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ABSTRACT8

Metagenome assembly is an efficient approach to deciphering the "microbial dark matter" in the microbiota based on
metagenomic sequencing, due to the technical challenges involved in isolating and culturing all microbes in vitro. Although
short-read sequencing has been widely used for metagenome assembly, linked- and long-read sequencing have shown their
advancements by providing long-range DNA connectedness in assembly. Many metagenome assembly tools use dedicated
algorithms to simplify the assembly graphs and resolve the repetitive sequences in microbial genomes. However, there remains
no comprehensive evaluation of the pros and cons of various metagenomic sequencing technologies in metagenome assembly,
and there is a lack of practical guidance on selecting the appropriate metagenome assembly tools. Therefore, this paper
presents a comprehensive benchmark of 15 de novo assembly tools applied to 32 metagenomic sequencing datasets obtained
from simulation, mock communities, or human stool samples. These datasets were generated using mainstream sequencing
platforms, such as Illumina and BGISEQ short-read sequencing, 10x Genomics linked-read sequencing, and PacBio and
Oxford Nanopore long-read sequencing. The assembly tools were extensively evaluated against many criteria, which revealed
that compared with the other sequencing technologies, long-read assemblers generated the highest contig continuity but failed
to reveal some medium- and high-quality metagenome-assembled genomes (MAGs). In addition, hybrid assemblers using
both short- and long-read sequencing were promising tools to both improve contig continuity and increase the number of
near-complete MAGs. This paper also discussed the running time and peak memory consumption of these tools and provided
practical guidance on selecting them.

9

Introduction10

During long-term and complex genetic evolution, human and non-human animals have formed an ecosystem of symbiotic11

relationships with diverse microbes. Identifying these microbes and their genome sequences is essential for revealing their12

interactions with the hosts and providing rich information about human health and diseases1–3. The traditional identification13

strategy isolates and cultures the target microbes in vitro, and then each microbe’s genome is sequenced4. However, most14

microbes in some specific conditions, e.g. human gastrointestinal tract5, 6, cannot be cultured in the laboratory, which prevents15

the complete deciphering of the microbial community7. Alternatively, metagenomic sequencing enables the efficient, direct16

sequencing of a mixture of microbial DNAs without the need for microbial isolation, and thus facilitates the deciphering of17

microbial genomes with diverse characteristics. The metagenomic sequencing data is then subjected to metagenome assembly,18

which aims to reconstruct microbial genomes by concatenating the sequencing reads into long genome fragments (contigs).19

Metagenome assembly has been proven to be an effective strategy to explore microbial genomes and their biological functions20

from metagenomic sequencing data8.21

Short-read sequencing is the most prevalent technology adopted in metagenomic studies. Many tools have been developed22

to assemble short-reads from the microbial genomes with imbalanced coverage and to distinguish the origins of reads based on23

their sequence characteristics. For example, Meta-IDBA9 partitions de Bruijn graphs into isolated graph components based24

on their sequence similarities, with each graph component representing a unique species, and then uses each component’s25

consensus sequences to form a draft genome. IDBA-UD10 resolves short repeats from low-depth regions by local assembly26

using the paired-end constraint of short-reads. metaSPAdes11 extends SPAdes12 by incorporating a series of graph simplification27

strategies to separate strains with similar sequences, and applies ExSPAnder13 to detangle the repetitive sequences. MEGAHIT14
28

constructs succinct de Bruijn graphs using k-mers (subsequences of length k) with various k to fill the gaps in low-depth regions29

and resolve genomic repeats. Currently, the most widely used commercial short-read sequencing platforms are designed by30

Illumina (e.g., HiSeq, NextSeq, and MiSeq) and BGI (e.g. BGISEQ-500, MGISEQ-200 and MGISEQ-2000), which provide31

read lengths between 100 bp and 300 bp15. The following three tasks in metagenome assembly cannot be easily achieved32
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using short read lengths, as long-range genomic connectedness cannot be determined: (1) the detection of horizontal gene33

transfers and transposon mobilization between species; (2) the deconvolution of duplicate and conserved sequences in microbial34

genomes; and (3) the generation of high-quality draft genomes for low-abundance species. As such, the advanced sequencing35

technologies, such as linked- and long-read sequencing, combine long-range DNA connectedness with sequencing reads and are36

advantageous for resolving complex genomic regions and generating more complete draft genomes than short-read sequencing.37

Linked-read sequencing technology attaches short-reads with the same barcodes if they are derived from the same long38

DNA fragment; therefore, a barcode may include several "virtual" long-reads. Several linked-read sequencing platforms have39

been developed, such as Illumina TrueSeq Synthetic Long-Reads (SLR), LoopSeq, 10x Genomics (10x), single-tube Long40

Fragment Read (stLFR), and Transposase Enzyme-Linked Long-read Sequencing (TELL-Seq) and some of them have been41

used effectively for metagenome assembly, especially for the linked-reads from 10x platform. For example, Zlitni et al. explored42

temporal strain-level variants in stool samples from a patient during his 2-month hematopoietic cell transplant treatment, by43

assembling 10x metagenomic sequencing data16. Roodgar et al. investigated the responses of human gut microbiome during44

antibiotic treatment using longitudinal 10x linked-read sequencing and assembly17. Two assemblers have been developed for45

10x linked-read sequencing data. cloudSPAdes18 models linked-read metagenome assembly as a shortest cloud superstring46

problem and leverages the reconstructed fragments to simplify the assembly graph. Bishara et al. developed Athena19 to47

improve metagenome assembly by considering co-barcoded reads for local assembly and demonstrated that 10x linked-reads48

outperformed Illumina short-reads and SLR in the assembly of metagenomic data from human stool samples.49

Long-read sequencing technology has recently received increasing attention. Single-molecule long-read sequencing50

platforms, such as the PacBio Single-Molecule Continuous Long Read sequencing (PacBio CLR), the PacBio highly accurate51

long-read sequencing (PacBio HiFi), and the Oxford Nanopore Technologies sequencing (ONT), have been used to assemble52

the genomes of many isolated microbes. Chin et al. implemented an assembly tool based on a hierarchical and greedy strategy53

and demonstrated its ability to assemble the complete genome of Escherichia coli K-12 from the deeply sequenced PacBio54

CLR data20. A follow-up study showed that Nanocorrect and Nanopolish exhibited comparable performance in E. coli genome55

assembly from polished ONT long-reads21. Accordingly, as mentioned, long-read sequencing has recently been applied to56

metagenome assembly. Tsai et al. used PacBio CLR long-reads to assemble the metagenomic sequencing data of human57

skin, and thereby identified a previously uncharacterized Corynebacterium simulans22. Another recent study investigated58

2,267 bacteria and archaea and found that a majority of their genomes could be assembled perfectly using PacBio CLR59

long-reads23. Many software have been developed for long-read metagenome assembly. metaFlye24 extends Flye25 to deal with60

uneven bacterial composition and intra-species heterogeneity by leveraging unique paths in repeat graphs. Canu26 improves61

Celera27, 28 to deal with noisy long-reads by using multiple rounds of reads error-correction. Moss et al. improved the long-read62

sequencing protocol of DNA extraction and developed Lathe to optimize metagenome assembly on ONT data29. Several other63

state-of-the-art long-read assemblers have been released recently, including MECAT230, NECAT31, Shasta32, and wtdbg233,64

but few of them have been tested on metagenome assembly. Nevertheless, there are some limitations to long-read sequencing65

that restrict its practical application in metagenome assembly. First, the high base-error rate of long-read sequencing makes66

it challenging to distinguish strains and substrains with similar sequence characteristics. Second, the high cost of long-read67

sequencing prevents its wide application in large cohort studies.68

Hybrid assembly is an alternative strategy that combines the strengths of both short-reads and long-reads. For example,69

the hybrid assembly tool DBG2OLC34 aligns the contigs assembled from short-reads to long-reads, in which the identifiers70

of aligned contigs are used to represent each long-read. The overlap-layout-consensus approach is then performed on the71

long-reads by matching their contig identifiers. metaFlye has a hybrid assembly module ("--subassemblies") that considers72

the contigs assembled from both short- and long-reads as high-quality long fragments. OPERA-LG35 links and orientates the73

contigs from short-read assembly by paired-end constraint and long-reads support. OPERA-MS36 constructs a scaffold graph74

by linking the contigs assembled from short-reads if they are supported by long-reads. The contigs are grouped into clusters75

based on graph topology and read depths, with each cluster representing one species. Then, by leveraging reference genomes,76

OPERA-MS recognizes contigs derived from the same microbial strain, and OPERA-LG assembles these contigs.77

Currently, the advantages and limitations of existing sequencing platforms and corresponding assembly tools remain78

unclear, and there is an urgent need for practical guidelines on how to select the best platform and tool for specific purposes.79

Sczyrba et al. evaluated several short-read assemblers using the Critical Assessment of Metagenome Interpretation (CAMI)37;80

Meyer et al. added long-read assemblers using CAMI II datasets in a follow-up study38. Latorre-Pérez et al. benchmarked81

long-read assemblers using ONT data from ZymoBIOMICSTM Microbial Communities39. The assembly tools they evaluated82

were incomplete and one-sided, and these studies used datasets from simulation or mock communities, which could not fully83

represent real microbial communities.84

In this study, we benchmarked 15 state-of-the-art tools to generate short-read, linked-read, long-read, and hybrid assemblies85

using metagenomic sequencing datasets from simulation, mock communities, and human stool samples (Fig. 1). This benchmark86

involved comparing the basic contig statistics, including total assembly length (AL for human stool datasets), genome fraction87
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(GF for simulation and mock datasets), and contig N50, NA50, and normalized NGA50 (Methods). We also evaluated88

the metagenome-assembled genomes (MAGs) after contig binning with respect to their continuities (MAG N50), qualities89

(Methods; #MQ: the number of medium-quality MAGs; #HQ: the number of high-quality MAGs; #NC: the number of90

near-complete MAGs), and annotations (the number of MAGs that can be annotated into species). Our results showed that91

the short-read assemblers generated the lowest contig continuity and #NC. MEGAHIT outperformed metaSPAdes on deeper92

sequenced datasets (>100x), and metaSPAdes obtained better results than MEGAHIT on low-complexity datasets. The contig93

N50s of linked-read assemblies were higher than those of short-read assemblies but lower than those of long-read assemblies.94

Athena demonstrated a higher contig N50 than cloudSPAdes and generated the highest #NC among all of the assemblers for95

the metagenomic sequencing data from human stool samples. Long-read assemblers demonstrated the highest contig N50 but96

generated smaller #MQ and #HQ than short- and linked-read assemblers. metaFlye, Canu, and Lathe performed much better97

than the other long-read assemblers. metaFlye generated the highest GFs and ALs for both ONT and PacBio CLR datasets.98

Lathe produced a higher #NC than metaFlye and Canu using ONT data. Hybrid assemblies demonstrated comparable or lower99

contig N50s and generated higher #HQ and #NC than long-read assemblies. metaFlye-subassemblies (with “--subassemblies”)100

generated higher contig N50s and were more stable than the other hybrid assemblers.101

Results102

Metagenomic sequencing datasets from simulation, mock communities, and human stool samples103

In this study, 32 datasets were collected and generated using three sequencing technologies (Methods; Table 1 and Fig. 1):104

short-read (Illumina HiSeq and BGISEQ-500), linked-read (10x Chromium), and long-read (PacBio CLR and ONT) sequencing105

datasets. These comprised the following datasets: (1) Simulation datasets: four CAMI communities with low (CAMIL), medium106

(CAMIM1 and CAMIM2), and high (CAMIH) complexities consisting of available short-reads, simulated 10x linked-reads,107

and simulated ONT long-reads. We merged CAMI datasets with high complexity from five time points into CAMIH to avoid108

insufficient read depth. The 10x linked-reads and ONT long-reads were simulated for the four CAMI communities (Methods).109

(2) Mock datasets from two mock communities: ATCC-MSA-100340 (ATCC20, sequenced by Illumina HiSeq 2500, 10x110

Chromium, and PacBio CLR) and ZymoBIOMICSTM Microbial Community Standard II with log distribution41 (ZYMO,111

sequenced by Illumina HiSeq 1500, ONT GridION, and ONT PromethION). (3) Real datasets: four stool samples from human112

gut microbiome, denoted S1 and S2 (sequenced by Illumina HiSeq 2500, BGISEQ-500, 10x Chromium, and PacBio CLR;113

Supplementary Figure 1), and P1 and P219, 29 (sequenced by Illumina HiSeq 4000, 10x Chromium, and ONT).114

Metagenome assembly on short-read sequencing115

We compared the assembly performance of metaSPAdes and MEGAHIT, the two mainstream short-read assemblers, on Illumina116

short-read sequencing data. The contigs generated by these two tools had comparable GFs (Fig. 2 a-f) and ALs (Fig. 3 a-d) on117

all datasets but nevertheless exhibited unique characteristics on different datasets. MEGAHIT showed better performance on the118

datasets with deeper sequencing depth (>100X; Table 1), such as ZYMO (133X), P1 (383X), and P2 (776X). For these datasets,119

the contigs of MEGAHIT had substantially higher N50s than those of metaSPAdes by 205.90% (ZYMO; Fig. 2 f), 148.60%120

(P1; Fig. 3 c), and 130.35% (P2; Fig. 3 d), respectively. By breaking the contigs at misassemblies, NA50 of MEGAHIT was121

2.08 times higher than that of metaSPAdes on ZYMO (NA50: MEGAHIT = 167.51 kbp, metaSPAdes = 80.58 kbp; Fig. 2122

f; Supplementary Table 1). By comparing the contig continuities of known species in ZYMO, we found that MEGAHIT123

also obtained 1.33 times higher normalized NGA50 than metaSPAdes (Fig. 2 f; Supplementary Figure 2). We grouped the124

contigs from the real datasets into MAGs and classified them based on different qualities (Methods). MEGAHIT produced125

higher #MQ and #HQ on P1 and P2 (#MQ in P1 and P2: MEGAHIT = 21, metaSPAdes = 6; #HQ in P1 and P2: MEGAHIT126

= 4, metaSPAdes = 1; Fig. 4 i-j, m-n) and achieved significantly higher MAG N50s than metaSPAdes (Wilcoxon rank-sum127

test p-value: P1 = 2.79e-5, P2 = 2.36e-3; Fig. 4 l and p; Supplementary Figure 3-4; Supplementary Table 2; Methods). We128

annotated the MAGs into species with a rigorous quality control process (Methods). In P1 and P2, the MAGs from MEGAHIT129

were annotated to seven species, whereas those from metaSPAdes were annotated to only two species (Fig. 5 c-d). metaSPAdes130

obtained much better contig continuity than MEGAHIT from the low- and medium-complexity datasets that were not deeply131

sequenced (<100X), such as CAMIL, CAMIM1, CAMIM2, and ATCC20. Its contig N50s, NA50s, and normalized NGA50s132

were, on average, 1.62, 1.66 and 1.43 times higher than those of MEGAHIT, respectively (Fig. 2 a-c and e; Supplementary133

Figure 5-6).134

By comparing the assemblies using the datasets from Illumina HiSeq 2500 and BGISEQ-500, we observed MEGAHIT and135

metaSPAdes showed a similar trend that the two platforms generated comparable contig contiguity, #MQ, #HQ (Supplementary136

Table 1), and numbers of annotated species on S1 and S2 (Supplementary Figure 7). Their MAGs could be annotated to137

unique species. For example on S1 (Supplementary Figure 7), Sutterella faecalis and Ruminococcus bicirculans were uniquely138

annotated from the metaSPAdes assemblies on Illumina HiSeq 2500 and BGISEQ-500, respectively.139
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Metagenome assembly on linked-read sequencing140

We compared the assemblies generated by cloudSPAdes and Athena on 10x linked-read sequencing data, which revealed that141

cloudSPAdes generated higher GFs than Athena on the simulation datasets (127.69% on average; Fig. 2 g-j) and produced142

higher ALs on the real datasets (average AL: cloudSPAdes = 343.65 Mbp, Athena = 267.55 Mbp; Fig. 3 e-h; Supplementary143

Table 1). cloudSPAdes failed to assemble the ATCC20 linked-read dataset due to insufficient memory (>1TB RAM); similar144

trends of GFs on the ATCC20 dataset were also reported in a previous study18. In the assessments using simulation datasets,145

the contigs from Athena had higher N50s (250.55% on average), NA50s (261.32% on average), and normalized NGA50s146

(115.53% on average) than those from cloudSPAdes (Fig. 2 g-j; Supplementary Figure 5). Tolstoganov et al. also reported147

higher contig N50s and NA50s from Athena on ATCC2018. A similar trend was observed for the real datasets: contig N50s148

(average N50: Athena = 158.92 kbp, cloudSPAdes = 43.16 kbp; Fig. 3 e-h; Supplementary Table 1) and MAG N50s (Wilcoxon149

rank-sum test p-value: S1 = 2.04e-5, S2 = 3.05e-6, P1 = 4.86e-4, P2 = 5.01e-5; Fig. 4 d, h, l and p; Supplementary Figure 3-4150

and 8-9; Supplementary Table 2) from Athena were significantly higher than those from cloudSPAdes. Athena also generated151

substantially more #NC than cloudSPAdes from the real datasets (#NC in total: Athena = 38, cloudSPAdes = 5; Fig. 4 c,152

g, k, and o). A comparable number of species was annotated from the MAGs generated by the two assembly tools, and153

both tools identified unique species (Fig. 5 e-h). For example, Athena identified three unique species (Roseburia intestinalis,154

Phascolarctobacterium faecium, and Desulfovibrio fairfieldensis), while cloudSPAdes identified four unique species (Sutterella155

faecalis, Bifidobacterium adolescentis, Flavonifractor plautii, and a Longibaculum sp.) on the S1 dataset (Fig. 5 e).156

Metagenome assembly on long-read sequencing157

We compared the performances of seven long-read assembly tools using PacBio CLR and ONT data: Shasta, wtdbg2, MECAT2158

(PacBio CLR only), NECAT (ONT only), Canu, metaFlye, and Lathe. Canu, metaFlye, and Lathe generated assemblies with159

significantly higher GFs on the simulation and mock datasets (328.45 times on average; Supplementary Table 1) and the160

assemblies with much longer ALs on all of the real datasets (4.64 times on average; except wtdbg2; Supplementary Table161

1) than the other four tools (Shasta, wtdbg2, MECAT2, and NECAT). This may be because Shasta, wtdbg2, MECAT2, and162

NECAT were not designed for metagenome assembly and may preferentially generate long contigs derived from a single163

species. Therefore, we only included Canu, metaFlye, and Lathe in the subsequent analysis as they generated assemblies with164

reasonable lengths.165

The contigs generated by metaFlye had higher GFs than those generated by Canu and Lathe on most of the simulation and166

mock datasets (1.44 times on average, except Canu on CAMIH; Fig. 2 l-q). metaFlye also generated the highest ALs on the real167

datasets (an average of 1.40 times greater than Canu and Lathe; Fig. 3 i-l). The contig continuities of metaFlye assemblies were168

better than those of the corresponding Lathe assemblies on most datasets sequenced by either PacBio CLR or ONT: metaFlye169

generated higher contig N50s (1.60 times), NA50s (1.27 times), and normalized NGA50s (79.39 times) than Lathe on CAMIH170

(Fig. 2 o; Supplementary Figure 5), and higher contig N50s (average contig N50 on S1, S2 and P1: metaFlye = 199.04 kbp,171

Lathe = 112.63 kbp; Fig. 3 i-k; Supplementary Table 1) and significantly higher MAG N50s (Wilcoxon rank-sum test p-value:172

S1 = 2.27e-4, S2 = 9.85e-4, P1 = 4.83e-2; Fig. 4 d, h and l; Supplementary Figure 3, 8-9; Supplementary Table 2) than Lathe on173

the real datasets (S1, S2, and P1).174

Compared to the assemblies generated by metaFlye and Lathe, the assemblies generated by Canu had higher (or comparable)175

contig continuity on ONT data, but lower (or comparable) continuity on PacBio CLR data. Eight datasets were generated176

by ONT, including CAMIL, CAMIM1, CAMIM2, CAMIH, ZYMO (GridION and PromethION), P1, and P2. Canu generated177

assemblies with higher normalized NGA50s (4.77 times on average) than metaFlye on the four CAMI datasets and generated178

assemblies with higher contig N50s (16.40 times on average) and NA50s (8.89 times on average) than metaFlye on the GridION179

and PromethION datasets from ZYMO (Fig. 2 l-o and q; Supplementary Figure 5; Supplementary Table 1). Canu also generated180

assemblies with higher contig continuity than those generated by metaFlye and Lathe on P1 and P2 (average contig N50s on181

P1 and P2: Canu = 233.62 kbp, metaFlye = 189.79 kbp, Lathe = 102.91 kbp; Fig. 3 k-l; Supplementary Table 1). Regarding182

the datasets sequenced by PacBio CLR (ATCC20, S1, and S2), metaFlye and Lathe produced assemblies with substantially183

higher contig N50s (124.33% on average), NA50s (139.95% on average), and normalized NGA50s (149.04% on average) than184

Canu on ATCC20 (Fig. 2 p; Supplementary Figure 10); metaFlye produced assemblies with higher contig N50s (171.32% on185

average) and MAG N50s (Wilcoxon rank-sum test p-value: S1 = 7.45e-5, S2 = 3.77e-8) than Canu on S1 and S2 (Fig. 3 i-j;186

Fig. 4 d and h; Supplementary Figure 8-9; Supplementary Table 2).187

We further evaluated the MAG qualities and annotations of the assemblies generated by these three tools. For the PacBio188

CLR datasets from S1 and S2, metaFlye and Canu generated comparable #HQ and #NC, which were much larger than those189

generated by Lathe (#HQ: metaFlye = 21, Canu = 20, Lathe = 11; #NC: metaFlye = 14, Canu = 16, Lathe = 9; Fig. 4 b-c, f-g).190

They also generated more MAGs that were annotated to species (metaFlye = 26, Canu = 22, Lathe = 12; Fig. 5 i-j). For the191

ONT datasets from P1 and P2, the opposite trend was observed in the MAG qualities (#HQ: Lathe = 5, Canu = 0, metaFlye =192

0; #NC: lathe = 5, metaFlye = 0, Canu = 0; Fig. 4 j-k, n-o) and annotated species (Lathe = 9, metaFlye = 4, Canu = 1; Fig. 5193
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k-l). As the core assembly algorithms of Lathe are the same as those of Canu and metaFlye, the above observations imply194

that parameter optimization and sequencing error-correction are vital for ONT data assembly. We also found that all the three195

assembly tools identified uniquely annotated species, e.g., metaFlye, Canu, and Lathe uniquely reported Alistipes sp. (S1),196

Bacteroides uniformis (S1), and Dialister pneumosintes (P1), respectively (Fig. 5 i and k).197

Metagenome hybrid assembly on short- and long-read sequencing198

We evaluated the performance of four hybrid assembly tools, namely, metaFlye-subassemblies (Methods), DBG2OLC, OPERA-199

LG, and OPERA-MS, on short- and long-read sequencing datasets. Compared with the other tools, metaFlye-subassemblies200

produced assemblies with significantly higher GF (167.16% on average; Fig. 2 v) on ATCC20 and significantly higher AL on P1201

(182.44% on average; Fig. 3 o) and P2 (160.87% on average; Fig. 3 p). The four hybrid assembly tools generated comparable202

GFs and ALs on all of the other datasets (Fig. 2 r-u and w; Fig. 3 m-n). metaFlye-subassemblies and DBG2OLC generated203

assemblies with substantially higher contig continuity than OPERA-MS and OPERA-LG on most datasets. For example,204

metaFlye-subassemblies produced assemblies with higher contig N50s (2.26 times on average), NA50s (2.61 times on average),205

and normalized NGA50s (4.92 times on average; Supplementary Figure 11-13) than OPERA-LG and OPERA-MS on ATCC20206

and ZYMO (Fig. 2 v-w). metaFlye-subassemblies also obtained assemblies with higher contig N50s (2.97 times on average;207

Fig. 3 m-p) and MAG N50s than OPERA-LG and OPERA-MS (the Wilcoxon rank-sum test p-values were S1: OPERA-LG =208

3.27e-5 and OPERA-MS = 1.65e-4; S2: OPERA-LG = 1.60e-4 and OPERA-MS = 1.05e-5; P1: OPERA-LG = 8.02e-7 and209

OPERA-MS = 9.90e-14; P2: OPERA-LG = 2.37e-3 and OPERA-MS = 1.79e-10; Fig. 4 d, h, l and p; Supplementary Figure210

3-4, 8-9; Supplementary Table 2) on all of the real datasets. Furthermore, metaFlye-subassemblies had higher contig N50s211

(27.99 times on average), NA50s (19.18 times on average), and normalized NGA50s (6.84 times on average) than DBG2OLC212

assemblies on the low-complexity mock datasets such as ATCC20 and ZYMO (Fig. 2 v-w; Supplementary Figure 11-13;213

Supplementary Table 1).214

We observed inconsistent trends in the MAG qualities of hybrid assemblies from different sequencing platform combinations.215

OPERA-MS and OPERA-LG generated assemblies with higher #HQ than those generated by the other tools on S1 and S2 (#HQ:216

OPERA-MS = 36, OPERA-LG = 40, metaFlye-subassemblies = 18, DBG2OLC = 22; Fig. 4 b and f), which were sequenced217

by Illumina and PacBio CLR. OPERA-MS assemblies showed higher #NC values than those generated by OPERA-LG218

(OPERA-MS = 20, OPERA-LG=0; Fig. 4 c and g) from these two samples. For P1 and P2 sequenced by Illumina and ONT,219

metaFlye-subassemblies obtained assemblies with higher #HQ and #NC than the other tools (#HQ: metaFlye-subassemblies =220

6, DBG2OLC = 1, OPERA-MS = 0, OPERA-LG = 4; #NC: metaFlye-subassemblies = 6, DBG2OLC = 1, OPERA-MS = 0,221

OPERA-LG = 1; Fig. 4 j-k, n-o). The four assembly tools identified comparable numbers of annotated species on S1 and S2222

(metaFlye-subassemblies = 20, DBG2OLC = 21, OPERA-MS = 20, OPERA-LG = 20; Fig. 5 m-n). metaFlye-subassemblies223

identified more annotated species than the other three tools on P1 and P2 (metaFlye-subassemblies = 14, DBG2OLC = 8,224

OPERA-MS = 1, OPERA-LG = 7; Fig. 5 o-p). The MAGs generated by various tools were also annotated to unique species,225

e.g., R. intestinalis, Clostridioides difficile, Desulfovibrio fairfiendensis, and Butyricimonas faecalis were uniquely identified226

from the assemblies of metaFlye-subassemblies, DBG2OLC, OPERA-MS, and OPERA-LG on S1 (Fig. 5 m).227

Metagenome assembly on different sequencing strategies228

We compared the best assembly statistics (e.g. AL, GF, N50, #HQ, and the number of annotated species; Fig. 6-7; Supplementary229

Table 3) of the four sequencing strategies discussed above: (1) short-read sequencing, (2) linked-read sequencing, (3) long-read230

sequencing, and (4) hybrid sequencing (short- and long-read sequencing). We observed the GFs and ALs of hybrid assemblies231

were higher than or comparable to those generated from short-read or long-read assemblies for all datasets (Fig. 6). The contig232

continuities of hybrid and linked-read assemblies were lower than or comparable with long-read assemblies, and significantly233

better than those from short-read assemblies (Fig. 6).234

Nevertheless, linked-read assemblies had the highest #MQ (166), #HQ (70), #NC (38) and identified the highest number of235

annotated species (55) in all of the real datasets (Fig. 7; Supplementary Table 3). These values were much higher than those of236

the short-read assemblies (#MQ = 77, #HQ = 43, #NC = 4, number of annotated species = 21; Fig. 7; Supplementary Table 3),237

the long-read assemblies (#MQ = 64, #HQ = 26, #NC = 21, number of annotated species = 36; Fig. 7; Supplementary Table 3),238

and the hybrid assemblies (#MQ = 87, #HQ = 46, #NC = 26, number of annotated species = 38; Fig.7; Supplementary Table239

3). Notably, the assembly generated from each type of sequencing strategy could identify unique species, implying that these240

assemblies were somewhat complementary; for example, R. hominis, P. faecium, Alistipes onderdonkii, and R. intestinalis were241

uniquely annotated by the short-read, linked-read, long-read, and hybrid assemblies on the S2 dataset, respectively (Fig. 7 b).242

Evaluation of computational time and resources243

We compared the running time (real time) and peak memory consumption (maximum resident set size [RSS]) of the assembly244

tools applied to the simulation datasets (Fig. 8). We found that metaSPAdes had a longer running time (1.92 times on average)245

and substantially larger memory usage (8.72 times on average) than MEGAHIT for short-read assembly. cloudSPAdes had a246
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significantly longer running time (5.80 times on average) and consumed higher peak memory (8.73 times on average) than247

Athena for linked-read assembly. Canu required more than 7 days to complete the metagenome assembly on any of the CAMI248

datasets, which was more than twice as long as the other long-read assembly tools (we excluded Canu in Fig. 8 because it249

exceeded our server wall-clock time). Of the other long-read assemblers, Lathe and metaFlye had the highest peak memory250

consumption (3.57 times on average) and the longest running time (5.82 times on average), respectively (except for CAMIH).251

Of the hybrid assembly tools, DBG2OLC (6.80 times slower than the other tools on average) and metaFlye-subassemblies252

(9.30 times faster than the other tools on average) were the slowest and fastest tools, respectively. OPERA-MS and OPERA-LG253

had substantially higher peak-memory consumption than metaFlye-subassemblies and DBG2OLC (2.58 times on average). In254

addition, the trends in the CPU times recorded for all of these assembly tools were the same as the trends in the real times255

(Supplementary Figure 14).256

Discussion257

Metagenome assembly is the most straightforward way to identify the "microbial dark matter" from the microbiota and is258

therefore a core analytical method. Many metagenome assembly tools have been developed to analyze the data from various259

sequencing technologies, but there lacks an independent, comprehensive, and up-to-date investigation of these tools. We260

benchmarked the performance of the 15 most widely used assemblers on simulation, mock, and real datasets with diverse261

complexities and provided practical guidance for tool selection.262

Recent studies42–44 have demonstrated the applicability of representing microbial genomes using MAGs generated from263

large short-read metagenomic sequencing cohorts. Nevertheless, the short-read assembly usually generates highly fragmented264

contigs and poor quality MAGs. By comparing MEGAHIT and metaSPAdes, we observed that MEGAHIT outperformed265

metaSPAdes in generating assemblies from deeply sequenced datasets (>100x), probably because MEGAHIT has an optimized266

data structure and algorithms to analyze large datasets. However, metaSPAdes performed better than MEGAHIT in generating267

assemblies from low-complexity datasets, which is consistent with the observations from a previous study38.268

Linked-reads are short-reads that are labeled with barcodes to facilitate the linking of short-reads if they are derived from269

the same long DNA fragments. We found that linked-read assemblies had consistently better contig continuity than short-read270

assemblies but sometimes worse continuity than long-read assemblies. This is probably because linked-reads help to resolve the271

ambiguous branches and circles from repetitive sequences in assembly graphs18, 19. However, linked-reads nevertheless fail to272

capture the tandem repeats and highly variable regions presented within long fragments. Furthermore, we observed that Athena273

generated assemblies containing contigs with higher continuity and higher #NC than those generated by cloudSPAdes, although274

cloudSPAdes generated more sequences. The #NCs from linked-read assemblies were higher than those from long-read275

assemblies, which may be attributable to the high read depth and the low base-error rate of linked-read sequencing.276

Long-read assemblers can generate the most continuous contigs, but individual contigs usually do not represent circular277

microbial genomes and sometimes cannot be grouped into high-quality MAGs. This may be because (1) high-molecular-weight278

DNA cannot be easily extracted from some microbes19; (2) high sequencing costs prevent sufficient long-reads being obtained;279

and (3) error-prone long-reads result in low-quality MAGs. In this study, we compared the performances of seven state-of-the-art280

long-read assemblers and found that Canu, metaFlye, and Lathe performed substantially better than the other assemblers.281

metaFlye generated assemblies with the highest GF and AL, consistent with the observation of a previous study39. Lathe282

generated assemblies with significantly more #NC than metaFlye and Canu from the ONT datasets, suggesting that sequencing283

error-correction is an essential step to improve MAG quality generated from ONT long-reads.284

Hybrid assembly has been proposed as a way to correct assembly errors from error-prone long-reads by adding short-reads285

with high base quality. In this study, the hybrid assemblies had comparable or lower contig continuity than those from286

long-read assemblers, but the former had higher #NC. This observation is in line with our expectations, as the short-reads were287

mainly used to reduce misassemblies rather than fill gaps between contigs. We also observed that the contig continuities from288

overlap-layout-consensus tools (metaFlye-subassemblies and DBG2OLC) were better than those generated by de Bruijn graph289

tools (OPERA-LG and OPERA-MS).290

Reconstructing the genomes of low- (0.1%-1%) and ultra-low (<0.1%) abundance species is a challenging task45, 46. We291

evaluated the performances of different assemblers in assembling the genomes of species with low- and ultra-low abundance in292

ATCC20 (Supplementary Table 4). Short-read assemblers were unable to assemble any genomes of low-abundance species293

(GF>50%; Supplementary Figure 6), whereas all of these species were identified by linked-read (Athena; Supplementary294

Table 4), long-read (metaFlye and Shasta; Supplementary Figure 10), and hybrid assemblers (metaFlye-subassemblies and295

DBG2OLC; Supplementary Figure 11). For the five low-abundance species in ATCC20, the long-read (metaFlye) and hybrid296

(metaFlye-subassemblies) assemblers generated higher contig continuity than Athena on the linked-reads (Supplementary297

Table 4). Only one (ATCC_8482) of the five ultra-low abundance species was obtained by long-read (Lathe and metaFlye;298

Supplementary Figure 10) and hybrid (metaFlye-subassembly; Supplementary Figure 11) assemblers, suggesting that ultra-low299

abundance species are still difficult to be assembled even if long-reads have been adopted.300
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Recently, PacBio HiFi technology has shown its great success in deciphering microbial communities47. We also compared301

the long-read assemblers on the PacBio HiFi dataset from ATCC20. Similar to our findings for PacBio CLR, we observed302

that metaFlye, Lathe, and Canu generated substantially higher GFs than Shasta, wtdbg2 and MECAT2 (8.98 times on average,303

Supplementary Table 1). metaFlye and Lathe obtained significantly higher N50s (2.50 times on average), NA50s (2.06 times on304

average), and normalized NGA50s (1.37 times on average) than Canu (Supplementary Table 1, Supplementary Figure 15).305

We found that the long-read assemblers on PacBio HiFi and CLR sequencing platforms produced comparable GFs, N50s,306

NA50s, and normalized NGA50s (Supplementary Table 1). The misassemblies generated by Canu on PacBio CLR reads were307

substantially higher (2.17 times on average) than on PacBio HiFi reads (Supplementary Table 1).308

In this study, we thoroughly investigated the pros and cons of the metagenome assembly tools using datasets generated by309

a range of sequencing technologies – short-read, long-read, linked-read, and hybrid sequencing – and we provide practical310

guidelines to assist end-users to select the best strategy for their purposes. We believe that our findings will be invaluable to the311

microbiome research community and will shed light on future genome-based microbiome-wide association studies.312

Methods313

Simulate linked-reads and ONT long-reads for CAMI datasets314

We simulated 10x linked-reads and ONT long-reads using LRTK-SIM (v201912229)48 and CAMISIM (v1.2-beta)49 given315

the taxonomic composition in CAMI datasets. The simulated total nucleotides were the same as those of the available four316

short-read CAMI datasets.317

Sample preparation and sequencing for S1 and S2318

The S1 and S2 datasets were obtained from two subjects with a typical Chinese diet and who had not taken any antibiotics,319

probiotics, or prebiotics in the three months prior to the sample collection. Their stool samples were collected, aliquoted, and320

stored at -80°C until analysis. Total microbial DNA was extracted using the QIAamp DNA stool mini kit (Qiagen, Valencia,321

CA, USA) according to the manufacturer’s protocol. For short-read sequencing, fecal microbial DNA of the two subjects was322

sequenced by paired-end sequencing with a coverage of more than 30 million reads per sample using Illumina HiSeq 2500323

(Illumina, CA, USA) and BGISEQ-500 (BGI, ShenZhen, China), respectively. For linked-read sequencing, we followed the324

strategies described by Bishara et al.19 for library preparation on a 10x Chromium System (10x Genomics, CA, USA) and325

performed sequencing on an Illumina HiSeq 2500 (Illumina, CA, USA). For long-read sequencing, the SMRTbell libraries were326

prepared with the 20-kb Template Preparation using BluePippinTM Size selection system (15-kb size cutoff) protocol and were327

then sequenced in SMRT cells (Pacific Biosciences, CA, USA) with magnetic bead loading and P4-C2 or P6-C4 chemistry.328

Metagenome assembly329

We used MEGAHIT (v1.2.9)14 and metaSPAdes (v3.15.0)11 for short-read assembly; cloudSPAdes (v3.12.0-dev)18 and Athena330

(v1.3)19 for linked-read assembly; Shasta (v0.7.0)32, wtdbg2 (v2.5)33, MECAT2 (v20190314)30, NECAT (v0.01)31, metaFlye331

(v2.8.3)24, Canu (v2.1.1)26, and Lathe (v20210210)29 for long-read assembly; and DBG2OLC (v20200724)34, and metaFlye332

(v2.8.3)24, OPERA-LG (v2.0.6)35, and OPERA-MS (v0.8.3)36 for hybrid assembly. To enable the hybrid mode of metaFlye333

(metaFlye-subassemblies), we combined the contigs assembled from short-reads (metaSPAdes) and long-reads (metaFlye)334

using the “--subassemblies” option. We used “--pacbio-hifi” for metaFlye HiFi assembly47.335

Most of the assembly tools were run using default parameters, but we adjusted the parameters in the following cases to avoid336

out of memory issues: (1) metaFlye on CAMIH was run with “flye --asm-coverage 50”; and (2) NECAT on CAMIH was run with337

“MIN_READ_LENGTH=8000”. All commands are available at https://github.com/ZhangZhenmiao/metagenome_assembly.338

The running times (user, system, and real times) and the maximum peak memory (RSS) consumptions of the assembly tools339

were retrieved using the Linux command “/usr/bin/time -v”. All of the assembly tools were run on Linux machines with a dual340

64-core AMD EPYC 7742 2.25GHz base clock speed 256MB L3 cache CPU with 1 TB memory.341

Contig statistics342

We generated AL, contig N50, and MAG N50 by QUAST (v5.0.2)50 after removing the contigs shorter than 1 kb. We enabled the343

MetaQUAST mode51 to obtain contig NA50 and NGA50 for each species from the datasets for which reference genomes were344

available. We used the parameter "--fragmented --min-alignment 500 --unique-mapping" in MetaQUAST to disable ambiguous345

alignments. To compare NGA50s across different samples, we defined normalized NGA50 by averaging NGA50/genome size346

across all of the species in the sample.347

Contig binning and MAG qualities348

To prepare the inputs of MetaBat252 for contig binning, we used BWA (v0.7.17)53 and minimap2 (v2.17)54 to align short-reads349

(or linked-reads) and long-reads to the contigs, respectively. Minimap2 used the parameters “-ax map-pb” and “-ax map-ont” to350
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align PacBio CLR and ONT reads, respectively. For hybrid assembly, the short-read alignment was adopted as the input of351

MetaBat2. The alignment file was sorted by coordinates using SAMtools (v1.9)55, and the contig coverage was extracted by the352

"jgi_summarize_bam_contig_depths" program in MetaBat2. MetaBat2 (v2.12.1)52 was used to group the contigs into MAGs353

using both contig coverage and sequence characteristics. We explored the single-copy gene completeness and contamination354

of each MAG using CheckM (v1.1.2)56. The transfer RNAs (tRNAs) and ribosomal RNAs (5S, 16S, and 23S rRNAs) were355

detected by ARAGORN (v1.2.38)57 and barrnap (v0.9)58, respectively. MAGs were defined as high-quality (completeness356

> 90%, contamination < 5%), medium-quality (completeness ≥ 50%, contamination < 10%), or low-quality (otherwise).357

Near-complete MAGs were those high-quality MAGs with 5S, 16S, and 23S rRNAs, and at least 18 tRNAs59.358

Annotate MAGs into species359

We removed poorly assembled MAGs with contig N50s < 50 kbp, completeness < 75%, or contamination > 25%, and360

annotated the contigs in MAGs with Kraken2 (v2.1.2)60. To determine the dominant species identified for each MAG, we used361

"assign_species.py" from "metagenomics_workflows"61, which has been adopted in previous studies19, 29. dRep62 was used to362

remove the redundant MAGs from the same species.363

Data availability364

The CAMI short-reads were downloaded from "1st CAMI Challenge Dataset 1 CAMI_low", "1st CAMI Challenge Dataset 2365

CAMI_medium" and "1st CAMI Challenge Dataset 3 CAMI_high" of CAMI challenge website. The other available datasets366

were downloaded from NCBI Sequence Read Archive (SRA). The Illumina HiSeq 2500 short-reads, 10x linked-reads and367

PacBio CLR long-reads of ATCC20 were available with the accession codes SRR8359173, SRR12283286 and SRR12371719,368

respectively. We also used the PacBio HiFi long-reads of ATCC20 from SRR9202034 and SRR9328980. The Illumina369

HiSeq 1500 short-reads, ONT GridION and ONT PromethION long-reads of ZYMO were collected from ERR2935805,370

ERR3152366 and ERR3152367, respectively. The Illumina HiSeq 4000 short-reads (P1: SRR6788327, SRR6807561; P2:371

SRR6788328, SRR6807555), 10x linked-reads (P1: SRR6760786 ; P2: SRR6760782) and ONT long-reads (P1: SRR8427258;372

P2: SRR8427257) of P1 and P2 were also downloaded from SRA. The Illumina HiSeq 2500 short-reads, 10x linked-reads, and373

long-reads of S1 and S2 are available in SRA (PRJNA841170).374
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Figure 1. Data and workflow used to benchmark 15 metagenome assembly tools. Preprocessing: We collected 32 datasets
generated by short-read, linked-read, and long-read sequencing from simulation, mock communities and four human stool
samples, which were used to evaluate the performances of 15 de novo assembly tools. Evaluation: The following contig
statistics were used to evaluate the assemblies: total assembly length (AL), genome fraction (GF), contig N50, NA50, and
normalized NGA50. The assemblies generated from the real datasets were evaluated by metagenome-assembled genome
(MAG) N50s; the numbers of medium-quality (#MQ), high-quality (#HQ), and near-complete (#NC) MAGs; and the numbers
of annotated species.
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Figure 2. Contig statistics for the assemblies generated from the simulation and mock datasets (a-f for short-read assemblies;
g-k for linked-read assemblies; l-q for long-read assemblies; r-w for hybrid assemblies). The long-reads used in q and w were
sequenced by ONT GridION.
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Datasets Sequencing
Platforms

Sources Amount of se-
quencing (G)

Sequencing
Depth (X)

Average Read
Length (bp)

Community composi-
tion

Simulation

CAMIL

Illumina HiSeq CAMI I 15.0 95 150
40 genomes and 20
circular elements3710x Chromium Simulation 15.0 95 150

ONT Simulation 15.0 95 4,194

CAMIM1

Illumina HiSeq CAMI I 15.0 26 150
132 genomes and 100
circular elements3710x Chromium Simulation 15.0 26 150

ONT Simulation 15.0 26 4,217

CAMIM2

Illumina HiSeq CAMI I 15.0 26 150
132 genomes and 100
circular elements3710x Chromium Simulation 15.0 26 150

ONT Simulation 15.0 26 4,186

CAMIH

Illumina HiSeq CAMI I 75.0 27 150
596 genomes and 478
circular elements3710x Chromium Simulation 75.0 27 150

ONT Simulation 75.0 27 4,112

Mock

ATCC20
Illumina HiSeq 2500 SRR8359173 1.3 19 125

20 strains4010x Chromium SRR12283286 108.7 1,622 150
PacBio CLR SRR12371719 253.5 3,784 8,394

ZYMO
Illumina HiSeq 1500 ERR2935805 9.7 133 101

10 species41ONT GridION ERR3152366 16.5 226 4,501
ONT PromethION ERR3152367 153.7 2,105 4,446

Real

S1

Illumina HiSeq 2500 This study 11.6 29 150
Human gut
microbiome

BGISEQ-500 This study 16.8 42 100
10x Chromium This study 58.7 147 150
PacBio CLR This study 6.3 16 8,878

S2

Illumina HiSeq 2500 This study 11.4 34 150
Human gut
microbiome

BGISEQ-500 This study 15.0 44 100
10x Chromium This study 56.1 165 150
PacBio CLR This study 8.4 25 8,973

P1
Illumina HiSeq 4000

SRR6788327,
SRR6807561

76.6 383 150
Human gut
microbiome10x Chromium SRR6760786 35.8 179 150

ONT MinION SRR8427258 11.4 57 2,838

P2
Illumina HiSeq 4000

SRR6788328,
SRR6807555

77.6 776 150
Human gut
microbiome10x Chromium SRR6760782 32.6 326 150

ONT MinION SRR8427257 6.1 61 1,800

Table 1. The simulation, mock, and real datasets used to evaluate the performance of metagenome assembly tools. The
PacBio CLR dataset of ATCC20 was downsampled to 50% to avoid out of memory issues.
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Figure 3. Contig statistics for the assemblies generated from real datasets (a-d for short-read assemblies; e-h for linked-read
assemblies; i-l for long-read assemblies; m-p for hybrid assemblies). The short-reads used in a and b were generated by
Illumina HiSeq 2500.
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Figure 4. Numbers of medium-quality, high-quality, and near-complete metagenome-assembled genomes (MAGs) and the
MAG N50 values for the assemblies generated from the real datasets (a-d for S1; e-h for S2; i-l for P1; m-p for P2). The
short-reads used in a-d and e-h were generated by Illumina HiSeq 2500.
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Figure 5. MAG annotations of the assemblies generated from the real datasets (a-d for short-read assemblies; e-h for
linked-read assemblies; i-l for long-read assemblies; m-p for hybrid assemblies). The N50/genome draft length was used to
evaluate the continuity of MAGs. The short-reads used in a and b were sequenced by Illumina HiSeq 2500.
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Figure 6. Contig statistics for the assemblies generated from simulation datasets (a-d); mock datasets (e-f); and real datasets
(g-j).
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Figure 7. MAG annotations of the assemblies generated from real datasets with different sequencing strategies.
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Figure 8. Computational resources (real time and resident set size [RSS]) consumed by the assembly tools in analyzing CAMI
datasets. metaFlye and NECAT were not used for the analysis of CAMIH because it was found that they exceeded the
maximum memory limitation.
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