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The formation of membraneless biomolecular condensates is driven by macromolecules 

with sticker-and-spacer architectures that undergo phase separation coupled to percolation (PSCP). 
Driving forces for PSCP are governed by the interplay between reversible inter-sticker crosslinks 
and solvation preferences of spacers. Here, we introduce molecular and mesoscale descriptions of 
structures within, outside, and at the interfaces of condensates that are formed by prion-like low 
complexity domains (PLCDs), which are exemplars of intrinsically disordered, linear multivalent 
proteins. Our studies are based on simulations that accurately describe sequence-specific phase 
behaviors of PLCDs. We find that networks of reversible, intermolecular, inter-sticker crosslinks 
organize PLCDs into small-world topologies within condensates. These topologies result from 
distinct conformational preferences within dense, dilute, and interfacial regions. Specifically, the 
degree of conformational expansion varies non-monotonically, being most expanded at the 
interface and most compact in the dilute phase with molecules preferring to be oriented 
perpendicular to condensate interfaces. This contrasts with dense and dilute phases where 
molecules are randomly oriented relative to one another. Our results demonstrate that even simple 
condensates, with only one type of macromolecule, feature inhomogeneous spatial organizations 
of molecules and interfacial features that likely prime them for being locations of biochemical 
activity.    

In living cells, many proteins and nucleic acids are concentrated into membraneless 
biomolecular condensates that form and disassemble at the right place and time 1, 2, 3, 4. 
Macromolecular phase separation has emerged as the dominant theme for explaining how 
condensates form and dissolve in response to environmental, mechanical, chemical, and 
developmental cues 5. Multivalence of domains or motifs that form reversible physical crosslinks 
are defining features of proteins that are biologically relevant drivers of condensate formation 1, 6, 

7. Recent attention has focused on proteins with disordered regions known as prion-like low 
complexity domains (PLCDs) 8. The compositional makeup of PLCD sequences is distinctive. 
Roughly 60-70% are polar residues, 15-20% of the residues are aromatic π-systems, and the 
remainder are ionizable residues 9. Within each PLCD, the aromatic residues are distributed 
uniformly across the linear sequence 8, 10, 11. Although sequences of PLCDs vary considerably 
across evolution, the compositional biases and linear patterning of aromatic residues are conserved 
features 10, 12. Recent experimental work has uncovered the physiochemical principles underlying 
the connections between sequence-encoded features and the driving forces for phase separation of 
PLCDs. These studies used the PLCD from the protein hnRNPA1, hereafter referred to as the A1-
LCD, and designed variants thereof as targets for investigation 8, 9.  
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Here, we build on the extant knowledge base regarding phase behaviors of A1-LCD and 
designed variants of this system to investigate the molecular and mesoscale organization of 
proteins within, outside, and at the interfaces of condensates. This work is motivated by the 
realization that PLCDs and other proteins that are drivers of bio-macromolecular phase separation 
are biological instantiations of linear associative polymers 7. Specifically, intrinsically disordered, 
linear multivalent proteins that drive phase separation are instantiations of linear associative 
polymers 7, 13, 14, 15, 16, 17, 18, 19, 20, 21. Such systems are defined by sticker-and-spacer architectures, 
whereby the driving forces for phase separation are governed by the interplay between physical 
crosslinks among stickers, and the effective, solvent-mediated interactions among spacers 7, 20, 22. 
Accordingly, the phase behaviors of sticker-and-spacer systems are characterized as phase 
separation coupled to percolation (PSCP) 6, 7, 20, 21, 22, 23. This process generates condensates that 
are microgel-like 24, 25, implying that the physically crosslinked networks of molecules are 
condensate spanning 7, 20, 22. Such systems are viscoelastic in nature and their material properties 
are governed by emergent structures of the underlying networks, including the conformations of 
individual molecules, the extent of crosslinking they enable, the topological structures generated 
by crosslinking, and the impacts of spacers on the dynamics of intermolecular rearrangements that 
drive the making and breaking of crosslinks 26, 27.  

Here, we undertake a systematic investigation of molecular and mesoscale structural 
descriptions of condensate interiors, interfaces, and coexisting dilute phases. For this, we leverage 
residue-level descriptions afforded by simulations that use LaSSI, a bond fluctuation-based lattice 
model paradigm 20, designed to reproduce the macroscopic phase behavior of the A1-LCD system 
and numerous designed variants of this system 9. Our analysis of structural properties of 
condensate interiors, interfaces, and coexisting dilute phases yields insights into complexities that 
are manifest even for condensates formed by seemingly simple systems such as PLCDs with 
sticker-and-spacer architectures.  

Computational sticker-and-spacer model for A1-LCD and designed variants: We 
used LaSSI, which is a lattice-based simulation engine for coarse-grained simulations of sequence- 
and / or architecture-specific PSCP of biopolymers. The development of LaSSI was inspired by 
the bond fluctuation model for lattice polymers 28, 29. Specifically, LaSSI is a generalization of the 
bond fluctuation model developed by Shaffer 30. In the current implementation, we use a single 
bead-per-residue version of the LaSSI model. There are nine specific residue types, one each for 
tyrosine (Y), phenylalanine (F), arginine (R), lysine (K), glycine (G), serine (S), threonine (T), 
glutamine (Q), asparagine (N), and a generic residue (X). The contact energies between pairs of 
sites occupied by the different residue types were parameterized using a protocol described in the 
Methods section and summarized in Extended Data Fig. 1.  

Size exclusion chromatography-aided small-angle x-ray scattering (SEC-SAXS) data were 
collected for the A1-LCD and a series of designed variants 9. These data provide an estimate of 
the ensemble-averaged radius of gyration (Rg) for each of the PLCDs at 25˚C while ensuring that 
proteins do not undergo phase separation or oligomerization 9. We developed a model for the 
contact energies among all unique pairs of residue types using the following protocol: We 
performed simulations of individual chains, computed the correlation between LaSSI-derived and 
measured chain dimensions, and iterated to convergence via a Gaussian process Bayesian 
optimization approach developed in previous work 31. The resultant model for the contact energies 
is summarized in Fig. 1A. In dimensionless units, the optimized pairwise contact energies range 
from ≈ -20 to ≈ -0.4.  
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We use Metropolis Monte Carlo simulations to sample configurational space for single 
chains and multiple chains on a cubic lattice 20. Accordingly, the transition probability for 
converting between pairs of configurations is proportional to exp(-∆E/kBT). Here, ∆E is the 
difference in energy between a pair of configurations. In the simulations, we set kB = 1, and T is in 
the interval 40 ≤ T ≤ 60. In units of the dimensionless simulation temperature, replacing Y-Y 
interactions with a Y-K interaction, which represents the largest change in ∆E, will range from ≈ 
0.32 kBT to 0.47 kBT, depending on the simulation temperature. That the model reproduces the 
target function against which it was parameterized is evident in Fig. 1B, which shows a strong 
positive correlation between the apparent scaling exponents inferred from SEC-SAXS 
measurements and from the LaSSI simulations of individual chain molecules.  

Fig 1: Setup and assessment of the computational model. (A) Pairwise interaction strengths used in the 
computational model. Amino acids are referred to by single-letter codes. “X” is used to indicate any amino acid for 
which a specific interaction is not defined. “Aro” is used to indicate either tyrosine or phenylalanine. Contact energies 
for Y-Y, Y-F, F-F, R-Aro, and X-X were parameterized using Gaussian process Bayesian optimization (GPBO; see 
Methods and Extended Data Figure 1). All other energies were parameterized by matching experimental and 
computational phase diagrams of “spacer” variants 9.  (B) Rg values scale with chain length according to the relation 
Rg ~ Nn. Here, n is an apparent scaling exponent napp, that is sequence specific, and is extracted from SEC-SAXS data 
using the approach developed by Riback et al., 32. We compare values of n obtained by fitting SEC-SAXS data to a 
molecular form factor (nexp) to those obtained from single-chain LaSSI simulations (nsim) and use GPBO to 
parameterize a computational model. Each data point corresponds to a unique A1-LCD variant. The red dashed line 
represents the regime where nexp = nsim, and the root mean squared error is calculated using the residuals from this 
line. Error bars represent standard errors derived from the fit to the molecular form factor. (C) Calculated phase 
diagrams (solid markers) of various A1-LCD variants plotted alongside experimental phase diagrams (open markers). 
Temperature and concentration are converted from simulation units to experimental units using the same scaling 
factors for each variant. These factors were prescribed by Martin et al., 8. Error bars represent standard errors from the 
mean across 3 replicates. (D) ERMSL (see Methods) comparing experimentally measured (csat, exp) and 
computationally derived (csat, sim) saturation concentrations.  
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Note that our parameterization of the model rests on the assumption of a strong coupling 

between the driving forces for single-chain compaction and phase separation 8, 33, 34. Bremer et al., 
showed that this coupling breaks down for variants where the net charge per residue (NCPR) 
deviates from zero in a way that does not impact single chain dimensions, but does impact multi-
chain interactions 9. Based on the analysis of Bremer et al.,9 we included a mean-field NCPR-
based adjustment to the potentials for simulations of multichain phase behavior. In these 
simulations, the pairwise interactions were weakened or strengthened by an amount that is 
proportional to the difference in NCPR values between that of the given variant and that of the 
wild type (see Methods and Extended Data Fig. 2).  

Judging the accuracy of computed phase diagrams: We computed coexistence curves 
(binodals) for 31 different sequences including the wild-type A1-LCD (Extended Data Fig. 3). 
Results for the wild-type and four other variants studied by Bremer et al.,9 are shown in Fig. 1C. 
Simulation temperatures were converted to degree-Celsius and volume fractions were converted 
to molar units using the conversion factors introduced by Martin et al., 8. The computed and 
measured binodals show good agreement with one another. For each of the 31 sequences, we 
calculated the exponential root mean square log (ERMSL) between the measured and computed 
low concentration arms of binodals (see Methods). The ERMSL is a positive value greater than or 
equal to 1. An ERMSL value of 10 indicates that, on average, the concentrations along the low 
concentration arm of a binodal differ by an order of magnitude from the measured values. 
Alternatively, an ERMSL value of 1 indicates that there is no error between the dilute arms and 
that they should overlay perfectly. For all but one of the sequences, the ERMSL is ≤ 2.5 (Fig. 1D). 
This shows that the model reproduces measured phase boundaries for all experimentally 
characterized variants even though we parameterized the model using SEC-SAXS data for only 
50% of the sequences.  

 
Fig. 2: Comparison of conformations within dense vs. dilute phases. (A) Rg of chains in the dilute (blue) and dense 
phase (red) derived from condensates of the wild-type A1-LCD plotted against the width of the two-phase regime (see 
text). (B) A schematic depicting how intramolecular sticker-sticker interactions promote chain compaction in the 
dilute phase, whereas intermolecular sticker-sticker interactions promote chain expansion in the dense phase. (C) 
Swelling ratio, which quantifies the degree of expansion of chains in the dense phase relative to the dilute phase, is 
plotted against the width of the two-phase regime for specific A1-LCD variants. The datapoints collapse onto a single 
exponential curve (solid red curve; see Methods for fitting model and parameters). Error bars represent standard errors 
across 3 replicates. l.u. is lattice units. 

Conformations in dense phases are more expanded compared to the coexisting dilute 
phases: We quantified the Rg values of individual chain molecules in coexisting dilute and dense 
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phases of our simulations. The results are shown in Fig. 2A for the wild-type A1-LCD. Here, Rg 

is plotted against the parameter , which is the temperature-dependent width 

of the two-phase regime (Extended Data Fig. 4A). Note that w is negative because the 
concentration in the dilute phase (cdilute) is lower than the concentration in the dense phase (cdense). 
Also note that w increases with T and approaches zero as T approaches the critical temperature Tc 
≈ 49˚C beyond which the system exits from the two-phase regime. In both the dilute and dense 
phases, the Rg values of individual molecules increase as T increases (Fig. 2A). However, for each 
of the temperatures that are below Tc, the Rg values in the dense phase are systematically higher 
than Rg values in the dilute phase (Fig. 2A). This is due to the network of intermolecular 
interactions that are realized in the dense phase as opposed to the intramolecular interactions in the 
dilute phase – a feature that is depicted pictorially in Fig. 2B.  

Recently, Hazra and Levy showed that generic polymers featuring a mixture of long- and 
short-range interactions are relatively more expanded in dense vs. coexisting dilute phases 35 – a 
result we had reported prior to their publication 36. Given two distinct observations of similar 
phenomena using very different models, we analyzed results for variants where we either titrated 
the number of aromatic stickers or we altered the identities of the aromatic stickers Y vs. F. The 
goal was to assess the robustness of chain swelling across the phase boundary. For this, we 
computed the swelling ratio a, defined as the ratio of Rg in the dense phase to Rg in the dilute 
phase. We note that a approaches unity as T tends to Tc (Extended Data Fig. 4B). As with A1-
LCD, we find that the mutational variants are more expanded in the dense phase when compared 
to the dilute phase (Fig. 2C). Interestingly, in a plot of a against w (Fig. 2C), we find that the 
swelling ratios for seven distinct variants collapse onto a single master curve without any 
adjustable parameters. This curve can be fit to an exponential decay function (Fig. 2C). This 
implies that knowledge of the width of the two-phase regime for a disordered PLCD allows us to 
infer the swelling ratio from the master curve. Further, if we supplement knowledge regarding the 
width of the two-phase regime with measurements of chain dimensions in the dilute phase, then 
we can use a master curve to infer the average Rg values of individual chain molecules in the dense 
phase, at least for PLCDs.  

We analyzed the three-way interplay of intra-chain, inter-chain, and chain-solvent contacts 
as determinants of Rg in the dense phase (Extended Data Fig. 5). Here, chain-solvent contacts refer 
to the observation of a vacant site adjacent to a site occupied by a chain. Our analysis shows that 
the sole determinant of the extent of chain compaction is the fraction of intramolecular contacts 
(fintra) (Extended Data Fig. 5). For a given Rg value, which fixes fintra, the sum of the fractions of 
inter-chain (finter) and chain-solvent contacts (fsol) is constrained by: fintra + finter + fsol = 1. 
Accordingly, finter + fsol = (1 – fintra ), and hence any increase in fsol is compensated by a decrease in 
finter and vice versa (Extended Data Fig. 5).          

Networking of chains within dense phases is determined by the strengths and valence 
of stickers: From the contact energies (e) summarized in Fig. 1A we note that the interaction 
strengths of stickers follow a hierarchy whereby eYY > eYF > eFF > eRY/F. Therefore, it follows that 
tyrosine (Y), and phenylalanine (F) are the primary stickers whereas arginine (R) is an auxiliary 
sticker in PLCDs. Stickers form reversible crosslinks, and in the lattice simulations a crosslink is 
distinguished from a random contact by the frequency of observing a specific pair of residues 
coming into contact. Crosslinking is governed by the hierarchy of interaction energies and the 

ω T( ) = log10
cdilute T( )
cdense T( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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temperature, specifically the distance from the critical point. We quantified a ratio of association 

ga, which we define as . Here, pa,seq is the relative probability of observing sticker-sticker 

vs. sticker-spacer contacts in the sequence (seq) of interest. The parameter pa,ref is the 
homopolymer equivalent of pa,seq. The homopolymer is of the same length as the wild-type A1-
LCD. The contact energies, which are identical among all residues, are parameterized to reproduce 
the computed binodals for the wild-type A1-LCD. For comparative analysis, we impose the 
sticker-and-spacer architecture of the wild-type sequence onto the homopolymer (Extended Data 
Fig. 6).  

The ratios of association were computed for each of the 31 sequence variants (Extended 
Data Fig. 7A-C). The ratio of association is largest in the variant where all phenylalanine residues 
are replaced by tyrosine (see data for -12F+12Y in Extended Data Fig. 7A). Replacing all tyrosine 
residues with phenylalanine lowers the ratio of association (see data for +7F-7Y in Extended Data 
Fig. 7A). Decreasing the valence of aromatic residues, whereby six of the stickers in A1-LCD are 
replaced by spacers, causes a lowering of the ratio of association to be below one. This implies 
that the extent of networking is weakened even when compared to the equivalent homopolymer 
(see data for -4F-2Y in Extended Data Fig. 7A). Surprisingly, replacing auxiliary stickers such as 
arginine with a spacer that weakens the driving forces for phase separation increases the ratios of 
association when compared to the wild-type A1-LCD (see data for -3R+3K and -6R+6K compared 
to the wild-type A1-LCD in Extended Data Fig. 7A; also see panel E in Extended Data Fig. 3). 
This is because the auxiliary stickers compete with the primary aromatic stickers. However, even 
though the ratio of association of stickers is higher in variants with fewer arginine residues, the 
driving forces for phase separation are weakened by the competing effects of spacers with a higher 
preference to be solvated. In general, changes to the identities and hence interactions mediated by 
spacers have a negligible effect on the ratios of association as shown in our results for thirteen 
different variants where the sticker identities and valence are those of wild-type A1-LCD, but the 
identities and hence interactions mediated by spacers have been altered substantially (Extended 
Data Fig. 7B-C). When compared to data for measured and computed binodals (see Extended Data 
Fig. 3), we conclude that solubility determining interactions involving spacers can impact the 
driving forces for phase separation without affecting the networking of stickers. Taken together, 
these results demonstrate that some sequence features may affect driving forces for phase 
separation and internal condensate organization in non-equivalent ways. From a protein 
engineering standpoint, this feature could enable so-called separation of function mutations. 

Next, we quantified the probability P(s) of realizing clusters of lattice sites within 
condensates with s stickers that form via inter-sticker crosslinks. Although the distributions (shown 
in Extended Data Fig. 7D for the wild-type A1-LCD) are exponentially bounded for small s, they 
have heavy tails. This feature also appears in the probability density for self-avoiding walks 37, 
with the difference being that the heavy tails here are created by the crosslinking stickers. We fit 
the data for P(s) to the functional form for the cumulative distribution function of a discrete 
Weibull distribution 38 given by: 

 ;  (1) 

ga =
pa,seq
pa,ref

P s( ) = 1− exp − s+1
λ

⎛
⎝⎜

⎞
⎠⎟
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⎣
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⎤

⎦
⎥
⎥
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Here, s is the number of stickers within each cluster, whereas l and k are, respectively, 
sequence-specific scale and shape parameters of the Weibull distribution. The sequence-specific 
values of l and k were extracted by linear regression analysis of plots of ln[–ln(1–P(s))] vs. ln(s+1). 
As shown in Extended Date Fig. 7E, increasing the strength of stickers (-12F+12Y) leads to 
increased clustering of stickers (larger l-values) when compared to wild-type A1-LCD. Likewise, 
decreasing the strengths of stickers (+7F-7Y) lowers the extent of clustering of stickers (lower l-
values) when compared to the wild-type A1-LCD. Lowering the valence of stickers significantly 
lowers the extent of clustering (see data for -4F-2Y in Extended Date Fig. 7E). Finally, the extent 
to which large clusters of stickers are formed, quantified by the values of k, where lower values 
imply heavier tails, is governed almost exclusively by the valence of stickers.  

Condensates form small-world structures defined by networks of physical crosslinks: 
The heavy-tailed nature of the cluster distributions suggests that molecules can be networked to 
be condensate spanning. This would generate specific types of network structures, which we 
analyzed using graph-theoretic methods 39. In this analysis of the simulation results, we treat each 
molecule within a condensate as a node. An undirected edge is drawn between a pair of nodes if 
at least one pair of stickers from the molecules in question forms a contact. The resultant graphs 
depicting the representative topological structures at a given snapshot are shown for the wild-type 
A1-LCD (panels A-C of Fig. 3). Each node is colored by its degree, which is defined as the number 
of edges emanating from the node.  

 
Fig. 3: The interiors of condensates form small-world network structures (A-C) Representative graphs for the 
largest connected cluster at the largest (A), median (B), and smallest (C) value of w (as defined in Fig. 2). Results are 
shown here from analysis of simulations for the wild-type A1-LCD. The nodes represent individual molecules and are 
colored according to their degree (number of connections that they form). Two chains are connected by an undirected 

edge if any two stickers between them are within units on the cubic lattice. (D) The degree distribution for three 

distinct values of w. (E, F), the average path length, L (E), and the average clustering coefficient, C (F), for the wild-
type A1-LCD and the six “aromatic variants”. The values shown here are normalized by the corresponding Erdős-
Rényi values for random graphs. The dashed horizontal line represents the values that would be expected assuming 
an Erdős-Rényi model40. The error bars represent the standard deviation. As w approaches zero, we note a downward 
shift of the relative clustering coefficient. This is indicative of increased randomness as the critical temperature is 
approached.  

3
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The degree distributions are unimodal, and the mean and mode shift toward smaller values 
as T increases i.e., as the magnitude of w decreases (Fig. 3D). The degree distribution is broad and 
features nodes that have degrees that are well above the mean. This, as depicted in the topological 
structures shown in Figures 3A-C, suggests a small-world structure of percolated networks within 
condensates. To test this hypothesis, we computed two standard measures of graph topology, the 
relative path lengths, and relative clustering coefficients of condensate graphs, at different 
temperatures, by referencing these parameters to values obtained from Erdős-Rényi random graphs 
40. The mean path length is defined as the average shortest path between all possible pairs of nodes 
on the graph. The clustering coefficient is a measure of the degree of clustering of the nodes on 
the graph. The mean path lengths of condensate graphs are larger than those of Erdős-Rényi graphs 
40 (Fig. 3E), and the mean cluster coefficients are at least a factor of five larger for condensate 
graphs. These features highlight the non-random, inhomogeneous, small-world nature of 
condensate graphs wherein a few molecules make up hubs in the network, and the rest of the 
molecules are connected to these hubs via sticker-mediated physical crosslinks.  

At first glance, the observed small-world structure is surprising given that all the molecules 
within the condensate are identical to one another. It appears that the combination of sticker-and-
spacer architectures, the valence, strength of stickers (Fig. 5F), conformational heterogeneity 
which affects the interplay of intra-chain, inter-chain, and chain-solvent interactions (Extended 
Data Fig. 5), and the spatial location of a molecule with respect to the center of the condensate / 
interface are all factors that will contribute to the observed small-world structure. In each snapshot, 
some molecules become hubs that enable the formation of condensate-spanning networks.  

The observed small-world network structures imply that even within condensates formed 
by molecules of a single type, the crosslinking density will be inhomogeneous. This can give rise 
to time-dependent changes of material properties, expected for viscoelastic materials, and physical 
aging 41, as has been observed for simple condensates such as those formed by PLCDs 42, 43and 
other low complexity domains 44. Additionally, the type of small-world network that is formed, as 
defined in terms of the degree, mean path length, and mean clustering coefficient, will be affected 
by solution conditions (temperature in our case), and the linear patterning of stickers 41. Recently, 
Shillcock et al.,45 used a specific implementation of graph-theoretical approaches to analyze their 
simulations of condensates formed off a lattice, using dissipative particle dynamics, for generic 
sticker-and-spacer models. They concluded that the network topologies within condensates have 
small-world architectures. Taken together, it appears that the small-world structure of condensates 
might be a feature of all linear sticker-and-spacer systems.  

Molecular features of condensate interfaces: In the two-phase regime, there exists an 
interface between coexisting dilute and dense phases . We analyzed radial density profiles to 
identify interfacial regions (Fig. 4A). Each radial density profile has two shoulders corresponding 
to coexisting regions of low and high densities. The density in the transition region changes 
monotonically between the two shoulders. This is the presumed interface between the coexisting 
dilute and dense phases. The interface will be defined by the wavelength of capillary fluctuations, 
the sizes of molecules at the interface, the surface density of molecules, and the orientations of 
molecules with respect to the interface 46, 47. Following precedents for describing liquid/vapor 
interfaces in van der Waals fluids and associative molecules 48, 49, 50, 51, we use a hyperbolic tangent 
function49, 51 to fit the computed radial density profile f(r) at a given temperature. The function 
used is shown in Equation (2): 
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;  (2) 

Here, f¢and f² are the densities in the dilute and dense phases, respectively; rmid is the 
midpoint of the hyperbolic tangent function, and ∆ is the inferred width of the interface. As shown 
in Fig. 4A, the computed radial density profile can be well described by the hyperbolic tangent 
function. We used this function to analyze how the width of the interface (∆) scales with chain 
length (N) for homopolymers that were modeled using the parameters obtained to reproduce the 
measured and computed binodals of the wild-type A1-LCD (Extended Data Fig. 6). The width 
increases with temperature (Fig. 4B). Further, away from the critical temperature we observe a 
plateauing of ∆ to a length-specific value ∆p, where ∆p ~ N0.45. This implies that the width of the 
interface increases with increasing molecular weight of the flexible polymer. Interestingly, above 
a length-specific temperature, as the temperature approaches Tc, the width of the interface (∆), 
which continues to increase, becomes independent of chain length.  

Next, we analyzed the progression of inter-sticker contacts along the radial density profile 
(Fig. 4C). We observe a monotonic decrease in the average number of intermolecular, inter-sticker 
interactions along the radial coordinate r that progresses from the dense phase into the dilute phase 
(Fig. 4C). However, the average number of intramolecular, inter-sticker interactions changes non-
monotonically. This value, which is low in the dense phase, decreases further through the interface, 
followed by an increase as r extends beyond the interface into the dilute phase (Fig. 4C). The 
conformational consequences of this non-monotonic change in intramolecular crosslinks per 
sticker are summarized in Figures 4D-F. As shown in Fig. 4D, the Rg values of individual 
molecules are largest within the interface and smallest within the dilute phase. The preference for 
expanded conformations is also manifest on local length scales as shown in Fig. 4E. Here, we 
demonstrate that sections of the chain that are up to five bonds long are generally more expanded 
at the interface when compared to the dense and dilute phases. The global expansion results from 
more prolate-shaped conformations52, as is shown by the evolution of the average asphericity52 
along the radial coordinate (Fig. 4F). Overall, the results in Fig. 4 show that the width of the 
interface, even away from Tc, is approximately three times larger than the average Rg of chains in 
the dilute phase. This implies that the width of the interface is at least as large as the mean end-to-
end distance of a flexible PLCD. This observation is consistent with inferences reported in a recent 
study by Böddeker et al., 53 of condensates being defined by “fat” interfaces.  

log10 φ r( )⎡⎣ ⎤⎦ =
1
2
log10 ′′φ( )+ log10 ′φ( )⎡⎣ ⎤⎦ −

1
2
log10 ′′φ( )− log10 ′φ( )⎡⎣ ⎤⎦ tanh

2 r − rmid( )
Δ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2022. ; https://doi.org/10.1101/2022.05.21.492916doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.21.492916


 10 

 
Figure 4: Interfaces of condensates have distinctive conformational characteristics. (A) A representative radial 
density plot of a simulation of the wild-type A1-LCD at w=-3.7. The solid red curve corresponds to a logistic fit to 
the data (see Methods). (B) The width of the condensate interface versus temperature for simulations of homopolymers 
at different lengths. Error bars are standard errors about the mean across three replicates. (C) The average number of 
sticker-sticker crosslinks per sticker as a function of the distance from the condensate center-of-mass for wild-type 
A1-LCD at w=-3.7. Depicted are the total number of crosslinks (blue), the number of intramolecular crosslinks 
(orange), and the number of intermolecular crosslinks (green). (D) The average Rg of a chain as a function of the 
distance from the condensate center-of-mass for the wild-type A1-LCD at w=-3.7.  (E) Average distance between 
residues on the same chain that are separated by exactly five residues plotted against the distance from the condensate 
center-of-mass of one of the residues for the wild-type A1-LCD at w=-3.7. (F) Average asphericity of chains plotted 
against the distance from the condensate center-of-mass of the chain for the wild-type A1-LCD at w=-3.7. Values of 
asphericity that are larger than 0.4 point to cigar-shaped conformations, at least on the local level 52. The distinction 
of chain dimensions across the dilute, dense, and interfacial regions disappears as the critical temperature is 
approached. The translucent green boxes in panels (A), (C), (D), (E), and (F) represent the interfacial region as 
determined by the logistic fit. In all panels, l.u. is lattice units. 

Chains are oriented normally at the condensate interface: The increased global and 
local expansion we observe on average for molecules at the interface raises two possibilities for 
the orientations of molecules. First, they could be expanded because they adsorb and are oriented 
parallel to the interface. This arrangement would minimize the number of chains per unit area, 
ensuring that un-crosslinked stickers at the interface originate from a small number of distinct 
chains for a given condensate size. Alternatively, the chains could have a locally perpendicular 
orientation with respect to the interface. This arrangement would maximize the number of chains 
at the interface while minimizing the number of unsatisfied stickers per chain. We computed the 
average number of distinct chains per residue (Fig. 5A), resolved along the radial coordinate 
pointing from the center of the condensate. This value is maximized at the interface (Fig. 5B), 
implying that molecules do not adsorb, and are not oriented parallel to the interface. Instead, each 
chain section is oriented perpendicularly to the interface. To further test for this, we computed the 
projection angles of bond vectors with respect to the radius vector with origin at the center of the 
condensate that is being analyzed (Fig. 5C). Resolved along the radial coordinate, we note that the 
bond vectors prefer perpendicular orientations at the interface and random orientations within 
condensates (Fig. 5D).  
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Fig. 5: At the interface, molecules have non-random, perpendicular orientations. (A) A diagram depicting how 
distinct chains per residue is calculated. The region enclosed by the dashed red curves indicates the radial shell of 
interest. Any chains that contain beads within the radial shell are colored blue. Any beads that are within the radial 
shell are colored orange. All other chains are colored black. To calculate the distinct chains per residue, the number 
of blue chains is divided by the number of orange beads, in this case 8 and 24, giving a parameter value of 0.25. This 
parameter can vary between 0 and 1. Lower values suggest that chains are wrapped around a radial shell, whereas 
higher values suggests that chains are oriented perpendicular to a radial shell. (B) Average distinct chains per residue 
plotted against the distance from the condensate center-of-mass for the wild-type A1-LCD at w=-3.7. (C) A diagram 
depicting how the parameter cos2q is calculated. Here, q is defined as the angle swept out by a covalent bond and a 
line segment (opaque dashed red line) between one of the bonded beads and the condensate center. Bond 1 (blue 
polymer) is perpendicular to the radial shell depicted by the translucent dashed red curve. Therefore, q1 is close to 
180° and cos2q1 ≈ 1. Conversely, bond 2 (orange polymer) is tangential to the radial shell such that q2 is close to 90°, 
and cos2q2 ≈ 0. In general, lower values of cos2q suggest that chains are wrapped around a radial shell, whereas higher 
values suggest that chains are oriented perpendicular to a radial shell. (D) Average cos2q plotted against the distance 
from the condensate center-of-mass for the wild-type A1-LCD at w=-3.7. Notice the increase in cos2q values within 
the region corresponding to the interface. As the critical temperature is approached, the orientational differences across 
distinct regions vanish. Translucent green rectangles in (B) and (D) represent the interfacial region determined by the 
logistic fit in Fig. 4A. l.u. is lattice units. 

The dilute phase crosses over into the semidilute regime as T approaches Tc: We find 
that on a semi-log scale, the dilute arm of the binodal shifts rightward with increasing temperature, 
whereas the dense arm shows little change (Extended Data Fig. 3). This implies that the width of 
the two-phase regime shrinks almost entirely because of an increase in the saturation concentration 
with temperature. Note that PLCDs have upper critical solution temperatures 9. In polymer 
solutions, there exists a special concentration that equals the concentration of chain units within 
the pervaded volume of a single chain 54. This is known as the overlap concentration c* - so named 
due to the high likelihood that chains will overlap with one another when the solution concentration 
exceeds c* 55. In dilute solutions, c < c*, whereas in semi-dilute solutions, c≈c*. We used the mean 
end-to-end distance values in the single-chain limit 56 to compute temperature-dependent overlap 
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volume fractions f*(T) for the wild-type A1-LCD. For temperatures below 20˚C, fsat(T) < f*(T) 
i.e., the left arm of the binodal is located to the left of the overlap line (Extended Data Fig. 8A). 
Accordingly, for T < 20˚C, the dispersed phase that coexists with the dense phase is a true dilute 
phase. However, we observe a crossover above ~20˚C whereby fsat(T) > f*(T), which is caused 
directly by the increased density within the dilute phase (compare Extended Data Figs. 8B vs. 8C). 
Therefore, the dispersed phase that coexists with the condensate is semi-dilute for temperatures 
above ~20˚C. These distinctions are relevant because properties of polymer solutions in dilute 
solutions are governed exclusively by the interplay of intramolecular and chain-solvent 
interactions. Conversely, the physical properties of semi-dilute solutions are governed by the 
interplay of density fluctuations and conformational fluctuations, which impacts intramolecular, 
intermolecular, and chain-solvent interactions 54, 55. Further, the dynamics of individual chains and 
overall rheological properties of dilute and semi-dilute solutions will also be considerably different 
from one another, with increasing viscoelasticity characterizing semi-dilute solutions. 

Overall implications of our findings: We have built upon recent experimental 
characterizations of phase behaviors of the A1-LCD system and designed variants thereof to 
develop a lattice-based, single bead per residue model that accurately captures the measured phase 
diagrams. It is noteworthy that the data of Bremer et al.,9 and those on unrelated low complexity 
domains have also been qualitatively and quantitatively reproduced by other, off-lattice coarse-
grained models 57, 58. A specific approach used to compare computations and experiments is 
through the comparison of computed vs. experimentally derived critical temperatures 57. However, 
estimates of Tc are inaccessible from direct measurements. They are instead inferred by fitting 
binodals extracted from a preferred mean-field theory, cf., Extended Data Fig. 8A. Then, a specific 
functional form for the width of the two-phase regime 33, 57, 59 is fit to the entire binodal. However, 
based on the Ginzburg criterion, the functional form that is routinely used 33, 57, 59 is only valid in 
the vicinity of the critical temperature 60. We pursue a different approach to compare computed 
and experimentally derived phase diagrams. Specifically, we quantify the ERMSL between 
computed and measured low concentration arms of binodals. We focused on the low concentration 
arms because they change the most with temperature and have smaller error bars in measurements 
when compared to concentrations corresponding to the high concentration arms of binodals. 
Overall, the ERMSL values indicate that maximal deviations are a factor of 2-2.5 across 
concentrations that vary by at least three orders of magnitude. Encouraged by the accuracy of our 
simulations across 31 different variants of the A1-LCD system, we used the computed ensembles 
within, outside, and at the interface of condensates to investigate molecular and mesoscale 
structures.  

Our findings regarding the degree of crosslinking and extent of chain expansion in the three 
regions, viz., dilute phase (I), condensate interface (II), and condensate interior (III), are 
summarized in Fig. 6. Our results suggest that interfaces between condensates and the coexisting 
dilute phases should be thought of as being “fat” 53 rather than “thin”. This feature of the interface 
is realized by the ability of disordered proteins to be relatively more expanded, both locally and 
globally, when compared to the dilute and dense phases. It is known that the interfacial tension 
decreases as the inverse square of the size of the molecule 46. Accordingly, the low interfacial 
tensions that have been measured to date 61 42, 62, 63 appear to originate from chains being most 
expanded as they traverse the interface. Importantly, the interface features a high number of 
unsatisfied stickers, achieved due to the high number of chains that project perpendicularly to the 
interface.  
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Our observations regarding interfaces have two major implications. First, the presence of 
a high number of unsatisfied stickers, typically defined by the presence of functional groups, 
suggests that interfaces might be prime locations for enhancing the efficiencies of biochemical 
reactions that are influenced by condensate formation. This speculation, based on the features we 
have documented for interfaces, is consistent with numerous observations from the microdroplet 
literature 64. Second, it is conceivable that interfaces catalyze amyloid fibril formation, through 
secondary nucleation 65, 66. This proposal is based on the preference for the high likelihood of 
accessing locally extended, b-strand-like conformations for molecules such as A1-LCD or 
mutations of such systems 43. Our proposal appears to be supported by the recent results of 
Linsenmeier et al., 67 who report that amyloid formation is nucleated at condensate interfaces.   

Overall, our findings suggest that even the simplest condensates, formed via effective 
homotypic interactions among PLCDs with sticker-and-spacer architectures, have complex 
internal structures and interfacial characteristics. The features we have identified are likely to be 
germane to recent discoveries that condensates are in fact viscoelastic network fluids 68, 69. We find 
that condensates formed by PLCDs have small-world network structures. This implies that the 
molecules are organized into inhomogeneous networks within condensates defined by regions of 
high vs. low crosslinking densities. The clustering of stickers within condensates, achieved via 
strong and specific inter-sticker interactions, can be separated from the contributions of spacers 
that directly impact the solvation preferences, thereby modulating the locations of the dilute arms 
of binodals. The extension of our findings to multicomponent, multiphasic systems 70 will be of 
considerable ongoing and future interest.   

Fig. 6: Molecular properties of interfaces are distinct from dilute and dense phases. Diagram summarizing our 
findings concerning condensate organization. Region I is the dilute phase, Region II is the condensate interface, and 
Region III is the interior of a condensate. Region I is characterized by relatively compact chains that form few 
intermolecular contacts. Region II is characterized by relatively expanded chains that are oriented perpendicular to the 
interface and form the fewest number of total sticker crosslinks. Region III is characterized by chains that are less 
compact than those in Region I and less expanded than those in Region II. These chains form numerous intermolecular 
sticker crosslinks, giving rise to a small-world percolated network. 

Methods 
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Monte Carlo simulations using LaSSI: Simulations were performed using LaSSI, a lattice-
based Monte Carlo simulation engine 20. Monte Carlo moves are accepted or rejected based on the 
Metropolis-Hastings criterion such that the probability of accepting a move is the min[1,exp(-
∆E/kBT)] where ∆E is the change in total system energy of the attempted move and kBT is the 
thermal energy. Total system energies were calculated using a nearest neighbor model whereby 
any two beads that are within one lattice unit of each other along all three coordinate axes 
contribute to the total energy of the system. In our case, we define all pairwise interaction energies 
as absolute energies (Fig. 5B) that are scaled by the simulation temperature during the Metropolis-
Hastings step. 

Calculation of phase diagrams and interfacial features: Multi-chain LaSSI simulations at 
various temperatures were performed to calculate coexistence curves. For each variant, 200 chains, 
each with 137 beads, were placed in a cubic lattice with side-length 120. The starting volume 
fraction was about 0.016. After the systems phase separated, the radial distribution of beads in the 
system was calculated as shown in Equation (2) of the main text. All multi-chain simulations were 
performed in triplicate, and the calculated volume fractions were near identical across replicates. 
At low temperatures, the calculated dilute phase volume fractions tend to have more variability 
due to the decreased likelihood that chains are in the dilute phase. To convert from simulation 
temperature and volume fraction to experimental temperature and volume fraction, fixed scaling 
factors of 5.6 and 0.6 were used 8, 9, respectively. These scaling factors were used for all variants, 
and they were chosen by comparing the simulation and experimental phase diagrams of the 
aromatic variants (Extended Data Fig. 3A-B). In general, scaling factors are required to provide 
phase diagrams that match experimental results. To convert from volume fraction to mass 
concentration, we assumed that a volume fraction of 1.0 corresponds to a mass concentration of 
1310 mg/ml 56. 

Gaussian process Bayesian optimization (GPBO) for parameterization and verification of 

sticker-and-spacer model: Single-chain LaSSI simulations at a single temperature (kBT = 50) were 
performed to parameterize the initial stickers-and-spacers model. Values of the apparent scaling 
exponent (napp) derived from experimental SEC-SAXS data of the variants in Extended Data Fig. 
3A-E of Bremer et al.,9 were used as the target values. Values of napp were calculated as described 
by Meng et al., 71 using ten independent simulations per construct. A Gaussian process Bayesian 
optimization 72 was implemented. This process was iterated over pairwise interaction energies to 
minimize the sum of the square residuals of computed and experimentally derived values for napp 
(Fig. 1B). If a given parameter remained close to the upper or lower bound through each iteration, 
then the parameter bounds used in the optimization were manually changed over the course of the 
optimization. Over 500 iterations were performed. The final parameters as well as the upper and 
lower bounds and values are shown in Table 1. Here, “Aro” represents either a Tyr or Phe residue 
and “X” represents any amino acid residue that is not explicitly one of the residues listed in the 
main text. We note that for every parameter, the difference between the final value and either of 
the bounds is at least 20% of the absolute final value, suggesting the bounds are adequately 
distanced.  
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Table 1: Initial parameterization of sticker-and-spacer model using GPBO 
Pairwise Interaction Lower Bound Upper Bound Final Value 

Tyr-Tyr -32 -15 -19.3 
Tyr-Phe -30 -12 -15.2 
Phe-Phe -25 -5 -13.4 
Arg-Aro -25 -8 -11.0 
Lys-X -3 3 -0.389 
X-X -4 -2 -2.95 

 
A mean-field model to account for protein charge: We have previously shown that small 

changes to the net charge per residue (NCPR) have little effect on single chain dimensions but can 
alter dilute phase concentrations by orders of magnitude 9. To account for this, we incorporate a 
mean-field NCPR-based term into our multi-chain simulations. This term strengthens or weakens 
the interactions of a system, by decreasing or increasing the effective temperature, respectively, 
depending on the NCPR of the variant. In this way, we implicitly account for ionizable residues 
without explicitly modeling them as unique, highly solvated spacers. The mean-field term is 
incorporated as follows: 

 ;  (3) 

Here, T* the new effective temperature, T is the original temperature, NCPR is the net 
charge per residue of the variant of interest, and NCPRmid, as well as a and b are constants. The 
mean-field term can be visualized as an absolute-value function whose minimum vertex is at 
(NCPRmid, b) and whose slope is -a to the left of the minimum and +! to the right of the minimum 
(see Extended Data Fig. 2). Based on prior work, NCPRmid = 0.0287, a = 1.54, and b = -0.045. 
This ensures that T* = T for the wild-type A1-LCD. 

 

Table 2: Final parameterization of sticker-and-spacer model 
Pairwise Interaction Final Value 

Tyr-Tyr -19.3 
Tyr-Phe -15.2 
Phe-Phe -13.4 
Arg-Aro -11.0 
Lys-X -0.389 
Thr-X -2.35 
Ser-X -2.65 
Gln-X -2.75 
Asn-X -3.05 
Gly-X -3.15 
X-X -2.95 

 
Parameterization of spacer interactions: Although we did not have SAXS data for the 

variants designated as “spacer variants” by Bremer et al.9, we were able to parameterize 
interactions between spacers and other beads by manually titrating five new interaction parameters 
to match the computational phase diagrams to the experimental phase diagrams shown in Extended 

T*= T +T a NCPR −NCPRmid + b⎡⎣ ⎤⎦
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Data Fig. 3F-I. Parameters for the final model are shown in Fig. 1A and Table 2. In cases where a 
pairwise interaction is ambiguous (for example, the interaction between Thr and Ser), the weaker 
interaction is used (in this case, -2.35). 

Error analysis of computed phase diagrams: We evaluate the error of our LaSSI-derived 
phase diagrams from the experimentally derived phase diagrams using a multi-step process: First, 
we perform a linear regression of temperature vs. log(csat) for the LaSSI-derived dilute arms. (2) 
Second, for each experimentally-derived data point along the dilute arm, calculate x = (csat,sim / 
csat,exp) where csat,sim and csat,exp are the computed and experimentally derived saturation 
concentrations at the same temperature. Third, we calculate the exponential root mean square log 

(ERMSL) of x as .  The ERMSL is a positive value greater than or equal to 1 and 

can be interpreted as a measure of the error between the computed and experimentally derived 
phase diagrams, specifically the dilute arms. For example, an ERMSL value of 10 indicates that, 
on average, the two csat values differ by about a factor of 10, or one order of magnitude. 
Alternatively, an ERMSL value of 1 indicates that there is no error between the dilute arms and 
that they should overlay perfectly. We report the ERMSL of every variant in Fig. 1D. This includes 
the variants in Extended Data Fig. 3J, which were not used in the parameterization of the sticker-
and-spacer model. The ERMSL is akin to the root mean square log error (RMSLE) often used in 
machine learning, except for two important distinctions: (1) When calculating the RMSLE, 1 is 
added to both the numerator and the denominator of the argument. In our case, we do not need to 
include this bias since csat values are always greater than zero. (2) Unlike with the RMSLE, we 
take the exponential of our final value to bring our error back to an interpretable scale. This 
exponential operator is a reciprocal function of the inner logarithmic operator, in the same way 
that the outer square root operator is a reciprocal function of the inner square operator. 

Analysis of conformational properties in dense and dilute phases: In Fig. 2, Fig. 3, 
Extended Data Fig. 4, and Extended Data Fig. 5, we report conformational characteristics of PLCD 
molecules in dense and dilute phases. To perform these analyses, we first ensure that our 
simulation shows stable phase separation into a single, distinct dense phase. We then determine 
whether a chain belongs to the dense or dilute phase based on whether it is within interacting range 
of the largest cluster of chains. If so, we group this chain into the dense phase. Otherwise, we group 
this chain into the dilute phase. 

Swelling ratio: In Fig. 2 and Extended Data Fig. 4, we introduced the swelling ratio a, 
which for a given temperature or w-value, we define as: 

   (4) 

As noted in the main text, we defined the width of the two-phase regime in terms of the parameter 
w. Rather than directly calculating the difference between the dense and dilute phase 
concentrations, which is heavily biased by the dense phase concentration, we calculate the 
difference between the concentrations on a log scale. This accounts for the fact that the dense and 
dilute phase concentrations differ by orders of magnitude. The swelling ratio quantifies the degree 
of expansion of chains in the dense phase relative to the dilute phase. In Fig. 2C, we fit the 
following exponential decay model to data for the swelling ratio: 

exp ln x⎡⎣ ⎤⎦
2⎛

⎝⎜
⎞
⎠⎟

α =
Rg ,dense
2

Rg ,dilute
2
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   (5) 

Here, a is the fitted parameter that controls the rate of decay, and b shifts the curve to the left or 
the right. The parameters for the master curve shown in Fig. 2C are a = 0.34, and b = -9.4, 
respectively.  

Ternary plots to analyze the interplay of intra-chain, inter-chain, and chain-solvent 

interactions in the dense phase: Extended Data Fig. 5 shows a ternary plot constructed in the 
following way: (1) For every chain in the dense phase, we calculate the Rg values of individual 
molecules. (2) For each bead in that chain, we count the number of neighbors within √3 lattice 
units that are empty (i.e., solvated), contain beads that belong to the same chain, or contain beads 
that belong to other chains. (3) Sum each count for every bead in the chain and divide by the sum 
of the three counts. This yields the three fractions, fsol, fintra, and finter, respectively. (4) For each 
chain, we then determine which bin it belongs to on the ternary plot (based on the fractions) and 
average Rg calculated for all chains in that bin to determine the color of the bin of interest.  

Overlap concentration calculation: In Extended Data Fig. 8A, we calculate the overlap 
concentration of simulated constructs in a using the method of Wei et al., 56. Specifically, we use 
the following equation: 

   (6) 

Here, f* is the overlap concentration, $ is the number of monomers in a chain, r is the 
radius of individual residues and   is the root mean square end-to-end distance of a chain. 

In our case, $ is 137 and r is set to 0.5 lattice units. We apply this equation to chains in the dilute 
phase to minimize the effects of intermolecular interactions on the calculation of the overlap 
concentration dictated purely by conformational fluctuations. 

Parameterization of a model for an equivalent homopolymer: In Extended Data Fig. 6, we 
introduce a homopolymer equivalent for the wild-type A1-LCD. The contact energies for this 
model were parameterized by choosing a single pairwise interaction energy such that the phase 
diagrams of the homopolymer and wild-type A1-LCD overlay on one another. A pairwise 
interaction energy of -3.3 accomplishes this task. 

Graph theoretical analyses: In Fig. 3, we report on the small-world network structure 
formed by condensates. For this, we analyze the undirected, unweighted graphs formed by each 
condensate over the equilibrated portion of the trajectory 39. For each snapshot, we associate the 
condensate with the largest connected number of chains. Two chains are considered connected if 
at least one pair of stickers between them are adjacent, defined by being within √3 lattice units on 
the cubic lattice. For each condensate, we calculate the average path length and the average 
clustering coefficient to verify the small-world characteristics of the graph. The empirical average 
path length, representing the average number of steps along the shortest paths for all possible pairs 
of nodes (vi, vj), is calculated according to: 

α = 1+ exp −a ω − b( )⎡⎣ ⎤⎦

φ*= Nr3

Re
2( )3

Re
2
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   (7) 

Here, n is the number of nodes. We compare this value to the average path length assuming 

Erdős-Rényi statistics 73, which we calculate as   for each condensate, where  is the 

average degree. Finite-size effects were not accounted for because  . We calculate the 
global clustering coefficient following the work of Watts and Strogatz  74 by averaging over the 
local clustering coefficients for all nodes. For an undirected graph, the local clustering coefficient 
is given by: 

   (8) 

This calculation applies to nodes vj and vk that are in the neighborhood of node ni, with ejk edges, 

in the set E of edges. The Erdős-Rényi value is calculated for each snapshot as .  

Analysis of internal organization of condensates: In Extended Data Fig. 7A-C, we report 
the likelihood that a sticker within a condensate is a neighbor of another sticker vs. a spacer, 
normalized by the same likelihood for the homopolymer. We calculate this parameter in the 
following way: (1) For a given condensate, we go through all the beads in each of the chains. (2) 
If a bead is a sticker (Tyr or Phe), we tally the number of its neighbors that are within √3 lattice 
units that happen to be stickers (nst) and the number of neighbors that are spacers (nsp). (3) We sum 
over all values to calculate pa,seq (see main text). (4) We repeat steps 1-3 for the homopolymer 
condensate to calculate pa,ref. For this calculation, we assume that the homopolymer has the same 
sticker-spacer architecture as the wild-type A1-LCD. (5) The ratio of association ga is then 
computed as shown in the main text. We note that Panel A and Panel C use wild-type A1-LCD 
(WT) as the background for the homopolymer, whereas Panel B uses WT+NLS, which includes 
one extra Tyr residue compared to WT. 

Weibull fits of sticker cluster probability distributions: In Extended Data Fig. 7D-F, we 
analyze the probability distributions for realizing clusters with stickers that form via inter-sticker 
crosslinks. For each equilibrated snapshot, we calculate the relative frequency that stickers form a 
cluster of a particular size, where the size is determined by the total number of stickers in the 
cluster. We then multiply each frequency by the cluster size to obtain the probability for a sticker 
to be in each cluster. A least-squares analysis, weighted by the inverse of the variance of repeated 
measurements, was performed on the linearized form of Equation 1. The analysis was restricted to 
the linear region of the plot. Outliers, where the distribution was exponentially bounded or where 
there were limited statistics at large s were treated as being a point that is greater than 3 scaled 
median absolute deviations from the median and hence removed from the analysis. The data 
treatment was insensitive to different outlier criteria. The values for the Weibull parameters were 
extracted directly from the fits to the linearized form of the cumulative distribution function given 
by Equation 1.  

L = 2
n n−1( ) d vi ,v j( )

i, j=1,n
i≠ j

∑

logn
log kv

kv

kv << n

Ci =
2 ejk : v j ,vk ∈ni ,ejk ∈E{ }

kv ,i kv ,i −1( )

kv
n
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Analysis of radial features to determine radial bins: Fig. 4, Fig. 5, and Extended Data Fig. 
8 contain analyses of radial features of simulations. For each analysis, we use radial shells with 
thickness 1/4 of a lattice unit for the purpose of binning values together. In cases where we need a 
prior radial distribution, namely for determining the volume fraction in Fig. 4A and Extended Data 
Fig. 8B-C, we use the exact prior for a cubic lattice with side-length 120. When calculating the 
radial bins for the chains in Fig. 4D and Fig. 4F, rather than using the center-of-mass of a chain 
and counting each chain one time, we independently count each bead in the chain using the radial 
bin of the bead and the radius of gyration (Fig. 4D) or asphericity (Fig. 4F). This accounts for the 
fact that a single chain can span multiple bins by weighting each bin based on how many of a 
chain’s beads belong to it. Alternatively, in Fig. 4E, we only use the first bead in determining the 
radial bin. 

Average number of crosslinks per sticker: In Fig. 4C, we calculate the average number of 
crosslinks per sticker. To do so, we go through every sticker, defined as a Tyr or Phe residue, in 
the system and count how many of its neighbors within √3 lattice units are also stickers. Each 
neighboring sticker represents one inter-sticker crosslink. We also determine whether each of these 
crosslinks is an intra- or intermolecular crosslink. 

Average distinct chains per residue: In Fig. 5A-B we describe and report a parameter which 
we term “average distinct chains per residue.” To calculate this parameter, we do the following: 
(1) for each radial shell, we count the number of distinct chains with beads that are contained in 
this shell. (2) Designate the number of distinct chains %! and the total number of beads in the shell 
%". (3) Calculate the final parameter as nc / nb.  This parameter is necessarily between 0 and 1. 
Lower values suggest that the beads in the given radial shell belong to a few distinct chains, 
whereas higher values suggest that the beads belong to many distinct chains. 

Orientational analysis: In Fig. 5C-D we describe and report a parameter that describes 
bond orientation relative to the condensate center-of-mass. To calculate this, we do the following: 
(1) for each covalent bond in the system, we consider a line segment drawn from one of the bonded 
beads (&) to the condensate center-of-mass. (2) We label the angle swept out by the covalent bond 
and the line segment in step 1 as '. (3) Calculate cos# ' and the radial bin to which & belongs. (4) 
For each radial bin, average the associated cos# ' values. This parameter is necessarily between 0 
and 1.  
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Extended Data Figures 

Condensates of disordered proteins have small-world network structures and interfaces 
defined by expanded conformations 
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Extended Data Figure 1: A flowchart describing the Gaussian process Bayesian optimization 
used to parameterize the computational model. 
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Extended Data Figure 2: A diagram depicting how charge is incorporated in multi-chain 
simulations. In accordance with previous findings, a high magnitude of net charge per residue 
(NCPR) will cause a protein to be more soluble and phase separate at a higher concentration. In 
contrast, a low magnitude of NCPR will cause a protein to be less soluble and phase separate at a 
lower concentration. We take this into account by comparing the NCPR of a given variant with 
that of wild-type A1-LCD. As shown in this plot, the NCPR of wild-type A1-LCD is 0.058. If a 
variant has a significantly higher |NCPR| than 0.058, we weaken the pairwise interaction strengths 
among protein molecules. Similarly, if a protein has a lower |NCPR|, we strengthen the pairwise 
interaction strengths. Depicted are 4 other A1-LCD variants: -10R and -4D, whose |NCPR| values 
are higher than that of the wild-type, resulting in weakened pairwise interactions, as well as -6R 
and +4D, whose |NCPR| values are lower than that of the wild-type, resulting in strengthened 
pairwise interactions. See Methods for more details on this process. 
 

 
Extended Data Figure 3: Calculated phase diagrams (solid markers) of all A1-LCD variants used 
in this study plotted alongside experimental phase diagrams (open markers). Temperature and 
concentration are converted from simulation units to experimental units by the same scaling factors 
for each variant. Variants depicted in the final panel (+7R +10D, +7R +12D, -10F +7R +12D, and 
-12F +12Y -10R) were not used to parameterize the computational model. Error bars indicate 
standard errors from the mean across 3 replicates. 
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Extended Data Fig. 4: Swelling ratios and widths of two-phase regimes for different variants. 
(A) Average swelling ratio, a, plotted against temperature for aromatic variants of A1-LCD. (B) 
Average width of the two-phase regime, w, plotted against temperature for aromatic variants of 
A1-LCD. Error bars indicate standard errors from the mean across 3 replicates. 
 

Extended Data Figure 5: Ternary plot depicting the average radius of gyration (as represented by 
the color bar) of a chain in the condensate as a function of the fraction of its polymer sites that are 
surrounded by solvent (lower axis; red), by other chains (upper left axis; blue), or by itself (upper 
right axis; green). Results are shown here for the wild-type A1-LCD at w = -4.5.   The direction of 
the tick marks along each axis is the direction to follow for that axis. l.u. refers to lattice units. 
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Extended Data Figure 6: (A) Calculated phase diagrams of the wild-type A1-LCD and an 
equivalent homopolymer whose pairwise interaction energies are all set to -3.3. The solid green 
curve represents a fit to the Flory-Huggins theory for data obtained for the equivalent 
homopolymer. The method used was introduced by Martin et al., 1. Error bars indicate standard 
errors from the mean across 3 replicates. The apparent critical temperature, discerned from the fit 
to the mean field theory is ≈ 49˚C for the solution conditions (20 mM HEPES, 150 mM NaCl, pH 
7.0) that were investigated.  
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Extended Data Figure 7: (A-C) Likelihood ratio that a sticker residue (Tyr or Phe) within a 
simulated condensate forms a crosslink with another sticker versus a spacer for variants of A1-
LCD. This parameter is normalized by the respective likelihood ratio for the homopolymer, 
assuming the same sticker-spacer architecture as the wild-type A1-LCD. Larger values suggest 
that stickers within the condensate are more likely to be surrounded by other stickers. The 
parameter is plotted against the width of the two-phase regime, as defined in Fig. 2. The variants 
in (B) contain a nuclear localization signal (NLS), which replaces a GS motif with a PY motif. (D) 
A representative log-log plot of the probability for a sticker to be in a cluster of a particular size 
within the condensate for the wild-type A1-LCD at ! = −4.5. The cluster size is defined as the 
number of stickers comprising the largest connected component. The solid red curve represents a 
fit to the data set assuming a discrete Weibull distribution past a certain cluster size. The dashed 
black lines represent potential exponential fits (linear here due to the log-log scale). The poor 
goodness-of-fit suggests the data cannot be modeled by an exponential fit. (E-F) The scale 
parameter, ' (E), and the shape parameter, k (F), for the fits in (D) at various temperatures. Error 
bars in (A-C) indicate standard errors from the mean across 3 replicates. Error bars in (E-F) 
indicate standard deviations across 3 replicates.   
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Extended Data Figure 8: (A) Calculated phase diagram (circular markers) and calculated overlap 
concentration (square markers) of the wild-type A1-LCD. The solid blue curve represents a Flory-
Huggins fit of the homopolymer phase diagram from Extended Data Figure 5 and the dashed red 
line represents a linear fit of the homopolymer overlap concentration to guide the eye. (B-C) Radial 
density plots of simulations of the wild-type A1-LCD at two different w. The solid red curves 
correspond to fits of the data as described in the main text. The translucent green rectangles 
represent the interfacial regions determined by the respective fits. Error bars in (A) indicate 
standard errors from the mean across 3 replicates. 
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