A survey of mapping algorithms in the long-reads

2 **era**

- 3 Kristoffer Sahlin
- 4 Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91, Stockholm,
- 5 Sweden.
- 6 Thomas Baudeau
- 7 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

⁸ Bastien Cazaux

9 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

¹⁰ Camille Marchet¹ \square ⁽⁰⁾

¹¹ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

12 — Abstract -

It has been ten years since the first publication of a method dedicated entirely to mapping third-13 generation sequencing long-reads. The unprecedented characteristics of this new type of sequencing 14 data created a shift, and methods moved on from the seed-and-extend framework previously used for 15 short reads to a seed-and-chain framework due to the abundance of seeds in each read. As a result, 16 the main novelties in proposed long-read mapping algorithms are typically based on alternative seed 17 constructs or chaining formulations. Dozens of tools now exist, whose heuristics have considerably 18 evolved with time. The rapid progress of the field, synchronized with the frequent improvements of 19 data, does not make the literature and implementations easy to keep up with. Therefore, in this 20 survey article, we provide an overview of existing mapping methods for long reads with insights into 21 algorithmic details. 22

- 23 2012 ACM Subject Classification Computational genomics
- Keywords and phrases Mapping, alignment, minimizers, syncmers, dynamic programming, seed and-chain, long reads, third generation sequencing
- ²⁶ Funding This work was funded by ANR INSSANE ANR21-CE45-0034-02 project.

Acknowledgements The authors would like to thank Mikaël Salson and Laurent Noé for proofreading
 the manuscript and suggesting revisions.

²⁹ **1** Introduction

With the introduction of PacBio long-read sequencing and later Oxford Nanopore Technologies 30 emerged a need for mapping long and noisy sequencing reads. The data proposed new 31 computational challenges of mapping millions of sequences, initially at expected error rates 32 of 10-20%. From the start, authors noticed that the seed-and-extend paradigm used in short-33 read mapping was not practical for long-reads. First, seed-and-extend would usually rely on 34 a single match before extending, while long-reads required multiple consistent matches along 35 the read to be confidently mapped. Second, the extending part, which relies on alignment 36 algorithms with quadratic time complexity, had to be avoided given the combined length and 37 the frequent insertions and deletions in such data. Early on, the computational problem was 38 compared to whole-genome alignment, with the additional complexity of high error rates. 39 Such observations lead to the novel *seed-and-chain* paradigm for mapping long-reads (see 40 Figure 1). However, the first long-read alignment algorithms using older seeding techniques 41

¹ corresponding author

2 A survey of long-read mapping

designed for generic sequence alignment (e.g., BLAST) were not time-competitive in their
 throughput compared to short-read mappers. Thus, sketching and subsampling techniques

⁴⁴ imported from comparative genomics started to appear in this domain.

Recently, specific sub-problems in the mapping domain have been identified and investigated, such as partial and gapped alignment of reads for structural variant discovery, aligning reads in repetitive regions or from non-reference alleles to correct loci, and other applications such as spliced-mapping of RNA reads. These specific problems require and motivate novel algorithmic solutions. In this survey article, we give an overview of the techniques that have been proposed over the last decade for mapping long reads to genomes.

Definitions and state-of-the-art of tools

52 2.1 Preliminaries

⁵³ In this article we restrain ourselves to the problem of mapping a sequence shorter or equal ⁵⁴ to a genome (a read) to a reference genome. We further assume that the reads come from a ⁵⁵ genome that is closely related to the reference genome, such as from the same organism or a ⁵⁶ closely related species.

Let $q = (q_1, \ldots, q_l)$ be the read sequence of size l and $t = (t_1, \ldots, t_n)$ the sequence of the reference region of size n. Let $\Sigma = \{A, C, G, T\}$ and $\Sigma_+ = \{A, C, G, T, -\}$ be two alphabets, x and y strings are defined on Σ . Let $f : \Sigma_+^* \to \Sigma^*$ be a transform that maps a string to its subsequence with all "-" characters removed. An alignment is a pair of strings $(q', t') \in \Sigma_+^2$ such that:

62 **1.**
$$|q'| = |t'| = S$$

63 2. f(q') = q and f(t') = t

64 **3.** $(q'[i], t'[i]) \neq (-, -)$, for $0 \le i < S$

Many alignments exist for a given pair of strings, in theory, the methods described hereafter aim at finding *good* alignments, i.e. alignments that optimize some distance between the pair of strings. The distance is computed using score functions which give rules on the characters pairing.

With read mapping, we mean the procedure to find a read's location on the reference 69 genome. Typically, long-read mapping is performed by seeding and chaining the seeds into 70 high-scoring regions on the genome. In this study, a *read alignment* implies both that the 71 read has been mapped to a location, and that a pairwise alignment between the read and the 72 genome at the mapped location has been performed. Algorithms exist to compute optimal 73 semi-global pairwise alignments with respect to a score function. However, their complexity 74 in $\mathcal{O}(n \times l)$, disqualifies them in the context of handling big data such as sequencing data. 75 Therefore, methods of the literature use heuristics to perform read mapping on a reference. 76 They do not guarantee to find the optimal solution. 77

In our survey, we discuss read mapping to a genome sequence. We will use the terms
 query for a read and reference to denote the genome.

2.2 Overview of fundamental ideas

To our knowledge, the first mapper explicitly written for long-reads was **BLASR** [12], although short-reads mappers had been adapted for the long-read usage [37, 41, 47]. While solutions specialized for either Nanopore [5] or PacBio [28] characteristics appeared, most modern mappers work for both technologies with adapted parameters. **BLASR** presented itself as an

K. Sahlin et al.

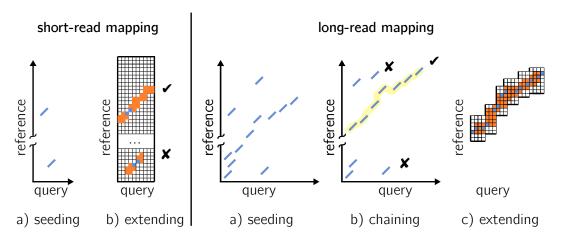


Figure 1 Differences in the main steps between short-read mapping (left) and long-read mapping (right). *Query* denotes the read and *reference* denotes a genome region. Mainly, short-read approaches extend (orange parts) from a single anchor (in blue) on the whole read length while long-read approaches gather multiple anchors, and chain (yellow line) them in for a candidate extending procedure that is done between pairs of anchors.

- ⁸⁵ approach descending from both genome to genome alignment methods (such as MUMmer [16])
- ⁸⁶ and short-read mappers. The paper contains seminal ideas used in modern long-read mappers

⁸⁷ such as the seed-and-chain paradigm.

Seeding Seeding is the first operation in the heuristics used by mapping techniques.

Definition 1. A seed is a subsequence extracted from the query or the reference.

The purpose of seeding is to find relatively small matching segments between the query 90 and the reference that serves as markers for reference regions that potentially are similar to 91 the read. The reason seeding is used is that it is typically computationally efficient to find 92 matching seeds that can narrow down regions of interest compared to, e.g., global alignment 93 of the read to the reference. As we will see in Section 3.1, seeds can be of different nature. 94 Seeding relates to pattern matching, although in sequence bioinformatics, practically all 95 approaches work under the paradigm which indexes the reference and query the index to find 96 matches. The underlying assumption is that once the index is created, it can be used several 97 times to map different query sets. To save space, reference indexes can be in a compressed 98 form. Once matches are found, a second operation aims at finding sets of concordantly qq ordered seeds between the query and the reference (*chaining*; section 3.3 and to "fill the gaps" 100 between seeds as well as providing the final nucleotide level alignment (extension; section 4). 101 Seeding was quickly identified as a critical phase in long-read mapping, which led to novel 102 proposals [49, 42, 71]. 103

Sketching and subsampling An important idea for seeding is *sketching* that was introduced in MHAP, a long-read overlap finder implemented in an assembly algorithm [7]. Although long read mappers had already been proven faster than alignment approaches [71], the rationale was to improve the time efficiency of the long-read mapping problem in comparison to the throughput of the second generation sequencing mappers. Sketching consists of compressing the information of a set (here a set of *k*-mers) into a fixed-length vector (a sketch) of representative elements called fingerprints. By comparing two sketches, one can approximate

4 A survey of long-read mapping

a similarity estimation of the two sets quickly and independently of their initial set sizes. 111 Several approaches exist [9, 54, 14]. MHAP relied on sketching with a MinHash approach. 112 MinHash [9] is a sketching technique based on locally sensitive hashing, which produces an 113 unbiased estimator for the Jaccard distance between two sets by selecting a subsample for 114 each set and comparing them in a very efficient way. Thus, MHAP overcame a space limitation 115 of BLASR which would index the whole reference. The type of matches (exact, fixed-size) 116 induced by MHAP's approach also allowed to perform rapid queries. An important limitation 117 of MHAP was that the sampling technique gave no guarantee to uniformly cover the query's 118 sequence. This led to the development of subsampling techniques which have been adapted 119 to approximate distances between sequences, starting with minimap [42]. Seeding is still an 120 active research area of long-read mapping with several recent developments [35, 70, 22, 60]. 121 Sketching and subsampling are discussed in Section 3.1.2. 122

Chaining A key intuition is that in short-reads mapping, the extending procedure could start after finding a single shared seed between the query and the reference, called anchors (for details on techniques related to the previous sequencing generation, we refer the reader to a methodological survey of short-read mapping [3]).

▶ Definition 2. An anchor is a matching seed between the query and the reference. It is represented by a pair of coordinates on the query and the reference.

¹²⁹ In long-read mapping, the length of the reads and the short seed length used due to the ¹³⁰ initial high long-read error rates can lead to a large number of seed matches. It is therefore ¹³¹ necessary to reduce the search space by selecting subsequences of ordered anchors (chains).

▶ Definition 3. Let $\mathcal{A} = [a_0, a_1, \dots, a_k]$ be an list of anchors defined by their coordinates on the reference and the query. A chain is a subsequence of \mathcal{A} of length $c \leq k$. A colinear chain is a subsequence of \mathcal{A} in which anchors are sorted by such that if i < j, a_j is above and to the right of a_i in the (reference, query) plane.

Drawing inspiration from genome-wide mapping, BLASR introduced a chaining step which aims at selecting high-scoring chains from a set of candidate chains. Chaining allows to reduce the final step of a long-read aligner (the base level extension) to alignment of sub-regions between ordered anchors in chains. Chaining in long-reads has been solved using various dynamic programming procedures [71, 61, 43]. In particular, the continuous work effort put in minimap2 [42, 43, 44] in both seeding and chaining processes made it a baseline for many other tools' development.

While this survey covers the genomic mapping aspects, other important contributions have dealt with adapted procedures in the case of long-read RNA mapping [53, 65, 50, 74], and structural variant identification [68, 48, 24, 73], or other specialized problems [55]. Other related research focused on read-to-read overlap detection [20, 75]², or alignment-free/pseudomapping approaches [33, 13]. Finally, here we describe algorithmic solutions working on the nucleotide sequence, but raw signal mappers for Nanopore long-reads is also an active area of research [29, 76, 38].

² and the unpublished DALIGNER https://github.com/thegenemyers/DALIGNER

K. Sahlin et al.

3 A survey of algorithmic steps

¹⁵¹ 3.1 Seeding almost always uses sampled, exact, fixed-length matches

¹⁵² Seeding is the procedure that consists in collecting a set S of seeds from the reference, then ¹⁵³ finding matches between the query's seeds and S. In order to find matches efficiently, S is ¹⁵⁴ stored using an index data-structure. In the following we detail the different types of seeds ¹⁵⁵ that can be encountered and Figure 2 illustrates some of the approaches that have been ¹⁵⁶ proposed.

157 3.1.1 *k*-mers

Substrings of length k, or k-mers, are perhaps the most commonly used seed in bioinformatics. 158 Such seeds can be extracted from the reference and stored for queries with little computational 159 cost. This makes k-mers popular in mapping and alignment applications that require high-160 performance to scale for millions to billions of reads. A k-mer seed can be indexed by using 161 a hash function to produce an integer value (usually as a 32 or 64-bit integer), which is then 162 added to a hash table. This makes indexing of k-mers computationally cheap, provided that 163 the hash function and hash table implementations are efficient. Methods to efficiently hash 164 k-mers have been proposed [56], which uses the previous k-mers hash value to compute the 165 next one using a rolling hash function. 166

Both a strength and a weakness with k-mers are that if a k-mer match is found, it is guaranteed to be exact. While it is desirable to produce matches only to identical regions, a downside is that mutations will "destroy" the k-mers in the region. This has been studied theoretically in [6] where the authors derived analytical expressions for the mean and variance of regions without matches for a given mutation rate.

3.1.2 *k*-mer subsampling techniques

As any two consecutive k-mers share most of their sequence and are therefore mostly redundant, we could reduce the memory overhead and query time without losing much of the information if not all adjacent or nearby k-mers were stored. In the following, we present different methods that allow picking a subsample of representative k-mers as seeds. These approaches have proven their efficiency at reducing drastically the number of objects to index while keeping high sensitivity and specificity for matches.

No distance guarantee between seeds: sketching Sketching gives typically no guarantee 179 of distance between two k-mer representatives, which means that a very large gap can appear 180 between two consecutive selected k-mers. An early work [7] bases its long-read mapping 181 strategy on MinHash sketching by using a total ordering on the k-mers' hashes (see (a) in 182 Figure 2), and keeping minimal hashes in the ordering (representing their k-mers). Related to 183 read mapping, it was used to perform genome-length sequences alignment-free mapping [33] 184 and to find read-to-read overlaps in long-read assembly [69]. However, fixed-size sketches do 185 not adapt well to different read lengths since the number of fingerprints remains constant for 186 any distinct k-mer number. Because of this, two similar regions from sequences of different 187 sizes will not automatically have the same representative, which is a desired property for 188 seeding. Therefore this approach was later replaced by other subsampling strategies in 189 following papers. 190

6 A survey of long-read mapping

Distance guaranteed between seeds On the contrary, subsampling techniques have been 191 proposed to guarantee that for a certain amount of consecutive k-mers, at least one will 192 be selected. The first k-mer subsampling technique proposed in the context of long-read 193 mapping was minimizers [62]. In our framework, minimizers are sampled k-mers given 194 two parameters m and w. Given the set k-mers starting in a window [m, m + w - 1] of w 195 positions on the sequence, a minimizer is the minimal value over this set (and therefore the 196 k-mer associated with this minimal value) (see (b) in Figure 2). Minimizers are produced by 197 extracting a minimizer in each window $w \in [0, |S| - w + 1]$ over a sequence S. The techniques 198 used for assigning values to k-mers are discussed in section 3.2.1. Minimizers are agnostic 199 to their relative abundance over a sequence. Different optimizations have been proposed 200 to reduce the density of sampled minimizers in some regions. Weighted minimizers [35] 201 implement a procedure to select k-mers of variable rareness. In order for k-mers from 202 highly repetitive regions not to be as likely as others to be selected, it first counts k-mers, 203 and downweights frequently occurring ones. Then it takes this weight into account for the 204 hashing procedure. Other subsampling techniques include syncmers [18] and minimally 205 overlapping words (MOW) [23]. The first was used in the context of long-read mapping [70] 206 in an alternative implementation of minimap2 and even more recently in $[60]^3$. For their 207 construction, syncmers use s-mers of size k - s + 1 (s < k) occurring within k-mers (see (c) 208 in Figure 2, and Supplementary Figure S1 for an illustrated difference with the minimizers). 209 The k-mer is selected if its smallest (in the sense of an ordering, typically on hashes) s-mer 210 meets some criteria. An example criteria is that the s-mer appear at position p within the 211 k-mer $(1 \le p < k - s + 1)$. By construction, syncmers tend to produce a more even spacing 212 between sampled seeds while still allowing a distance guarantee. 213

Context dependency of subsampling techniques Minimizers are generated through a *win*-214 nowing procedure which compares all k-mers of a given window. The choice of representative 215 k-mer in a given window depends on the window's k-mer content. This property has been 216 called *context dependency* [70]. On the contrary, syncmers can be described as context-free 217 since each k-mer's capacity to be selected is independent. Being context-free implies better 218 conservation of the overall sampled region under mutations. Indeed, context-dependent 219 representatives can tend to be broken over several consecutive windows because of the k-mers 220 propagating an error. Finally, other aspects can be considered, such as the related density [70] 221 (informally, the expected number of selected k-mer over the total number of k-mers), or the 222 deviation of minimizer-based strategies from the initial unbiased Jaccard estimator [6]. 223

224 3.1.3 Fuzzy seeds handling substitutions

²²⁵ Due to read errors and SNPs between the reference and sequenced organism, it is in many ²²⁶ scenarios desired that a seed match between the query and the reference even if the seed ²²⁷ contains a substitution. Put differently, we would want similar k-mers to hash to identical ²²⁸ hash values. A hash function that would produce identical hash values for similar but not ²²⁹ necessarily identical inputs is usually referred to as a locality-sensitive hash function. We ²³⁰ will refer to seeds produced under such methods as fuzzy or inexact seeds.

Several methods to produce inexact seeds have been described. Perhaps the most common one is spaced-seeds. Within a spaced-seed, some positions are required to match (called

³ https://github.com/bluenote-1577/os-minimap2 and https://github.com/Shamir-Lab/syncmer_ mapping

K. Sahlin et al.

subsampling/sketching	(a) <i>k</i> -mers (MinHash) ^S 1ACATACACACCGTAGATGAGCCAG	(b) minimizers ⁵¹ ACATACACACCGTAGATGAGCCAG
	s2ACATACAAACACCGTAGATGTGCCAG	s ₂ ACATACAAACACCGTAGATGTGCCAG
	(c) syncmers	(d) strobemers
	s1ACATACACACCGTAGATGAGCCAG	^{s1} ACATACACACCGTAGATGAGCCAG
dus	s ₂ ACATACAAACACCGTAGATGTGCCAG	s2ACATACAAACACCGTAGATGTGCCAG
_	(e) MEMs	
dynamic seeds	s ₁ ACATACACACCGTAGATGAGCCAG	(f) MCASs
	s ₂ <mark>ACATACAAA</mark> CACCGTAGATGTGCCAG	s1ACATACACACCGTAGATGAGCCAG
dyn	s2ACATACAAACACCGTAGATGAGCCAGACATACAACACCGTAGATGTGCCAG	

Figure 2 Overview of major seeding techniques used in long-read mapping. The figure presents informally which bases will be selected (underlined) given the technique. For the sake of simplicity, we are not consistent with a hash pattern (for instance lexicographical order) when selecting the seeds in the different panels. A more comprehensive example following a pattern is presented in Supplementary Figure S1.

We use two related sequences s_1 and s_2 which differ from a (A/T) substitution and a AA insertion in s_2 (in orange) to show the possible differences in selected bases (underlined in blue or red) due to mutations/errors. (a) k-mer seeds of length 3 selected with MinHash. k-mers have no distance guarantee and are picked based on having minimal hash value in total ordering of the hashes. (b) Minimizers picked with k = 3 a window size of w. Minimizers has a maximum distance guarantee given by w but has no minimal distance guarantee and may therefore subsample densely in some regions. (c) A subset of strobemers consisting of three *strobes* (short k-mers) are illustrated. The first strobe is picked at the seed start position and the remaining strobes are selected in windows downstream from the start strobe. (d) Syncmers selected with k = 3, s and the condition for selection are not detailed. Syncmers are context-free and respect a distance guarantee which tends to create pairs of evenly spaced seeds. (e) MEMs computed as exact matches until reaching a position that breaks the exactness. (f) MCAS. s_1 remain the same than in other panels, s_2 now contains two copies of a repeat, each has accumulated different mutations. A blue bordered region gives an example of a substring which is not a MCAS: it is repeated in the two copies. The blue-filled underlined region is a MCAS.

fixed positions) while the remaining positions can be ignored (called wildcards or don't care 233 positions). Within a k-mer, fixed positions can be selected to be wildcards by applying 234 particular masks on the k-mer's bases [32]. A problem with spaced-seeds is to find a fixed-235 position profile to minimize the overlap of the fixed positions in the seeds [31]. Although the 236 computation of good spaced-seeds has been optimized [32], constructing good spaced-seeds 237 profiles requires extra computational work compared to k-mers and is therefore slower to 238 compute, and in practice, multiple different seeds are used [46] to increase sensitivity, which 239 requires storing multiple hash tables. Another limitation with fuzzy seeds for substitutions 240 is that seeds will, just as for k-mers, not match over indels. 241

While fuzzy-seeds handling substitutions have been used e.g. in metagenome short-read classification [10] and permutation-based seeds were implemented for short-read mapping [40], few of long-read mapping algorithms implement them. As indels are a frequent source of variability on long-reads, the computations to construct these seeds may not be worth the trade-off in increased sensitivity. An exception to this is a recent seeding mechanism [22], where the authors use a variant of SimHash [14](an alternative locality sensitive hashing to

8 A survey of long-read mapping

- MinHash) to construct fuzzy seeds over subsampled k-mers using the minimizer technique [62].
- ²⁴⁹ The authors showed read alignment can be improved both in terms of speed and accuracy by
- ²⁵⁰ integrating their seeds into minimap2 [43].

²⁵¹ 3.1.4 Fuzzy seeds handling indels

A common source of errors and biological variation is short insertions and deletions. Neither 252 the exact seeds nor the fuzzy seeds discussed so far are designed to match over such variability. 253 Traditionally, matching over indels has typically been solved not by a single query of a fuzzy 254 seed, but instead involved queries of a few short k-mers at a close occurring distance which are 255 then inferred as a matching region. While several queries in a nearby region usually provide 256 gold standard sequence similarity queries [4, 36], it comes at a significant computational cost. 257 Along the same vein [71] proposed to index one so-called spaced k-mer as a seed in each 258 position of the reference and would, query three different seeds for each position in the query 259 (representing a mismatch, a deletion of length one, and a mismatch and a one nucleotide 260 insertion). This design was motivated by overcoming the frequent substitutions and short 261 indels present in third-generation sequencing techniques, but would only handle indels of 262 one nucleotide (we provide details on this scheme in Supplementary Figures S2 and S3). 263 Earlier, there have been works to handle higher error rates with so-called covering template 264 families [26] that can guarantee a match up to any error rate e. Naturally, with higher e, 265 more seeds need to be indexed and queried and it becomes computationally prohibitive to 266 use such seeding. 267

To remove the overhead of post-processing of nearby seeds [4, 36] or multiple queries [71] 268 per indexed reference seed, one can instead link the k-mers up into a seed before storing 269 it in the index. Such indexing has been favorable in the long-reads era where indels are 270 frequent. One proposed method is to join two nearby minimizers into a seed. Joining nearby 271 minimizers is usually a relatively cheap computation as the minimizers constitute a subset of 272 the positions on the reference. Such a seeding technique has been used for long-read overlap 273 detection for both genome assembly [15] and error correction [66]. While such indexing is 274 relatively fast and matches regions over indels, the joining of nearby minimizers implies that 275 if some minimizer(s) are destroyed due to mutations in a region, all of the seeds in that 276 region will be destroyed. Put another way, nearby seeds share the same information (in the 277 form of a shared minimizer). Therefore, alternative approaches such as strobemers [63] (see 278 (d) in Figure 2) have been described, where the goal has been to reduce the information 279 between closeby seeds by linking k-mers at seemingly random positions within a window. 280 Such pseudorandom linking implies that if one seed is destroyed due to a mutation, a nearby 281 seed may still match. Strobemers have shown effective at finding matches between long-reads 282 and for long-read mapping [63], and have been used in short-read alignment programs [64] 283 but they come at an increased computational cost to joining neighboring minimizers. 284

Another way to alleviate the issue that mutations will destroy consecutive seeds in the neighboring minimizers technique is to apply the SimHash technique on strobemers instead of k-mers [22]. Such seeds were used for long-read overlap detection [22] and the authors show that for the highest quality long-reads (PacBio HiFi), such seeds can speed up long-read overlap detection by an order of magnitude or more while retaining the same downstream level assembly accuracy.

K. Sahlin et al.

²⁹¹ 3.1.5 Dynamic seeds

Previously discussed seeds share the characteristic that they can all be produced and inserted in a hash table, and consequently, only require a single lookup. This is typically fast and, hence, popular to use in long-read alignment algorithms. The downside is that if a seed is different in a region between the reference and the query (e.g., due to an error), there is no way to alternate the seeds in this region at alignment time. There are however other types of constructs, that we here refer to as dynamic seeds, that can be computed on the fly at the mapping step, and then used as seeds downstream in the read alignment algorithm.

Maximal Exact Matches Maximal exact matches (MEMs) [16] are matches between a 299 query and reference sequence that cannot be extended in any direction on the query or 300 reference without destroying the match (see (e) in Figure 2). These are typically produced 301 by first identifying a k-mer match, and then an extension process is applied. MEMs are 302 guaranteed to be an exact match between the query and the reference and are bounded below 303 by length k but do not have an upper threshold for seed size. As there can typically exist 304 many MEMs, a subset of MEMs that has a unique location on both the query and reference 305 is sometimes considered. MEMs or similar approaches have been used in one of the earlier 306 long-read alignment programs (e.g., BWA-MEM) [41, 12] and for long-read splice alignment [65], 307 but these seeds are more computationally expensive to compute and are typically slower 308 than single-query seed-based algorithms. 309

Anchors from minimal confidently alignable substrings (MCASs) If a query was sampled 310 from a repetitive region in the reference, one may likely find several clusters of anchors 311 across the reference. Further dynamic programming operations to decipher the true origin 312 region of the query are typically costly or even unfeasible if too many copies have to be 313 considered. Even in the case a query is located on the reference, it might be attributed to the 314 wrong copy because of the sequencing errors. A recent contribution [34] proposed a solution 315 for handling seeding in repetitive regions. The procedure finds smallest subsequences that 316 uniquely match (MCASs) between the query and the reference (see (f) in Figure 2). There 317 can be as many as the query length in theory. In practice, the more the repeats are divergent, 318 the shortest the MCASs since a base pertaining to a single copy is more likely to be met. 319 MCASs are computed using an alignment procedure, which means that *uniquely* matched 320 must be understood as a relative property. For each position on a query, the best and 321 second-best alignment scores are compared, and a substring is considered uniquely matched if 322 the difference between the scores is above a threshold. It is interesting to bound the maximal 323 size of MCASs, both for performance purposes and because they may become less specific as 324 to their size increase. Fixed-size, exact match anchors (minimizers) are then extracted from 325 MCAS regions. 326

327 3.2 Implementation of the seeding step

328 3.2.1 Seeds transformations before indexing

Originally, minimizers use a lexicographical ordering. However, in our four base alphabet, this can tend to select sequences starting with long alphabetically smaller runs such as "AAA...". Random hash functions assigning each k-mer a value between 0 and a maximum integer are preferred [67].

Oxford Nanopore reads are known for accumulating errors in homopolymers, typically adding/removing a base in a stretch of a single nucleotide. Sequences can be homopolymer-

10 A survey of long-read mapping

compressed before finding k-mers. Homopolymers longer than a size s are reduced to a single base, then k-mers are computed over the compressed sequence. For instance, for s = 3, k = 4, an original sequence ATTTTGAAAACC is compressed to ATGACC, and the final k-mers are ATGA, TGAC, GACC. This procedure allows finding more anchors while indexing fewer k-mers/minimizers. Homopolymer compression is ubiquitous in long-read mappers.

In regions of low complexity (e.g. ATATATA, CCCCC) the standard minimizer procedure keeps all minimal k-mers in windows. It is then possible for two k-mers to get the minimal value and to be selected, which tends to over-sample repetitive k-mers. A robust winnowing procedure is proposed in [35], which avoids the over-sampling effect by selecting fewer copies of a k-mer, but increases the context dependency phenomenon.

345 3.2.2 Hash tables prevail for seed indexing

Indexing of fixed size is usually done using hash tables (although FM-indexes for k-mers 346 exist [8]). In the context of subsampling, invertible hash functions have been a key asset for 347 using minimizers as k-mers representatives. In other words, a hash value is associated with 348 one and only one k-mer, and the k-mer sequence can be retrieved from the hash value (using 349 reciprocal operations). This choice allows a very fast k-mer/minimizer correspondence but 350 is costly as it implies that the fingerprints of the hash table are not compressed (which is 351 mitigated by the subsampling). Minimizers are then used to populate a hash table, which 352 associates them to their position(s) in the reference and their strand information (usually 353 hashed seeds are canonical k-mers: the smallest lexicographic sequence between the original 354 k-mer and its reverse complement). 355

Variable-length seeds are indexed in full-text data structures (suffix arrays, FM-index), which allow to find and count arbitrarily long queries in the reference. They have been used in the first versions of long-read mappers. Variable-length seeds type can be longer to query in the structure, while hashed matches are queried in constant time. Since minimizers represent fixed-length k-mers, hash table solutions mainly prevail.

361 3.2.3 Seeds selection at the query

In [43], it is proposed to select all minimizers from the reference during the indexing phase 362 (although the latest versions include the weighted k-mers and robust winnowing heuristics), 363 and to soft mask some representative k-mers at the query. The procedure simply avoids 364 k-mers seen too many times according to a fixed cutoff. The authors noticed that in cases 365 where a query is sampled from a repetitive region, such a procedure prevents it to be seeded. 366 Therefore, an update was proposed [44], which detects if low occurrence k-mers are too 367 far away in a query, and in this case, allows sampling minimizers in the repetitive region 368 in between (and keeps some of the lowest possible occurrences among these minimizers). 369 Techniques that use longer fuzzy seeds (e.g., stroberers) [22] reduce the number of masked 370 regions, although it comes at the cost of sensitivity. Another approach [61] computes a new 371 set of minimizers on the targeted reference region in order to obtain finer candidate chains, 372 in particular in repeated or low complexity regions. 373

K. Sahlin et al.

374 3.3 Chaining is dominated by dynamic programming with concave gap 375 score functions

376 3.3.1 A dynamic programming problem

Once the reference's seeds are indexed, a set of seeds is extracted from the query and looked up in the index to find anchors. Anchors' positions on the query and reference are stored, as well as the forward/reverse information. Instead of directly extending the alignment between anchors, as it is done in short-read mapping, a step of chaining is added and meant to accelerate further extensions. Chaining acts as a filter and a guide for smaller extensions that need to be realized only between selected anchor pairs. Without it, too many extension procedures, most of which would be dead-ends, would have to be started.

In an ideal case, there is a unique way of ordering anchors by ascending Cartesian positions in the (*reference*, *query*) space, which passes by all the anchors. In practice, some anchors are spurious, others correspond to repeated regions and yield different possible chains. Moreover, over parameters have to be taken into account. Thus, methods optimize different aspects (also illustrated in Figure 3):

A1) Do not allow anchors which are not ascending either by the anchors' start or end
 coordinates in both the query and reference (see first case in Figure 3).

³⁹¹ A2) Avoid discrepancies in diagonals between anchors (second case in Figure 3).

A3) Do not allow large spaces between consecutive anchors of the chain (see third case in
 Figure 3).

³⁹⁴ A4) Favor the longest possible anchor chain (fourth case in Figure 3).

³⁹⁵ A5) If inexact matches in seeds are possible, find a series of anchors ensuring a minimal
 ³⁹⁶ Levenshtein distance between the query and the reference.

The problem of finding an optimal chain using non-overlapping anchors has been called the *local chaining problem* [1], although in this application anchors can overlap. The score f(i + 1) represents the cost of appending an anchor a_{i+1} to a_i to the chain. This score is often called the *gap score* in the literature, though it includes other constraints, as described above. The chaining problem for long reads seeks to find an optimal colinear chain with a positive gap score.

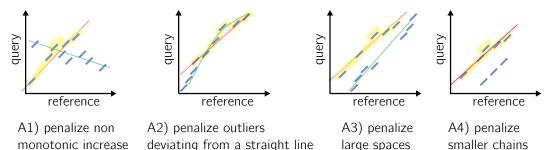


Figure 3 An illustration of the different constraint taken into account in the gap score functions. The reference axis shows a genome region of interest where anchors were found, not the whole reference. A1–A4 correspond to items in the text in section 3.3.1. Anchors are showed in blue. The selected chain with respect to the described constraint is highlighted in yellow and a line approximately passing by its anchors is showed in red. The line passing by the longest chain is showed in green.

Mainly, methods use either a two-step approach: 1-find rough clusters of seeds as putative chains, followed by 2-find the best scored chain among the selected clusters; or work in

12 A survey of long-read mapping

a single pass and apply a custom dynamic programming solution to find the best anchor
chain. We can start by noting that one of the first mappers dedicated to long-reads solved
a global chaining problem to determine a chain of maximum score, by fixing starting and
ending points (anchors) such that their interval is roughly the size of the query [12]. Such an
approach would easily discard long gaps and spaces in alignments.

410 3.3.2 Chaining in two steps

Clusters of seeds are found through single-linkage in 2D space The two-step approaches 411 rely on a first clustering step. Although it tends to be replaced by single-step chaining (see 412 Section 3.3.3), in the following we describe the fundamental ideas of the clustering. Methods 413 first find rough clusters of anchors by considering a discrete (reference, query) position 414 space. In this space, an anchor realizing a perfect match is a line of the size of the seed. 415 This line should have a 45-degree angle, which also corresponds to the main diagonal of a 416 (reference, query) alignment matrix. The same idea stands for a set of anchors. However, 417 because of insertions and deletions, each small line materializing an anchor may not be on 418 the exact same diagonal, thus realizing approximate lines in the (reference, query) space. A 419 method from image processing has been proposed to find approximate lines in this space: 420 the Hough transform [17], which makes it possible to detect imperfect straight lines in 2D 421 space. Contrary to linear regression which would output the best line explained by the 422 anchor distribution, here an arbitrary number of straight lines can be output and considered 423 (see Supplementary Figure S4 for an illustration). Hough transform or other similar anchor 424 grouping algorithms ([61] proposes to delineate fine-grained clusters in order to increase the 425 chaining specificity in repeated regions) all can be assimilated to single-linkage clustering in 426 2D space, which finds groups of anchors placed roughly on the same diagonal. 427

Anchor chaining using longest subsequences of anchors The previous clustering techniques aim at finding lines in groups of anchors that can be approximately colinear. To determine truly colinear chains, a subset of anchors can be ordered by finding a longest increasing subsequence (LIS) of anchors. Let each anchor be mapped to 1...n integers. The LIS problem consists in finding a longest increasing subsequence from a permutation P of the set $\{1, 2, ...c\}$, which can be solved in $\mathcal{O}(c \times log(c))$.

In the case of exact fuzzy seeds, inexact matches are to be dealt with on top of the 434 initial increasing chain problem. Indeed, one wants to obtain the closest base-wise anchor 435 chain. In this case, the problem is converted to LCSk (longest common subsequence in at 436 least k-length substrings). Note that there is a correspondence between LIS and LCS. The 437 LIS of P is the LCS between P and the sequence (1, 2, ..., c). In both cases, neither the 438 longest nor the increasing requirements are sufficient to find correct anchor chains: they lack 439 definitions for other constraints, such as distance between anchors or the possibility to allow 440 large gaps. They are complemented with heuristics or replaced by more recent approaches in 441 Section 3.3.3. In addition, several methods use graphs built over anchors as backbones to 442 the chaining and alignment steps [73, 49, 71] (one approach is described in the Appendix). 443 Because they would fail to take into account distances between anchors, these methods have 444 been replaced by dynamic programming approaches relying on gap score functions. 445

446 3.3.3 Chaining in a single step: gap score functions

The main drawback of the approaches previously described in 3.3.2 is that though large spaces between two anchors of a pair must be avoided, some spaces correspond to gaps in

K. Sahlin et al.

the alignment and can be kept. In order to deal concurrently with these two problems, most recent methods drop the two-step clustering and LIS to directly apply a custom dynamic programming solution. It is globally the same spirit as LIS, but integrates a more finegrained gap penalty solution. It defines a cost function that grants a maximum penalty for non-monotonic increasing seed chains.

Concave gap functions The cost function is designed to handle the gaps induced by frequent 454 indels in the data. Intuitively, it is likely that indels happen in clusters of n positions rather 455 than at n independent positions in the chain because some regions on the query might be 456 particularly spurious, or because of local repeats on the reference. Therefore, the same cost 457 is not attributed to opening a gap and extending a gap, thus a linear gap function does 458 not fit. The choice of gap functions which are concave (verifying the Quadrangle Inequality) 459 improves the time complexity by using the *wider is worse* strategy [25, 21]. In practice, 460 these concave gap functions are affine, a set of affine functions, or a combination of affine 461 and log functions, as proposed in [43]. We chose to present minimap2's [43] gap functions in 462 Figure 4 as they are adopted without modifications in most current papers (with the recent 463 exception of [61]). Chains are built by aggregating close anchors of smaller coordinates to 464 the current anchor by penalizing the shifts compared to the main diagonal. In Figure 4, 465 Panel 4a presents how the set of possible anchors to prolong the chain is selected. Panel 4b 466 illustrates the dynamic function's parameters. The complete description of the functions is 467 available in the Appendix. 468

Heuristics are applied to rapidly drop a dynamic programming procedure in regions that are unlikely to align and to avoid $O(c^2)$ worst cases. Based on empirical results, these heuristics mostly check if seeds are not separated by too large regions and drop the chaining procedure if the score becomes too low.

Solutions for large gaps Noticing that [43]'s original approach would be failing in large 473 gaps, one contribution [61] proposed techniques to perform dynamic programming with a 474 family of concave functions by relying on a previous work [21] (built on a prior clustering 475 step as described in 3.3.2). Recently, [43] integrated a solution designed for mapping long 476 structural variants in pangenomic graphs [45]. Its recent versions entail a cost function for 477 regular gaps, and a long gap patching procedure. Then it chooses the cheapest solution to 478 move on to the alignment step. The gap patching procedure uses a linear gap cost so that it 479 has a higher long-gap opening cost in comparison to the regular procedure but at a cheaper 480 extending cost. The chaining with a linear function is solved with a range minimum query 481 (RMQ) algorithm using a balanced binary search tree [1, 59]. It allows to solve the linear 482 chaining in $\mathcal{O}(c \times log(c))$. Although this time complexity can be improved in $\mathcal{O}(c)$ by using 483 range maximum queue [11], the implemented algorithm is more costly than the solution for 484 regular gaps, which is preferred if possible. Panel 4c in Figure 4 illustrates the dynamic 485 function for large gaps. 486

487 3.3.4 Mapping quality scores have been adapted for ranking chains

The described methods may deliver a set of chains that satisfies the chaining score threshold. To choose among the candidates and decide the final location, chains can then be categorized into primary/secondary chains. Chains with a sufficient score are ranked from highest to lowest score. Primary chains are those with the highest scores which do not overlap with another ranked chain for the most of their length. Secondary chains are others. Mapping quality, which is a measure that had been introduced to assess short-reads mapping, is

14 A survey of long-read mapping

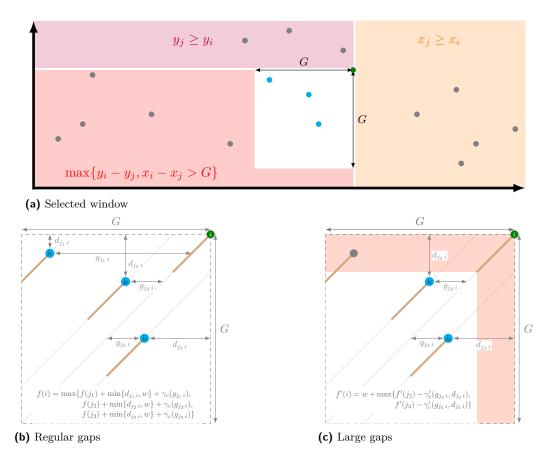


Figure 4 Outline of chaining of minimap2. Figure a shows for an anchor (in green) the selected region (in white, G is the gap threshold) to find available anchors to continue chaining (in blue). Figures b and c give respectively the dynamic programming functions for regular and large gaps size. Anchors are shown as segments ending with green or blue dots with the same color code as in Figure a. Besides, for the large gap size (Figure c), to improve the complexity, the anchors do not overlap (available anchors are not in the red zone). d_{ji} represents the smallest "distance" between the two anchors (but is not really a distance by definition), w is the minimizer window size, g_{ji} is the gap length, and the γ functions are the concave gap functions.

⁴⁹⁴ redefined for long-reads with slight variations according to articles. It reports, for chains, ⁴⁹⁵ whether the primary is very far in terms of score from the best secondary, and if it is long ⁴⁹⁶ enough.

⁴⁹⁷ **4** Extension step and final alignment computation

Extension step In order to allow gaps, the methods rely on local alignment between pairs of successive anchors using classical algorithms [27, 57] derived from Needleman and Wunsch [58]. They are based on alignment matrices, which aggregate the base-wise alignment scores from the two prefixes (top left of the matrix) to the two suffixes (bottom right).

To compute the scores and report them in a matrix, affine cost functions allow to allocate different penalties for opening and extending gaps and therefore can favor short or long gaps. More precisely, such algorithms use pairs of affine gap score functions and choose the cheapest cost between the scoring for short gaps (i.e. less costly to open, costly to extend),

K. Sahlin et al.

and the scoring for long gaps (i.e., more costly to open, cheap to extend). Allowing long gaps
 has a drastic negative impact on the alignment efficiency because more cells in the alignment
 matrix have to be considered.

Heuristics for speed-up and quality enhancement Therefore, alignment is commonly 509 accelerated through vectorization, using single instruction multiple data (SIMD) sets of 510 instructions, which increase the computational throughput by passing simultaneously several 511 matrix cells for the processors to evaluate. Second, practical alignment implementation 512 relies on banded alignment, which, simply put, bounds the alignment matrix in a band of 513 size ℓ around the top-left – bottom-right diagonal. Inspired from BLAST's X-drop [4], [43] 514 implements a Z-drop procedure. X-drop quits extending the alignment if the maximum score 515 reached at some point when aligning the prefix drops by more than X. Z-drop adds the 516 possibility not to drop the extension during large gaps. 517

Due to sequencing errors, some spurious anchors main remain in a chain, which can lead to a suboptimal alignment. At the alignment step, [43] chooses to remove anchors that produce an insertion and a deletion at the same time (>10bp) or that lead to a long gap at the extremity of a chain. Another solutions [12] involves to re-compute a chain with novel anchors computed on a window that comprises the alignment.

523 5 Future directions

References

538

⁵²⁴ On top of mentioned novel seeding techniques bringing new properties concerning their ⁵²⁵ coverage of the seeded sequence and robustness to errors and mutations (syncmers, strobe-⁵²⁶ mers [70, 60, 22]), we can expect to see advances in the chaining and extending parts in the ⁵²⁷ coming months.

Indeed, the usage of *diagonal-transition algorithms* which was initially define for edit 528 distance [72, 39, 30] has been reactivated recently for the gap-affine model with the wavefront 529 alignment algorithm (WFA, including [52, 51, 19]). More precisely, instead of using dynamic 530 programming on the adjacent cells, WFA transposes the optimization problem on the 531 diagonals and the score. In particular, WFA has the potential to make computation faster 532 for similar sequences and large gaps (by setting the score accordingly and adapting the 533 scoring). A current result shows that we can exploit the massive parallel capabilities of 534 modern GPU devices to accelerate this wavefront alignment algorithm [2]. Currently, different 535 implementations exist that have been tested on long reads $[52]^4$, although no dedicated 536 long-read mapper integrates them yet. 537

Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. A local chaining algorithm and its applications in comparative genomics. In *International Workshop on Algorithms in Bioinformatics*, pages 1–16. Springer, 2003.

Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, Christos Matzoros, David
 Castells-Rufas, Antonio Espinosa, and Miquel Moreto. Wfa-gpu: Gap-affine pairwise alignment
 using gpus. *bioRxiv*, 2022.

⁴ https://github.com/waveygang/wfmash/blob/master/README.md, https://github.com/lh3/ miniwfa

16 A survey of long-read mapping

- Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer
 Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D Singer, et al. Techno logy dictates algorithms: recent developments in read alignment. *Genome biology*, 22(1):1–34,
 2021.
- Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
 local alignment search tool. *Journal of molecular biology*, 215(3):403–410, 1990.
- Mohammad Ruhul Amin, Steven Skiena, and Michael C Schatz. Nanoblaster: Fast alignment
 and characterization of oxford nanopore single molecule sequencing reads. In 2016 IEEE 6th
 International Conference on Computational Advances in Bio and Medical Sciences (ICCABS),
 pages 1–6. IEEE, 2016.
- Mahdi Belbasi, Antonio Blanca, Robert S Harris, David Koslicki, and Paul Medvedev. The
 minimizer jaccard estimator is biased and inconsistent. *bioRxiv*, 2022.
- Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin, and
 Adam M Phillippy. Assembling large genomes with single-molecule sequencing and locality sensitive hashing. *Nature biotechnology*, 33(6):623–630, 2015.
- Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de bruijn
 graphs. In International workshop on algorithms in bioinformatics, pages 225–235. Springer,
 2012.
- Andrei Z Broder. On the resemblance and containment of documents. In *Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171)*, pages 21–29.
 IEEE, 1997.
- Karel Břinda, Maciej Sykulski, and Gregory Kucherov. Spaced seeds improve k-mer-based metagenomic classification. *Bioinformatics*, 31(22):3584-3592, 07 2015. arXiv:https:// academic.oup.com/bioinformatics/article-pdf/31/22/3584/5027960/btv419.pdf, doi: 10.1093/bioinformatics/btv419.
- Bastien Cazaux, Dmitry Kosolobov, Veli Mäkinen, and Tuukka Norri. Linear time maximum
 segmentation problems in column stream model. In *International Symposium on String Processing and Information Retrieval*, pages 322–336. Springer, 2019.
- Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using basic local alignment with successive refinement (blasr): application and theory. *BMC bioinformatics*, 13(1):1–18, 2012.
- Angana Chakraborty, Burkhard Morgenstern, and Sanghamitra Bandyopadhyay. S-conlsh:
 Alignment-free gapped mapping of noisy long reads. *BMC bioinformatics*, 22(1):1–18, 2021.
- ⁵⁷⁸ 14 Moses S Charikar. Similarity estimation techniques from rounding algorithms. In *Proceedings* ⁵⁷⁹ of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.
- ⁵⁸⁰ 15 Chen-Shan Chin and Asif Khalak. Human genome assembly in 100 minutes. *BioRxiv*, page
 ⁵⁸¹ 705616, 2019.
- Arthur L Delcher, Simon Kasif, Robert D Fleischmann, Jeremy Peterson, Owen White, and
 Steven L Salzberg. Alignment of whole genomes. *Nucleic acids research*, 27(11):2369–2376,
 1999.
- Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines and curves in pictures. *Communications of the ACM*, 15(1):11–15, 1972.
- Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
 biological sequences. *PeerJ*, 9:e10805, 2021.
- Jordan M Eizenga and Benedict Paten. Improving the time and space complexity of the wfa algorithm and generalizing its scoring. *bioRxiv*, 2022.
- Marquita Ellis, Giulia Guidi, Aydın Buluç, Leonid Oliker, and Katherine Yelick. dibella:
 Distributed long read to long read alignment. In *Proceedings of the 48th International Conference on Parallel Processing*, pages 1–11, 2019.
- David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F Italiano. Sparse dynamic
 programming ii: convex and concave cost functions. Journal of the ACM (JACM), 39(3):546–
 5667, 1992.

K. Sahlin et al.

22

597

- Can Firtina, Jisung Park, Jeremie S Kim, Mohammed Alser, Damla Senol Cali, Taha Shahroodi,
- Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, et al. Blend:
 A fast, memory-efficient, and accurate mechanism to find fuzzy seed matches. arXiv preprint arXiv:2112.08687, 2021.
- Martin C Frith, Laurent Noé, and Gregory Kucherov. Minimally overlapping words for
 sequence similarity search. *Bioinformatics*, 36(22-23):5344–5350, 2020.
- Yilei Fu, Medhat Mahmoud, Viginesh Vaibhav Muraliraman, Fritz J Sedlazeck, and Todd J
 Treangen. Vulcan: Improved long-read mapping and structural variant calling via dual-mode
 alignment. *GigaScience*, 10(9):giab063, 2021.
- Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional dynamic
 programming. Information Processing Letters, 1989.
- Eldar Giladi, John Healy, Gene Myers, Chris Hart, Philipp Kapranov, Doron Lipson, Steve
 Roels, Edward Thayer, and Stan Letovsky. Error tolerant indexing and alignment of short
 reads with covering template families. J Comput Biol, 17(10), Oct 2010.
- ⁶¹¹ 27 Osamu Gotoh. Optimal sequence alignment allowing for long gaps. Bulletin of mathematical
 ⁶¹² biology, 52(3):359-373, 1990.
- Ehsan Haghshenas, S Cenk Sahinalp, and Faraz Hach. lordfast: sensitive and fast alignment
 search tool for long noisy read sequencing data. *Bioinformatics*, 35(1):20–27, 2019.
- Renmin Han, Yu Li, Xin Gao, and Sheng Wang. An accurate and rapid continuous wavelet dynamic time warping algorithm for end-to-end mapping in ultra-long nanopore sequencing.
 Bioinformatics, 34(17):i722-i731, 2018.
- ⁶¹⁸ **30** Heikki Hyyrö. A bit-vector algorithm for computing levenshtein and damerau edit distances.
 ⁶¹⁹ Nord. J. Comput., 10(1):29–39, 2003.
- Lucian Ilie and Silvana Ilie. Multiple spaced seeds for homology search. *Bioinform- atics*, 23(22):2969-2977, 09 2007. arXiv:https://academic.oup.com/bioinformatics/
 article-pdf/23/22/2969/543804/btm422.pdf, doi:10.1093/bioinformatics/btm422.
- ⁶²³ **32** Silvana Ilie. Efficient computation of spaced seeds. *BMC research notes*, 5:123–123, 02 2012.
- Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M Phillippy. A fast
 approximate algorithm for mapping long reads to large reference databases. In *International Conference on Research in Computational Molecular Biology*, pages 66–81. Springer, 2017.
- ⁶²⁷ 34 Chirag Jain, Arang Rhie, Nancy F Hansen, Sergey Koren, and Adam M Phillippy. Long-read
 ⁶²⁸ mapping to repetitive reference sequences using winnowmap2. *Nature Methods*, pages 1–6,
 ⁶²⁹ 2022.
- Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian P Walenz, Sergey Koren, and
 Adam M Phillippy. Weighted minimizer sampling improves long read mapping. *Bioinformatics*,
 36(Supplement_1):i111-i118, 2020.
- ⁶³³ **36** W James Kent. Blat—the blast-like alignment tool. *Genome research*, 12(4):656–664, 2002.
- Szymon M Kiełbasa, Raymond Wan, Kengo Sato, Paul Horton, and Martin C Frith. Adaptive
 seeds tame genomic sequence comparison. *Genome research*, 21(3):487–493, 2011.
- Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C Schatz. Targeted nanopore
 sequencing by real-time mapping of raw electrical signal with uncalled. *Nature biotechnology*,
 39(4):431-441, 2021.
- Gad M Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. Journal of algorithms, 10(2):157–169, 1989.
- 40 Roy Lederman. A random-permutations-based approach to fast read alignment. In *BMC bioinformatics*, volume 14, pages 1–10. BioMed Central, 2013.
- ⁶⁴³ 41 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv
 ⁶⁴⁴ preprint arXiv:1303.3997, 2013.
- Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
 Bioinformatics, 32(14):2103–2110, 2016.
- Heng Li. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18):3094–3100, 2018.

18 A survey of long-read mapping

- Heng Li. New strategies to improve minimap2 alignment accuracy. *Bioinformatics*, 37(23):4572–4574, 2021.
- 45 Heng Li, Xiaowen Feng, and Chong Chu. The design and construction of reference pangenome
 graphs with minigraph. *Genome biology*, 21(1):1–19, 2020.
- 46 Ming Li, Bin Ma, Derek Kisman, and John Tromp. Patternhunter ii: highly sensitive and fast
 homology search. J Bioinform Comput Biol, 2(3):417–439, Sep 2004.
- 47 Hsin-Nan Lin and Wen-Lian Hsu. Kart: a divide-and-conquer algorithm for ngs read alignment.
 Bioinformatics, 33(15):2281–2287, 2017.
- ⁶⁵⁷ 48 Bo Liu, Yan Gao, and Yadong Wang. Lamsa: fast split read alignment with long approximate
 ⁶⁵⁸ matches. *Bioinformatics*, 33(2):192–201, 2017.
- Bo Liu, Dengfeng Guan, Mingxiang Teng, and Yadong Wang. rHAT: fast alignment of noisy
 long reads with regional hashing. *Bioinformatics*, 32(11):1625-1631, 11 2015. arXiv:https://
 academic.oup.com/bioinformatics/article-pdf/32/11/1625/22645531/btv662.pdf, doi:
 10.1093/bioinformatics/btv662.
- ⁶⁶³ 50 Bo Liu, Yadong Liu, Junyi Li, Hongzhe Guo, Tianyi Zang, and Yadong Wang. desalt: fast
 ⁶⁶⁴ and accurate long transcriptomic read alignment with de bruijn graph-based index. *Genome* ⁶⁶⁵ biology, 20(1):1–14, 2019.
- ⁶⁶⁶ 51 Santiago Marco-Sola, Jordan M Eizenga, Andrea Guarracino, Benedict Paten, Erik Garrison,
 ⁶⁶⁷ and Miquel Moreto. Optimal gap-affine alignment in o (s) space. *bioRxiv*, 2022.
- Santiago Marco-Sola, Juan Carlos Moure, Miquel Moreto, and Antonio Espinosa. Fast
 gap-affine pairwise alignment using the wavefront algorithm. *Bioinformatics*, 37(4):456–463,
 2021.
- Josip Marić, Ivan Sović, Krešimir Križanović, Niranjan Nagarajan, and Mile Šikić. Graphmap2 splice-aware rna-seq mapper for long reads. *bioRxiv*, page 720458, 2019.
- Frédéric Meunier, Olivier Gandouet, Éric Fusy, and Philippe Flajolet. Hyperloglog: the analysis
 of a near-optimal cardinality estimation algorithm. Discrete Mathematics & Theoretical
 Computer Science, 2007.
- Alla Mikheenko, Andrey V Bzikadze, Alexey Gurevich, Karen H Miga, and Pavel A Pevzner.
 Tandemtools: mapping long reads and assessing/improving assembly quality in extra-long
 tandem repeats. *Bioinformatics*, 36(Supplement 1):i75–i83, 2020.
- ⁶⁷⁹ 56 Hamid Mohamadi, Justin Chu, Benjamin P Vandervalk, and Inanc Birol. nthash: recursive
 ⁶⁸⁰ nucleotide hashing. *Bioinformatics*, 32(22):3492–3494, 2016.
- ⁶⁸¹ 57 Gene Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
 ⁶⁸² programming. Journal of the ACM (JACM), 46(3):395–415, 1999.
- 58 Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of molecular biology*, 48(3):443–453, 1970.
- ⁶⁸⁶ 59 Christian Otto, Steve Hoffmann, Jan Gorodkin, and Peter F Stadler. Fast local fragment
 ⁶⁸⁷ chaining using sum-of-pair gap costs. Algorithms for Molecular Biology, 6(1):1–8, 2011.
- 60 David Pellow, Abhinav Dutta, and Ron Shamir. Using syncmers improves long-read mapping.
 bioRxiv, 2022.
- ⁶⁹⁰ **61** Jingwen Ren and Mark JP Chaisson. Ira: A long read aligner for sequences and contigs. *PLOS* ⁶⁹¹ *Computational Biology*, 17(6):e1009078, 2021.
- Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.
 Reducing storage requirements for biological sequence comparison. *Bioinformatics*, 20(18):3363– 3369, 2004.
- 63 Kristoffer Sahlin. Effective sequence similarity detection with strobemers. Genome research,
 31(11):2080-2094, 2021.
- 64 Kristoffer Sahlin. Faster short-read mapping with strobemer seeds in syncmer space. *bioRxiv*,
 2021.
- 65 Kristoffer Sahlin and Veli Mäkinen. Accurate spliced alignment of long rna sequencing reads.
 Bioinformatics, 37(24):4643-4651, 2021.

K. Sahlin et al.

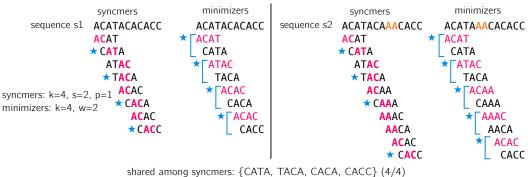
Kristoffer Sahlin and Paul Medvedev. Error correction enables use of oxford nanopore
 technology for reference-free transcriptome analysis. *Nature communications*, 12(1):1–13, 2021.

- 67 Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
 document fingerprinting. In *Proceedings of the 2003 ACM SIGMOD international conference* on Management of data, pages 76–85, 2003.
- Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad, Arndt
 Von Haeseler, and Michael C Schatz. Accurate detection of complex structural variations
 using single-molecule sequencing. *Nature methods*, 15(6):461–468, 2018.
- Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E Olsen, Colleen
 Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren, et al. Nanopore
 sequencing and the shasta toolkit enable efficient de novo assembly of eleven human genomes. *Nature biotechnology*, 38(9):1044–1053, 2020.
- 713 70 Jim Shaw and Yun William Yu. Theory of local k-mer selection with applications to long-read
 714 alignment. *bioRxiv*, 2021.
- 715 71 Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen, and Niranjan
 716 Nagarajan. Fast and sensitive mapping of nanopore sequencing reads with graphmap. *Nature* 717 communications, 7(1):1–11, 2016.
- 718 72 Esko Ukkonen. Algorithms for approximate string matching. *Information and control*, 64(1-719 3):100–118, 1985.
- 720 73 Ze-Gang Wei, Xing-Guo Fan, Hao Zhang, Xiao-Dan Zhang, Fei Liu, Yu Qian, and Shao-Wu
 721 Zhang. kngmap: sensitive and fast mapping algorithm for noisy long reads based on the k-mer
 722 neighborhood graph. *Frontiers in Genetics*, page 988, 2022.
- 723 74 Thomas D Wu and Colin K Watanabe. Gmap: a genomic mapping and alignment program
 724 for mrna and est sequences. *Bioinformatics*, 21(9):1859–1875, 2005.
- 725 75 Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, Yan Wang, Yue Han, Feng Luo,
 r26 and Zhi Xie. Mecat: fast mapping, error correction, and de novo assembly for single-molecule
 r27 sequencing reads. *nature methods*, 14(11):1072–1074, 2017.
- 728 76 Haowen Zhang, Haoran Li, Chirag Jain, Haoyu Cheng, Kin Fai Au, Heng Li, and Srinivas Aluru.
 729 Real-time mapping of nanopore raw signals. *Bioinformatics*, 37(Supplement_1):i477–i483,
 730 2021.

20 A survey of long-read mapping

731 Appendix

⁷³² **Details on subsampling techniques** In Supplementary Figure S1, we present an example of the difference in the selected bases between a minimizer approach and a syncmer approach.



shared among syncmers: {CATA, TACA, CACA, CACC} (4/4) shared among minimizers: {ACAT, ATAC, ACAC} (3/4 in s1, 3/5 in s2)

Figure S1 Usage syncmers and minimizers for comparing two similar sequences. Sequences s1 and s2 differ by a AA insertion in orange in S2. We show how selected syncmers and minimizers do not produce the same sets of representative k-mers and therefore yield different fractions of shared k-mers between s1 and s2. The k-mer size is 4, the s-mers in syncmers (smallest showed in pink, we choose the lexicographic order) are of size 2, and in this example we require that the smallest s-mer appears at the first position of the k-mer. Minimizers have windows of size 2, materialized in blue, with the minimizer in pink. The selected k-mers are highlighted using a blue star.

733

Graphmap's indexing strategy for fuzzy seeds Graphmap builds two hash indexes from two types of shapes, called 6-1-6 and 4-1-4-1-4. As shown in Supplementary Figure S2, for each position is seeded (no subsampling). A seeded key corresponds to the subsequence at a given position of the reference when applying the shape mask: each *don't care* (*) base is skipped.

Then, for each read in the query, several lookup keys (for mismatch, deletion and insertion) are built from a shape (Supplementary Figure S3). To that extent, the lookup key treats the *don't care* base in three different ways. The mis(match) shape has the same behaviour as the indexed key, i.e., the *don't care* base are skipped. The insertion shape skips two bases: the initial *don't care* base and the base next to it. Finally the deletion shape will simply build the key and keep all the base including the *don't care* base. In total, for a number *d* of *don't care* base, 3^d different keys are built per shape.

Graphmap's backbone graph for LCSk Because of the possible spurious matches that 746 occur because of the ambiguous bases, Graphmap's fuzzy seeds require more treatments to 747 find proper chains. A first step after seeding finds groups of anchors representing longer 748 shared subsequences between the query and the reference, on which is applied LCSk. Anchors 749 are placed in a vertex-centric positional graph of k-mers, in which k-mers in both sequences 750 appear, and share an arc if they are directly consecutive (or consecutive up to a distance 751 (a, b) parameter)⁵. Most weighted paths of anchors (i.e. supported by the query and the reference) 752 are found in this graph and output as shared subsequences. After the LCSk pass, a L1 linear 753

 $^{^5\,}$ NB: this is different from a de Bruijn graph since nodes with similar contents can be repeated

K. Sahlin et al.

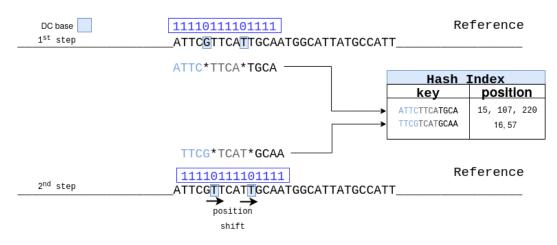


Figure S2 Indexing scheme for fuzzy seeds allowing indels and substitutions in Graphmap. In the figure the shape 4.1.4.1.4 is represented. The zeros represent the don't care positions of the shape. The shape is then applied for each position of the genome. The substring built from the shape is used as key inside a hash index. Each key will correspond to one or more positions on the reference.

regression step is applied to fit a straight line with a 45 degree slope and remove outliers,
especially in the beginning and end of the chain (see case 4 in Figure 3 in the main text).
Note that other methods use graphs built over anchors as backbones to the chaining and
alignment steps without fuzzy seeds [73, 49].

⁷⁵⁸ Minimap2's complete formula for regular and large gaps size

⁷⁵⁹ For regular gaps size:

$$f(i) = \max\{\max_{\substack{i > j \ge 1 \\ x_i - G < x_j \le x_i \\ y_i - G < y_j < y_i}} f(j) + \min\{d_{j\,i}, w\} - \gamma_r(g_{j\,i}), w\}$$

The property $x_i - G \le x_j \le x_i$ and $y_i - G \le y_j < y_i$ is equivalent to $y_j < y_j$, $x_j \le x_i$ and $e_{ji} < G$.

⁷⁶³ For large gaps size:

$$f'(i) = \max_{\substack{i > j \ge 1 \\ x_i - G \le x_j \le x_i - w \\ y_i - G \le w_i < y_i - w}} f'(j) + w - \gamma_l(g_{j\,i}, d_{j\,i})$$

765 where

$$d_{ji} = \min\{y_i - y_j, x_i - x_j\}$$

Smaller "distance" between the two anchors. This is not really a distance by definition : for $(x_i, y_i) = (-n, 0), (x_j, y_j) = (0, 0)$ and $(x_k, y_k) = (0, n)$, we have $d_{ij} + d_{jk} = 0 < n = d_{ij}$.

Discrete Chebyshev distance between the two anchors Gap length (or Manhattan distance between the diagonals passing by the two anchors)

766

760

764

$$\gamma_r(g) = 0.01 \times w \times g + 0.5 \log_2 g$$

 $\gamma_l(g,d) = c_1 \times g + c_2 \times d + \log_2 g$

 $e_{ji} = \max\{y_i - y_j, x_i - x_j\}$

 $g_{ji} = |(y_i - y_j) - (x_i - x_j)|$

where c_1 and c_2 are parameters

22 A survey of long-read mapping

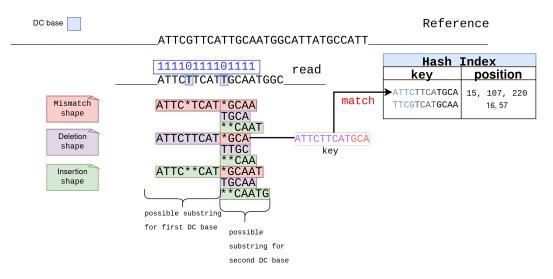


Figure S3 Query in Graphmap, different possible sequences can be matched using a single key. As we can see, there are three types of look-up shapes, and each of them is used to reconstruct a different substring. Each type corresponds to three phenomena that can occur with errors in sequencing, namely substitution, substitution + 1 insertion, and substitution + 1 deletion. Here, two don't care bases are present and nine substrings can be obtained. In this example the substring obtained from the substitution + insertion shape and the mismatch leads to a match with the reference.

Hough transform principle Applying the Hough transform means going from the S1 =767 (query, reference) space to the Hough S_2 space of coordinates. If a line (y = ax + b) exists 768 in S_1 , it is a point of coordinates (a, b) in S_2 (practically, polar coordinates are used for 769 technical reasons). All possible lines intersecting a point in S_1 can be translated in S_2 as 770 a sine wave. Multiple anchors give multiple points in S_2 , and the intersection of possible 771 sinusoids intersecting the different points in S_2 correspond to a line roughly intersecting 772 the initial anchors in S_1 . The Hough space is rasterized, and by counting and weighing the 773 possible solutions in S_2 , lines can be deduced in S_1 . Contrary to linear regression which 774 would output the best line explained by the seed distribution in S_1 , here an arbitrary number 775 of straight lines can be output and considered (see Supplementary Figure S4 for an overview 776 of the steps).

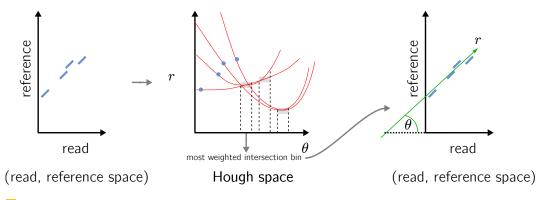


Figure S4 An overview of the Hough transform steps.