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Abstract

Visual cortex contains regions of selectivity for domains of ecological
importance. Food is an evolutionarily critical category whose visual het-
erogeneity may make the identification of selectivity more challenging.
We investigate neural responsiveness to food using natural images com-
bined with large-scale human fMRI. Leveraging the improved sensitivity
of modern designs and statistical analyses, we identify two food-selective
regions in the ventral visual cortex. Our results are robust across 8
subjects from the Natural Scenes Dataset (NSD), multiple independent
image sets and multiple analysis methods. We then test our findings
of food selectivity in an fMRI “localizer” using grayscale food images.
These independent results confirm the existence of food selectivity in
ventral visual cortex and help illuminate why earlier studies may have
failed to do so. Our identification of food-selective regions stands along-
side prior findings of functional selectivity and adds to our understanding
of the organization of knowledge within the human visual system.
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Introduction

The representation of high-level visual information in the human brain has
been marked by the phenomenon of selectivity for visual categories or prop-
erties of high ecological importance. Focusing on ventral visual cortex, there
are multiple brain regions that show preferential responses to categories such
as faces [1, 2], bodies [3], places [4], and words [5], and to broad organiza-
tional principles such as animacy [6], real-world size [6], and “reach space” [7].
Independent of any particular theory on the origins and specificity of these
functional brain regions [8, 9], the prevailing view is that the likely role of these
regions is to instantiate processes and representations for categories and prop-
erties that are highly relevant for common and important day-to-day behaviors.
In a similar vein, food is a category that is relevant to evolution – the need to
find nourishment is more ancient than social interaction and, arguably, more
fundamental to survival. It is therefore surprising that food has not been con-
sistently identified as a visual category for which localized, selective neural
responses are observed.

The visual presentation of food images is known to prompt a range of brain
responses [10–13], including affective, sensory, and cognitive effects. However,
agreement on neuroanatomical locations of food-related activation across stud-
ies using food images has been low to moderate [13]. In one meta analysis of
relevant studies, only 41% of 17 experiments contributed to food-related clus-
ters in the bilateral fusiform gyrus and left orbitofrontal cortex [13]. Another
study of selectivity across a range of proposed categories found no robust selec-
tivity for either fruits or vegetables in occipitotemporal cortex [14]. In the
cases where statistically significant responses to food have been observed, they
have typically been attributed to increased attention to food images arising
from subjects’ mental states and/or physiological factors [11, 13, 15] rather
than to visual category representations per se. For example, supporting the
idea that it is the value of particular foods that drives responses, Huerta and
colleagues [11] performed a meta analysis across 11 studies specifically focused
on eating behavior, where they compared high caloric food pictures (e.g.,
hamburgers, cake, waffles, fries, etc.) to non-food pictures (e.g., rocks, bricks,
trees, houses, etc.) and found the most consistent group-average activation in
the right fusiform gyrus [11]. Additionally, in the study most relevant to our
present work, Adamson and Troiani [16] considered the connection between a
subject’s body mass index (BMI) and neural responses to food in a paradigm
that compared 80 food images to an equal number of faces, places, and clocks.
Interestingly, independent of any interaction with BMI, they found evidence for
left-lateralized food selectivity, overlapping with the fusiform face area (FFA),
and interpreted this as an indication that fusiform activation may be driven
by motivation and valence factors that are common to both food and faces.
This earlier finding of food selectivity in the FFA was further interpreted as a
counter-example to the theory that FFA selectivity is a consequence of “exper-
tise” – high proficiency at individuating exemplars within a visually-similar
category [9] (in that food images are relatively dissimilar from one another).
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However, their conclusion was based primarily on group average responses and
focused on establishing overlap between food selectivity and the FFA, rather
than parsing the fine-grained anatomical relationship between food- and face-
selective populations. Thus, while it is known that food images elicit neural
responses in a variety of brain regions, including the fusiform gyrus, it is
not yet clear whether selectivity for food images is instantiated as a distinct
category-selective region within ventral visual cortex.

To address this question, in contrast to prior work, we do not include any
physiological variables (e.g., BMI or hunger level) as covariates in our analy-
ses, and we do not restrict our image set to high-calorie, appetizing stimuli.
Rather, our study explicitly aimed to identify the brain regions that repre-
sent and process the visual properties of food in a more general context; that
is, without explicitly or implicitly attempting to recruit circuits involved in
reward, motivation, or valence. We present two experiments relying on very dif-
ferent designs. Experiment 1 uses a large-scale, “hypothesis-free” approach in
which fMRI data was collected at a massive scale as part of NSD [17], thereby
improving our ability to detect effects across post-hoc defined conditions. Real-
world images, drawn from the the Microsoft COCO dataset [18], were used for
both the food and non-food conditions. To preview our most important result,
we reliably identify two distinct regions in ventral high-level visual cortex that
are preferentially responsive to food images. These two strips surround the
Fusiform Face Area (FFA) and are aligned on the anterior to posterior axis.
We replicate these regions across subjects while controlling for other aspects
of images that are thought to be coded in the ventral visual system, such as
image perspective. We also provide exploratory analyses that probe the more
fine-grained structure of conceptual representations within food-selective cor-
tex both across and within individuals. Notably, two other studies [19, 20]
based on the same Natural Scenes Dataset (NSD) [17] we used in Experiment
1, both identified distinct food-selective regions consistent with these results
(although relying on somewhat different analysis methods). We will return to
these studies in the Discussion.

Experiment 2 validates the finding of food-selective regions in a hypothesis-
driven manner by collecting new fMRI data. We designed a visual “food
localizer” by adding a food condition to the existing fLoc localizer by Stigliani
et al. [21]. As in the other conditions of the fLoc localizer, we composited
grayscale food images on scrambled backgrounds. Our analysis identified food-
selective regions in each subject, with the location being consistently adjacent
to the FFA. The results of Experiment 2 provide direct evidence supporting
the hypothesis that food-selective regions in the ventral visual system repre-
sent a new domain of category selectivity similar to faces, places, bodies, and
words. Our results also directly exclude color and image context from being
the major drivers of the visual responses to food observed in Experiment 1. Of
particular note, the localization of the food region was consistent across indi-
viduals when defined according to a functional landmark (e.g., proximity to the
FFA), but when averaging spatially across individuals (e.g., when their brains
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Fig. 1: Experiment 1. The images that could have been potentially viewed
by all 8 subjects in NSD were manually relabeled to investigate responsiveness
to naturalistic food images. (a) Example images labeled as (clockwise, from upper
left): {outdoor, food, food-related, reach} {indoor, human face, human body, object,
large-scale}, {indoor, object, large-scale}, {outdoor, animal face, animal body, object,
zoom}. (b) The labeling taxonomy, including attributes of location (top), content
(middle), and image perspective (bottom). (c) Flattened, semi-inflated lateral, and
semi-inflated bottom views of the MNI surface indicating voxels with higher activity
for food than all non-food labels for the shared images. The subject count for a sig-
nificant contrast was obtained at each MNI voxel. Voxels more responsive to food are
found in the frontal, insular, and dorsal visual cortex, with the highest concentration
across subjects occurring in the fusiform visual cortex. Both hemispheres show two
strips within the fusiform that are separated by a gap that lies on the posterior-to-
anterior axis. (d) Top 10 images per subject (S1-S8) leading to the largest responses
in the food area. These images, which overwhelmingly depict food, were unique for
each subject and were not in the set used to localize the food-selective region.
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were aligned), the neuroanatomical overlap of the food region across subjects
was less pronounced than other functional ROIs (and closely replicated the
results reported in [16], thereby accounting for the differences between the
results of Experiment 1 and earlier studies). This leads us to consider the third
and fourth factors – the spatial heterogeneity of food-selective regions and the
impact such heterogeneity has on traditional localizer designs – as the leading
causes for the elusiveness of food selectivity. We release the food localizer code
and stimuli as part of this paper.

Naturalistic and hypothesis-driven experimental approaches can be used
in a complementary manner that leverages their unique strengths. Here we
were able to identify and validate a food-selective region of the human ventral
cortex using a naturalistic experiment with complex stimuli to formulate our
hypothesis and then use a hypothesis-driven experiment to test that hypothe-
sis. We believe such a combination is a valuable tool in neuroscience that can
help advanced the field in the coming years.

From a theoretical standpoint, in that food is incontrovertibly an ecolog-
ically critical category, our finding of a food-selective region (confirmed in
[19, 20]) is consistent with earlier findings of selectivity in the perception of
faces, bodies, places, and words. Building on this result, principal component
analyses across food-selective voxels provides a finer-grained view into the rich
organization of food-relevant information within visual cortex, possibly reflect-
ing gradients along which food is combined with other ecologically relevant
categories.

Results

Experiment 1: Large-scale analyses of food representations in a
naturalistic setting

To investigate responsiveness to food in a large-scale natural setting, we
used the Natural Scenes Dataset (NSD) [17], which consists of high-resolution
fMRI responses to naturalistic scenes. NSD contains fMRI data from 8 screened
subjects (S1-S8) who each viewed 9,000-10,000 scene images. Of the 70,566
total unique images viewed across subjects, for purposes of consistency we
focused on the 1000 images that were shared among subjects (see Materials
and Methods for more details).

Though COCO images already include labels for many categories, including
some types of food, there is important information not captured by these
labels, such as whether an image contains human faces. We methodologically
relabeled by hand the 1,000 images shared across subjects, based on 3 main
attributes: location, content, and image perspective. We used the hierarchical
structure shown in Fig. 1b (refer to Methods for labeling details, and Fig. 1a
for examples). Image perspective was included because there is evidence that
objects shown at human-reachable distances have a distinct representational
signature in the brain [7, 22] and food is often viewed at reachable distances.
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Using these labeled images, we constructed a standard linear model that
expresses brain activity as a combination of the attributes assigned to each
image. This model identified voxels that are more responsive to food than
other categories, based on a t-test comparing the weights for food versus all
other labels (Fig. 1c). Across the cortex, there are several regions showing
significantly higher activation for food than non-food categories (p <0.05, false
discovery rate (FDR) corrected), including some areas in parietal and frontal
cortex, as well as on the ventral surface of the occipital lobe. We focus on
ventral visual cortex due to the long history of mapping category-selective
responses in this brain region. Across all subjects, we consistently find two
food-selective strips in the ventral visual cortex that surround the FFA on the
lateral and medial sides. (Fig. 1c shows the count of subjects for whom these
contrasts are significant at each MNI voxel (Montreal Neurological Institute
coordinate system), and the contrast strength is shown for individual subjects
in Figs. 2a and S1a). Note that these identified regions persist even when
removing all images with the “reach” (Fig. S3) or “zoom” (Fig. S4) annotations
– demonstrating that food-selective responses are not dependent on food being
shown at a particular distance [7].

Since this paper focuses on visual food selectivity, we isolated fusiform
food-selective voxels using a mask of the ventral visual cortex based on cor-
responding ROIs from the HCP atlas [23] (see Methods). The resulting “food
relevant” voxel masks, which were used for the following analyses, are shown
in Figures 2b and S1b. We then look at which images maximize the activ-
ity in those areas, using a completely separate dataset (the non-shared NSD
images). Considering only unique images that were viewed by a given subject,
Figure 1d shows the top 10 activating images for the food-selective voxels for
that subject. These images overwhelmingly depict food. These images were
not used to identify the food regions, and thus reinforce the generality of food
selectivity across independent image sets.

Given that food-selective regions appear adjacent to the FFA, we focused
on the spatial relationship between food-selective and face-selective popula-
tions on the ventral surface. We compared the t-statistics for a contrast of food
vs. non-food and t-statistics from a contrast of faces vs. non-faces for S1-S8
individually (Figs. 2a and S1a). The faces vs. non-faces contrast reveals a voxel
cluster overlapping with the FFA [1, 2] (Figs. 2a and S1a). The FFA was local-
ized for each subject through a separate visual category localizer experiment.
(The faces vs. non-faces comparison also makes the methodological point that
established category-selective regions can be reliably localized in a large-scale
event-related design using stimuli embedded in complex, real-world scenes.
This generalizes findings from typical localizer designs and decontextualized
images [21]). The regions with higher activity for food are spatially distinct
from the ones with higher activity for faces. This pattern persists when com-
paring food or faces to non-face and non-food images only (Fig. S5), indicating
that the regions that have high activity for food and faces have highly inde-
pendent or non-overlapping spatial extents. A somewhat similar pattern of
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Fig. 2: Experiment 1. Food-selective regions at the individual subject
level. (a) Comparing the spatial localization of food- and face-selective neural pop-
ulations on the ventral surface, for S1-S4 (see Fig. S1 for S5-S8). Voxels’ t-statistics
from two 1-sided t-tests comparing food vs. non-food (red) and face vs. non-face
(blue). The regions identified by each contrast are largely non-overlapping. This pat-
tern is maintained for food vs. non-(food and face) and face vs. non-(face and food)
(Fig. S5). (b) Spatial mask for food-selective regions used in subsequent analyses
for S1-S4 (highlighting ventral visual responses). The mask is the overlap between
the region that is identified from the t-test for food vs. non-food (panel a, red) at
p <0.05 (FDR corrected) and relevant neuroanatomically localized regions using the
HCP atlas [23] (see Methods).

results is seen when we consider the magnitudes of these responses as realized
in a measure of voxel-wise selectivity, defined as: preferred - non-preferred

|preferred |+|non-preferred| where

the non-preferred baseline activity is the maximum activity related to other
categories (for details see caption of S11). As illustrated in Figure S11, as com-
pared to the t-statistics shown in Figures 2a and S1a, voxel-wise selectivity is
more variable across subjects. For some subjects, the strength of selectivity for
food is the same as that observed for faces, however, for other subjects food
selectivity is greater than for faces, and for still other subjects food selectiv-
ity is less than for faces. Such variability across subjects may be due to the
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fact that the max statistic is sensitive to the number of samples. In Experi-
ment 1, different categories within NSD have different frequencies; in contrast,
in Experiment 2 category frequencies are balanced.

Fig. 3: Experiment 1. A consistent set of food-selective regions can be
identified across independent image sets with different labeling schemes.
We used the set of images for each subject that were not included in previous anal-
yses, and an encoding model built from the 80 COCO object labels. (a) Voxel-wise
encoding model weights for four food sub-categories from the original COCO dataset,
shown for S1. We see variability in the weights, such as (perhaps, not surprisingly)
pizza yielding higher weights in some areas than broccoli. (b) We compared predic-
tive accuracy of an encoding model with all COCO labels (including 13 food and 67
non-food labels) to an encoding model with only the 67 non-food COCO labels. On
S1’s native surface, there is an improvement in validation set R2 values when includ-
ing the food labels (R2 for the full model; R2 for the model with food removed), with
S1-S8 results in Fig. S6. Weights corresponding to individual food labels (a) and the
pattern of improvement in R2 (b) highlight similar food-selective regions. Such con-
sistent results lend further support for these regions being robustly food selective.

We further investigated how food representations might be distributed
across multiple voxels, using searchlight classification [24] (Fig. S2). Training a
decoder to classify food versus other categories revealed that food was decod-
able across a wide area of the ventral surface. The regions from which food
information was decodable are a union of the regions that are high for food
vs. all and the regions that are high for faces vs. all. This finding is consistent
with the idea that voxels primarily selective for other categories, such as faces,
may contain information that distinguishes food from other categories [25].

We have focused on identifying food-selective regions through responses to
the shared images and our hand-labeled annotations. For the approximately
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9,000 remaining images per subject that were not manually labeled, we can
still take advantage of COCO annotations [18] (including specific types of
food) to further investigate brain responses to food and validate our findings
on an independent set of images. We built an encoding model using the 80
object labels provided by COCO and obtained the resulting voxel-wise weights
for food labels. We find that the voxels having the highest weights for several
individual food sub-categories (i.e., cake, sandwich, pizza, and broccoli) fall
within previously identified food-selective regions (weights for S1 in Fig. 3a).
Next, we investigated the specific contribution of food images to these voxel
responses by comparing two encoding models: one including the 67 non-food
COCO labels, and the other including both food and non-food labels. We com-
pared the R2 values of the two models on held-out data (Fig. 3b and Fig. S6).
Many voxels on the ventral surface show improved prediction performance due
to the inclusion of food labels, suggesting that modeling the presence of food
beyond other categories was required to accurately predict the voxel responses.
These voxels are distributed in roughly the same spatial pattern as the vox-
els with high-valued weights for individual food categories and our previously
identified food regions, further supporting the generality of our results.

To understand the representational structure of these regions, we ran a
principal components analysis (PCA) on the responses from all subjects to
the shared food images. PCA was run using only voxels within the identified
food region (Fig. 2) concatenated across all subjects (because the PCA was
run on a concatenated dataset across subjects it does not account for the
individual subject dependencies in the data; methods that handle multiple
data tables, such as those presented in [26], might be used to test whether
the group solution in our PCA is a good fit for all subjects), using responses
associated with the shared food images only. This PCA produces for each
voxel a set of principal component scores that capture the projection of its
high-dimensional response profile across all images onto a lower dimensional
subspace. The axes of this subspace – shared semantic axes – corresponds to
the dimensions in food image space that are most strongly reflected in the
voxel responses (Fig. 4a). In Figure 4b and c, we visualize the top and bottom
images for each PC. The first three PCs are each associated with distinct
groups of voxels. PC1 is characterized by small positive patches around the
center of each food-preferring strip on the ventral surface, with more negative
values close to the edges of each strip. Negative and positive scores for PC2
differentiate the lateral and medial strips of the food-selective region. PC3
scores are generally more spatially diffuse, but in the right hemisphere, PC3
scores are more negative near the FFA (i.e., medial side of the lateral strip,
lateral side of the medial strip). Based on inspection of the top and bottom
images associated with each PC, PC1 captures the prominence of food in an
image, distinguishing images with food as a key focus in the foreground versus
those with food as a background element. PC2 distinguishes food images based
on overall scale, differentiating close-up images that focus on a few food objects
from larger-scale images of food-related scenes (Fig. 4b). This is consistent
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with the pattern of positive scores for this PC on the medial side of the food-
selective area, close to the PPA. PC3 distinguishes food images based on social
attributes, separating food images that include few people from images of
multiple people eating or preparing food, with social settings being at the
end of the spectrum (Fig. 4c). Some amount of person or animacy-related
information also appears to be reflected in the first two PCs (top right vs.
bottom left images in Fig. 4b). Such results highlight the ecological importance
of food as a category, as well as how high-level knowledge structures arise
from the interaction between food and other ecologically important categories
within the ventral visual cortex.

One concern with this interpretation is that the presence of people and/or
faces in conjunction with food within our test images may lead to responses
driven more by these well-known category-selective domains rather than food
per se. That is, the PCs we obtain may be a result of the PCA picking up on
food selectivity that overlaps with adjacent face- and body-selective regions.
However, as we demonstrate in Experiment 2, we obtain the same pattern of
food selectivity using “pure” food images. Similarly, Khosla et al. (2022) repli-
cated their results (and our’s) using BOLD5000 [27] - a different dataset that
includes primarily food alone images (images in BOLD5000 are drawn in part
from ImageNet and include approximately 50 food categories). These results
suggest that the presence of faces, people etc. is not a factor in the basic find-
ing of food selectivity. Reinforcing this conclusion, as illustrated in Figure S7,
when we reran the PCA excluding images that contained human faces and
human bodies (but not the few animals that appeared with food), we observed
essentially the same dimensional structure for PC1 and PC2 as seen for the full
PCA, while PC3 became relatively less informative relative to the full PCA
(possibly because the neural representation of food does incorporate a social
dimension and this dimension was specifically excluded from this secondary
analysis due to the removal of images that depict social contexts).

Given these results, from a theoretical standpoint, we posit that the orga-
nization of food responses might reflect more than the adjacencies of food
selectivity with other category-selective domains. Rather, the visual hetero-
geneity of food implicates non-visual factors as the underlying drivers in
food-related visual responses. Based on prior work (e.g., [10, 11]) and the adja-
cency of food-selective regions to the FFA and PPA, we propose that food
responses are the aggregation of a wide variety of factors, including explicit
social (face and body) and place associations, reward feedback circuits, and
gustatory signals, all of which play some functional role in food processing as
realized in the ventral visual cortex. Future work should explore this hypoth-
esis, examining how the interaction of food with other systems gives rise to
visual food selectivity.

To further explore what features drive the brain organization of food repre-
sentations, we clustered food images according to their voxel responses in our
food-selective regions. This analysis produces image clusters that are not eas-
ily characterized in terms of visual features, viewpoints or semantic attributes
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Fig. 4: Experiment 1. PCA of responses from food-selective regions provides insight
into their functional structure. (a) Average principal component score across subjects for PC1,
PC2, and PC3, shown on the MNI surface. Blue-green indicates high, brown indicates low PC
scores. These top three PCs explain, respectively, 34.31%, 12.68%, and 11.16% of the variance. In
(b) and (c), we show the images that lead to the highest and lowest activations in each PC. We
include the 4 top and bottom images for ease of visualization. Top images for PC1 and PC2 are
plotted in a 2D space (b), with the points connected to each image indicating its position in the
space. In (c), we plot the top and bottom images for PC3 along a linear axis. Several patterns
emerge here: PC1 scores yield small positive patches around the center of each food-preferring
strip with more negative values close to the edges of each strip, and may capture the prominence
of food in an image, separating images with focus on food in the foreground from those with food
in the background. PC2 scores are higher medially (closer to PPA) and lower laterally, and seem to
distinguish large-scale images of food-related places from close-by images of food and people eating
food. PC3 scores in the right hemisphere food regions are lower at the center of the two strips,
in the areas that border the FFA, while the left hemisphere does not show a clear pattern. PC3
appears to distinguish non-social food settings from social food settings. These results highlight
that the combination of food with other ecologically important categories, including people (both
faces and bodies) and places, creates a richer co-organization that reveals itself as gradients across
cortex.
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(Fig. S8a). We also constructed image clusters using two neural-network mod-
els – CLIP [28] and ResNet-18 [29] – from which we derived semantic and
visual embeddings that did not include the associated brain activity for the
images. CLIP is trained on both images and text captions, enabling us to
extract features that capture the high-level semantics of the images. ResNet-
18, trained solely on images and their associated object labels, yields features
with less emphasis on scene semantics. As shown in Figure S8, the clusters aris-
ing from CLIP capture semantic classes of food (e.g., fruits, deserts or meals;
Fig. S8b) while the clusters arising from ResNet-18 appear more visually orga-
nized and more focused on individual elements (e.g., broccoli, pizza; Fig. S8c).
Comparing the similarity of the cluster assignments of images for each of
the three clustering procedures, neither CLIP or ResNet-18 clusters show any
clear correspondence with our voxel-based clusters. The lack of correspondence
in our clustering results suggests that the responses in food-selective areas
do not organize easily into clusters based on visual similarity, scene seman-
tics, or object semantics (and reinforces the complex, high-level nature of the
dimensions found using PCA).
Experiment 2: Hypothesis-driven analyses of food selectivity with
controlled stimuli

Our analyses using the NSD dataset allowed us to form a strong hypothesis
on the presence of food-selective areas within the fusiform gyrus neighboring
the FFA. Next, we designed a standard food “localizer” and collected new
fMRI data in 4 new subjects to test whether we could replicate our results
in a controlled experiment. We selected 82 images of different types of food
with transparent backgrounds from the https://www.stickpng.com/ website.
We converted the images to grayscale and superimposed them on images from
the scrambled condition in the fLoc localizer [21] (Fig. 5b illustrates some
examples). All images are shared in the GitHub repository along with our
code. We included four additional conditions from the fLoc localizers: face
(adults), body, place (houses) and words. We used the face vs. others, body
vs. others and place vs. others contrasts to trace the FFA, EBA and PPA of
each subject. In Figure 5, we show the contrast of food vs. others for each
subject on both their inflated and flattened surfaces. Suppl. Fig. S9 shows
inflated and semi-inflated maps illustrating the voxels for which the contrast
is significant for each subject (p < 0.001, FDR corrected). As in Experiment
1, we considered the magnitudes of these responses as realized in a measure of
voxel-wise selectivity. As illustrated in Figure S12a, consistent with the faces
vs. other contrasts shown in Figure 5, the pattern for each functional region
is aligned with both the results from Experiment 1 and with prior results
establishing selectivity for faces and places. Equally important, as illustrated
in Figure S12b, both the magnitude and distribution pattern of voxel-wise
selectivity for food is on par with that for faces and places.

Instead of computing a group analysis that would smooth the results in
space, we treat every one of the 4 subjects as a replication unit for the hypoth-
esis of food selectivity [30]. The results of the localizer replicate the findings

https://www.stickpng.com/
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Fig. 5: Experiment 2. Food-selective regions identified in an independent set of sub-
jects using a visual localizer that includes grayscale images. The fLoc localizer by Stigliani
et al. [21] was adapted to include a food condition that was constructed by identifying images of
food items from different categories and with different shapes, converting them to grayscale and
superposing them on the scrambled images from the fLoc localizer (see Methods). Other condi-
tions included faces, bodies, places and written words. (a) t-value of the food vs. other contrast
shown on the cortical surface (viewed from the bottom) of each localizer subject (LS1-LS4). For
each subject, the PPA, FFA and EBA were traced using the corresponding conditions in the local-
izer. Food-selective regions with a high value for the food vs. other contrast sit between the FFA
and PPA of different subjects, with some subjects having high values on both sides of the FFA.
See Suppl. Fig. S9 for the significance thresholds. (b) Examples of the stimulus images used in
the food condition. (c) A cut-out of the flattened brain of each subject providing a different view
of the food regions. There exists some spatial variability between subjects, but the relationship
between the ROIs is more stable. (d) Semi-inflated lateral and semi-inflated bottom views of the
MNI surface indicating voxels the subject count for a significant food vs. all contrast. Voxels more
responsive to food are found in the dorsal visual cortex, with the highest concentration across
subjects occurring in the fusiform visual cortex. This result replicates our initial finding with NSD
(compare with Fig. 1c). As predicted, the location of the food region is spatially variable across
subjects (see Suppl. Fig. S10 to compare with the variability of other classical localizers).
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of Experiment 1 (and [19, 20]) in every one of the four subjects: statistically
significant food-selective regions fall within the fusiform gyrus adjacent to the
FFA. Our new results also indicate that factors such as color or food appear-
ing in a natural scene are not essential for obtaining selective activation for
food (in parallel work, Khosla et. al. [20] likewise predicted that food-selective
responses should be obtained using grayscale images; see their Fig. 4c). While
some spatial variability in food-selectivity exists across subjects, regions with
high values for the food vs. other contrast lie between the FFA and PPA of
different subjects, with some subjects having high value voxels on both sides
of the FFA. After converting the subjects’ results to MNI space and count-
ing the number of significant voxels in each MNI location, we see less spatial
agreement among subjects in the food vs. other contrast as compared to the
face, body, and place contrasts (face vs. all, body vs. all, place vs. all, and
words vs. all; see Suppl. Fig. S10; in parallel work, [20] observe a similar pat-
tern as illustrated in Fig. S5 of their paper). More specifically, for each of these
other contrasts there exists a region in which all subjects show a significant
effect. However, for the food contrast, we find greater spatial variability: at
most 3 of 4 subjects have a significant contrast in the same region of the left
fusiform, and only a small number of voxels show a significant contrast across
all subjects. This result is aligned with our findings using NSD in Experiment
1, where the most consistent region is one in which only 5-6 of the 8 sub-
jects showed a significant contrast (Fig. 1). Such spatial variability may be
one important reason why earlier studies – particularly those relying on group
analyses – may have failed to identify regions selective for food.

Discussion

How are knowledge representations organized in the human brain? Within the
visual system, one of the hallmarks of the past several decades has been cate-
gory selectivity for faces, bodies, places, and words [1–5]. Consistent with the
ecological importance of these categories, we identified selectivity for another
ecologically relevant category, food, within the ventral visual stream. In our
present study, we used both data- and hypothesis-driven fMRI methods. Two
parallel studies [19, 20] also used data-driven methods applied to the same
large-scale natural scenes dataset [17] and confirmed our finding of food selec-
tivity in Experiment 1. Our study also provides a range of analyses not included
in these other studies, as well as new and informative data from a second,
hypothesis-driven experiment. First, using NSD, we show that the identified
food regions are maximally activated by food images. Second, we establish that
food-selective responses do not appear to be confounded with image viewpoint
(zoom, reach or large-scale). Third, we find that the inclusion of food-related
category features in an encoding model leads to improved prediction accuracy
in food-selective regions. Fourth, we demonstrate that PCA can be used to
uncover both the large-scale topography within food-selective areas and the
interaction of food coding with other semantic dimensions. Namely, we find
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that the representation of food in the food regions appears to be organized
in gradients across cortex that relate food to other important information
processed nearby (social and place-related information). Fifth, we verify the
robustness of food-selectivity by showing consistent food-selective responses
across independent sets of NSD images, and we provide the first characteriza-
tions of the fine-grained structure of representations within the food category
itself. Finally and uniquely, we directly validate these results using hypothesis-
driven methods in the form of a standard “localizer” that included grayscale
images of food. The results of Experiment 2 replicate our results with NSD
and provide direct evidence that color is not a confound in food-selectivity.
Equally important, these results also suggest that food-responsive regions are
more spatially variable across individuals than other visual functional ROIs,
thereby helping us reconcile current findings of food selectivity with previous
failures and with claims of overlap between food- and face-selective regions.

Although our focus was on selectivity in the ventral visual system, we note
that we also observed food selectivity in the parietal and frontal cortices in
Experiment 1; however, the localization of these regions was less consistent
over subjects (Fig. 1c) and did not replicate when we used our context-free
localizer images (Fig. 5). Other brain regions may also play a role in process-
ing food information, particularly during visually-guided behavior. The dorsal
visual areas in particular may process the actions or affordances associated
with food (i.e., cooking/eating), as suggested by past work showing that object
representations in dorsal visual cortex tend to be action-oriented [31, 32]. Acti-
vation in frontal cortex appears to overlap roughly with orbitofrontal regions
(semi-inflated bottom view map in Fig. 1c), which may reflect the involvement
of these areas in processing reward information associated with certain foods
[13, 16, 33, 34]. Food selectivity was also observed in a number of subjects in
the insular cortex, which has previously been implicated in taste processing
[13, 34]. While our paper focuses on visual selectivity for food in the fusiform
cortex, future work should investigate the interaction of the visual food selec-
tive area with these other areas, perhaps using manipulations that vary reward
or action representations evoked by food stimuli.

Our approach and results allow us to rule out several alternative explana-
tions for the finding of food selectivity. It is not likely that food selectivity
reflects preferential responses to “reachspaces” [7], rather than food per se.
This is ruled out on the basis that our labeling taxonomy allowed us to control
for image perspective (i.e., including reach as a label). Specifically, we found
that food-selectivity remained stable even after removing the reach labeled
images. Another possible alternative is that food-selectivity reflects preferen-
tial responses to small vs. big real-world object size [6], again, rather than
food per se. However, the representation of real-world object size manifests
as big flanking the medial side of the FFA and small flanking the lateral side
of the FFA. Thus, this explanation can be ruled out in that our observed
food selective responses co-locate more with big, as opposed to small, regions,
yet food categories, particularly prepared foods, have small real-world size. A



16 Selectivity for food in human ventral visual cortex

third possibility we can reject is that food selectivity can be solely attributed
to greater attention or higher intrinsic visual salience for food relative to non-
food [35]. Both human faces and bodies are subject to the same kinds of
saliency effects [36], yet attentional/saliency differences are not the preferred
explanation for face or body selectivity [37]. Moreover, within our study, faces
and bodies comprised a reasonable proportion of the non-food contrast images,
yet food selectivity was robust across these comparison categories (as is also
the case in [16]). Finally, it is not likely that low- or mid-level visual features
(i.e., spatial frequency, curvature, texture) underlie our pattern of results. This
is supported by the fact that food selectivity was primarily found in higher
visual areas, rather than early visual areas (Fig. 2). The visual variability of
food makes it unlikely that there is a set of low- or mid-level visual features
or high-level shape structures that consistently correspond to food (in con-
trast, see [38–40]). Finally, as discussed below, another explanation that we
can reject is that our food selective responses are mostly driven by color.

These conclusions are also consistent with a recent MEG study which
excluded low-level visual features as an explanation for food selectivity [41].
Similarly, the two recent papers that likewise identified food selectivity using
the same dataset we used here included several analyses that help to rule out
a variety of low- or mid-level features as the basis for the observed selectiv-
ity [19, 20]. Of note, both papers reported an intriguing overlap between food
selectivity and color-biased brain regions. While Pennock et. al. [19] favor an
account in which color is a feature common to food and, as such, food-selective
regions may respond to color even in the absence of food inputs, Khosla
et. al. [20] explicitly include color in their analyses and conclude that food
selectivity cannot be explained by color alone. They do, however, acknowledge
that selectivity for food and color-biased responses are “linked”. As in Pennock
et. al. [19], they suggest that color is important for the identification [42], eval-
uation [43], and selection of food [20]. Our new data sheds conclusive light on
this question. While color may be an important part of learning new food cat-
egories, the results of Experiment 2 demonstrate that food-selective responses
can arise in the absence of color (Fig. 5). What remains to be determined in
future work is whether the functional role of color in food-related behaviors
leads to the instantiation of color biases in food-selective regions or whether
color biases are present absent food selectivity and, as such, may help facilitate
the acquisition of food representations in these regions.

Past work has presented conflicting accounts of the degree of overlap
between food-selective and other category-selective visual regions [16]. Claims
of overlap are questionable in that they were based on group-level analyses
and any overlap may have been an artifact of the variability in the local-
ization of food-selective regions within individuals (which may arise in part
from the high visual variability of food as a category). In particular, Adam-
son and Troiani [16] claimed that “there is overlap in face and food activation
within the fusiform and that this is spatially consistent at the group level.”
This inference is puzzling in light of the fact that the same study presents a
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visualization of peak coordinates for both face and food clusters in individual
subjects that appears to show separation between the two regions of selectiv-
ity (Fig. 2 of [16]). However, Adamson and Troiani focus on across-subject
tests in order to support the claim that food selectivity co-localizes with face
selectivity. This leads them to conclude, we believe incorrectly, that food and
face recognition share a common neural substrate and, presumably, common
underlying computational mechanisms.

The difference in our Experiment 1 results versus those of Adamson and
Troiani [16] may be due to our use of a more sensitive within-subject, voxel-
wise analyses. Across multiple methods and within 8 individual subjects, our
results indicate that food and face selectivity do not co-locate (Fig. 2a, Suppl.
Fig. S1 and Suppl. Fig. S5). Reinforcing this separation between regions, in
our Experiment 2, there is almost no overlap between food- and face-selective
areas in individual subjects (Fig. 5a and c). In this same experiment, the clus-
ter of voxels with the greatest consistency across subjects is in the left fusiform
directly adjacent to the FFA (Fig. 5d). We note that group averaging – as used
in [16] – could potentially blur these significant food- and face-selective areas
so as to create the appearance of overlap at the group level within left fusiform
(as reported in [16]). Consistent with this interpretation and the results of our
Experiment 2, Adamson and Troiani [16] report separation in the peak coordi-
nates for face and food clusters for individual subjects. Similarly, Khosla et. al.
[20] found that the food-selective component of their results was less spatially
correlated across subjects as compared to other category-selective components.
Consequently, there is little evidence to support a claim that food and face
representations arise from the same fine-grained principles of visual processing.
Rather, there is variability in the localization of food-selective regions across
subjects; as such, it is critical to assess selectivity on an individual basis.

More generally, why have most previous efforts to localize a food-selective
region of ventral cortex failed (e.g., P. Downing and N. Kanwisher, 1999, Cogn.
Neurosci. Soc., poster; based also on multiple anecdotal reports of similar fail-
ures)? A variety of factors may have impacted the results (or lack of results)
in many of these prior studies. One possibility is that some of the apparent
inconsistency in detecting food-selective responses is, in part, due to relying
on isolated, somewhat unrealistic food and non-food images (e.g., Downing
et al.[14]). However, Experiment 2 identifies food selectivity using grayscale
images of food. As such, while the naturalness of the COCO images used in
NSD may enhance food-selective responses, it seems unlikely that naturalness
alone (nor the absence of color) can account for prior failures. At the same
time, it is worth noting that both Adamson and Troiani [16] and Tsourides
et al. [41] used naturalistic food images and were able to successfully iden-
tify food-related neural responses as measured by functional MRI (fMRI) and
magnetoencephalography (MEG), respectively.

A second factor contributing to earlier null results may be that prior studies
used an insufficient number of food images, thereby failing to capture the
large variety of visual properties of food or of the natural contexts in which
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food appears. Unlike faces, bodies, or word stimuli, food images vary widely
in low- to mid-level visual characteristics such as curvature, shape, texture,
color or the organization of the parts into a whole. Thus, greater numbers of
food stimuli not only increase experimental power in and of itself, but lead to
better coverage of “food appearance space” as it may be mentally and neurally
represented.

A third factor which may have made identifying food-selective regions more
challenging is potential variability across individuals in the neural localization
of food-related responses – a prediction supported by the individual variability
seen in the results of Experiment 2 (and in [16] and [20]). One possible reason
for this variability may be that voxels processing food are interleaved with
voxels processing other object related properties [20]. Given such variability,
group-average analyses (Fig. 5d) are unlikely to reveal a consistent, significant
cluster of separable food-selective voxels across subjects. However, when one
considers individual subject responses, not only do significant food-selective
voxel clusters emerge, but we observe spatially relative consistency between
these clusters and other functionally-localized ROIs (Fig. 5c). For this purpose,
we make our food localizer available for the community, along with the code
to process it and generate visualization using the pycortex software [44].

Another possible reason for individual variability in food-selective regions
is the visual heterogeneity of food. Indeed, this latter point has been raised
as one reason why a food-selective visual region seemed unlikely – in contrast
to visually-homogeneous categories such as faces and written words, foods
vary dramatically in shape, texture, and color. Consequently, it is unclear
how a single visual mechanism might learn across this appearance diversity.
One potential solution has been articulated in modern machine learning where
building a classifier for a complex class comprised of multiple sub-classes with
an inherent organization (such as food) is a problem referred to as hierarchical
classification [45, 46]. One of the common ways hierarchical classification is
solved is by combining the predictions of specialized classifiers for each of the
different sub-classes into a single prediction [47]. Thus, one can conceive of
food-selective responses as a set of specialized classifiers for different food sub-
types. Given the complexity of such representations, as well as their potential
interactions with culture, taste [16], and experience [11], spatial variability in
food-selective responses is not surprising. Based on this logic we are exploring
whether other visually heterogeneous categories with high reward or social
significance may, similar to food, come to be selectively represented – possibly
intermixed with food representations – in ventral visual cortex.

Fourth, as just discussed, the visual heterogeneity of food may lead to
food-selective regions that are more spatially distributed as compared to other
category-selectivity responses, possibly including multiple sub-regions. To
boost statistical power, standard neuroimaging analyses often forgo individual-
level statistical tests in favor of across-subject tests that are biased to “blur”
localized responses [16, 48]. These analyses are more likely to identify regions



Selectivity for food in human ventral visual cortex 19

that are well aligned across subjects [49]. In contrast, in both of our exper-
iments, we rely on within-subject analyses that are better able to pull out
category-specific neural responses for individual brains (reinforcing this point,
see the demixing analyses in [20]). Moreover, in Experiment 1, our fine-grained
analyses reveal that the top images in food regions overwhelmingly depict food.
Thus, while it is possible that the neural representations of other categories
are intermingled with the representation of food, our results favor distinct, but
perhaps distributed, food-selective regions within ventral visual cortex. How-
ever, at a finer grain, it also possible that there is some spatial overlap between
food-selective neural populations and neural populations selective for other
categories, thereby “diluting” the food-drive responses of individual voxels (see
Fig. 6 [20]). As a coda to our use of more sensitive data analysis tools, we note
that modern fMRI measurements are much improved over earlier experiments.
For example, Experiment 1 used NSD which was collected using a 7T scanner
and high resolution temporal and spatial sampling [17, 50], while Experiment
2 used a state-of-the-art 3T scanner and 64 channel head coil.

Finally, while a finding of food selectivity naturally emerges from consider-
ing ecologically important visual categories, this leaves open the question as to
how such selectivity arises in the human brain. We speculate that, similar to
human language, domain-relevant perceptual inputs related to food can vary
widely depending on the cultural and physical environment. Learned repre-
sentations for food are only loosely constrained at the surface level, but still
reflect common underlying mechanisms that have emerged over the course
of evolution due to reward and the selection for learning abilities that flexi-
bly responded to variations in inputs (the “Baldwin Effect” [51, 52]). Thus,
as a core property of knowledge organization, food selectivity is likely to
have emerged as a neural preference shaped heavily by semantic associations,
context, and reward.

Methods

Experiment 1

fMRI data

We used the Natural Scenes Dataset (NSD) [17], consisting of high-resolution
fMRI responses to natural scenes. The detailed experimental procedure are
described by Allen et al. [17]. The naturalistic scene images were pulled from
the annotated Microsoft Common Objects in Context (COCO) dataset [18].
8 subjects each viewed between 9,000-10,000 natural scene images over the
course of a year, each repeated 3 times. Of the 70,566 total images presented,
1,000 were intended to be viewed by all subjects. However, because some
subjects dropped early, they didn’t all see the 1000 images 3 times. For the
purposes of this paper, we use any of the 1000 images for a subject if it was
viewed at least once (515 were seen three times by each subject, 766 were seen
at least two times and 907 at least one time). Thus, for subjects S1-S8 we use
respectively 1000, 1000, 930, 907, 1000, 930, 1000, and 907 shared images.
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The data were collected during 30-40 scan sessions. Images were square
cropped, presented at a size of 8.4° × 8.4° and for 3 s with 1s gaps in between
images. The subjects were instructed to fixate on a central point and to press
a button after each image if they had seen it previously.

The functional MRI data were acquired at 7T using whole-brain gradient-
echo EPI at 1.8-mm resolution and 1.6s repetition time. The preprocessing
steps included a temporal interpolation (correcting for slice time differences)
and a spatial interpolation (correcting for head motion). Single-trial beta
weights were estimated with a general linear model. FreeSurfer [53, 54] was
used to generate cortical surface reconstructions to which the beta weights
were mapped. The beta weights corresponding to each image were averaged
across repetitions of the image, resulting in one averaged fMRI response to
each image per voxel, in each subject.

The dataset also included several visual ROIs that were identified using
separate functional localization experiments. We drew the boundaries of those
ROIs for each subject on their native surface for better visualization and
interpretation of the results. All brain visualization were produced using the
Pycortex software [44]. We create flattened, inflated and semi-inflated maps by
setting the ‘unfold’ parameter to 1, 0 and 0.25 respectively. Fig. 1 and Fig. 2
show the left and right hemisphere for each type of view we show (flatmaps
and semi-inflated or inflated bottom and lateral views). These conventions
are maintained across all brain plots in the manuscript and supplemental
materials.

Image labeling

The authors and a graduate student in our labs (n=8) performed manual image
labeling for the 1,000 potentially shared images based on each image’s depicted
location, image perspective and content. Location refers to whether the image
is indoor or outdoor (or ambiguous), content refers to the categories of objects
in the image (including the binary existence of food), and image perspective
refers to the approximate scale of the image, discretized into zoom, reach or
large-scale. Zoom refers to a very close shot, thereby likely concentrated on one
object and excluding surrounding information. Reach images display objects at
a human-reachable distance, and may activate representations related to object
affordances [7, 22]. Large-scale images encompass the remaining images, which
include an image of a typical scene as opposed to one or more close-up objects.
Images could only be assigned one label for location and perspective, but could
be assigned multiple content labels. More details about this image labeling are
described in the Figure 1a and b. Labeling was performed using the Computer
Vision Annotation Tool [55]. In order to avoid variation in labels and ensure
consistency, we performed several rounds of labeling and verification across
multiple raters; each image was seen by a least two raters. Disagreements were
discussed in the group of raters until unified labeling assignments were reached.
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Encoding models

We constructed two different encoding models. The first was based on our
hand-labeled annotations of the 1,000 potentially shared images (Fig. 2).
Encoding all 16 hand-labels into a single binary vector per image, we utilized
voxel-wise ordinary least squares (OLS) encoding models to predict each indi-
vidual voxel response to a given stimulus. Identifying voxels more responsive
to category A over other category was done using a 1-sided t-test between the
respective learned model coefficients for category A vs. the coefficients for the
other categories, as is done in a typical generalized linear model (GLM) anal-
ysis. Note that this analysis collapses across the three “attributes” used in our
labeling taxonomy (i.e., food is compared against object categories like faces,
as well as against location labels like indoor). We used these methods to iden-
tify voxels that are more responsive to food than other labels, as well as for
face versus other labels. We obtained a p-value from the t-value, then corrected
for multiple comparisons across all voxels using the Benjamini-Hochberg False
Discovery Rate procedure (FDR) [56], which is appropriate for fMRI results
due to the assumption that they show positive dependence [57, 58]. The sig-
nificance of the contrast was computed at the subject level, the results were
converted to MNI space, and the sum across subjects was plotted in Fig. 1c.
Pycortex was used for transformation to MNI space of each subject’s result.
It relies on the Flirt tool [59–61] from FSL [62].

Our second encoding model was based on COCO object category labels,
and made use of the set of images that were unique to each subject (Fig. 3).
The purpose of this model was to verify that our proposed food region derived
from the shared images is consistent across the larger set of images that also
includes images not used in the first analysis. We used the 80 COCO object
category annotations provided in the dataset, specifically each COCO label’s
corresponding bounding box proportion relative to the image (i.e., proportion
of the image covered by the category of interest), as input to a ridge regression
encoding model. We built and tested the model via 10-fold cross-validation,
where R2 was computed on a tenth of the data not used for training at each
fold, and the 10 resulting R2 values were averaged. The penalty parameter for
each voxel was chosen independently by nested 10−fold cross-validation. When
determining which images were used to fit the encoding model, we create a set
of images that contained half food and half non-food images. We considered
images to include food if their maximum food label proportion exceeded a
threshold of 0.15. We identified 940 such images, and randomly selected 940
non-food images, together creating a total input set of 1880 images. We built
two models, one with all the labels, and one with all the labels that were not
food (67 in total). We then computed the voxel-wise R2 improvement from
including food labels in the regression. In addition to helping identify voxels
that responded most to inclusion of food, this encoding model also helped us
visualize food sub-category activations. We observed the voxel-wise learned
weights corresponding to specific COCO food labels (i.e. cake, sandwich) to
uncover potential food sub-category patterns.
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Decoding models

While an encoding model is able to provide some insight into single-voxel selec-
tivity through response predictions, a decoding model can uncover distributed
pattern-level representations of visual features. To observe representations at
the population level, we used a searchlight decoding method [24]. Specifically,
for each voxel in the cortical sheet, we defined a searchlight sphere that con-
sisted of 27 nearby voxels, and we trained a decoder to classify the existence
of food based on the pattern of activation across these voxels. We used 5-fold
cross validation via Support Vector Classification, with our input image set
consisting of 108 food images and 108 randomly selected non-food images from
the shared images. High decoding accuracy from this method suggests that an
area encodes food-related information at the pattern level, which our model is
able to exploit in order to classify the existence of food.

Determining the ventral visual food selective regions

To generate a mask that only included the ventral visual food selective region,
we first manually selected apparent relevant ROIs via the Glasser HCP Atlas
[23]. We use the concatenation of sub-areas TE2p, PH, VVC, v8, PIT, FFC,
and VMV3 to create our mask. After converting the mask for this anatomical
area into each subject’s native space, we identified the intersection of this mask
with the identified food region from a food vs non-food significance test (Fig. 2
shows the final mask definition).

Principal Component Analysis (PCA)

We ran PCA to better understand possible structure and/or correspondence
in these food-selective regions. Using the food mask above that consists only of
our proposed food region, we selected ’food-relevant’ voxels for each subject.
Then, we ran PCA on a matrix of concatenated ’food-relevant’ voxels for
all subjects (rows) by the activity related to shared food images (columns),
reducing along the image dimension (the columns). That is, the number of
rows consists of all previously identified food selective voxels from all subjects
concatenated together (i.e., if we have 200 food voxels for each subject, then
the matrix across 4 subjects will have 800 rows). Thus, the matrix on which we
ran PCA is two dimensional (# of voxels by # of images) and we have only one
PCA model for all subjects. We extracted the top principal axes of this matrix,
and projected our initial data matrix onto the calculated lower-dimensional
space to obtain the voxel-wise PC scores on the brain. To compare the voxel-
wise PC scores across subjects, we converted the scores for each subject to
the MNI template and average the scores across subjects for each MNI voxel.
We identified the most positive and negative contributing images to each axis
by computing the dot-product between the PC score and the activity related
to an image, to assess whether the representations of each principal axis were
cohesive or semantically interpretable.
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Clustering analyses

We ran a K-means clustering analysis to better investigate visual and semantic
patterns in the food selective regions. As a point of comparison with the voxel
clustering results, we also clustered visual and semantic embeddings of these
images derived from deep neural networks. To compute the clusters for one
subject, we picked 940 food images. Voxel embeddings were calculated for
each individual subject, using responses from voxels within the ventral food
mask. To obtain visual and semantic embeddings for these same 940 images we
used two trained deep neural networks: CLIP and ResNet-18 [28, 29]. CLIP,
trained on both images and text, allows us to extract features arising from
a contrastive learning paradigm with dual semantic and visual constraints.
We used the pretrained ViTB32 model, which was trained to align image and
text embeddings within a shared space. Within this model, we extracted the
features given an input image from the vision module of the model. Given an
image, we call these corresponding CLIP features the CLIP embedding.

ResNet-18, trained on solely images, provides a visual feature-based embed-
ding with no language component. Given an image, we ran a ResNet-18 model
pretrained on ImageNet to extract the features from the average pool layer
immediately preceding the final fully-connected layer [63]. We refer to these
extracted features for a given image as the corresponding ResNet embedding
of that image.

To cluster embeddings, we used K-means clustering algorithm with Euclid-
ian distance. We consider a range of K values and for each, observe the average
Euclidian distance from each data point to their corresponding cluster cen-
troid. Next, we selected the first K value that led to the drop in the average
distance for voxel embeddings beyond which the decrease plateaus (the elbow
method). This value was 4. We use this same K = 4 for all three embedding
clusterings.

To compare different clustering assignments, we constructed for each clus-
tering procedure a 940×940 matrix where the rows and columns correspond to
the 940 images. Each cell in this matrix is an indicator value where matrixi,j
is 1 if the two images i and j are in the same cluster, and 0 otherwise. We
then used Pearson correlation to compute the correlations between two clus-
tering assignments. To visualize each cluster, we chose the closest images to
the centroid of that cluster.

Experiment 2

MRI data collection

MRI data were acquired on a 3T Siemens Prisma MR scanner at the BRIDGE
center at the Carnegie Mellon University campus using a 64-channel phased
array head coil.
Functional Images. Functional images were collected using a T2*-
weighted gradient recalled echoplanar imaging multi-band pulse sequence
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(cmrr mbep2d bold) from the University of Minnesota Center for Magnetic
Resonance Research (CMRR) [64, 65]. Parameters: 68 oblique axial slices co-
planar with the AC/PC; in-plane resolution=2×2mm; 106×106 matrix size;
2mm slice thickness, no gap; interleaved acquisition; field of view=212mm;
phase partial Fourier scheme of 6/8; TR=1500 ms; TE=30ms; flip angle=79
degrees; bandwidth=1814 Hz/Px; echo spacing=0.68ms; excite pulse dura-
tion=8200 microseconds; multi-band factor=4; phase encoding direction=A
to P; fat saturation on; advanced shim mode on. During functional scans,
eyetracking was acquired using an EyeLink eye tracker.

Anatomical Images. A T1 weighted MPRAGE scan was collected for each
participant. MPRAGE parameters: 208 sagittal slices; 1mm isovoxel resolu-
tion; field of view=256mm; TR=2300ms; TE=2.03ms; TI=900ms: flip angle=9
degrees; GRAPPA acceleration factor=2; bandwidth=240Hz/Px.

Subjects

Functional data were collected from four subjects (3 female/1 male) aged 21-
29. All subjects were healthy and had corrected to normal vision. Written
informed consent was obtained from all subjects and the study was approved
by the Carnegie Mellon University Institutional Review Board.

Paradigm

The data was collected in runs of length 4 minutes. Subject LS1 underwent 4
runs of the localizers, while subjects LS2-LS4 underwent 9 runs. We did not
see a difference that appeared to be driven by the amount of data.

We selected 82 images of different types of food with transparent back-
grounds from the https://www.stickpng.com/ website. We converted the
images to grayscale and superimposed them on images from the scrambled
condition in the fLoc localizer [21] (Fig. 5b illustrates some examples). All
images are shared in the folder referred to in the Data Availability Statement
section. We used the mini-block design (duration = 6s) proposed by Stigliani
et al. [21]. Along with the food condition, we also use the adult condition (to
define faces), the house condition (to define places), the word condition and
the body condition. We use the first 82 images from each condition provided
in the localizer to have the same number as the food images. We adapted the
Stigliani et al. [21] code to present our stimuli. The code uses Psychtoolbox-3
[66–68] and runs on Matlab.

Images were square, presented on a gray background at a size of 11.4◦ ×
11.4◦ visual angle on a BOLDscreen32 LCD Display and for 0.5s each. The
subjects were instructed to fixate on a central point and to press a button if
they see a repeated image (1-back task).

Data preprocessing

Each subject’s native surface was reconstructed using Freesurfer [69]. Func-
tional scans were motion corrected using SPM12 [70]. Through Pycortex,
alignment of the functional data to the structural data was obtained (using

https://www.stickpng.com/
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bbregister from Freesurfer). Our code pipeline (provided in the folder referred
to in the Code Availability Statement section) includes detrending and lightly
smoothed with a Gaussian kernel of standard deviation 1mm, using standard
functions part of the scipy package [71]. Pycortex was used to mask the cortical
data (by relying on maps estimated by Freesurfer). Pycortex was also used for
transformation to MNI space. It relies on the Flirt tool [59–61] from FSL [62].

Encoding models

We followed the same procedure used with the shared NSD images to compute
a contrast between condition A and other conditions after estimating voxel-
wise ordinary least squares (OLS) encoding models. We computed a t-value
for each of the “food vs. other”, “face vs. other”, “body vs. other”, “place
vs. other” and “word vs. other” contrasts. We used the Benjamini-Hochberg
False Discovery Rate procedure (FDR) [56] and α = 0.05 to identify significant
voxels for each contrast of each subject at each voxel.

We drew the boundaries of the FFA, EBA and PPA for each subject using
the “face vs. other”, “body vs. other” and “place vs. other” significance maps,
respectively. This enables us to better understand the “food vs. other” contrast
results. Note that unlike in NSD where the ROIs labeled using separate data,
here the data from the “food vs. other” contrast is the same as the one used
to draw the other ROIs. The significance of the contrast was computed at the
subject level, the results were converted to MNI space, and the sum across
subjects was plotted in Fig. 5. The same was repeated for the other contrasts
which can be seen in S10.

Statistics and Reproducibility

Statistical analyses were performed using Python and data visualizations were
accomplished using Pycortex [44]. Significant voxels for contrasts within encod-
ing models were identified by computing a 1-sided t-value for each contrast.
We then obtained a p-value from each t and corrected for multiple comparisons
using the the Benjamini-Hochberg False Discovery Rate procedure (FDR) [56]
and α = 0.05. Voxel-wise selectivity for each visual category was computed as
described in the captions of Figures S11 and S12. In Experiment 1, 8 subjects
viewed between 9,000-10,000 natural scene images (with between 907-1,000
being shared across all subjects) [17]. In Experiment 2, 4 subjects viewed 360
stimulus images (comprised of food, faces, houses, words, and bodies) per run
(either 4 or 9 runs). Additional information on the analyses are provided in
Methods.

Data Availability Statement

The NSD data was made available by Allen et al. [17]. The localizer data
are available as part of a public Github respository at https://github.com/
brainML/food4thought. All other data are available from the corresponding
author on reasonable request.

https://github.com/brainML/food4thought
https://github.com/brainML/food4thought
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Code Availability Statement

Our code is available as a public Github repository https://github.com/
brainML/food4thought.
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Supplementary Materials

label count
indoor 251
outdoor 693

ambiguous-location 54
plant 45

human-face 180
human-body 367
animal-face 142
animal-body 246

food 108
drink 25

food-related 130
faux-food 0
zoom 82
reach 80

large-scale-scene 833
object 551

Supplementary Table S1. Experiment 1. Count of the occurrence of each
label across the 1,000 potentially shared images.
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Supplementary Figure S1. Experiment 1. Voxels identified as selective for
food for subjects S5-S8 shown on each subject’s native surface with an inflated,
bottom view (similar to Figure 2, but for different subjects) (a) Voxels’ corre-
sponding t-statistics from two 1-sided t-tests comparing food vs. non-food (red)
and face vs. non-face (blue). Each t-test was performed on the weights from
a trained OLS model, for example comparing the food label’s learned weight
against non-food labels’ learned weights. The two sets of regions identified by
each contrast are largely non-overlapping. This pattern is maintained when
looking at food vs. non-(food and face) and face vs. non-(face and food) (Fig.
S5). These results indicate that the two sets of regions have distinct activity
for food and faces. (b) Spatial mask for food-selective regions used in subse-
quent analyses for S5-S8 (highlighting ventral visual responses). The mask is
the overlap between the region that is identified from the t-test for food vs.
non-food and relevant functionally localized regions using the HCP atlas [23]
(see Methods).
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Supplementary Figure S2. Experiment 1. Classification accuracy for mul-
tivariate searchlight decoding food vs. non-food images for S1-S8, with darker
voxels signifying higher accuracy. These regions encompass the two sets of
regions corresponding to high values for the food vs. non-food and the face vs.
non-face contrasts.

Supplementary Figure S3. Experiment 1. Semi-inflated bottom view of
voxels, summed across S1-S8, that have significantly higher activity for the
food than non-food categories, on the MNI surface, considering only the non-
reach images. Significant voxels were identified similarly to Figure 1c.
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Supplementary Figure S4. Experiment 1. Semi-inflated bottom view of
voxels, summed across S1-S8, that have significantly higher activity for the
food than non-food categories, on the MNI surface, considering only the non-
zoom images. Significant voxels were identified similarly to Figure 1c.
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Supplementary Figure S5. Experiment 1. Voxels identified as selective
for food from comparisons between food or faces vs. a baseline with both food
and face removed for S1-S8. As described in Figure 2a, significant voxels were
identified using two 1-sided t-tests. Despite a lower-N comparison arising from
removing both faces and food from the baseline, there is still clear separability
and little overlap between food-selective and face-selective regions.
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Supplementary Figure S6. Experiment 1. We compared predictive accu-
racy of an encoding model with all the COCO labels (including 13 food and
67 non-food labels) to an encoding model with only the 67 non-food COCO
labels. The figure shows, for S1-S8, the improvement in validation set R2 val-
ues when including the food labels (R2 for the full model - R2 for the model
with food removed).
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Supplementary Figure S7. Experiment 1. PCA of responses from food-
selective regions excluding images containing human faces and human
bodies. (a) Average principal component score across subjects for PC1, PC2, and
PC3, shown on the MNI surface. Blue-green indicates high, brown indicates low PC
scores. In (b) we plot the top and bottom images for PC1, PC2, and PC3 along
a linear axis (lowest to highest from left to right). We include the 4 lowest and 4
highest images for ease of visualization. The patterns across the brain that emerge
here are remarkably well aligned with the patterns seen for the full PCA (Figure 4a).
Qualitatively, PC1 and PC2 again seem to distinguish large-scale images of food-
related places from close-by images of food, as well as capturing the prominence of
food in an image, separating images with focus on food in the foreground from those
with food in the background. PC3, however, appears less interpretable and does not
support any useful inferences.
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Supplementary Figure S8. Experiment 1. (a) Image clusters based on
voxel-response embeddings for S1. (b) Image clusters based on CLIP embed-
dings. The clusters appear to capture semantic properties such as fruit or baked
goods. (c) Image clusters based on ResNet-18 embeddings. The clusters appear
to capture visual properties such as color (e.g., green and orange), global shape
(e.g., round), or image complexity. The two neural-network-derived clustering
patterns show little to no correlation with the brain-derived clusters (the Voxel-
CLIP correlation being 0.030; the Voxel-Resnet-18 correlation being 0.026 –
both being lower than the CLIP-Resnet-18 correlation of 0.256). This suggests
that food-selective regions are organized on the basis of features absent from
deep layers of typical high-performing neural networks.
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Supplementary Figure S9. Experiment 2. Voxels identified as selective
for food for subjects LS1-LS4 shown on each subject’s native surface with a
semi-inflated, bottom view [Top] and an inflated view [Bottom]. Voxels were
identified as selective by testing for the significance of the contrast (p <0.001,
FDR corrected).
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Supplementary Figure S10. Experiment 2. Semi-inflated bottom view
of voxels, summed across LS1-LS4, that have significantly higher activity for
the different contrasts in Experiment 2, on the MNI surface. Significant voxels
were identified similarly to Fig. 5.
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Supplementary Figure S11. Experiment 1. Voxel-wise selectivity for

food and faces viewed in natural scene images. Selectivity was defined as:
preferred - non-preferred

|preferred |+|non-preferred| where the non-preferred baseline activity is the max-

imum activity related to any other category. This is a conservative and less
biased measure of selectivity in that we consider the food or face response
of each voxel relative to the highest response across all other possible cate-
gories for that voxel (rather to a single fixed baseline category). This approach
allows for voxel by voxel variation in selectivity rather than assuming that an
entire region’s voxels respond in an uniform manner. To measure selectivity
for Category c, we compute

βc−maxi,i̸=c βi

|βc|+|maxi,i̸=c βi| , where βi is the weight of the OLS

encoding model corresponding to Category i. Selective voxels for each category
are plotted on inflated views of individual subjects’ brains. To better visual-
ize the largest number of category selective voxels, positive selectivity values
greater than 0.5 and negative selectivity values are not plotted (because nega-
tive selectivity denotes non-preferred category-selective responses that obscure
the preferred category-selective regions; e.g., when measuring food selectivity
for voxels in the FFA, the highest response for a non-food category was typ-
ically for faces and this response was typically higher than for food for that
voxel, thereby producing a negative food selectivity index).
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a

b

Supplementary Figure S12. Experiment 2. Voxel-wise selectivity for

food, faces and places viewed in the localizer images.As in Figure S11, selec-
tivity was defined as: preferred - non-preferred

|preferred |+|non-preferred| where the non-preferred baseline

activity is the maximum activity related to any other category. To measure
selectivity for Category c, we compute

βc−maxi,i̸=c βi

|βc|+|maxi,i̸=c βi| , where βi is the weight

of the OLS encoding model corresponding to Category i. (a) Selective voxels
for each preferred category are plotted on inflated views of individual subjects’
brains. Negative selectivity values are not included on the brain maps because
they obscure the preferred category-selective regions. (b) The distribution of
selectivity values reveals roughly equal preference strength for food, faces, and
places. Voxels showing selectivity for the category being measured are plotted
in aqua, while voxels showing negative selectivity for that category are plotted
in gold – typically representing voxels in other category-selective regions.
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