b). In the above simulations we set the network connectivity 𝐶 = 0.5 195 

and the characteristic interaction strength 𝜎 = 1.  196 

The above results make us wonder the solvability of the MST problem in the presence of 197 

priority effects. Here we offer an outline of proof that the MST problem is mathematically 198 

unsolvable in the presence of priority effects. Consider a set of source communities. If we mix 199 

them in different orders (but using the same set of mixing proportions), this will generally lead to 200 

different sink communities due to priority effects. The between-sink dissimilarity can be as large 201 

as the between-source dissimilarity (see Fig.3c). We emphasize that different mixing orders 202 

generally result in different sink communities even in the absence of any microbial interactions 203 

(see SI Sec.3 for a mathematical explanation). For different sink communities, the source 204 

contributions estimated by any computational method (i.e., MST solver) will also be different, 205 

contradicting the fact that the source contributions (i.e., mixing proportions) are exactly the 206 

same.  This proof by contradiction clearly illustrates that the MST problem is mathematically 207 

unsolvable in the presence of priority effects.   208 

  209 

Evaluation of MST solvers using data from FMT studies.  210 

During FMT, fecal microbiota from a carefully screened, healthy donor is introduced to a recipient 211 

through either the lower or upper gastrointestinal tract. It is a “natural” mixing experiment that can 212 

be used to evaluate the performance of MST solvers. To achieve that, we applied FEAST and 213 

SourceTracker to analyze data from two FMT studies53,54. 214 

 In the first study, recurrent Clostridioides difficile infection (rCDI) patients were treated 215 

with encapsulated donor material for FMT (cap-FMT)53. Fig.4a shows the donor-recipient 216 

relationship between 7 healthy donors and 88 rCDI patients (i.e., recipients). Each trajectory 217 

represents a donor and one of its recipients with fecal samples collected at (up to) five different 218 

time points: pre-FMT, 2–6 days post FMT, weeks (7–20 days) post FMT, months (21–60 days) 219 

post FMT, and long term (>60 days). The Principal Coordinate Analysis (PCoA) plot of all the 220 

microbiome samples is shown in Fig.4b. We tested if FEAST can correctly identify the donor of a 221 

recipient. To achieve that, we considered each post-FMT sample of each recipient as a sink 222 
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community and considered the fecal samples of all the 7 donors, as well as the recipient’s pre-223 

FMT sample as potential source communities. Then we applied FEAST to solve the MST problem. 224 

For each sink community, among all the 7 donors, we referred to the one whose fecal sample has 225 

the highest contribution estimated by FEAST as the “predicted donor” (green squares, Fig.4c, 226 

Fig.S1). Interestingly, we found that for a large portion (61%) of the sink communities, FEAST 227 

failed to identify the true donor (red circles, Fig.4c, Fig.S1), though the average Jensen-Shannon 228 

divergence among those donors is higher enough (0.63). Similar results were found for 229 

SourceTracker (see Fig.S2). These results clearly demonstrate the limitation of existing MST 230 

solvers.  231 

 In the second FMT study, the gut microbiota of human donors with autism spectrum 232 

disorder (ASD) or typically-developing (TD) controls were transplanted into germ-free mice54. 233 

The dataset includes 8 donors, 13 recipients, and in total 106 post-FMT sink communities. We 234 

again examined whether FEAST can correctly identify the true donor of each sink community. For 235 

each sink community, among the 8 donors, we refer to the one whose fecal sample has the highest 236 

contribution predicted by FEAST as the “predicted donor” (green squares, Fig.S3). We found that 237 

for 40% of the sink communities, FEAST failed to identify the true donor (red circles, Fig.S3). 238 

Similar results were observed for SourceTracker (see Fig.S4). 239 

 240 

Evaluation of MST solvers using data from community coalescence experiments.  241 
To further evaluate MST solvers using real data, we performed community coalescence 242 

experiments, where fecal microbiota from 24 healthy individuals (i.e., sources) were mixed and 243 

cultured ex vivo to form 481 sink communities (see SI Sec.4 for details). Among the 481 sinks, 244 

256 sinks were obtained by mixing two different sources (pair-wise mixing), and the remaining 245 

225 sinks were obtained by mixing four different sources (quadruple-wise mixing). After 246 

inoculation, the sink communities were transferred into fresh medium every 24 hours (1:200 247 

dilution) for 10 transfers55 (see Fig.5a). Samples collected at the final time point were sequenced 248 

and the resulting taxonomic profiles were considered as the steady-state composition of sinks (see 249 

Methods). As expected, we found that the source and sink communities had distinct taxonomic 250 

profiles (Fig.S5-S6). 251 

 To examine the performance of FEAST in community coalescence experiments, we first 252 

applied FEAST to analyze the compositions of the 256 sinks obtained in the pair-wise mixing 253 

experiments. We ranked the estimated contributions of 24 potential sources to each sink and 254 

selected the top-two as the predicted sources. We found that the predicted sources (green squares) 255 
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are different from the true sources (red circles) for most of the 256 sinks (Fig.5b and Fig.S7). This 256 

is also true for the cases of quadruple-wise mixing (Fig.S9). Similar results were observed for 257 

SourceTracker (see Fig.S8, S10). 258 

Note that some donor samples (e.g., S0820B, S0814D) were predicted as sources for many 259 

sinks. We found this is due to the high abundance of common ASVs shared by sinks and those 260 

particular sources (Fig.S11).  261 

 262 

DISCUSSION  263 
Many computational methods have been developed to solve the MST problem. Yet, those methods 264 

ignored the underlyng ecological dynamics that drive the assembly of microbial communities. For 265 

example, as a Bayesian MST solver, SourceTracker explicitly models the sink as a convex mixture 266 

of sources and infers the mixing proportions via Gibbs sampling16. This approach was inspired by 267 

the “analogy” between quantifying the proportion of different source environments to a sink 268 

microbial community and inferring the mixing proportions of conversation topics in a test 269 

document56,57. Here we point out that this analogy is inappropriate. In topic modeling, which is a 270 

specific research area in natural language processing, the goal is to discover the abstract “topics” 271 

that occur in a collection of documents. In a sense, those documents are static or “dead”. By 272 

contrast, in MST we are typically dealing with alive (or even flourishing) microbial communities, 273 

where ecological dynamics plays an important role in community assembly and determining their 274 

state, i.e., the microbial composition. In the presence of ecological dynamics, a sink community 275 

cannot be simply considered as a convex mixture of known and unknown sources. In this work, 276 

through numerical simulations, analytical calculations, and real data analysis, we presented 277 

compelling evidence that ecological dynamics impose fundamental challenges in MST. In 278 

particular, we clearly demonstrate that the presence of either microbial interactions or priority 279 

effects will render the MST problem mathematically unsolvable for any MST solver. 280 

 MST solvers have been applied to various real datasets and demonstrated their utility across 281 

two fundamentally different contexts. First, as originally intended, they were used to quantify the 282 

contribution of different source environments to a sink microbial community. For example, 283 

SourceTracker was used to estimate the contributions of bacteria from ‘gut’, ‘oral’, ‘skin’, ‘soil’ 284 

and ‘unknown’ sources to several indoor sink environments (e.g., office buildings, hospitals, and 285 

research laboratories)16. It was found that wet-lab surface communities tended to be composed 286 

mainly of bacteria from ‘skin’ and ‘unknown’, while neonatal intensive care units and office 287 
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communities were typically dominated by skin bacteria. FEAST was used to estimate if taxa in the 288 

infant gut originate from the birth canal, or if they are derived from some other external source at 289 

a later time point17. By treating samples taken from the infants at age 12 months as sinks, 290 

considering respective earlier time points and maternal samples as sources, a significantly larger 291 

maternal contribution in vaginally delivered infants over cesarean-delivered infants was found. 292 

Moreover, biological mothers were more likely to be identified as sources of their infant’s 293 

microbiome than other potential source communities. Although these results seem reasonable and 294 

agree well with our intuition, we suggest that the whole community of microbiome research should 295 

be very cautious when interpreting the results of existing MST solvers in this context. The source 296 

contributions estimated by MST solvers might be quite different from the true contributions due 297 

to complex ecological dynamics. This is particularly important for microbial communities living 298 

in nutrient-rich environments such as the human gut. For microbial communities living in 299 

oligotrophic environments (e.g., soil, ocean, etc.), the growth rates of bacteria and assembly 300 

process of communities are relatively slow58,59,60 and the impact of ecological dynamics on MST 301 

might be relatively low61. But even in this case, interpreting the results of existing MST solvers 302 

should be done with great caution. 303 

Second, MST solvers have been used as a metric of similarity17. In this context, instead of 304 

quantifying the contribution of different sources to a sink, we aim for capturing the similarities 305 

between the sink and its characteristic environments using mixing proportions estimated by MST 306 

solvers. Each sink can be represented by a similarity feature vector, characterizing its similarity to 307 

each of its characteristic environments.  For example, FEAST has been used in this context to 308 

distinguish patients in ICU from healthy adults, and capture shifts in microbial community 309 

composition that may underlie differences between pathogenic and neutral phenotypes17. We think 310 

this is a much more meaningful and practical way of using MST solvers to analyze real data.  311 

A recent study has shown that the strain tracking approach62 can predict whether two 312 

metagenomics samples originate from the same donor via counting the number of species  that 313 

share closely-related strains. Yet, the contribution of different sources to a given sink remains 314 

unknown. More importantly, challenges imposed by ecological dynamics are still there, which do 315 

not rely on a particular sequencing method. For example, in the presence of microbial interactions 316 

and priority effects, those source-specific microbial strains may not be able to survive in the sink 317 

community at all. This actually raises a serious concern on any approaches based on indicator 318 

species in solving the MST problem.  319 

 320 
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 480 
Figure 1: Ecological dynamics imposes fundamental challenges in microbial source tracking. 481 
(Top) A sink is obtained by simultaneously mixing three sources (without any species overlap) 482 
with mixing proportions (1/3,1/3,1/3). Due to the presence of microbial interactions, the initial 483 
composition of the sink community (right after the mixing, which is typically not available for 484 
MST) can be significantly different from the final composition (which is the input of MST solvers). 485 
Applying any MST solver to the final sink composition will yield different results from applying 486 
the MST solver to the initial sink composition. (Bottom) Due to the priority effects, three sources 487 
mixed with different orders can result in total 3! = 6 different sinks with different compositions, 488 
even if the mixing proportions of the sources are exactly the same for the different mixing orders.   489 
 490 
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 491 
Figure 2: Impact of microbial interactions on MST. a-b, Performance of SourceTracker (red), 492 
FEAST (blue) and Random Forest (green) in simulated sinks with different network connectivity 493 
𝐶  (a) and characteristic interaction strengths 𝜎  (b). Each simulation was performed using 3 494 
synthetic sources and 100 synthetic sinks. Accuracy of each method is measured as the coefficients 495 
of determination (𝑅,) of the estimated proportions. Each point represents the mean 𝑅, for three 496 
independent source sets; error bars show s.e.m (𝑛 = 3) of the mean of 𝑅, over three sources. c-d, 497 
Initial and final steady compositions (we only show the relative abundance of the first 10 species 498 
for visualization purpose) of a sink with different network connectivity (c) and characteristic 499 
interaction strengths (d). In (a,c), the diagonal elements of the interaction matrix 𝐀 are set to be 500 
𝑎)) = −5𝐶 to ensure the stability of the community, and the characteristic interaction strength 𝜎 =501 
0.1. In (b,d), we set 𝑎)) = −5𝜎 to ensure the stability, and the network connectivity 𝐶 = 0.5. In 502 
all the simulations, we set the intrinsic growth rate 𝑟 = 0.5 for all the species. We added a pseudo 503 
number 𝜖 = 10./ to the x-axis for visualization purpose. 504 
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505 
Figure 3: Impact of priority effects on MST. a-b, We synthesized three sources 𝑆', 𝑆, and 𝑆- 506 
whose species collections do not have any overlap (30 species for each source). We mixed these 507 
three sources using six different mixing orders but with the same mixing proportions ('

-
, '
-
, '
-
), 508 

rendering six sinks. We set the network connectivity 𝐶 = 0.5 , the characteristic interaction 509 
strength 𝜎 = 1, the intrinsic growth rate 𝑟 = 0.5 for each species. We set the diagonal elements of 510 
interaction matrix 𝐀 to be 𝑎)) = −5 to ensure the stability. a, Dimensionality reduction using t-511 
SNE shows the variations among the six sinks generated from the six different mixing orders. b, 512 
Contribution of each source to the six simulated sinks estimated by FEAST. c, Between-sink and 513 
between-source Bray-Curtis dissimilarity. We synthesized five sources. The species collection of 514 
each source includes 𝑁0 unique species and the remaining (90 − 5𝑁0) species are shared by all 515 
the sources. We mixed these five sources with the same mixing proportions ('

1
, '
1
, '
1
, '
1
, '
1
) in 100 516 

different mixing orders randomly chosen from the total 5! = 120  mixing orders. We set the 517 
network connectivity 𝐶 = 0.5, the characteristic interaction strength 𝜎 = 1, the intrinsic growth 518 
rate 𝑟 = 0.5 for each species. We set the diagonal elements of interaction matrix 𝐀 to be 𝑎)) =519 
−10 to ensure the stability. P-values were calculated using one-sided Wilcoxon test. 520 
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 527 

Figure 4: Evaluation of FEAST using FMT data from Staley et al.53 a, Donor-recipient 528 
relationship. Each trajectory represents a donor and its corresponding recipients at up to 5 time 529 
points. Trajectories of recipients who responded to FMT (i.e., responders) are colored in yellow. 530 
Trajectories of non-responders are colored in blue.	b, Principal Coordinates Analysis (PCoA) plot 531 
based on the Bray-Curtis dissimilarity. c, True donor (red cycle) vs. predicted donor (green square) 532 
of each recipient. For each post-FMT community (sink), among all the 7 donors, we referred to 533 
the one whose fecal sample has the highest contribution estimated by FEAST as the “predicted 534 
donor”. Here, we only showed the results for the first 65 sinks for the visualization purpose (see 535 
Fig.S1 for results of the remaining 194 sinks). Sources: microbiome samples of donors and the 536 
pre-FMT samples of recipients; Sinks: post-FMT samples of recipients.   537 
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 538 
Figure 5: Evaluation of FEAST using data from pairwise community coalescence 539 
experiments. a, Schematic diagram of the community coalescence experiments. There are 24 540 
source communities (stool samples from 24 healthy individuals). Each sink community is obtained 541 
by mixing two different source communities ex vivo and the final composition of each sink was 542 
obtained from metagenomic sequencing of samples collected after 11 days of the ex vivo mixing. 543 
b, True sources (red cycles) vs. predicted sources (green squares) of each sink. For each sink, 544 
among the 24 known sources, the two sources with the top-two largest contributions predicted by 545 
FEAST were referred to as the predicted sources. Here, we only showed the first 64 sinks for the 546 
visualization purpose (see Fig.S5 for results of the remaining 192 sinks). 547 
 548 
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 2 

1. Using an ecological model to generate synthetic microbiome data.  34 

To systematically reveal the impacts of the microbial interactions and priority effects on MST, we 35 

generated synthetic data using the classical Generalized Lotka-Volterra (GLV) model1:  36 

𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝑋𝑖(𝑡) [𝑟𝑖 + ∑ 𝑎𝑖𝑗𝑋𝑗(𝑡)

𝑁

𝑗=1

] , 𝑖 = 1, ⋯ , 𝑁.  37 

Here 𝑋𝑖(𝑡) represents the absolute abundance of species-𝑖 at time 𝑡 ≥ 0, 𝑟𝑖 is its intrinsic growth 38 

rate, which is randomly drawn from a uniform distribution 𝒰(0,1), if not specified otherwise. The 39 

inter-species interactions are encoded in the interaction matrix 𝐀 = (𝑎𝑖𝑗) ∈ ℝ𝑁×𝑁, with 𝑎𝑖𝑗 > 0 40 

(< 0, or = 0) means that species-j promotes (inhibits or does not affect) the growth of species-i, 41 

respectively. To generate the matrix 𝐀, we first generate the underlying ecological network 𝒢(𝐀) 42 

using an Erdős-Rényi random graph model2 with 𝑁  nodes (species) and connectivity 𝐶  (the 43 

probability of randomly connecting two nodes). Then for each link (𝑗 → 𝑖) ∈ 𝒢(𝐀) with 𝑗 ≠ 𝑖, we 44 

draw 𝑎𝑖𝑗 from a normal distribution ℕ(0, 𝜎2). The standard deviation 𝜎 of this normal distribution 45 

represents the characteristic inter-species interaction strength. To ensure the stability of the system, 46 

the diagonal elements of 𝐀 are set to be 𝑎𝑖𝑖 = −𝑑𝐶 in tuning 𝐶 or 𝑎𝑖𝑖 = −𝑑𝜎 in tuning 𝜎. Here 𝑑 47 

is a positive constant. All other entries of 𝐀 are set to be zero.  48 

 49 

We generated 𝑘 source communities, 𝑆1, 𝑆2, ⋯ , 𝑆𝑘  , each with 𝑁s species drawn from a pool of 50 

𝑁 = 90 species. To simplify the MST problem, the intrinsic growth rates of all species were set 51 

to be identical (𝑟 = 0.5). The composition vectors of 𝑆1, 𝑆2, ⋯ , 𝑆𝑘 (denoted as 𝒚(1), 𝒚(2), ⋯ , 𝒚(𝑘), 52 

respectively) were obtained by running the GLV model (i.e., numerically solving the ordinary 53 

differential equations (ODEs) in the GLV model) with initial species abundances randomly chosen 54 

from a uniform distribution 𝒰(0,1), until a steady state was reached and then normalizing the 55 

steady-state abundance of each species by the total biomass of the community.  56 

 57 

The sink obtained by simultaneously mixing the 𝑘 sources was simulated as follows:   58 

1) The mixing proportions of 𝑘 sources were randomly drawn from a uniform distribution 59 

with constraint ∑  𝑚𝑎
𝑘
𝑎=1 = 1.  60 

2) The initial composition of the sink community is calculated as: 𝒙(0) =  𝑚1𝒚(1) +61 

𝑚2𝒚(2) + ⋯ + 𝑚𝑘𝒚(𝑘). And the initial (absolute) abundance vector is chosen to be 𝑿(0) =62 

𝒙(0).  63 
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3) Run the GLV model until it reaches a steady state and normalize the steady-state abundance 64 

vector by the total biomass of the sink community to get the final composition of the sink 65 

community.  66 

 67 

Consider a particular mixing order 𝜋 among the total 𝑘! mixing orders. Let 𝜋(𝑎) denote the label 68 

of the 𝑎-th source in the mixing order. 𝑎, 𝜋(𝑎) ∈ {1, ⋯ , 𝑘}. The sink obtained by mixing the 𝑘 69 

sources in the order 𝜋 was simulated as follows:  70 

1) The mixing proportions of the 𝑘 sources were set to be equal: 𝑚 =
1

𝑘
, 𝑎 = 1, ⋯ , 𝑘.  71 

2) The initial abundance vector of the sink community is determined by the composition of 72 

the first source in the order 𝜋, i.e., 𝜋(1), as 𝑿0
(1)

= 𝑚 𝒚(𝜋(1)). Then we run the GLV model 73 

until it reaches a steady state. Denote the steady-state abundance vector as 𝑿ss
(1)

. 74 

3) Then the second source 𝜋(2) arrives. Right after the mixing, the abundance vector of the 75 

sink community becomes 𝑿0
(2)

= 𝑿ss
(1)

+ 𝑚 𝒚(𝜋(2)). Then we run the GLV model until it 76 

reaches a steady state. Denote the steady-state abundance vector as 𝑿ss
(2)

. 77 

4) Repeat step-3 until all the 𝑘 sources have been added to the sink. Note that right after the 78 

arrival of the 𝑘-th source, the abundance vector of the sink community becomes 𝑿0
(𝑘)

=79 

𝑿ss
(𝑘−1)

+ 𝑚 𝒚(𝜋(𝑘)). Then we run the GLV model until it reaches a steady state. Denote the 80 

steady-state abundance vector as 𝑿ss
(𝑘)

. 81 

5) Normalize the final steady-state abundance vector 𝑿ss
(𝑘)

 by the total biomass of the sink 82 

community to get the final composition of the sink community.  83 

 84 

Since the input data of MST solvers is the OTU count table, for both sink and source communities, 85 

we converted the species relative abundances into counts by multiplying the absolute abundances 86 

and a fix number (1,000 in all the simulations) and rounding to the nearest integers as the synthetic 87 

count data generated by the GLV model. 88 

 89 

 90 

 91 

 92 

 93 
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 4 

2. Microbial interactions affect the assembly of the sink community.  94 

The deep reason why the existing MST solvers are almost doomed to fail in the presence of 95 

microbial interactions is that the true contributions of different sources are only reflected in the 96 

sink’s initial composition, which will evolve to a final composition following complex ecological 97 

dynamics. In general, the final composition will be quite different from the initial one. Here we 98 

sketch a proof.  99 

 100 

Let us consider a sink generated by mixing 𝐾 non-overlapping sources with compositions given 101 

by 𝒚(1), … , 𝒚(𝐾) , respectively. The initial abundance vector of the sink is denoted as 𝑿(0) =102 

(𝑋1(0), … , 𝑋𝑁(0)), and its initial composition is given by 𝒙(0) = (𝑥1(0), … , 𝑥𝑁(0)) with 𝑥𝑖(0) =103 

𝑋𝑖(0)/ ∑ 𝑋𝑖(0)𝑁
𝑖=1  representing the relative abundance of species 𝑖. Note that 𝒙(0) = ∑ 𝑚𝑎 𝒚(𝑎)

𝒂 . 104 

Let’s assume the population dynamics of the sink community can be represented by a set of 105 

ordinary differential equations:  106 

�̇� = 𝒇(𝑿; 𝛉),                                                                   (1) 107 

where 𝑿(𝑡) = (𝑋1(𝑡), … , 𝑋𝑁(𝑡)) represents the abundance vector at time 𝑡, 𝒇 is an unspecified 108 

nonlinear function with 𝛉 encoding all the ecological parameters, i.e., intrinsic growth rates, and 109 

intra- and inter-species interaction strengths. After a small time-step 𝛿𝑡, the abundance vector of 110 

the sink can be approximated as 𝑿(𝛿𝑡) = 𝑿(0) + 𝛿𝑡 𝒇(𝑿(0); 𝛉). The ratio of relative abundance 111 

for any species pair (𝑖, 𝑗) in the initial community is 𝛼(0) =
𝑥𝑖(0)

𝑥𝑗(0)
=

𝑋𝑖(0)

𝑋𝑗(0)
, while after 𝛿𝑡 the ratio 112 

becomes: 113 

𝛼(𝛿𝑡) =
𝑥𝑖(𝛿𝑡)

𝑥𝑗(𝛿𝑡)
=

𝑋𝑖(𝛿𝑡)

𝑋𝑗(𝛿𝑡)
=

𝑋𝑖(0) + 𝛿𝑡 𝑓𝑖(𝑿(𝟎); 𝛉)

𝑋𝑗(0) + 𝛿𝑡 𝑓𝑗(𝑿(𝟎); 𝛉)
.                                 (2) 114 

If 𝑋𝑖(0) = 𝑋𝑗(0) and 𝑓𝑖(𝑿(𝟎); 𝛉) = 𝑓𝑗(𝑿(𝟎); 𝛉), then we have 𝛼(𝛿𝑡) = 𝛼(0). But the condition 115 

𝑋𝑖(0) = 𝑋𝑗(0)  is too strong to be true. If 𝑋𝑖(0) ≠ 𝑋𝑗(0) , but 𝑓𝑖(𝑿(𝟎); 𝛉) = 𝑋𝑖(0)𝑔𝑖(𝛉)  and 116 

𝑔𝑖(𝛉) = 𝑔𝑗(𝛉), then we have 𝛼(𝛿𝑡) = 𝛼(0). For a general population dynamics model, this 117 

requirement means that there are no inter-species interactions and the intrinsic growth rates of 118 

different species are identical, which is also too strong to be true. Hence, in general 𝛼(𝛿𝑡) ≠ 𝛼(0), 119 

and the final composition of the sink community will be quite different from its initial composition. 120 

 121 

 122 
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3. Priority effects affect the assembly of the sink community.  123 

Consider three source communities 𝑆1, 𝑆2 and 𝑆3. Let’s assume species-𝑖 is only present in the 124 

source 𝑆1 and species-𝑗 is only present in the source 𝑆2. We mix the source communities in 6 125 

different orders but with identical mixing proportions (
1

3
,

1

3
,

1

3
). For each mixing order, we assume 126 

the arrival time of the three sources are 0, 𝜏, 2𝜏, respectively, where 𝜏 is a constant (and is large 127 

enough for the resulting sink community to reach a steady state). Suppose we use the composition 128 

of the final sink community taken at 3𝜏 to estimate the contribution of each source. We want to 129 

prove that at time 𝑡 = 3𝜏, the sink communities resulting from different mixing orders will have 130 

different compositions, even in the absence of any microbial interactions.  To achieve that, let’s 131 

compute the ratio between the relative abundance of species-𝑖 and that of species-𝑗 in the final sink 132 

community at time 𝑡 = 3𝜏, i.e., 𝛼𝑖𝑗(3𝜏) =
𝑥𝑖(3𝜏)

𝑥𝑗(3𝜏)
 =

𝑋𝑖(3𝜏)

𝑋𝑗(3𝜏)
. 133 

 134 

Consider a particular mixing order 𝑆1 → 𝑆2 → 𝑆3 . In the absence of any inter- or intra-species 135 

interactions, species will grow exponentially. Hence, at time 𝑡 = 3𝜏, the abundance of a species-𝑖 136 

(which is only present in the source 𝑆1) is given by: 𝑋𝑖(3𝜏) = 𝑚1𝑋𝑖(0) exp(3𝜏𝑟𝑖), where 𝑚1 =
1

3
 137 

is the mixing proportion (contribution) of the source 𝑆1, 𝑋𝑖(0) is the initial abundance of species-138 

𝑖  in the source 𝑆1 , 𝑟𝑖  is the intrinsic growth rate of species- 𝑖 . Similarly, at time 𝑡 = 3𝜏 , the 139 

abundance of species-𝑗  (which is assumed to be only present in the source 𝑆2 ) is given by: 140 

𝑋𝑗(3𝜏) = 𝑚2𝑋𝑗(0) exp(2𝜏𝑟𝑗). So, we have 141 

𝛼𝑖𝑗
123(3𝜏) =

𝑚1𝑋𝑖(0)𝑒3𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒2𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(3𝑟𝑖−2𝑟𝑗), 142 

where the superscript ‘123’ indicates the mixing order 𝑆1 → 𝑆2 → 𝑆3. We can repeat the above 143 

calculation for different mixing orders. The results are summarized here:  144 

𝛼𝑖𝑗
132(3𝜏) =

𝑚1𝑋𝑖(0)𝑒3𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(3𝑟𝑖−𝑟𝑗), 145 

𝛼𝑖𝑗
213(3𝜏) =

𝑚1𝑋𝑖(0)𝑒2𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒3𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(2𝑟𝑖−3𝑟𝑗), 146 

𝛼𝑖𝑗
231(3𝜏) =

𝑚1𝑋𝑖(0)𝑒𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒3𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(𝑟𝑖−3𝑟𝑗), 147 

𝛼𝑖𝑗
312(3𝜏) =

𝑚1𝑋𝑖(0)𝑒2𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(2𝑟𝑖−𝑟𝑗), 148 
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𝛼𝑖𝑗
321(3𝜏) =

𝑚1𝑋𝑖(0)𝑒𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒2𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒𝜏(𝑟𝑖−2𝑟𝑗). 149 

Note that if the three sources were mixed simultaneously, then we have   150 

𝛼𝑖𝑗
simultaneous(3𝜏) =

𝑚1𝑋𝑖(0)𝑒3𝜏𝑟𝑖

𝑚2𝑋𝑗(0)𝑒3𝜏𝑟𝑗
= 𝛼𝑖𝑗(0)𝑒3𝜏(𝑟𝑖−𝑟𝑗). 151 

Therefore, even in the absence of any microbial interactions, different mixing patterns will result 152 

in different final compositions of the sink community, which are also different from that obtained 153 

by simultaneous mixing. 154 

 155 

4. Community coalescence experiments.  156 

Stool samples from healthy human donors were collected and immediately transferred into the 157 

anaerobic workstation (85% N2, 10% H2 and 5% CO2, COY). 10g stool samples were suspended 158 

into 50 mL 20% glycerol (in sterile phosphate-buffered saline, with 0.1% L-cysteine 159 

hydrochloride). The samples were homogenized by vortexing and then filtered with sterile nylon 160 

mesh to remove large particles in fecal matter. Aliquots of the suspension were placed in sterile 161 

cryogenic vials and frozen at -80 °C for long-term storage until use.  162 

 163 

Stool samples of 24 individuals were used for the community coalescence experiments. To 164 

generate 481 sink communities, samples from two, three or four different individuals were mixed 165 

with equal volume. 20 uL stool mixture was inoculated into 980 uL medium in 96-well plates 166 

(PCR-96-SG-C, Axygen) for static culturing at 37 °C in the anaerobic workstation. The medium 167 

used for ex vivo culture was modified from previous studies, which comprises: peptone water 168 

(2.0 g /L, CM0009, Thermo Fisher), yeast extract (2.0 g /L, LP0021B, Thermo Fisher), L-cysteine 169 

hydrochloride (1 g/ L), Tween 80 (2 mL/L), hemin (5 mg/L), vitamin K1(10 μL/L), NaCl (1.0 g /L), 170 

K2HPO4 (0.4 g/L), KH2PO4 (0.4 g/L), MgSO4⋅7H2O (0.1 g/L), CaCl2⋅2H2O (0.1 g/L), NaHCO3 171 

(4 g/L), porcine gastric mucin (4 g/L, M2378, Sigma-Aldrich), sodium cholate (0.25 g/L) and 172 

sodium chenodeoxycholate (0.25 g/L)3. Ex vivo culture of gut microbial communities was 173 

transferred into fresh medium every 24h (1:200 dilution), for a total of 10 transfers. After each 174 

transfer, samples were centrifuged to remove the supernatant and the pellets were stored at -80°C 175 

with a plastic seal until DNA extraction.  176 

 177 
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The initial stool and ex vivo-cultured samples after 10 passages were sequenced. For stool samples, 178 

DNA was extracted using the QIAamp Power Fecal Pro DNA Kit (Qiagen) according to the 179 

manufacturer’s instructions. For cultured samples, DNA extraction (DNeasy UltraClean 96 180 

Microbial Kit, Qiagen) and 16S amplicon library preparation were performed by an automated 181 

protocol at Tecan Freedom EVO 200. V3-V4 region of 16S rRNA gene was amplified using 182 

primers 341F 5’-CCTACGGGNGGCWGCAG -3’ and 805R 5’-183 

GACTACHVGGGTATCTAATCC-3’ with custom barcodes4. Libraries were further pooled 184 

together at equal molar ratios and sequenced by Illumina NovaSeq (250 bp paired-end reads) at 185 

Novogene Technology (Tianjin, China).  186 

 187 

16S amplicon sequencing data were analyzed by QIIME2 (version 2020.2)5. Primers of the raw 188 

sequence data were cut with Cutadapt (via q2-cutadapt)6. Quality control was performed by 189 

DADA2 (via q2-dada2)7. All amplicon sequence variants (ASVs) from DADA2 were used to 190 

construct a phylogenic tree with fasttree2 (via q2-phylogeny)8. The ASVs were assigned to 191 

taxonomy with naïve Bayes classifier (via q2-feature-classifier)9 against the SILVA database 192 

(SILVA_132_SSURef_Nr99). The ASV table was normalized, and rare ASVs (all features with a 193 

total abundance of less than 10 and present in only a single sample) were filtered out. 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 
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 235 
Figure S1: Evaluation of FEAST using FMT data from Staley et al.10 True donor (red cycle) 236 

vs. predicted donor (green square) of each recipient. For each post-FMT community (sink), among 237 

all the 7 donors, we referred to the one whose fecal sample has the highest contribution estimated 238 

by FEAST as the “predicted donor”. In Fig.4c, we presented results of the first 65 sinks. Here, we 239 

showed the results of the remaining 194 sinks. Sources: microbiome samples of donors and the 240 

pre-FMT samples of recipients; Sinks: post-FMT samples of recipients.   241 

 242 

 243 
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 253 

Figure S2: Evaluation of SourceTracker using FMT data from Staley et al.10 True donor (red 254 

cycle) vs. predicted donor (green square) of each recipient. For each post-FMT community (sink), 255 

among all the 7 donors, we referred to the one whose fecal sample has the highest contribution 256 

estimated by SourceTracker as the “predicted donor”. Sources: microbiome samples of donors and 257 

the pre-FMT samples of recipients; Sinks: post-FMT samples of recipients.   258 

 259 

 260 
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 261 

Figure S3: Evaluation of FEAST using FMT data from Sharon et al.11 True donors (red cycle) 262 

vs. the predicted donor (green square) of each recipient sink given by FEAST using the source and 263 

sink compositions as the input. For each post-FMT community (sink), among all the 8 donors, we 264 

referred to the one whose fecal sample has the highest contribution estimated by FEAST as the 265 

“predicted donor”. Sources: microbiome samples of donors and the pre-FMT samples of recipients; 266 

Sinks: post-FMT samples of recipients. In total, there are 106 sinks.   267 

 268 

 269 

 270 
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 272 

Figure S4: Evaluation of SourceTracker using FMT data from Sharon et al.11 True donors 273 

(red cycle) vs. the predicted donor (green square) of each recipient sink given by SourceTracker 274 

using the source and sink compositions as the input. For each post-FMT community (sink), among 275 

all the 8 donors, we referred to the one whose fecal sample has the highest contribution estimated 276 

by SourceTracker as the “predicted donor”. Sources: microbiome samples of donors and the pre-277 

FMT samples of recipients; Sinks: post-FMT samples of recipients. In total, there are 106 sinks.   278 

 279 
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 291 

Figure S5: Principal Coordinate Analysis (PCoA) plot of the sinks and sources in the community 292 

coalescence experiments. a, Pairwise mixing. b, Quadruple-wise mixing. 293 

 294 
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 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.21.492809doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.21.492809


 14 

 304 

Figure S6: Taxonomic profiles of sources and sinks in community coalescence experiments. 305 

a, Pairwise mixing. b, Quadruple-wise mixing. For visualization purposes, we only showed the 306 

top-20 abundant ASVs. All other ASVs were grouped together and shown in gray. We found that 307 

some highly abundant ASVs in the source communities have very low abundances in the sink 308 

communities, whereas some low-abundance ASVs in source communities flourish in the sink 309 

communities. Also, a few ASVs in the sinks were not detected in the sources, indicating that either 310 

their relative abundances were below the detection limit or there was potential contamination. 311 

 312 
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 313 

Figure S7: Performance of FEAST in identifying sources in pairwise community coalescence 314 

experiments.  True sources (red cycles) vs. predicted sources (green squares) of each sink. For 315 

each sink, among the 24 known sources, the two sources with the top-two largest contributions 316 

predicted by FEAST were referred to as the predicted sources. In Fig.5, we showed the results of 317 

the first 64 sinks. Here we showed the results of the remaining 192 sinks. 318 

 319 
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 324 

Figure S8: Performance of SourceTracker in identifying sources in pairwise community 325 

coalescence experiments.  True sources (red cycles) vs. predicted sources (green squares) of each 326 

sink. For each sink, among the 24 known sources, the two sources with the top-two largest 327 

contributions predicted by SourceTracker were referred to as the predicted sources.  328 
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 330 

Figure S9: Performance of FEAST in identifying sources in quadruple-wise community 331 

coalescence experiments. There are 24 source communities (stool samples from 24 healthy 332 

individuals). Each sink community is obtained by mixing four different source communities ex 333 

vivo. The final composition of each sink was obtained from metagenomic sequencing of samples 334 

collected after 11 days of the ex vivo mixing. True sources (red cycles) vs. predicted sources (green 335 

squares) of each sink. (Each row includes 75 sinks). For each sink, among the 24 known sources, 336 

the four sources with the top-four largest contributions predicted by FEAST were referred to as 337 

the predicted sources. 338 
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 340 

Figure S10: Performance of SourceTracker in identifying sources in quadruple-wise 341 

community coalescence experiments. There are 24 sources communities (stool samples from 24 342 

healthy individuals). Each sink community is obtained by mixing four different source 343 

communities ex vivo. The final composition of each sink was obtained from metagenomics 344 

sequencing of samples collected after 11 days of the ex vivo mixing. True sources (red cycles) vs. 345 

predicted sources (green squares) of each sink. (Each row includes 75 sinks). For each sink, among 346 

the 24 known sources, the four sources with the top-four largest contributions predicted by 347 

SourceTracker were referred to as the predicted sources. 348 
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 350 

Figure S11: Relative abundances of common ASVs shared by sources and sinks. For each 351 

sink and source pair, we identified their common ASVs and calculated the total relative abundance 352 

of those common ASVs. Each boxplot represents the total relative abundance of common ASVs 353 

shared by this source and each of the 256 sinks in the pairwise community coalescence experiments 354 

(a); and 225 sinks in quadruple-wise community coalescence experiments (b). 355 
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