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Abstract12

It has been ten years since the first publication of a method dedicated entirely to mapping third-13

generation sequencing long-reads. The unprecedented characteristics of this new type of sequencing14

data created a shift, and methods moved on from the seed-and-extend framework previously used for15

short reads to a seed-and-chain framework due to the abundance of seeds in each read. As a result,16

the main novelties in proposed long-read mapping algorithms are typically based on alternative seed17

constructs or chaining formulations. Dozens of tools now exist, whose heuristics have considerably18

evolved with time. The rapid progress of the field, synchronized with the frequent improvements of19

data, does not make the literature and implementations easy to keep up with. Therefore, in this20

survey article, we provide an overview of existing mapping methods for long reads with insights into21

algorithmic details.22
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1 Introduction29

With the introduction of PacBio long-read sequencing and later Oxford Nanopore Technologies30

emerged a need for mapping long and noisy sequencing reads. The data proposed new31

computational challenges of mapping millions of sequences, initially at expected error rates32

of 10-20%. From the start, authors noticed that the seed-and-extend paradigm used in short-33

read mapping was not practical for long-reads. First, seed-and-extend would usually rely on34

a single match before extending, while long-reads required multiple consistent matches along35

the read to be confidently mapped. Second, the extending part, which relies on alignment36

algorithms with quadratic time complexity, had to be avoided given the combined length and37

the frequent insertions and deletions in such data. Early on, the computational problem was38

compared to whole-genome alignment, with the additional complexity of high error rates.39

Such observations lead to the novel seed-and-chain paradigm for mapping long-reads (see40

Figure 1). However, the first long-read alignment algorithms using older seeding techniques41
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2 A survey of long-read mapping

designed for generic sequence alignment (e.g., BLAST) were not time-competitive in their42

throughput compared to short-read mappers. Thus, sketching and subsampling techniques43

imported from comparative genomics started to appear in this domain.44

Recently, specific sub-problems in the mapping domain have been identified and investig-45

ated, such as partial and gapped alignment of reads for structural variant discovery, aligning46

reads in repetitive regions or from non-reference alleles to correct loci, and other applications47

such as spliced-mapping of RNA reads. These specific problems require and motivate novel48

algorithmic solutions. In this survey article, we give an overview of the techniques that have49

been proposed over the last decade for mapping long reads to genomes.50

2 Definitions and state-of-the-art of tools51

2.1 Preliminaries52

In this article we restrain ourselves to the problem of mapping a sequence shorter or equal53

to a genome (a read) to a reference genome. We further assume that the reads come from a54

genome that is closely related to the reference genome, such as from the same organism or a55

closely related species.56

Let q = (q1, . . . ql) be the read sequence of size l and t = (t1, . . . tn) the sequence of the57

reference region of size n. Let Σ = {A, C, G, T} and Σ+ = {A, C, G, T, −} be two alphabets,58

x and y strings are defined on Σ. Let f : Σ∗
+ → Σ∗ be a transform that maps a string to its59

subsequence with all "−" characters removed. An alignment is a pair of strings (q′, t′) ∈ Σ2
+60

such that:61

1. |q′| = |t′| = S62

2. f(q′) = q and f(t′) = t63

3. (q′[i], t′[i]) ̸= (−, −), for 0 ≤ i < S64

Many alignments exist for a given pair of strings, in theory, the methods described65

hereafter aim at finding good alignments, i.e. alignments that optimize some distance66

between the pair of strings. The distance is computed using score functions which give rules67

on the characters pairing.68

With read mapping, we mean the procedure to find a read’s location on the reference69

genome. Typically, long-read mapping is performed by seeding and chaining the seeds into70

high-scoring regions on the genome. In this study, a read alignment implies both that the71

read has been mapped to a location, and that a pairwise alignment between the read and the72

genome at the mapped location has been performed. Algorithms exist to compute optimal73

semi-global pairwise alignments with respect to a score function. However, their complexity74

in O(n × l), disqualifies them in the context of handling big data such as sequencing data.75

Therefore, methods of the literature use heuristics to perform read mapping on a reference.76

They do not guarantee to find the optimal solution.77

In our survey, we discuss read mapping to a genome sequence. We will use the terms78

query for a read and reference to denote the genome.79

2.2 Overview of fundamental ideas80

To our knowledge, the first mapper explicitly written for long-reads was BLASR [12], although81

short-reads mappers had been adapted for the long-read usage [37, 41, 47]. While solutions82

specialized for either Nanopore [5] or PacBio [28] characteristics appeared, most modern83

mappers work for both technologies with adapted parameters. BLASR presented itself as an84
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Figure 1 Differences in the main steps between short-read mapping (left) and long-read mapping
(right). Query denotes the read and reference denotes a genome region. Mainly, short-read
approaches extend (orange parts) from a single anchor (in blue) on the whole read length while
long-read approaches gather multiple anchors, and chain (yellow line) them in for a candidate
extending procedure that is done between pairs of anchors.

approach descending from both genome to genome alignment methods (such as MUMmer [16])85

and short-read mappers. The paper contains seminal ideas used in modern long-read mappers86

such as the seed-and-chain paradigm.87

Seeding Seeding is the first operation in the heuristics used by mapping techniques.88

▶ Definition 1. A seed is a subsequence extracted from the query or the reference.89

The purpose of seeding is to find relatively small matching segments between the query90

and the reference that serves as markers for reference regions that potentially are similar to91

the read. The reason seeding is used is that it is typically computationally efficient to find92

matching seeds that can narrow down regions of interest compared to, e.g., global alignment93

of the read to the reference. As we will see in Section 3.1, seeds can be of different nature.94

Seeding relates to pattern matching, although in sequence bioinformatics, practically all95

approaches work under the paradigm which indexes the reference and query the index to find96

matches. The underlying assumption is that once the index is created, it can be used several97

times to map different query sets. To save space, reference indexes can be in a compressed98

form. Once matches are found, a second operation aims at finding sets of concordantly99

ordered seeds between the query and the reference (chaining; section 3.3 and to "fill the gaps"100

between seeds as well as providing the final nucleotide level alignment (extension; section 4).101

Seeding was quickly identified as a critical phase in long-read mapping, which led to novel102

proposals [49, 42, 71].103

Sketching and subsampling An important idea for seeding is sketching that was introduced104

in MHAP, a long-read overlap finder implemented in an assembly algorithm [7]. Although long105

read mappers had already been proven faster than alignment approaches [71], the rationale106

was to improve the time efficiency of the long-read mapping problem in comparison to the107

throughput of the second generation sequencing mappers. Sketching consists of compressing108

the information of a set (here a set of k-mers) into a fixed-length vector (a sketch) of109

representative elements called fingerprints. By comparing two sketches, one can approximate110
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4 A survey of long-read mapping

a similarity estimation of the two sets quickly and independently of their initial set sizes.111

Several approaches exist [9, 54, 14]. MHAP relied on sketching with a MinHash approach.112

MinHash [9] is a sketching technique based on locally sensitive hashing, which produces an113

unbiased estimator for the Jaccard distance between two sets by selecting a subsample for114

each set and comparing them in a very efficient way. Thus, MHAP overcame a space limitation115

of BLASR which would index the whole reference. The type of matches (exact, fixed-size)116

induced by MHAP’s approach also allowed to perform rapid queries. An important limitation117

of MHAP was that the sampling technique gave no guarantee to uniformly cover the query’s118

sequence. This led to the development of subsampling techniques which have been adapted119

to approximate distances between sequences, starting with minimap [42]. Seeding is still an120

active research area of long-read mapping with several recent developments [35, 70, 22, 60].121

Sketching and subsampling are discussed in Section 3.1.2.122

Chaining A key intuition is that in short-reads mapping, the extending procedure could123

start after finding a single shared seed between the query and the reference, called anchors124

(for details on techniques related to the previous sequencing generation, we refer the reader125

to a methodological survey of short-read mapping [3]).126

▶ Definition 2. An anchor is a matching seed between the query and the reference. It is127

represented by a pair of coordinates on the query and the reference.128

In long-read mapping, the length of the reads and the short seed length used due to the129

initial high long-read error rates can lead to a large number of seed matches. It is therefore130

necessary to reduce the search space by selecting subsequences of ordered anchors (chains).131

▶ Definition 3. Let A = [a0, a1, . . . , ak] be an list of anchors defined by their coordinates132

on the reference and the query. A chain is a subsequence of A of length c ≤ k. A colinear133

chain is a subsequence of A in which anchors are sorted by such that if i < j, aj is above134

and to the right of ai in the (reference, query) plane.135

Drawing inspiration from genome-wide mapping, BLASR introduced a chaining step which136

aims at selecting high-scoring chains from a set of candidate chains. Chaining allows to reduce137

the final step of a long-read aligner (the base level extension) to alignment of sub-regions138

between ordered anchors in chains. Chaining in long-reads has been solved using various139

dynamic programming procedures [71, 61, 43]. In particular, the continuous work effort put140

in minimap2 [42, 43, 44] in both seeding and chaining processes made it a baseline for many141

other tools’ development.142

While this survey covers the genomic mapping aspects, other important contributions143

have dealt with adapted procedures in the case of long-read RNA mapping [53, 65, 50, 74],144

and structural variant identification [68, 48, 24, 73], or other specialized problems [55]. Other145

related research focused on read-to-read overlap detection [20, 75]2, or alignment-free/pseudo-146

mapping approaches [33, 13]. Finally, here we describe algorithmic solutions working on the147

nucleotide sequence, but raw signal mappers for Nanopore long-reads is also an active area148

of research [29, 76, 38].149

2 and the unpublished DALIGNER https://github.com/thegenemyers/DALIGNER

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2022. ; https://doi.org/10.1101/2022.05.21.492932doi: bioRxiv preprint 

https://github.com/thegenemyers/DALIGNER
https://doi.org/10.1101/2022.05.21.492932
http://creativecommons.org/licenses/by-nc-nd/4.0/


K. Sahlin et al. 5

3 A survey of algorithmic steps150

3.1 Seeding almost always uses sampled, exact, fixed-length matches151

Seeding is the procedure that consists in collecting a set S of seeds from the reference, then152

finding matches between the query’s seeds and S. In order to find matches efficiently, S is153

stored using an index data-structure. In the following we detail the different types of seeds154

that can be encountered and Figure 2 illustrates some of the approaches that have been155

proposed.156

3.1.1 k-mers157

Substrings of length k, or k-mers, are perhaps the most commonly used seed in bioinformatics.158

Such seeds can be extracted from the reference and stored for queries with little computational159

cost. This makes k-mers popular in mapping and alignment applications that require high-160

performance to scale for millions to billions of reads. A k-mer seed can be indexed by using161

a hash function to produce an integer value (usually as a 32 or 64-bit integer), which is then162

added to a hash table. This makes indexing of k-mers computationally cheap, provided that163

the hash function and hash table implementations are efficient. Methods to efficiently hash164

k-mers have been proposed [56], which uses the previous k-mers hash value to compute the165

next one using a rolling hash function.166

Both a strength and a weakness with k-mers are that if a k-mer match is found, it is167

guaranteed to be exact. While it is desirable to produce matches only to identical regions, a168

downside is that mutations will "destroy" the k-mers in the region. This has been studied169

theoretically in [6] where the authors derived analytical expressions for the mean and variance170

of regions without matches for a given mutation rate.171

3.1.2 k-mer subsampling techniques172

As any two consecutive k-mers share most of their sequence and are therefore mostly173

redundant, we could reduce the memory overhead and query time without losing much of174

the information if not all adjacent or nearby k-mers were stored. In the following, we present175

different methods that allow picking a subsample of representative k-mers as seeds. These176

approaches have proven their efficiency at reducing drastically the number of objects to index177

while keeping high sensitivity and specificity for matches.178

No distance guarantee between seeds: sketching Sketching gives typically no guarantee179

of distance between two k-mer representatives, which means that a very large gap can appear180

between two consecutive selected k-mers. An early work [7] bases its long-read mapping181

strategy on MinHash sketching by using a total ordering on the k-mers’ hashes (see (a) in182

Figure 2), and keeping minimal hashes in the ordering (representing their k-mers). Related to183

read mapping, it was used to perform genome-length sequences alignment-free mapping [33]184

and to find read-to-read overlaps in long-read assembly [69]. However, fixed-size sketches do185

not adapt well to different read lengths since the number of fingerprints remains constant for186

any distinct k-mer number. Because of this, two similar regions from sequences of different187

sizes will not automatically have the same representative, which is a desired property for188

seeding. Therefore this approach was later replaced by other subsampling strategies in189

following papers.190
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6 A survey of long-read mapping

Distance guaranteed between seeds On the contrary, subsampling techniques have been191

proposed to guarantee that for a certain amount of consecutive k-mers, at least one will192

be selected. The first k-mer subsampling technique proposed in the context of long-read193

mapping was minimizers [62]. In our framework, minimizers are sampled k-mers given194

two parameters m and w. Given the set k-mers starting in a window [m, m + w − 1] of w195

positions on the sequence, a minimizer is the minimal value over this set (and therefore the196

k-mer associated with this minimal value) (see (b) in Figure 2). Minimizers are produced by197

extracting a minimizer in each window w ∈ [0, |S| − w + 1] over a sequence S. The techniques198

used for assigning values to k-mers are discussed in section 3.2.1. Minimizers are agnostic199

to their relative abundance over a sequence. Different optimizations have been proposed200

to reduce the density of sampled minimizers in some regions. Weighted minimizers [35]201

implement a procedure to select k-mers of variable rareness. In order for k-mers from202

highly repetitive regions not to be as likely as others to be selected, it first counts k-mers,203

and downweights frequently occurring ones. Then it takes this weight into account for the204

hashing procedure. Other subsampling techniques include syncmers [18] and minimally205

overlapping words (MOW) [23]. The first was used in the context of long-read mapping [70]206

in an alternative implementation of minimap2 and even more recently in [60]3. For their207

construction, syncmers use s-mers of size k − s + 1 (s < k) occurring within k-mers (see (c)208

in Figure 2, and Supplementary Figure S1 for an illustrated difference with the minimizers).209

The k-mer is selected if its smallest (in the sense of an ordering, typically on hashes) s-mer210

meets some criteria. An example criteria is that the s-mer appear at position p within the211

k-mer (1 ≤ p < k − s + 1). By construction, syncmers tend to produce a more even spacing212

between sampled seeds while still allowing a distance guarantee.213

Context dependency of subsampling techniques Minimizers are generated through a win-214

nowing procedure which compares all k-mers of a given window. The choice of representative215

k-mer in a given window depends on the window’s k-mer content. This property has been216

called context dependency [70]. On the contrary, syncmers can be described as context-free217

since each k-mer’s capacity to be selected is independent. Being context-free implies better218

conservation of the overall sampled region under mutations. Indeed, context-dependent219

representatives can tend to be broken over several consecutive windows because of the k-mers220

propagating an error. Finally, other aspects can be considered, such as the related density [70]221

(informally, the expected number of selected k-mer over the total number of k-mers), or the222

deviation of minimizer-based strategies from the initial unbiased Jaccard estimator [6].223

3.1.3 Fuzzy seeds handling substitutions224

Due to read errors and SNPs between the reference and sequenced organism, it is in many225

scenarios desired that a seed match between the query and the reference even if the seed226

contains a substitution. Put differently, we would want similar k-mers to hash to identical227

hash values. A hash function that would produce identical hash values for similar but not228

necessarily identical inputs is usually referred to as a locality-sensitive hash function. We229

will refer to seeds produced under such methods as fuzzy or inexact seeds.230

Several methods to produce inexact seeds have been described. Perhaps the most common231

one is spaced-seeds. Within a spaced-seed, some positions are required to match (called232

3 https://github.com/bluenote-1577/os-minimap2 and https://github.com/Shamir-Lab/syncmer_
mapping
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Figure 2 Overview of major seeding techniques used in long-read mapping. The figure presents
informally which bases will be selected (underlined) given the technique. For the sake of simplicity,
we are not consistent with a hash pattern (for instance lexicographical order) when selecting the
seeds in the different panels. A more comprehensive example following a pattern is presented in
Supplementary Figure S1.
We use two related sequences s1 and s2 which differ from a (A/T) substitution and a AA insertion
in s2 (in orange) to show the possible differences in selected bases (underlined in blue or red) due
to mutations/errors. (a) k-mer seeds of length 3 selected with MinHash. k-mers have no distance
guarantee and are picked based on having minimal hash value in total ordering of the hashes. (b)
Minimizers picked with k = 3 a window size of w. Minimizers has a maximum distance guarantee
given by w but has no minimal distance guarantee and may therefore subsample densely in some
regions. (c) A subset of strobemers consisting of three strobes (short k-mers) are illustrated. The
first strobe is picked at the seed start position and the remaining strobes are selected in windows
downstream from the start strobe. (d) Syncmers selected with k = 3, s and the condition for
selection are not detailed. Syncmers are context-free and respect a distance guarantee which tends to
create pairs of evenly spaced seeds. (e) MEMs computed as exact matches until reaching a position
that breaks the exactness. (f) MCAS. s1 remain the same than in other panels, s2 now contains
two copies of a repeat, each has accumulated different mutations. A blue bordered region gives
an example of a substring which is not a MCAS: it is repeated in the two copies. The blue-filled
underlined region is a MCAS.

fixed positions) while the remaining positions can be ignored (called wildcards or don’t care233

positions). Within a k-mer, fixed positions can be selected to be wildcards by applying234

particular masks on the k-mer’s bases [32]. A problem with spaced-seeds is to find a fixed-235

position profile to minimize the overlap of the fixed positions in the seeds [31]. Although the236

computation of good spaced-seeds has been optimized [32], constructing good spaced-seeds237

profiles requires extra computational work compared to k-mers and is therefore slower to238

compute, and in practice, multiple different seeds are used [46] to increase sensitivity, which239

requires storing multiple hash tables. Another limitation with fuzzy seeds for substitutions240

is that seeds will, just as for k-mers, not match over indels.241

While fuzzy-seeds handling substitutions have been used e.g. in metagenome short-read242

classification [10] and permutation-based seeds were implemented for short-read mapping [40],243

few of long-read mapping algorithms implement them. As indels are a frequent source of244

variability on long-reads, the computations to construct these seeds may not be worth the245

trade-off in increased sensitivity. An exception to this is a recent seeding mechanism [22],246

where the authors use a variant of SimHash [14](an alternative locality sensitive hashing to247
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8 A survey of long-read mapping

MinHash) to construct fuzzy seeds over subsampled k-mers using the minimizer technique [62].248

The authors showed read alignment can be improved both in terms of speed and accuracy by249

integrating their seeds into minimap2 [43].250

3.1.4 Fuzzy seeds handling indels251

A common source of errors and biological variation is short insertions and deletions. Neither252

the exact seeds nor the fuzzy seeds discussed so far are designed to match over such variability.253

Traditionally, matching over indels has typically been solved not by a single query of a fuzzy254

seed, but instead involved queries of a few short k-mers at a close occurring distance which are255

then inferred as a matching region. While several queries in a nearby region usually provide256

gold standard sequence similarity queries [4, 36], it comes at a significant computational cost.257

Along the same vein [71] proposed to index one so-called spaced k-mer as a seed in each258

position of the reference and would, query three different seeds for each position in the query259

(representing a mismatch, a deletion of length one, and a mismatch and a one nucleotide260

insertion). This design was motivated by overcoming the frequent substitutions and short261

indels present in third-generation sequencing techniques, but would only handle indels of262

one nucleotide (we provide details on this scheme in Supplementary Figures S2 and S3).263

Earlier, there have been works to handle higher error rates with so-called covering template264

families [26] that can guarantee a match up to any error rate e. Naturally, with higher e,265

more seeds need to be indexed and queried and it becomes computationally prohibitive to266

use such seeding.267

To remove the overhead of post-processing of nearby seeds [4, 36] or multiple queries [71]268

per indexed reference seed, one can instead link the k-mers up into a seed before storing269

it in the index. Such indexing has been favorable in the long-reads era where indels are270

frequent. One proposed method is to join two nearby minimizers into a seed. Joining nearby271

minimizers is usually a relatively cheap computation as the minimizers constitute a subset of272

the positions on the reference. Such a seeding technique has been used for long-read overlap273

detection for both genome assembly [15] and error correction [66]. While such indexing is274

relatively fast and matches regions over indels, the joining of nearby minimizers implies that275

if some minimizer(s) are destroyed due to mutations in a region, all of the seeds in that276

region will be destroyed. Put another way, nearby seeds share the same information (in the277

form of a shared minimizer). Therefore, alternative approaches such as strobemers [63] (see278

(d) in Figure 2) have been described, where the goal has been to reduce the information279

between closeby seeds by linking k-mers at seemingly random positions within a window.280

Such pseudorandom linking implies that if one seed is destroyed due to a mutation, a nearby281

seed may still match. Strobemers have shown effective at finding matches between long-reads282

and for long-read mapping [63], and have been used in short-read alignment programs [64]283

but they come at an increased computational cost to joining neighboring minimizers.284

Another way to alleviate the issue that mutations will destroy consecutive seeds in the285

neighboring minimizers technique is to apply the SimHash technique on strobemers instead286

of k-mers [22]. Such seeds were used for long-read overlap detection [22] and the authors287

show that for the highest quality long-reads (PacBio HiFi), such seeds can speed up long-read288

overlap detection by an order of magnitude or more while retaining the same downstream289

level assembly accuracy.290
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3.1.5 Dynamic seeds291

Previously discussed seeds share the characteristic that they can all be produced and inserted292

in a hash table, and consequently, only require a single lookup. This is typically fast and,293

hence, popular to use in long-read alignment algorithms. The downside is that if a seed is294

different in a region between the reference and the query (e.g., due to an error), there is no295

way to alternate the seeds in this region at alignment time. There are however other types296

of constructs, that we here refer to as dynamic seeds, that can be computed on the fly at the297

mapping step, and then used as seeds downstream in the read alignment algorithm.298

Maximal Exact Matches Maximal exact matches (MEMs) [16] are matches between a299

query and reference sequence that cannot be extended in any direction on the query or300

reference without destroying the match (see (e) in Figure 2). These are typically produced301

by first identifying a k-mer match, and then an extension process is applied. MEMs are302

guaranteed to be an exact match between the query and the reference and are bounded below303

by length k but do not have an upper threshold for seed size. As there can typically exist304

many MEMs, a subset of MEMs that has a unique location on both the query and reference305

is sometimes considered. MEMs or similar approaches have been used in one of the earlier306

long-read alignment programs (e.g., BWA-MEM) [41, 12] and for long-read splice alignment [65],307

but these seeds are more computationally expensive to compute and are typically slower308

than single-query seed-based algorithms.309

Anchors from minimal confidently alignable substrings (MCASs) If a query was sampled310

from a repetitive region in the reference, one may likely find several clusters of anchors311

across the reference. Further dynamic programming operations to decipher the true origin312

region of the query are typically costly or even unfeasible if too many copies have to be313

considered. Even in the case a query is located on the reference, it might be attributed to the314

wrong copy because of the sequencing errors. A recent contribution [34] proposed a solution315

for handling seeding in repetitive regions. The procedure finds smallest subsequences that316

uniquely match (MCASs) between the query and the reference (see (f) in Figure 2). There317

can be as many as the query length in theory. In practice, the more the repeats are divergent,318

the shortest the MCASs since a base pertaining to a single copy is more likely to be met.319

MCASs are computed using an alignment procedure, which means that uniquely matched320

must be understood as a relative property. For each position on a query, the best and321

second-best alignment scores are compared, and a substring is considered uniquely matched if322

the difference between the scores is above a threshold. It is interesting to bound the maximal323

size of MCASs, both for performance purposes and because they may become less specific as324

to their size increase. Fixed-size, exact match anchors (minimizers) are then extracted from325

MCAS regions.326

3.2 Implementation of the seeding step327

3.2.1 Seeds transformations before indexing328

Originally, minimizers use a lexicographical ordering. However, in our four base alphabet,329

this can tend to select sequences starting with long alphabetically smaller runs such as330

"AAA. . . ". Random hash functions assigning each k-mer a value between 0 and a maximum331

integer are preferred [67].332

Oxford Nanopore reads are known for accumulating errors in homopolymers, typically333

adding/removing a base in a stretch of a single nucleotide. Sequences can be homopolymer-334
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compressed before finding k-mers. Homopolymers longer than a size s are reduced to a single335

base, then k-mers are computed over the compressed sequence. For instance, for s = 3, k = 4,336

an original sequence ATTTTGAAAACC is compressed to ATGACC, and the final k-mers337

are ATGA, TGAC, GACC. This procedure allows finding more anchors while indexing fewer338

k-mers/minimizers. Homopolymer compression is ubiquitous in long-read mappers.339

In regions of low complexity (e.g. ATATATA, CCCCC) the standard minimizer procedure340

keeps all minimal k-mers in windows. It is then possible for two k-mers to get the minimal341

value and to be selected, which tends to over-sample repetitive k-mers. A robust winnowing342

procedure is proposed in [35], which avoids the over-sampling effect by selecting fewer copies343

of a k-mer, but increases the context dependency phenomenon.344

3.2.2 Hash tables prevail for seed indexing345

Indexing of fixed size is usually done using hash tables (although FM-indexes for k-mers346

exist [8]). In the context of subsampling, invertible hash functions have been a key asset for347

using minimizers as k-mers representatives. In other words, a hash value is associated with348

one and only one k-mer, and the k-mer sequence can be retrieved from the hash value (using349

reciprocal operations). This choice allows a very fast k-mer/minimizer correspondence but350

is costly as it implies that the fingerprints of the hash table are not compressed (which is351

mitigated by the subsampling). Minimizers are then used to populate a hash table, which352

associates them to their position(s) in the reference and their strand information (usually353

hashed seeds are canonical k-mers: the smallest lexicographic sequence between the original354

k-mer and its reverse complement).355

Variable-length seeds are indexed in full-text data structures (suffix arrays, FM-index),356

which allow to find and count arbitrarily long queries in the reference. They have been357

used in the first versions of long-read mappers. Variable-length seeds type can be longer to358

query in the structure, while hashed matches are queried in constant time. Since minimizers359

represent fixed-length k-mers, hash table solutions mainly prevail.360

3.2.3 Seeds selection at the query361

In [43], it is proposed to select all minimizers from the reference during the indexing phase362

(although the latest versions include the weighted k-mers and robust winnowing heuristics),363

and to soft mask some representative k-mers at the query. The procedure simply avoids364

k-mers seen too many times according to a fixed cutoff. The authors noticed that in cases365

where a query is sampled from a repetitive region, such a procedure prevents it to be seeded.366

Therefore, an update was proposed [44], which detects if low occurrence k-mers are too367

far away in a query, and in this case, allows sampling minimizers in the repetitive region368

in between (and keeps some of the lowest possible occurrences among these minimizers).369

Techniques that use longer fuzzy seeds (e.g., strobemers) [22] reduce the number of masked370

regions, although it comes at the cost of sensitivity. Another approach [61] computes a new371

set of minimizers on the targeted reference region in order to obtain finer candidate chains,372

in particular in repeated or low complexity regions.373
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3.3 Chaining is dominated by dynamic programming with concave gap374

score functions375

3.3.1 A dynamic programming problem376

Once the reference’s seeds are indexed, a set of seeds is extracted from the query and looked377

up in the index to find anchors. Anchors’ positions on the query and reference are stored,378

as well as the forward/reverse information. Instead of directly extending the alignment379

between anchors, as it is done in short-read mapping, a step of chaining is added and meant380

to accelerate further extensions. Chaining acts as a filter and a guide for smaller extensions381

that need to be realized only between selected anchor pairs. Without it, too many extension382

procedures, most of which would be dead-ends, would have to be started.383

In an ideal case, there is a unique way of ordering anchors by ascending Cartesian384

positions in the (reference, query) space, which passes by all the anchors. In practice, some385

anchors are spurious, others correspond to repeated regions and yield different possible chains.386

Moreover, over parameters have to be taken into account. Thus, methods optimize different387

aspects (also illustrated in Figure 3):388

A1) Do not allow anchors which are not ascending either by the anchors’ start or end389

coordinates in both the query and reference (see first case in Figure 3).390

A2) Avoid discrepancies in diagonals between anchors (second case in Figure 3).391

A3) Do not allow large spaces between consecutive anchors of the chain (see third case in392

Figure 3).393

A4) Favor the longest possible anchor chain (fourth case in Figure 3).394

A5) If inexact matches in seeds are possible, find a series of anchors ensuring a minimal395

Levenshtein distance between the query and the reference.396

The problem of finding an optimal chain using non-overlapping anchors has been called397

the local chaining problem [1], although in this application anchors can overlap. The score398

f(i + 1) represents the cost of appending an anchor ai+1 to ai to the chain. This score is399

often called the gap score in the literature, though it includes other constraints, as described400

above. The chaining problem for long reads seeks to find an optimal colinear chain with a401

positive gap score.402

reference

A2) penalize outliers
deviating from a straight line

reference

A3) penalize 
large spaces

reference

A1) penalize non 
monotonic increase

reference
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smaller chains

qu
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y
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y
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Figure 3 An illustration of the different constraint taken into account in the gap score functions.
The reference axis shows a genome region of interest where anchors were found, not the whole
reference. A1–A4 correspond to items in the text in section 3.3.1. Anchors are showed in blue.
The selected chain with respect to the described constraint is highlighted in yellow and a line
approximately passing by its anchors is showed in red. The line passing by the longest chain is
showed in green.

Mainly, methods use either a two-step approach: 1-find rough clusters of seeds as putative403

chains, followed by 2-find the best scored chain among the selected clusters; or work in404
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a single pass and apply a custom dynamic programming solution to find the best anchor405

chain. We can start by noting that one of the first mappers dedicated to long-reads solved406

a global chaining problem to determine a chain of maximum score, by fixing starting and407

ending points (anchors) such that their interval is roughly the size of the query [12]. Such an408

approach would easily discard long gaps and spaces in alignments.409

3.3.2 Chaining in two steps410

Clusters of seeds are found through single-linkage in 2D space The two-step approaches411

rely on a first clustering step. Although it tends to be replaced by single-step chaining (see412

Section 3.3.3), in the following we describe the fundamental ideas of the clustering. Methods413

first find rough clusters of anchors by considering a discrete (reference, query) position414

space. In this space, an anchor realizing a perfect match is a line of the size of the seed.415

This line should have a 45-degree angle, which also corresponds to the main diagonal of a416

(reference, query) alignment matrix. The same idea stands for a set of anchors. However,417

because of insertions and deletions, each small line materializing an anchor may not be on418

the exact same diagonal, thus realizing approximate lines in the (reference, query) space. A419

method from image processing has been proposed to find approximate lines in this space:420

the Hough transform [17], which makes it possible to detect imperfect straight lines in 2D421

space. Contrary to linear regression which would output the best line explained by the422

anchor distribution, here an arbitrary number of straight lines can be output and considered423

(see Supplementary Figure S4 for an illustration). Hough transform or other similar anchor424

grouping algorithms ([61] proposes to delineate fine-grained clusters in order to increase the425

chaining specificity in repeated regions) all can be assimilated to single-linkage clustering in426

2D space, which finds groups of anchors placed roughly on the same diagonal.427

Anchor chaining using longest subsequences of anchors The previous clustering techniques428

aim at finding lines in groups of anchors that can be approximately colinear. To determine429

truly colinear chains, a subset of anchors can be ordered by finding a longest increasing430

subsequence (LIS) of anchors. Let each anchor be mapped to 1 . . . n integers. The LIS431

problem consists in finding a longest increasing subsequence from a permutation P of the set432

{1, 2, . . . c}, which can be solved in O(c × log(c)).433

In the case of exact fuzzy seeds, inexact matches are to be dealt with on top of the434

initial increasing chain problem. Indeed, one wants to obtain the closest base-wise anchor435

chain. In this case, the problem is converted to LCSk (longest common subsequence in at436

least k-length substrings). Note that there is a correspondence between LIS and LCS. The437

LIS of P is the LCS between P and the sequence (1, 2, . . . c). In both cases, neither the438

longest nor the increasing requirements are sufficient to find correct anchor chains: they lack439

definitions for other constraints, such as distance between anchors or the possibility to allow440

large gaps. They are complemented with heuristics or replaced by more recent approaches in441

Section 3.3.3. In addition, several methods use graphs built over anchors as backbones to442

the chaining and alignment steps [73, 49, 71] (one approach is described in the Appendix).443

Because they would fail to take into account distances between anchors, these methods have444

been replaced by dynamic programming approaches relying on gap score functions.445

3.3.3 Chaining in a single step: gap score functions446

The main drawback of the approaches previously described in 3.3.2 is that though large447

spaces between two anchors of a pair must be avoided, some spaces correspond to gaps in448
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the alignment and can be kept. In order to deal concurrently with these two problems, most449

recent methods drop the two-step clustering and LIS to directly apply a custom dynamic450

programming solution. It is globally the same spirit as LIS, but integrates a more fine-451

grained gap penalty solution. It defines a cost function that grants a maximum penalty for452

non-monotonic increasing seed chains.453

Concave gap functions The cost function is designed to handle the gaps induced by frequent454

indels in the data. Intuitively, it is likely that indels happen in clusters of n positions rather455

than at n independent positions in the chain because some regions on the query might be456

particularly spurious, or because of local repeats on the reference. Therefore, the same cost457

is not attributed to opening a gap and extending a gap, thus a linear gap function does458

not fit. The choice of gap functions which are concave (verifying the Quadrangle Inequality)459

improves the time complexity by using the wider is worse strategy [25, 21]. In practice,460

these concave gap functions are affine, a set of affine functions, or a combination of affine461

and log functions, as proposed in [43]. We chose to present minimap2’s [43] gap functions in462

Figure 4 as they are adopted without modifications in most current papers (with the recent463

exception of [61]). Chains are built by aggregating close anchors of smaller coordinates to464

the current anchor by penalizing the shifts compared to the main diagonal. In Figure 4,465

Panel 4a presents how the set of possible anchors to prolong the chain is selected. Panel 4b466

illustrates the dynamic function’s parameters. The complete description of the functions is467

available in the Appendix.468

Heuristics are applied to rapidly drop a dynamic programming procedure in regions469

that are unlikely to align and to avoid O(c2) worst cases. Based on empirical results, these470

heuristics mostly check if seeds are not separated by too large regions and drop the chaining471

procedure if the score becomes too low.472

Solutions for large gaps Noticing that [43]’s original approach would be failing in large473

gaps, one contribution [61] proposed techniques to perform dynamic programming with a474

family of concave functions by relying on a previous work [21] (built on a prior clustering475

step as described in 3.3.2). Recently, [43] integrated a solution designed for mapping long476

structural variants in pangenomic graphs [45]. Its recent versions entail a cost function for477

regular gaps, and a long gap patching procedure. Then it chooses the cheapest solution to478

move on to the alignment step. The gap patching procedure uses a linear gap cost so that it479

has a higher long-gap opening cost in comparison to the regular procedure but at a cheaper480

extending cost. The chaining with a linear function is solved with a range minimum query481

(RMQ) algorithm using a balanced binary search tree [1, 59]. It allows to solve the linear482

chaining in O(c × log(c)). Although this time complexity can be improved in O(c) by using483

range maximum queue [11], the implemented algorithm is more costly than the solution for484

regular gaps, which is preferred if possible. Panel 4c in Figure 4 illustrates the dynamic485

function for large gaps.486

3.3.4 Mapping quality scores have been adapted for ranking chains487

The described methods may deliver a set of chains that satisfies the chaining score threshold.488

To choose among the candidates and decide the final location, chains can then be categorized489

into primary/secondary chains. Chains with a sufficient score are ranked from highest to490

lowest score. Primary chains are those with the highest scores which do not overlap with491

another ranked chain for the most of their length. Secondary chains are others. Mapping492

quality, which is a measure that had been introduced to assess short-reads mapping, is493
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xj ≥ xiyj ≥ yi

max{yi − yj , xi − xj > G}
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(a) Selected window
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gj3 i
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i

f(i) = max{f(j1) + min{dj1 i, w} + γc(gj1 i),
f(j2) + min{dj2 i, w} + γc(gj2 i),
f(j3) + min{dj3 i, w} + γc(gj3 i)}

(b) Regular gaps

G

G

dj2 i

gj2 i

dj3 i
gj3 i
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f ′(i) = w + max{f ′(j2) − γ′
c(gj2 i, dj2 i),

f ′(j3) − γ′
c(gj3 i, dj3 i)}

(c) Large gaps

Figure 4 Outline of chaining of minimap2. Figure a shows for an anchor (in green) the selected
region (in white, G is the gap threshold) to find available anchors to continue chaining (in blue).
Figures b and c give respectively the dynamic programming functions for regular and large gaps
size. Anchors are shown as segments ending with green or blue dots with the same color code as in
Figure a. Besides, for the large gap size (Figure c), to improve the complexity, the anchors do not
overlap (available anchors are not in the red zone). dji represents the smallest "distance" between
the two anchors (but is not really a distance by definition), w is the minimizer window size, gji is
the gap length, and the γ functions are the concave gap functions.

redefined for long-reads with slight variations according to articles. It reports, for chains,494

whether the primary is very far in terms of score from the best secondary, and if it is long495

enough.496

4 Extension step and final alignment computation497

Extenstion step In order to allow gaps, the methods rely on local alignment between498

pairs of successive anchors using classical algorithms [27, 57] derived from Needleman and499

Wunsch [58]. They are based on alignment matrices, which aggregate the base-wise alignment500

scores from the two prefixes (top left of the matrix) to the two suffixes (bottom right).501

To compute the scores and report them in a matrix, affine cost functions allow to allocate502

different penalties for opening and extending gaps and therefore can favor short or long503

gaps. More precisely, such algorithms use pairs of affine gap score functions and choose the504

cheapest cost between the scoring for short gaps (i.e. less costly to open, costly to extend),505
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and the scoring for long gaps (i.e., more costly to open, cheap to extend). Allowing long gaps506

has a drastic negative impact on the alignment efficiency because more cells in the alignment507

matrix have to be considered.508

Heuristics for speed-up and quality enhancement Therefore, alignment is commonly509

accelerated through vectorization, using single instruction multiple data (SIMD) sets of510

instructions, which increase the computational throughput by passing simultaneously several511

matrix cells for the processors to evaluate. Second, practical alignment implementation512

relies on banded alignment, which, simply put, bounds the alignment matrix in a band of513

size ℓ around the top-left – bottom-right diagonal. Inspired from BLAST’s X-drop [4], [43]514

implements a Z-drop procedure. X-drop quits extending the alignment if the maximum score515

reached at some point when aligning the prefix drops by more than X. Z-drop adds the516

possibility not to drop the extension during large gaps.517

Due to sequencing errors, some spurious anchors main remain in a chain, which can518

lead to a suboptimal alignment. At the alignment step, [43] chooses to remove anchors that519

produce an insertion and a deletion at the same time (>10bp) or that lead to a long gap at520

the extremity of a chain. Another solutions [12] involves to re-compute a chain with novel521

anchors computed on a window that comprises the alignment.522

5 Future directions523

On top of mentioned novel seeding techniques bringing new properties concerning their524

coverage of the seeded sequence and robustness to errors and mutations (syncmers, strobe-525

mers [70, 60, 22]), we can expect to see advances in the chaining and extending parts in the526

coming months.527

Indeed, the usage of diagonal-transition algorithms which was initially define for edit528

distance [72, 39, 30] has been reactivated recently for the gap-affine model with the wavefront529

alignment algorithm (WFA, including [52, 51, 19]). More precisely, instead of using dynamic530

programming on the adjacent cells, WFA transposes the optimization problem on the531

diagonals and the score. In particular, WFA has the potential to make computation faster532

for similar sequences and large gaps (by setting the score accordingly and adapting the533

scoring). A current result shows that we can exploit the massive parallel capabilities of534

modern GPU devices to accelerate this wavefront alignment algorithm [2]. Currently, different535

implementations exist that have been tested on long reads [52]4, although no dedicated536

long-read mapper integrates them yet.537
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Appendix731

Details on subsampling techniques In Supplementary Figure S1, we present an example of732

the difference in the selected bases between a minimizer approach and a syncmer approach.

sequence s1 
                    

ACATACACACC
ACAT
CATA

  ATAC
TACA

    ACAC
CACA

      ACAC
CACC

ACATACACACC
ACAT
CATA

  ATAC
TACA

    ACAC
CACA

      ACAC
CACC

syncmers        

★

★

★

★

★

★

★

★

ACATACAAACACC
ACAT
CATA

  ATAC
TACA

    ACAA
CAAA

      AAAC
AACA

        ACAC
CACC

ACATAAACACACC
ACAT
CATA

  ATAC
TACA

    ACAA
CAAA

      AAAC
AACA

        ACAC
CACC

★

★

★

★

★

★

★

★

★

syncmers: k=4, s=2, p=1 
minimizers: k=4, w=2

minimizers          

shared among syncmers: {CATA, TACA, CACA, CACC} (4/4)

shared among minimizers: {ACAT, ATAC, ACAC} (3/4 in s1, 3/5 in s2) 
                    

sequence s2 
                    

syncmers        minimizers          

Figure S1 Usage syncmers and minimizers for comparing two similar sequences. Sequences s1
and s2 differ by a AA insertion in orange in S2. We show how selected syncmers and minimizers do
not produce the same sets of representative k-mers and therefore yield different fractions of shared
k-mers between s1 and s2. The k-mer size is 4, the s-mers in syncmers (smallest showed in pink, we
choose the lexicographic order) are of size 2, and in this example we require that the smallest s-mer
appears at the first position of the k-mer. Minimizers have windows of size 2, materialized in blue,
with the minimizer in pink. The selected k-mers are highlighted using a blue star.

733

Graphmap’s indexing strategy for fuzzy seeds Graphmap builds two hash indexes from734

two types of shapes , called 6-1-6 and 4-1-4-1-4. As shown in Supplementary Figure S2,735

for each position is seeded (no subsampling). A seeded key corresponds to the subsequence736

at a given position of the reference when applying the shape mask: each don’t care (*) base737

is skipped.738

Then, for each read in the query, several lookup keys (for mismatch, deletion and insertion)739

are built from a shape (Supplementary Figure S3). To that extent, the lookup key treats the740

don’t care base in three different ways. The mis(match) shape has the same behaviour as the741

indexed key, i.e., the don’t care base are skipped. The insertion shape skips two bases: the742

initial don’t care base and the base next to it. Finally the deletion shape will simply build743

the key and keep all the base including the don’t care base. In total, for a number d of don’t744

care base, 3d different keys are built per shape.745

Graphmap’s backbone graph for LCSk Because of the possible spurious matches that746

occur because of the ambiguous bases, Graphmap’s fuzzy seeds require more treatments to747

find proper chains. A first step after seeding finds groups of anchors representing longer748

shared subsequences between the query and the reference, on which is applied LCSk. Anchors749

are placed in a vertex-centric positional graph of k-mers, in which k-mers in both sequences750

appear, and share an arc if they are directly consecutive (or consecutive up to a distance751

parameter)5. Most weighted paths of anchors (i.e. supported by the query and the reference)752

are found in this graph and output as shared subsequences. After the LCSk pass, a L1 linear753

5 NB: this is different from a de Bruijn graph since nodes with similar contents can be repeated
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Figure S2 Indexing scheme for fuzzy seeds allowing indels and substitutions in Graphmap. In the
figure the shape 4.1.4.1.4 is represented. The zeros represent the don’t care positions of the shape.
The shape is then applied for each position of the genome. The substring built from the shape is
used as key inside a hash index. Each key will correspond to one or more positions on the reference.

regression step is applied to fit a straight line with a 45 degree slope and remove outliers,754

especially in the beginning and end of the chain (see case 4 in Figure 3 in the main text).755

Note that other methods use graphs built over anchors as backbones to the chaining and756

alignment steps without fuzzy seeds [73, 49].757

Minimap2’s complete formula for regular and large gaps size758

For regular gaps size:759

f(i) = max{ max
i>j≥1

xi−G<xj≤xi

yi−G<yj<yi

f(j) + min{dj i, w} − γr(gj i), w}
760

The property xi − G ≤ xj ≤ xi and yi − G ≤ yj < yi is equivalent to yj < yj , xj ≤ xi761

and ej i < G.762

For large gaps size:763

f ′(i) = max
i>j≥1

xi−G≤xj≤xi−w
yi−G≤yj≤yi−w

f ′(j) + w − γl(gj i, dj i)
764

where765

dj i = min{yi − yj , xi − xj}

Smaller "distance" between the two anchors. This
is not really a distance by definition : for (xi, yi) =
(−n, 0), (xj , yj) = (0, 0) and (xk, yk) = (0, n), we
have di j + dj k = 0 < n = di j .

ej i = max{yi − yj , xi − xj} Discrete Chebyshev distance between the two anchors

gj i = |(yi − yj) − (xi − xj)| Gap length (or Manhattan distance between the di-
agonals passing by the two anchors)

γr(g) = 0.01 × w × g + 0.5 log2 g

γl(g, d) = c1 × g + c2 × d + log2 g where c1 and c2 are parameters

766
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Figure S3 Query in Graphmap, different possible sequences can be matched using a single key.
As we can see, there are three types of look-up shapes, and each of them is used to reconstruct
a different substring. Each type corresponds to three phenomena that can occur with errors in
sequencing, namely substitution, substitution + 1 insertion, and substitution + 1 deletion. Here,
two don’t care bases are present and nine substrings can be obtained. In this example the substring
obtained from the substitution + insertion shape and the mismatch leads to a match with the
reference.

Hough transform principle Applying the Hough transform means going from the S1 =767

(query, reference) space to the Hough S2 space of coordinates. If a line (y = ax + b) exists768

in S1, it is a point of coordinates (a, b) in S2 (practically, polar coordinates are used for769

technical reasons). All possible lines intersecting a point in S1 can be translated in S2 as770

a sine wave. Multiple anchors give multiple points in S2, and the intersection of possible771

sinusoids intersecting the different points in S2 correspond to a line roughly intersecting772

the initial anchors in S1. The Hough space is rasterized, and by counting and weighing the773

possible solutions in S2, lines can be deduced in S1. Contrary to linear regression which774

would output the best line explained by the seed distribution in S1, here an arbitrary number775

of straight lines can be output and considered (see Supplementary Figure S4 for an overview776

of the steps).

read
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Figure S4 An overview of the Hough transform steps.
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