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Abstract 

Single-cell RNA sequencing (scRNA-seq) has provided valuable insights into human islet cell 

types and their corresponding stable gene expression profiles. However, this approach requires 

cell dissociation that complicates its utility in vivo and provides limited information on the active 

transcriptional status of islet cells. On the other hand, single-nucleus RNA sequencing (snRNA-

seq) does not require cell dissociation and affords enhanced information from intronic sequences 

that can be leveraged to identify actively transcribing genes in islet cell populations. Here, we first 

sought to compare scRNA-seq and snRNA-seq analysis of human islets in vitro using exon reads 

or combined exon and intron reads, respectively. Datasets reveal similar human islet cell clusters 

using both approaches. In the snRNA-seq data, however, the top differentially expressed genes 

in human islet endocrine cells are not the canonical genes but a new set of non-canonical gene 

markers including ZNF385D, TRPM3, LRFN2, PLUT (β cells), PTPRT, FAP, PDK4, LOXL4 (α 

cells), LRFN5, ADARB2, ERBB4, KCNT2 (δ cells) and CACNA2D3, THSD7A, CNTNAP5, 

RBFOX3 (γ cells).  Notably, these markers also accurately define endocrine cell populations in 

human islet grafts in vivo. Further, by integrating the information from nuclear and cytoplasmic 

transcriptomes, we identify three β-cell sub-clusters: an active INS mRNA transcribing cluster (β1), 

an intermediate INS mRNA-transcribing cluster (β2), and a mature INS mRNA rich cluster (β3). 

These display distinct gene expression patterns representing different biological dynamic states 

both in vitro and in vivo. Interestingly, the INS mRNA rich cluster (β3) becomes the predominant 

sub-cluster in vivo. In summary, snRNA-seq analysis of human islet cells is a previously 

unrecognized tool that can be accurately employed for improved identification of human islet cell 

types and their transcriptional status in vivo.  

 

Introduction  

Diabetes results from deficiency of functional pancreatic β-cells (1,2). Detailed 

characterization of the transcriptional programs in islet cells in health and disease will help to 

identify therapeutic targets to treat diabetes (3). The recent and now widely used application of 

single cell RNA sequencing (scRNA-seq) on human islets from healthy donors and patients with 

diabetes is providing a wealth of data regarding islet cell populations and their established 

transcriptome profile (4-10). scRNA-seq of dispersed cells from human islets or pancreas tissue 

represents an obvious advance over bulk RNA sequencing of whole islets or tissue and a clear 

improvement over bulk transcriptomic analysis of sorted islet cell subtypes, both of which require 

mechanical and enzymatic cell disturbances and the corresponding cellular stress. On the other 

hand, scRNA-seq has also disadvantages in that it also requires cell dissociation and typically 
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focuses on exon reads which provides limited or no information on the active transcriptional status 

of genes since most of the mRNA analyzed is mature, stored mRNA (4).  

scRNA-seq of human islets cells and human pancreas has identified genes associated 

with Type 1 (T1D) and Type 2 diabetes (T2D) (5-7), genes important for islet cell development 

and maturation (8,9), for islet dysfunction and dedifferentiation (10,11), for aging (12), and genes 

involved in the transdifferentiation among islet cells (13,14). These studies typically use canonical 

gene sets to annotate different islet cell populations, but new gene sets are continuously identified 

that more precisely define islet cell subtypes as they passage from development, stem cell 

differentiation to maturation (15). scRNA-seq has also confirmed the presence of heterogeneity 

among human β-cells defining several β-cell subtypes with different gene profiles (16,17). 

Although these are remarkable advances, it remains true that these scRNA-seq studies have 

been mostly performed using isolated human islets cultured in vitro, which may not reflect actual 

in vivo biology. Further, scRNA-seq analysis of human islet biopsies or human islet grafts in mice 

requires mechanical and enzymatic cell dissociation, which causes cellular stress and eliminates 

specific cell subpopulations sensitive to these stresses. Finally, in this in vivo context, scRNA-seq 

data sets yield very low cell numbers that may not reflect the complete universe of the normal 

islet cell populations (18-22).  

In contrast, single nucleus RNA sequencing (snRNA-seq) uses isolated nuclei without the 

need for cell dissociation, can be performed on entirely intact fresh or frozen tissue, and reveals 

actively transcribed nascent pre-mRNAs, many of which have not yet been spliced and therefore 

containing introns as well as exons. Combining exonic and intronic sequences reveals important 

information on the transcriptional status of the cell at a moment in time (23,24). This approach 

should also be adaptable to analyze the transcriptome profiles and transcriptional status of human 

islet cells in vivo in previously fixed or frozen samples, as well as in human islet grafts from mice. 

To date, however, there are no such studies analyzing snRNA-seq in human islets in vitro and in 

vivo or comparing exon reads (scRNA-seq, mature mRNA) vs. exon plus intron reads (snRNA-

seq, pre-mRNA) to infer the real time global transcriptional status of the cell. This is in part due to 

the absence of human islet cell references that include intronic data, and the absence of adequate 

gene sets to identify human islet cells using snRNA-seq analysis.  

In this study, we addressed these latter issues by directly comparing scRNA- and snRNA-

seq analysis of human islet cells to determine whether 1) this provides similar results on human 

islet cell populations; 2) intron plus exon reads in the snRNA-seq analysis provide additional 

information that further defines islet cell populations; 3) new gene sets can be defined in the 

snRNA-seq analysis that more accurately portray islet cell populations; 4) β-cell heterogeneity 
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can be further defined using snRNA-seq analysis; and 5) the snRNA-seq approach can be 

employed for analysis of islet cell subpopulations, transcriptome profiles and transcriptional status 

in human islets in vivo. Reassuringly, the results indicate that scRNA-seq and snRNA-seq using 

exon or combined intron plus exon reads respectively, are interchangeable to identify human islet 

cell populations both in vitro and in vivo. However, the results also make the important point that 

at the pre-mRNA level, canonical endocrine cell genes are not the most highly expressed genes 

or actively transcribed in these cells, and reveal non-canonical new gene sets that accurately 

identify endocrine cell types in the human islet. In addition, employing combined datasets from 

both scRNA- and snRNA-seq analyses identifies three different β-cell subpopulations based on 

their INS gene transcriptional stage with distinct biological functions according to gene set 

enrichment analysis (GSEA). Overall, this study supports the use of snRNA-seq technology and 

pre-mRNA analysis as a tool for deciphering human islet cell populations and subpopulations and 

their distinct biological functions in health and disease.   

 

Material and Methods  

Human Islet Samples  

Adult human pancreatic islets from non-diabetic donors were provided by Prodo 

Laboratories. The average donor age was 38±5 and 71% of them were male donors. Additional 

details are provided in Supplemental Table 1. Islets were procured in serum free medium and 

were cultured in non-adhesive culture plates in 5% CO2 at 37°C overnight before initiation of the 

studies. 

Human Islet Cell and Islet Nuclei Processing 

Human islets [3000 islet equivalents (IEQs), 1 IEQ = 150 μm diameter islet] were collected, 

washed twice with PBS (Ca++/Mg++ free) and then centrifuged at 300 rpm for three min. After 

removing the PBS, 200 µl pre-warmed Accutase (cat# 25-058-CL, Corning) were added and the 

islets were incubated at 37 °C for 10 min. Then, complete RPMI medium was added to the tubes, 

the samples were centrifuged at 1000 rpm for three min, and the pellet washed with PBS 

(Ca++/Mg++ free). Half of the cells were resuspended in binding buffer (cat# 130-090-101, 

Miltenyi Biotec) with dead cell removal beads, incubated for 15 min at room temperature and 

applied onto the dead cell removal column (cat # 130-042-401, Miltenyi Biotec), which was 

attached to the MACS separator. Subsequently, the effluent was collected, centrifuged and 

resuspended with 200 µl 2% BSA and 200 U/ml RNase inhibitor in PBS. The cells were then 

mixed with AOPI (Cat# CS2-0106, Nexcelon Bioscience) at 1:1 ratio and the cell concentration 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.22.492974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492974


   
 

5 
 

measured with the Countess 3 Automated Cell Counter (Thermo-Fisher). The other half of the 

cells was homogenized with a pestle and their nuclei were isolated with the MinuteTM single 

nucleus isolation kit for tissue/cells (Cat# SN-047, Invent Biotechnologies, INC). Briefly, cells were 

resuspended in 600 µl cold lysis buffer, incubated on ice for 10 min and then transferred into a 

filter with a collection tube. The tubes were then centrifuged at 600 x g for 5 min, the supernatants 

removed, and the pellets resuspended in 500µl cold washing buffer. After centrifugation at 500 x 

g for five min, the supernatants were removed and the nuclei pellet resuspended with 55 µl 

2%BSA and 200 U/ml RNase inhibitor in PBS. Nuclei were then mixed with AOPI at 1:1 ratio and 

the nuclei concentration measured with the Countess 3 Automated Cell Counter. After this, nuclei 

samples were processed in an identical way as to the human islet cell samples.   

Human Islet Transplantation into RAG-1-/- Immunodeficient Mice.  

One thousand human IEQs from four different donors (Supplemental Table 1) were 

transplanted into the renal sub-capsular space of 4–5-month-old euglycemic RAG1-/- mice as 

described previously in detail (25,26). Human islet grafts were harvested three months after 

transplantation, washed twice with PBS (Ca++/Mg++ free) and centrifuged at 300 rpm for three 

min. Nuclei were isolated as indicated above. 

Single-Cell and Single-Nucleus RNA Sequencing, Alignment and Matrix Generation 

Cells and nuclei samples were prepared according to the 10X Genomics Single Cell 3’ 

V3.1 Reagent Kit protocol, processed with 10X Genomic Chromium Controller for partitioning and 

barcoding, followed by the cDNA library generation. The total cell concentration was analyzed by 

Countess 3, then sequenced by NovaSeq 6000 System (Illumina) at the Weill Cornell Medicine, 

Genomics and Epigenomics Core. FASTQ files were aligned with Cell Ranger V.6.1.1 with Single 

Cell 3’ V3 chemistry on the 10X Cloud’s pipeline. In the analysis, we included the intronic reads 

only in the snRNA-seq data with GRCh38-2020-A library. For the human islet graft samples, which 

were also processed identically as the snRNA-seq dataset from in vitro islets, we included intronic 

reads as well, and used the GRCh38-mm10-2020-A library to distinguish human and residual 

mouse genes.  After the 10X h5 format file was generated, data were analyzed on the R platform 

with Seurat package V.4.1.1 (27). 

Quality Control, Integration and Projection   

Ambient mRNA adjustment on the scRNA-seq, snRNA-seq and in vivo snRNA-seq data 

was performed using SoupX (20% contamination estimation) (28).  Cells with less than a 500 

genes count, less than 250 gene varieties, less than 0.8 log10 genes per UMI, and a greater than 

20% mitochondrial gene ratio were filtered out. Then, doublets were algorithmically removed with 
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the Doubltfinder package (20% estimation for scRNA/snRNA-seq, 10% estimation for in vivo 

snRNA-seq data) (29). Data sets were projected to publicly available Azimuth’s Human Pancreas 

reference (https://azimuth.hubmapconsortium.org/references/human_pancreas/) according to 

the script template of demo data with resulting reduction and cell-type annotation (7,27,30-35). 

Finally, differential expression analysis within snRNA-seq datasets for identification of new gene 

sets was performed. 

Human in vivo islet data sets were projected onto our integrated scRNA/snRNA-seq data 

set as a reference. Since human islet grafts from harvested mouse kidneys naturally contain 

residual mouse cells and their mRNAs, nuclei with more than 10% of mouse genes were filtered 

out during quality control process.  

Unsupervised Data Analysis  

After data quality control, scRNA-seq and snRNA-seq data were integrated using Seurat’s 

SCTransform function without allocating method parameters (30). Next, cell type identity was 

assigned according to the normalized gene expression level, referencing the canonical pancreatic 

cell type genes (27). In vivo snRNA-seq data were created by integration among four samples of 

in vivo snRNA-seq data and cell types were annotated by referring to both canonical markers and 

newly found snRNA markers from this study. 

Pathway Analysis 

To define the molecular and cell function, single-cell level gene set enrichment analysis 

was performed using the escape package which accesses the entire Molecular Signature 

Database (v.7.0) (29,36-38). The whole C2 library enrichment with chemical and genetic 

perturbations and canonical pathways containing five databases (Biocarta, KEGG, PID, 

Reactome and Wikipathways) were employed.  Additionally, the C5 (Gene Ontology) library was 

also investigated using keywords such as β-cell, pancreas, pancreatic and negative keywords 

such as cancer, carcinoma, anomaly or other pathologies. After enrichment scores were 

calculated for each single cell, they were added to the meta data for analysis and visualization.  

RNA in situ hybridization 

RNA fluorescence in situ hybridization was performed on dispersed human islet cells using 

the RNA scope platform. Briefly, dissociated cells from human islets were plated on poly-D-lysine 

coated coverslips and incubated for 30 min at 37°C, 5%CO2. Cells were then fixed in 4% 

paraformaldehyde and in situ hybridization performed using the RNAscope® Multiplex 

Fluorescent Reagent Kit v2, probes Hs-ZNF385D (cat#1161581) targeting intron sequences in 

the region 808843-810453 of NC_000003.12:22372641-21412218 and Hs-ZNF385D 
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(cat#116501) targeting exon sequences in the region 150-1266 of NM_024697.3 which are 

present in ZNF385D pre-mRNA and mature mRNA respectively, and opal 620 

(cat#FP1495001KT, Akoya Biosciences) following the instructions of the manufacturer (ACD Bio-

Techne). Insulin immunolabeling was performed using anti-proinsulin/C-peptide antibody (cat# 

GN-ID4, DSHB), Alexa FluorTM 488 goat anti-rat IgG secondary antibody (cat#A11006, 

Invitrogen) and DAPI for nuclei detection. 

Statistical Analysis 

Data are presented as bar graphs, violin plots and scatterplots, and show means ± SE. 

Statistical significance analysis was performed using t-test for comparison between groups. P < 

0.05 was considered statistically significant. The simplified asterisk statistical significance 

annotation followed conventional criteria - 0.05, 0.01, 0.0001 and 0.0001 for increment number of 

asterisks.  

Study Approval.  

All protocols were performed with the approval of and in accordance with guidelines 

established by the Icahn School of Medicine at Mount Sinai Institutional Animal Care and Use 

Committee. 

 

Results 

RNA-seq Profiling of Cells and Nuclei from Adult Human Islets.  

Figures 1A and 1B depict the approach and data analysis workflow used for these 

studies. Islets from three healthy adult human islet donors (Supplemental Table 1) were used. 

Islet cells and nuclei from each donor were analyzed side-by-side. Cells from 3,000 islets from 

each of the human islet preparations were dispersed, nuclei extracted from half of the cells and 

the other half went through the dead cell removal process kit. After quality assessment and 

counting, 5,000-10,000 cells or nuclei for each sample were loaded into the 10X Genomics 

Chromium Controller, poly-A transcripts reversed transcribed and amplified, cDNA tagmented, 

and the resulting libraries sequenced to a depth of 250-500 million reads per sample 

(Supplemental Table 2). scRNA-seq and snRNA-seq data were projected onto the Azimuth 

human pancreas reference to determine islet cell populations and identify new gene sets as 

markers for these cells. In addition, scRNA-seq and snRNA-seq data were integrated and 

separated for the analysis of different β-cell subpopulations.  
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Outliers with gene counts and/or UMI count >2.5 SDs or <–2.5 SDs from the median value 

were excluded to eliminate cells/nuclei of inadequate quality or that represent two or more 

cells/nuclei. Cells and nuclei with high expression of mitochondrial genes with a cutoff of 20% 

were also removed. Maximum ambient RNA contamination was set up to 20% for the SoupX 

algorithm, and data were adjusted accordingly. Ultimately, 13,128 cells (4,395, 6,533 and 2,200 

cells per human islet preparation) and 8,622 nuclei (3,033, 4,137 and 1,452 nuclei per human 

islet preparation) were analyzed. The number of genes and reads sequenced per cell was lower 

in the snRNA-seq compared to the scRNA-seq approach (Figure 1C) but the ratio between 

usable versus sequenced reads determining sequencing efficiency was similar in both methods 

(0.974±0.002 scRNA-seq vs. 0.966±0.002 snRNA-seq). The percentage of mitochondrial genes 

sequenced in the nuclei preparations were below 1% and clearly and significantly lower than the 

mitochondrial genes sequenced in the cell preparations (Figure 1C). As expected, the number of 

genes and reads were significantly higher when intron plus exon reads were analyzed compared 

with exon reads alone in snRNA-seq data (Figure 1D).  

Based on the data quality above, we next compared scRNA-seq using exon reads with 

snRNA-seq using both intron and exon reads for improved gene detection and mapping as 

previously done (23,39). scRNA-seq analyzes both nuclear and cytoplasmic transcripts with a 

majority being cytoplasmic, whereas snRNA-seq profiles mostly nuclear transcripts with minimal 

transcripts derived from cytoplasm or rough ER during nuclei isolation (40,41). Therefore, we 

expected that RNA-seq reads would be different in the scRNA and snRNA sequencing profiles. 

In cells, 17±0.7% reads were intronic reads, while in nuclei these were 53±1.9%. On the other 

hand, in cells 73±1.6% reads were exonic reads in contrast to 32±0.8% in nuclei. As expected, 

therefore, complete or near complete linearity of gene expression correlation occurred only when 

nuclei were compared to nuclei or cells to cells (R=0.91-0.93) (Figure 1E), while this correlation 

was lower when cells were compared with nuclei (R=0.67) (Figure 1F). Indeed, the number of 

common genes detected by both RNA sequencing approaches was 11,449 (64.8%), while 2,717 

genes (15.4%) were exclusively detected in scRNA-seq, and 3,498 genes (19.8%) were 

exclusively detected in snRNA-seq (Figure 1G). This indicates that more than 35% of the genes 

detected by both approaches are different for the same human islet samples predicting that the 

two RNA sequencing methods would reveal differences in the identity of islet cell populations. 

However, and contrary to this expectation, unsupervised clustering of cells and nuclei using 

Seurat and exonic reads (scRNA-seq) or intronic plus exonic reads (snRNA-seq) revealed 

clusters with similar locations and with strong overlap in their UMAPs using Seurat’s integration 

algorithm (Figure 1H-I) (42). 
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Supervised Classification of Human Islet Cell Types with scRNA-seq and snRNA-seq.  

We next projected the scRNA-seq and snRNA-seq datasets onto a publicly available 

Azimuth integrated human pancreas reference that comprises six different scRNA-seq datasets 

generated using several different single-cell technologies using Seurat (Figure 1B and Figure 

2A-D) (7,27,30-35). Projection was done with exonic reads for scRNA-seq (Figure 2A-B) and 

exonic or intronic plus exonic reads for snRNA-seq (Figure 2C-D). When we projected the human 

islet scRNA-seq data of the current study onto the reference, we found that there was a good 

alignment of the different human islet cell populations with a prediction score median of 1, and a 

mean of 0.948 (Figure 2A-B). Projection of the snRNA-seq data to the reference using exonic 

reads or intronic plus exonic reads also led to a high degree of alignment (Figure 2C-D) with a 

prediction score significantly higher with exon plus introns than with exons alone (median 0.967 

vs 0.944, and mean 0.898 vs 0.861) (Figure 2D). This further validates the use of information 

from intron plus exon reads for detailed analysis of human islet cell populations using snRNA-seq. 

The data also indicate that human islet cell clusters from scRNA-seq and snRNA-seq share a 

high degree of similarity, and that snRNA-seq data containing intron plus exon reads are 

interchangeable with scRNA-seq data for the identification of human islet cell type clusters.   

Next, we tested the association of the different clusters generated from the scRNA-seq 

and snRNA-seq data (Figure 2A and 2C) with gene expression levels of canonical genes in 

different endocrine cell clusters (Figure 2E-H). A strong correlation was observed between 

established canonical gene cell markers (GCG, INS, SST and PPY) along with several other 

known selective markers with α, β, δ and γ cells. Thus, cell types in the UMAP were accordingly 

assigned in the scRNA-seq analysis (Figure 2E and 2G). However, the strong correlation of these 

canonical gene markers observed in scRNA-seq was markedly weaker in the snRNA-seq for α, β 

and γ cells (Figure 2F and 2H). For example, in beta cells, INS and IAPP are among the most 

highly expressed genes, whereas their expression was not impressively high in the snRNA-seq 

datasets. Surprisingly, this suggests that they are not the most actively transcribed genes in beta 

cells. Further, it suggests that annotating islet cell clusters through the expression of the canonical 

endocrine cell gene markers - GCG, INS, and PPY- is not an adequate strategy when using 

snRNA-seq and intron plus exon reads. Finally, it also highlights the need for the identification of 

new gene sets as markers for islet endocrine cells that more appropriately define them in the 

snRNA-seq analysis.  

Novel Gene Sets in the snRNA-seq Dataset for the Identification of Human Islet Endocrine 

Cell Types. 
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We next performed differential gene expression analysis between scRNA-seq and 

snRNA-seq samples and investigated the biotype of the snRNA-seq enriched genes. Even with 

the inclusion of intronic reads, most of the genes in snRNA-seq are protein-coding genes (Figure 

3A). Next, we annotated our snRNA-seq data with projection onto Azimuth’s human pancreas 

reference and tested differential gene expression for each cluster with the entire dataset (Figure 

1B). Using this approach, differentially expressed genes in each cell cluster were identified with 

a p value ~0 and log2FC greater than 1.5. Even if the candidate genes were qualified by these 

criteria, we omitted genes that showed considerable expression (log2FC > 0.85) in other cell 

clusters. Thereby, we compiled a list with the top four differentially expressed genes for each cell 

type (Figure 3B). Interestingly, none of the top differentially expressed genes in scRNA-seq that 

define endocrine cells i.e., INS, GCG, STS or PPY appear in this short list of differentially 

expressed genes in snRNA-seq. This indicates that these canonical genes are not the most 

differentially expressed genes in the snRNA dataset among α, β, δ and γ cells, and therefore not 

ideal gene cell markers when using snRNA-seq.  To confirm the reliability of these newly identified 

gene markers in endocrine cells, we tested them on the snRNA-seq and scRNA-seq data objects. 

They showed a clear and mostly exclusive pattern of expression in the corresponding cell clusters 

both in the snRNA-seq and scRNA-seq, but with higher expression in the snRNA-seq datasets 

(Figure 3C-D).  In particular, endocrine cell markers (PTPRT, ZNF385D, LRFN5 and CNTNAP5 

for α, β, δ and γ cells, respectively) displayed a more distinctive localization pattern than their 

corresponding canonical single-cell clustering gene markers (GCG, INS, SST and PPY) for α, β, 

δ and γ cells, respectively in the snRNA-seq data objects (Figure 2H and Figure 3E). Of note, 

CNTNAP5 did not display highly different expression pattern in γ cells, yet it was considered a γ 

cell gene marker based on high adjusted p-value (1.58x10−5) and log2FC of 1.654. Interestingly, 

the top differentially expressed genes in the snRNA-seq analysis in non-endocrine cells contained 

the canonical gene markers that define these cell types in scRNA-seq (REG1A, CFTR, FLT1, 

COL1A1 and PRKG1 for acinar, ductal, endothelial, activated stellate, quiescent stellate cell, 

respectively). This suggests an interesting dichotomy between human endocrine and non-

endocrine cells regarding the correlation between active gene transcription and steady-state 

transcript abundance (Figure 3F).  

To validate the presence of these newly identified genes from the snRNA-seq analysis as 

cell markers, we focused on β-cells and performed RNA scope to detect ZNF385D mRNA in 

dispersed human islet cells from healthy donors (Supplemental Table 1). As shown in Figure 

3G, ZNF385D mRNA expression was clearly and uniquely detected in human β cells. Expression 

using an intronic probe was limited to the nucleus (Figure 3G, top) while using an exonic probe 

located the signal in both the cytoplasm and the nucleus (Figure 3G, bottom).   
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Comparative scRNA-seq and snRNA-seq Analysis Identifies Three Different β-Cell 

Subtypes. 

To identify the potential existence of human β-cell subtypes within the β-cell cluster, we 

created a new data object integrating scRNA-seq and snRNA-seq datasets to compare insulin 

expression patterns (Figure 1B and Figure 4A-C). Combining the two datasets effectively 

increased the power of the analysis while providing additional information from both cytoplasmic 

and nuclear transcriptomes. After sub-setting the identified β-cell cluster, we generated clusters 

with a Louvain resolution of 0.8 (Figure 4C) to assign three novel β-cell sub-clusters. INS 

expression in the β-cell clusters between scRNA- and snRNA-seq data objects was different in 

terms of topographical location (Figure 4D-E). Cluster 1 displayed lower INS expression in 

scRNA-seq data but the highest in snRNA-seq data object (Figure 4E), suggesting that cluster 1 

includes β-cells with the most active INS transcription since snRNA-seq analyzes mostly pre-

mRNA. Next, we created a pseudo-time trajectory graph with Monocle3, assigned cluster 1 as 

the base (Figure 4F) and rearranged the order of each cluster according to the pseudo-time 

trajectory into β1 (active INS transcription), β2 and β3 cells (Figure 4G). Since cells in the β3 cell 

cluster have stable INS expression as inferred from the scRNA-seq (mature mRNA) β-cell cluster 

object, but very low INS expression as inferred from the snRNA-seq (pre-mRNA) β-cell cluster 

object, we considered these cells as the INS-rich cell subpopulation. Next, we looked at ZNF385D 

expression, the highest differentially expressed gene in snRNA-seq in β-cells and found minimal 

expression in the β-cell sub-clusters in the scRNA-seq data object but different topographical 

location in the snRNA-seq data object (Figure 4H-I) where β3 represents cells with active 

ZNF385D expression, opposite to INS expression (Figure 4E). Next, we looked at the expression 

of the INS mRNA binding protein HNRNPA2B1, an RNA-binding protein that regulates INS mRNA 

stability and translation (43,44), to determine whether the β2 cell cluster represents a transition 

stage between β1 and β3. As shown in Figure 4J-K, HNRNPA2B1 expression is increased in 

clusters 2 and 3 compared to cluster 1, suggesting that cluster 2 may represent an “in transition” 

β cell type in which cells go from transcriptionally active β1 cells to β3 cells with mature stored 

INS mRNA.  

Gene Pathway Analysis in the Three Different β-Cell Subtypes. 

To research the potential biological differences among β1, β2 and β3, we performed 

GSEA of the combined datasets from scRNA- and snRNA-seq experiments (36-38). Interestingly, 

enrichment of genes that define the biological processes of extracellular matrix (ECM) formation, 

interaction and response were uniquely present in the β1 sub-cluster (Figure 5A). Equally, GSEA 

also indicated that the biological processes of intracellular vesicle budding, transport and 
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formation are mainly present in the β2 sub-cluster (Figure 5B), while genes for the biological 

processes of insulin secretion, processing and glucose metabolism are mainly represented in the 

β2 and β3 sub-clusters (Figure 5C). Additional information was also obtained on several 

biological processes of importance for the development, differentiation, gene expression 

regulation and proliferation of the β-cell when we input the datasets from both RNA-seq 

approaches into the GSEA. As shown in Figure 5D, the genes involved in β-cell proliferation were 

more highly expressed in the β1 sub-cluster, the genes involved in the regulation of gene 

expression were prominent in the β2 sub-cluster while the genes involved in β-cell development 

and differentiation were more highly expressed in the β3 sub-cluster. These results clearly 

delineate different sets of genes for specific cell functions in the different β-cell sub-clusters 

emphasizing the heterogeneity of β-cells in the human islet. 

Single Nucleus RNA-seq Analysis of Human Islets In Vivo. 

Next, we sought to examine the different human islet populations in vivo using human islet 

grafts transplanted in euglycemic immunosuppressed mice. For this purpose, we transplanted 

1,000 human IEQs from four healthy donors into the kidney capsule of RAG1-/- mice and 

harvested the graft three months after transplantation (Figure 6A). Nuclei were directly extracted 

from the grafts by the MinuteTM single nucleus isolation kit and 5,000-10,000 nuclei per sample 

after quality assessment and counting were loaded into the 10X Genomics Chromium Controller, 

poly-A transcripts reversed transcribed and amplified, cDNA tagmented, and the resulting library 

sequenced to a depth of 250-500 million reads per sample (Supplemental Table 2). Ultimately, 

7765 nuclei (1632, 1509, 713 and 3911 nuclei per human islet preparation) were analyzed. The 

number of gene types was 2226 ± 263, the number of gene counts was 4125.64 ± 263 and the 

ratio between usable versus sequenced reads determining sequencing efficiency was 

0.999±0.001. The percentage of mitochondrial genes sequenced in the nuclei preparations were 

below 1%. snRNA-seq data were projected onto the Azimuth human pancreas reference to 

identify islet cell populations using canonical gene sets as well as the new gene sets described 

earlier (Figure 1A and 6A). In addition, the snRNA-seq data were projected onto the integrated 

scRNA-seq and snRNA-seq data from the in vitro studies for the analysis of different β-cell 

subpopulations (Figure 6A). Gene counts and/or UMI count outliers or cells with high expression 

of mitochondrial genes or with ambient RNA contamination > 20% were removed. During the 

quality control process, we found that <10% mouse gene ratio was optimal for identifying different 

cell types in vivo in this islet transplant setting without considerable mouse gene influence on the 

clustering pattern.  
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Using the reference-based reduction and annotation with Azimuth, we confirmed seven 

distinct human islet cell clusters, primarily comprised of endocrine cells (Figure 6B). For simplicity, 

we omitted clusters with less than five cells from the data set. The set of gene markers identified 

by the snRNA-seq analysis in vitro (Figure 3C) showed clearer patterns of specific cell expression 

in both the average expression-based dot plot (Figure 6C) and the scatterplot (Figure 6D) 

compared to the surprisingly non-specific pattern of the canonical gene markers. This specific cell 

cluster alignment of the newly identified gene sets from the snRNA-seq analysis in vitro persisted 

when an internal reference-based reduction and annotation (the scRNA-seq + snRNA-seq 

integrated datasets from the in vitro samples, unsupervised and marker annotated) was used 

(Figure 6E-G).  

β-Cell Subtypes in Human Islets In Vivo. 

First, we determined whether the β-cell subtypes identified in the scRNA-seq/snRNA-seq 

in vitro study were still present in human islets in the in vivo setting. Thus, we projected the in vivo 

snRNA-seq dataset onto the in vitro scRNA-/snRNA-seq dataset reference which is pre-labeled 

with β-cell subtypes (Figure 6E) and extracted the β-cell cluster (Figure 7A). We separated β-

cell sub-clusters from the main data cluster and examined the gene expression patterns (Figure 

7A-H). Interestingly, and in contrast to the snRNA-seq data of in vitro human islets, the β3 cluster 

in human islets in vivo displayed a similar level of INS expression compared with the β1 and β2 

clusters (Figure 7B-C). The expression of ZNF385D and HNRNPA2B1 appeared to be similar in 

the β-cell sub-clusters of human islets in vivo and in vitro (Figure 7D-G). Importantly, the 

proportion of cells in the β3 sub-cluster that has stable INS expression is significantly increased 

while the proportion of cells in the β2 transition cluster and the β1 with active INS transcription 

are significantly decreased in human islets in vivo compared with in vitro (Figure 7H). We 

speculate that this may represent a phenotypic or maturational transfer of cells from the lower 

INS expressing β1 and β2 groups to the more mature INS mRNA β3 group, presumably reflecting 

maturational features of the in vivo microenvironment as compared to the less physiological in 

vitro conditions. 

We also performed gene set enrichment analysis of the different β-cell subpopulations of 

human islets in vivo using the same approach as above (Figures 5 and 8). As observed in vitro 

(Figure 5), the β1 cell subtype displays higher expression levels of genes involved in ECM 

biological processes compared with β2 and β3 cell subtypes (Figure 8A). The expression of 

genes involved in the biological processes of intracellular vesicle budding, transport and formation, 

insulin secretion, processing and glucose metabolism, β-cell differentiation, development, 

proliferation and gene expression regulation in the β2 and β3 cell subtypes remained comparable 
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in vivo and in vitro (Figure 8B-D). Notably, human β1 cells displayed lower expression of genes 

involved in β-cell proliferation in vivo than in vitro (Figure 8B-D), suggesting again perhaps that 

the in vivo microenvironment may provide cues for β-cells to favor a more functional, but less 

mitogenic status compared with the less physiologic in vitro setting.   

 

Discussion 

Approaches to accurately analyze specific human islet cell populations and their 

transcriptome profiles in vivo, immediately after harvesting the pancreas postmortem or the islet 

graft post-transplantation, remain an unmet need. Recently, scRNA-seq approaches have been 

used for such studies, but the need for tissue cell dissociation results in low cell yields, and data 

likely reflect cells resistant to damage and death that have been removed from their normal cell-

cell contact (18-20,45,46). In many cases, only frozen or fixed human islets/pancreas samples 

are available.These limitiations complicate the use of scRNA-seq for in vivo human pancreas/islet 

tissue analysis. However, snRNA-seq does not require cell dissociation from the fresh tissue and 

can be applied to stored tissues as well (39-41).  In addition, snRNA-seq can provide a wealth of 

information from exon and intron sequences and help to define the transcriptional status of islet 

cells. Here, we used snRNA-seq and analysis of intronic and exonic reads to identify human islet 

cell populations and their transcriptional profile and activity not only in vitro but in vivo as well. 

Using this approach, we defined new gene sets for annotating human islet endocrine cells by 

snRNA-seq and identified three human β-cell subpopulations based on their INS expression with 

different transcriptional profiles. Importantly, the proportion of these different β-cell 

subpopulations changes from in vitro to in vivo. These studies clealry indicate a need for further 

analyzing human islet cell transcriptomic profiles in vivo, and illustrate that the snRNA-seq 

technique provides a useful advance approach for this purpose.  

Our goal was to establish a method that could be leveraged to annotate the human islet 

cell populations and their specific transcriptome profile in vivo, an unmet need in the diabetes 

field, using human islet grafts in mice. The current reference libraries to identify human pancreas 

cell populations and transcriptome profiles have been derived from scRNA-seq studies using 

mainly in vitro studies and exon reads since mature mRNA conforms the majority of mRNA (7,31-

35). However, the majority of the reads obtained from the snRNA-seq analysis relate to intron 

sequences due to the pre-mRNA nature of the nuclear RNA. Based on this, we first tested whether 

the snRNA-seq dataset with and without intronic reads would provide similar results when 

projected onto the already established Azimuth scRNA-seq human pancreas reference library 

(7,31-35). Interestingly, inclusion of intron reads in the snRNA-seq dataset signficantly enhanced 
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the prediciton score to the reference. Similar results have been found in other tissues as well (24), 

therefore we decided to use intron plus exon reads in all our analyses.   

One of the surprising observations of the current study is that the expression of the main 

canonical genes used to define human endocrine cell populations in scRNA-seq analysis (INS, 

GCG, SST and PPY) were not the top expressed genes in the snRNA-seq studies. This indicates, 

first, that the most abundant genes in human islet endocrine cels are not the most actively 

transcribed genes in those cells. This is perhaps not surprising when considering, for example, 

that a large proportion of steady state cytoplasmic mRNA in β-cells is relatively stable insulin 

mRNA that is stored in polyribosomes ready to be translated in response to a glucose stimulus 

(47). Second, it indicates that new gene sets and a new reference library should be generated to 

use snRNA-seq analysis in human islet samples. Here, we have established this reference library 

and identified ZNF385D, TRPM3, LRFN2 and PLUT (β-cells), PTPRT, FAP, PDK4 and LOXL4 (α 

cells), LRFN5, ADARB2, ERBB4 and KCNT2 (δ-cells) and CACNA2D3, THSD7A, CNTNAP5 and 

RBFOX3 (γ-cells) as new gene sets for human endocrine cells using snRNA-seq analysis. To 

validate at least the presence of one of these genes in human β-cells, we performed RNA scope 

of ZNF385D, the zinc finger protein 385D involved in neurocognitive development in brain (48) 

but whose presence and function have not been demonstrated in human β-cells thus far. Here 

we show for the first time that an intronic ZNF385D probe detects the gene in the nuclei while an 

exonic ZNF385D probe detects the gene in both the nuclei and the citoplasm of human β-cells. 

Future studies will decipher the role of this zinc finger protein in the human β-cell. 

Another exciting result from the current studies relates to the identification of three different 

human β-cell subpopulations by integrating the scRNA-seq and the snRNA-seq datasets from 

human islets in vitro and using INS expression as the starting point in the pseudotime analysis. 

Heterogeneity of human β cells has been described since the 1990’s by functional analysis and 

more recently by scRNA-seq apporaches (16,17,49,50) but never using a combination of both 

scRNA-seq and snRNA-seq techniques. Since INS mRNA expression is higher in β1 cells in the 

snRNA-seq data, we postulate that β1 cells are β-cells which actively transcribe the INS gene. 

On the other hand,  we postulate that since β3 cells display very low INS expression in snRNA-

seq but very high INS expression level in scRNA-seq, this group of cells represent β cells which 

have mainy mature INS mRNA stored. β2 cells represent cells  in a transition stage between both 

clusters. Interestingly, analysis of the biological processes ocurring in these β cell sub-clusters 

using GSEA highlightes that β1, β2 and β3 cells display different biological functions with respect 

to ECM, vesicle formation, insulin processing and secretion, glucose metabolism, proliferation, 
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gene expression regulation and differentiation. This clearly places snRNA-seq analysis as an 

important tool to decipher heterogenitiy of defined islet cell populations.   

Recently, analysis of human islet grafts by scRNA-seq has been reported with the 

identification of α, β, and δ cell subsets (20). However, this study used a large amount of islets 

(4000) transplanted in mice from where approximately only 700 cells were retrieved and analyzed, 

further emphasizing the difficulties of dissociating cells from human islet grafts for scRNA-seq 

analisys and the potential selection of cells that are resistant to mechanical and enzymatic cell 

disturbances with their corresponding cellular stress. More recently, snRNA-seq analysis of 

human islet grafts transplanted in mice has been reported (22). In this study, human islet cell 

types were annotated using only exon reads without using the information that the intron reads 

can provide to define the transcriptional status of the annotated islet cell populations. Here, we 

used the novel gene sets identified in the snRNA-seq analysis of human islet cells in vitro to 

annotate the human islet cell clusters in the islet grafts and their transcriptome profile. 

Furthermore, we were able to confirm the presence of three β-cell subpopulations in vivo which 

display the same biolgical processes described in vitro. Interestingly, however, we found that β3 

cells are the most prominent β-cell subtype in the human islet graft. Although biological processes 

are maintained in the β-cell sub-clusters, it is important to note that the β-cell proliferation 

biological process is not present in the β1 sub-cluster in vivo indicating several points. First, that 

β-cell proliferation capacity is reduced in vivo, an aspect already described in several studies 

testing β-cell proliferation inducers for regenerative purposes which describe a lower response to 

these inducers in vivo in β-cells (25,26,51). Second, that dynamic changes occur among the 

different β-cell subpopulations when comparing  in vitro and in vivo situations. And third, that β1 

cells have higher proliferative capacity but low expression of genes involved in the insulin 

secretion pathway while β3 cells display the opposite phenotype highligting the dichotomy 

proliferation-function that occurs in β-cells (52,53). Finally, the use of snRNA-seq and β-cell 

subpopulations analysis in vivo in islet grafts opens up the future for a plethora of studies 

analyzing the effect of drugs and physiological and pathological situations in vivo in human islet 

cells using this genomics technique.  

In summary, this study clearly supports the use of snRNA-seq analysis to define cell 

populations, transcriptome profiles and transcriptional status of islet cells in human 

islets/pancreas tissue in vivo. Using this approach, we have found novel gene sets that define 

islet cell populations in the snRNA-seq studies that can be used for islet cell identification and 

transcriptome profile in vivo. We have unraveled three β-cell subopulations with dynamic 
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biological profiles and activities in basal conditions, that can be further interrogated in vivo in 

physiological and pathological situations related to diabetes. 
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Figure Legends. 

Figure 1. Experimental Design, Quality Assessment and Unsupervised Clustering. A. 

Human islet processing and data generation scheme. B. Data analysis workflow. C. Gene variety 

(nFeature), gene count (nCount) and mitochondrial ratio comparison between scRNA-seq 

/snRNA-seq data. D. Gene variety (nFeature) and gene count (nCount) comparison between 

snRNA data with and without intronic reads. E. Gene expression correlation among different 

human islet cell/nuclei preparations (n=3 adult human islet donors). F. Gene expression 

correlation between RNA sequencing type (scRNA /snRNA). G. Venn diagram of genes detected 

in both scRNA-seq and snRNA-seq analysis of the three human islet samples. H. Unsupervised 

clustering of scRNA-seq and snRNA-seq integrated data with Louvain resolution of 0.8. I. 

Dimensional reduction plot grouped by RNA sequencing type.    

Figure 2. Human Islet Cell Type Identification by Projection Strategy and Mapping Score 

Assessment. A. Azimuth pancreatic islet reference v1.0.1 (left) and scRNA-seq data projected 

on the Azimuth reference (right). B. Cell type annotation prediction score displayed on 

dimensional reduction plot. C. snRNA-seq data with only exon reads or with both exon and intron 

reads projected on the Azimuth reference (left), cell type projection score on dimensional 

reduction plot (right). D. Prediction score in the snRNA-seq analysis with only exon reads or with 

both exon and intron reads in the projections in C. Statistical analysis indicates a significant 

(****p<0.001) higher prediction score for the snRNA-seq data projection using exon plus intron 

reads. E. Expression level and percentage of cells expressing canonical genes of Azimuth 

annotated endocrine cell types in the scRNA-seq data. F Expression level and percentage of cells 

expressing canonical genes of Azimuth annotated endocrine cell types in the snRNA-seq data. G. 

Dimensional reduction plot for four representative canonical endocrine genes in the scRNA-seq 

data. H. Dimensional reduction plot for four representative canonical endocrine genes in the 

snRNA-seq data.  

Figure 3. Identification of Unique snRNA-Seq Gene Markers in Human Islet Endocrine Cells. 

A. snRNA-seq identification of gene biotypes referring to AnnotationHub (54). B. Identification of 

differentially expressed genes with a p value ~0 and log2-Fold change greater than 1.5 for each 

cell cluster and log2FC<0.85 in the snRNA-seq data using pseudo-bulk averaged heatmap. Four 

top genes are presented. C. Dotplot projection of newly found gene markers from the snRNA-seq 

data on Azimuth annotated endocrine clusters. D.  Dotplot projection of newly found gene markers 

in the snRNA-seq data set on Azimuth annotated endocrine clusters for scRNA data. E. Projection 

of the four top newly found gene makers for endocrine cells from the snRNA-seq data on UMAP: 

PTPRT (α cells), ZNF385D (β cells), LRFN5 (δ cells), and CNTNAP5 (γ cells). F. Projection of the 
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four top gene makers for exocrine cells from the snRNA-seq data on UMAP:  REG1A (acinar 

cells), CFTR (ductal cells), FLT1 (endothelial cells), COL1A1 (activated stellate cells), PRR16 

(quiescent stellate cells). G. Representative images of RNA fluorescence in situ hybridization 

performed in dispersed human islet cells using the RNA scope platform with probes targeting 

ZNF385D (green) intron sequences present only in pre-mRNA (top) and exon sequences present 

in both mature mRNA and pre-mRNA. Insulin immunofluorescence (green) was used to detect β-

cells and DAPI for nuclei detection (blue).  

Figure 4. Human β-Cell Subtypes Using Unsupervised scRNA-seq and snRNA-seq Data 

Integration.  A. Integrated and self-annotated clusters on UMAPs of scRNA-seq and snRNA-seq 

data. B. Canonical endocrine cell gene marker expression on scRNA-seq and snRNA-seq 

integrated data set. C. Separated β-cell cluster from integrated main data identifying three cell 

sub-clusters using a Louvain resolution of 0.4. D. INS expression pattern in the β-cell cluster in 

scRNA-seq and snRNA-seq data on UMAP. E. INS expression level on violin plots in the three β-

cell subtypes in the scRNA-seq and snRNA-seq data. F. Monocle 3 generated pseudo-time 

dimensional reduction plot in the separated β-cell cluster from integrated main data using lower 

INS expression area in scRNA-seq data (cluster 1) as base. G. Re-annotated β-cell sub-clusters 

of scRNA-seq and snRNA-seq data based on pseudo-time INS expression. H. ZNF385D 

expression pattern in the β-cell sub-clusters in scRNA-seq and snRNA-seq data on UMAP. I. 

ZNF385D expression level on violin plots in the three β-cell subtypes in the scRNA-seq and 

snRNA-seq data. J. HNRNPA2B1 expression pattern in the β-cell sub-clusters in scRNA-seq and 

snRNA-seq data on UMAP. K. HNRNPA2B1 expression level on violin plots in the three β-cell 

subtypes in the scRNA-seq and snRNA-seq data. 

 

Figure 5. Cellular Processes Identified by Gene Set Enrichment Analysis (GSEA) of the 

Three β-Cell Sub-clusters β1 β2 and β3 in the scRNA-seq and snRNA-seq Integration 

Dataset. A. Dotplot depicting the expression levels and percentage of cells expressing four 

representative extracellular matrix (ECM) related C2 pathway genes (interaction, response, 

organization and integrins) and the corresponding enrichment plots below. B. Dotplot depicting 

the expression levels and percentage of cells expressing four representative vesicle-related C2 

pathway genes (biogenesis, budding, transport, lysosome) and the corresponding enrichment 

plots below. C. Dotplot depicting the expression levels and percentage of cells expressing four 

representative insulin related C2 pathway genes (processing, secretion and glucose metabolism) 

and the corresponding enrichment plots below. D. Dotplot depicting the expression levels and 

percentage of cells expressing four representative proliferation/differentiation related C2 pathway 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.22.492974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492974


   
 

23 
 

genes (proliferation, development, differentiation, regulation of gene expression) and the 

corresponding enrichment plots below. 

Figure 6. Single Nucleus RNA-seq Analysis of Human Islets In Vivo in Xenografts in 

immunosuppressed mice. A. Human islet grafts processing and data analysis scheme. B. In-

vivo snRNA-seq data obtained from four different human islet xenografts done with four different 

human islet preparations from adult human islets from healthy donors projected on Azimuth 

pancreatic islet reference and cluster annotation. C. Dotplot depicting gene expression and 

percentage of cells expressing canonical gene markers (top) and newly identified gene markers 

for endocrine cells on Azimuth annotated in-vivo data. D. Projection of canonical genes and the 

four top newly found gene makers for endocrine cells from the in vivo snRNA-seq data on the 

dimensional reduction plot by Azimuth. E. In vivo snRNA-seq data projected on internal reference 

with scRNA-seq and snRNA-seq of human islets in vitro integrated data and annotated. F. Dotplot 

depicting the expression levels and percentage of cells expressing the canonical gene markers 

(top) and newly identified markers in the snRNA-seq of human islets in vitro (bottom) on internal 

reference annotated in-vivo snRNA data. G. Projection of canonical genes and the four top gene 

makers for endocrine cells found in the snRNA-seq data from in vitro human islets of the in vivo 

snRNA-seq data on the dimensional reduction plot by internal reference.  

Figure 7. Human β-Cell Subtypes In Vivo from the snRNA-seq Data by Projection on the In 

Vitro Internal Reference. A. Separated β-cell cluster from integrated main data identifying three 

cell sub-clusters using a Louvain resolution of 0.4. B. INS expression pattern in the β-cell cluster 

in the in vivo snRNA-seq data on UMAP. C. INS expression level on violin plots in the three β-cell 

subtypes in the in vivo snRNA-seq data compared with the in vitro snRNA-seq data. Notice the 

difference in expression in the β3 sub-cluster. D. ZNF385D expression pattern in the β-cell sub-

clusters in the in vivo snRNA-seq data on UMAP. E. ZNF385D expression level on violin plots in 

the three β-cell subtypes in the in vivo snRNA-seq data compared with the in vitro snRNA-seq 

data. F. HNRNPA2B1 expression pattern in the β-cell sub-clusters in the in vivo snRNA-seq data 

on UMAP. G. HNRNPA2B1 expression level on violin plots in the three β-cell subtypes in the in 

vivo snRNA-seq data compared with the in vitro snRNA-seq data. H. Proportion of the different 

β-cell subtypes in vivo and in vitro. Notice that in vivo, β3 cells become the majority of β-cells. 

Statistical analysis indicates a significant increase in vivo of β3 cells while β2 and β1 cell subtypes 

are reduced.   

Figure 8. Cellular Processes Identified by GSEA of the Three β-Cell Sub-clusters β1 β2 and 

β3 in the In Vivo snRNA-seq Compared with the In Vitro Dataset. Dotplot depicting the 

expression levels and percentage of cells expressing four representative A. ECM related C2 
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pathway genes (interaction, response, organization and integrins), B. vesicle related C2 pathway 

genes (biogenesis, budding, transport, lysosome), C. insulin related C2 pathway 

genes (processing, secretion and glucose metabolism), and D. proliferation/differentiation related 

C2 pathway genes (proliferation, development, differentiation, regulation of gene expression) in 

the in vivo snRNA-seq compared with the in vitro dataset.  

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.22.492974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492974


   
 

25 
 

Supplemental Table 1. Information on the human islet preparations used in these studies.  

Donor Code Sourc
e 

Age Race/sex Height Weight BMI HbA1c COD Experiment 

HP20240-01 Prodo 42 Caucasian Male 65’’ 141 lbs 23.5 5.4% Stroke In Vitro 

HP20245-01 Prodo 24 Hispanic Male 70’’ 140 lbs 20.0 5.4% Head 
Trauma 

In Vitro 

HP21189-01 Prodo 26 Hispanic Male 72’’ 197 lbs 26.3 5.4% Head 
Trauma 

In Vitro 

HP20234-01 Prodo 58 Caucasian 
Female 

66 166 lbs 26.9 5.5% Stroke Islet Graft 

HP21055-01 Prodo 36 Caucasian 
Female 

57 145 lbs 31.6 5.6% Stroke Islet Graft 

HP21203-01 Prodo 25 Hispanic Male 70’’ 187 lbs 26.5 5.8% Head 
Trauma 

Islet Graft 

HP21197-01 Prodo 53 Caucasian Male 67’’ 206 lbs 32.4 5.5 % Anoxic Event Islet Graft 

*COD = Cause of death 

Supplemental Table 2. Information on cell Ranger processed data prior to quality control. 

Donor code Processing Number of 
Cells/Nuclei 

Mean Reads per 
Cell/Nucleus 

Median Genes 
per Cell/Nucleus 

HP20240-01 Single cell 8,433 19,856 1,939 

HP20240-01 Single nuclear 6,904 27,307 2,052 

HP20245-01 Single cell 5,535 53,915 2,574 

HP20245-01 Single nuclear 3,927 97,308 1,150 

HP21189-01 Single Cell 8,635 42,977 2,399 

HP21189-01 Single nuclear 1,683 128,235 1,972 

HP20234-01 Islet Graft SN 4,500 79,254 1,848 

HP21055-01 Islet Graft SN 2,866 106,501 1,537 

HP21203-01 Islet Graft SN 4,930 69,792 2,601 

HP21197-01 Islet Graft SN 909 349,619 2,945 

*SN = Single nuclear 
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