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ABSTRACT 

 
The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial 

for the clearance of infections and the response to cancer immunotherapy. This process 

requires epitopes to be presented on class I Human Leukocyte Antigen (HLA-I) 

molecules and recognized by the T-Cell Receptor (TCR). Machine learning models 

capturing these two aspects of immune recognition are key to improve epitope 

predictions. Here we assembled a high-quality dataset of naturally presented HLA-I 

ligands and experimentally verified neo-epitopes. We then integrated these data with 

new algorithmic developments to improve predictions of both antigen presentation and 

TCR recognition. Applying our tool to SARS-CoV-2 proteins enabled us to uncover 

several epitopes. TCR sequencing identified a monoclonal response in effector/memory 

CD8+ T cells against one of these epitopes and cross-reactivity with the homologous 

SARS-CoV-1 peptide. 
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Introduction 

 
CD8+ T cells have the ability to eliminate infected or malignant cells and play a key 

role in infectious diseases and cancer immunotherapy. CD8+ T-cell recognition is 

initiated by the binding of the T-cell Receptor (TCR) to peptides, referred to as epitopes, 

displayed on class I human leukocyte antigens (HLA-I) molecules. Detailed knowledge 

of class I epitopes in cancer and infectious diseases has several translational and clinical 

applications. Such epitopes can be used to design vaccines that target the most relevant 

epitopes, including neo-epitopes (i.e., peptides derived from non-synonymous genetic 

alterations) in cancer (Ott et al., 2017; Sahin et al., 2017, 2020). These epitopes can also 

be used to select TCRs, study them and reinfuse these TCRs into patients as part of 

adoptive T-cell therapy (Rosenberg and Restifo, 2015). Unfortunately, identifying 

epitopes in cancer or infectious diseases is challenging because of the very high number 

of possible candidates and the diversity of HLA-I alleles. For instance, for each non-

synonymous point mutation in a tumor, up to 38 8- to 11-mer peptides containing the 

mutated residue may be immunogenic. Similarly, the number of potential class I 

epitopes of a given length in a pathogen is roughly equal to the length of the proteome 

of this pathogen. Major improvements have been done for experimentally screening 

potential epitope candidates, either with peptide pools (Tarke et al., 2021) or tandem 

mini-genes (Parkhurst et al., 2017; Tran et al., 2015). Nevertheless, the most common 

approach to identify new epitopes is to preselect them based on HLA-I ligand 

predictors. 

HLA-I molecules are encoded by three genes (HLA-A, -B and -C). These genes are 

highly polymorphic in human and different alleles are characterized by specific binding 

motifs and specific peptide length distributions in their ligands (Gfeller and Bassani-

Sternberg, 2018). Binding motifs mainly reflect amino acids favorable for binding to 

HLA-I molecules at specific positions of the ligands. Peptide length distributions 

(typically from 8- to 14-mers with a preference for 9-mers for most alleles) capture both 

the binding preferences of HLA-I molecules as well as the skewed length distribution 

of peptides available in the endoplasmic reticulum for loading onto HLA-I molecules 

(Trolle et al., 2016).  

The specificity of HLA-I binding motifs and peptide length distributions greatly 

constrains the repertoire of potential epitopes. As such, computational tools that 
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accurately capture these two features of antigen presentation have been developed to 

narrow down the list of potential epitopes to be experimentally tested. Historically, 

predictors HLA-I ligands were mainly trained on peptides tested experimentally in 

binding assays (Peters et al., 2020), with the caveat that many of these peptides had 

been pre-selected based on previous versions of the predictors. More recently, naturally 

presented HLA-I ligands identified by mass spectrometry (MS) based HLA-I 

peptidomics provided a rich source of information about the rules of antigen 

presentation and the specificity of HLA-I molecules (Abelin et al., 2017; Alvarez et al., 

2019; Bassani-Sternberg and Gfeller, 2016; Bassani-Sternberg et al., 2017; Di Marco 

et al., 2017; Sarkizova et al., 2019). The number of HLA-I ligands identified by this 

technology, both in mono-allelic and poly-allelic samples, surpasses the one from 

binding assays and HLA-I peptidomics data are now included in the training of most 

HLA-I ligand predictors (Gfeller et al., 2018; O’Donnell et al., 2020; Pyke et al., 2021; 

Reynisson et al., 2020; Sarkizova et al., 2019; Shao et al., 2020). For poly-allelic 

samples, motif deconvolution has been used to identify HLA-I binding motifs and 

determine allelic restriction of HLA-I ligands without relying on HLA-I ligand 

predictors (Alvarez et al., 2019; Andreatta et al., 2017; Bassani-Sternberg and Gfeller, 

2016). 

Over the years, several attempts have been made to integrate additional features in 

epitope predictions linked to antigen presentation and TCR recognition. For instance, 

gene expression and protein abundance were shown to improve HLA-I ligand and class 

I epitope predictions (Abelin et al., 2017; Koşaloğlu-Yalçın et al., 2022; Sarkizova et 

al., 2019). Predictions of cleavage or antigen transport properties were explored 

(Stranzl et al., 2010). The concept of antigen presentation hotspot, as determined by the 

analysis of HLA-I peptidomics data, was also shown to improve predictions (Müller et 

al., 2017). Some studies further attempted to integrate TCR recognition propensities in 

epitope predictions, for instance by investigating the role of dissimilarity-to-self or 

foreignness (Balachandran et al., 2017; Duan et al., 2014; Łuksza et al., 2017; Wells et 

al., 2020). We and others observed that specific amino acids found in epitope residues 

more likely to interact with the TCR increase the propensity for TCR recognition (Calis 

et al., 2013; Chowell et al., 2015; Schmidt et al., 2021). 

In this work, we compiled and curated a large dataset of HLA-I ligands and neo-

epitopes, and trained predictors of antigen presentation and TCR recognition. Applying 

these tools to SARS-CoV-2 proteins enabled us to predict and validate several epitopes, 
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which we characterize in terms of TCR functional avidity, clonality and cross-

reactivity. 

 

Results 
 

Integration and curation of HLA-I peptidomics data reveal binding motifs and 

peptide length distributions for more than hundred alleles 

To improve predictions of class I antigen presentation, we manually compiled recent 

studies of naturally presented HLA-I ligands profiled by mass spectrometry. Our 

dataset covers 24 studies for a total of 244 samples (see Dataset S1). All data were 

retrieved from the original publications and were not filtered by any HLA-I ligand 

predictor, ensuring that our dataset is not biased by such filtering. All samples were 

processed with the motif deconvolution tool MixMHCp and shared motifs across 

samples containing the same HLA-I allele were annotated to this allele, following our 

previously established approach (see example in Figure 1A) (Bassani-Sternberg and 

Gfeller, 2016; Bassani-Sternberg et al., 2017). All motifs in all samples were manually 

verified, and samples or alleles for which motif deconvolution results were ambiguous 

were not considered. This enabled us to derive reliable binding motifs and peptide 

length distributions for 119 HLA-I alleles, supported by a total of 384,070 peptides 

(Dataset S2, see examples in Figure 1B). Motifs for HLA-I alleles identified in mono-

allelic and poly-allelic samples were highly similar (Figure S1). Peptide length 

distributions for alleles in mono-allelic samples displayed a slightly lower fraction of 

9-mers and a slightly higher fraction of peptides of other lengths compared to those 

observed poly-allelic samples (Figure 1C). 

 In addition to identifying binding motifs and peptide length distributions for the 

different alleles expressed in a sample, motif deconvolution is useful to remove 

predicted contaminants that can arise from wrongly identified spectra or experimental 

contaminations (Andreatta et al., 2017; Gfeller et al., 2018). As previously reported 

(Gfeller et al., 2018), the fraction of predicted contaminants is especially large in 8-

mers and 11- to 14-mers both in mono-allelic and poly-allelic samples, representing for 

instance more than 50% of 14-mers (Figure 1D, see specific examples in Figure S2A). 

Predicted contaminants include peptides with trypsin-like motifs or from other HLA-I 

alleles (see examples in Figure 1A and Figure S2B). Motif deconvolution is also 
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powerful to pinpoint putatively erroneous HLA-I typing (Figure S2C). These 

observations demonstrate the importance of performing careful quality-control before 

using HLA-I peptidomics data to train predictors (Fritsche et al., 2021). 

 

Models of HLA-I binding specificities and peptide length distributions improve 

predictions of naturally presented HLA-I ligands 

To improve predictions of class I antigen presentation, we integrated these data into 

the training of our HLA-I ligand predictor MixMHCpred and further refined the 

modelling of peptide length distributions (see Methods). As with most HLA-I ligand 

predictors, the final score of a peptide is expressed as a %rank, which represents how 

the predicted binding of a peptide compares to the one of random peptides from the 

human proteome (see Methods). To benchmark the new version of MixMHCpred 

(v2.2) we used two external datasets. The first one consists of 10 HLA-I peptidomics 

datasets from meningioma samples (Gfeller et al., 2018). The second one consists of 11 

recently published HLA-I peptidomics  datasets (Pyke et al., 2021). These datasets were 

not included in the training of any predictor considered in this work. 4-fold excess of 

randomly selected peptides from the human proteome were used as negatives to 

compute Receiver Operating Curves (ROC) and Positive Predictive values (PPV) (see 

Methods). Both the Area Under the ROC Curve (AUC) and the PPV were higher for 

MixMHCpred2.2, compared to NetMHCpan4.1 (Reynisson et al., 2020), 

MHCflurry2.0 (O’Donnell et al., 2020), HLAthena (Sarkizova et al., 2019) and 

MixMHCpre2.0.2 (Gfeller et al., 2018) (Figure 2A-B and Figure S3A-D). 

Different performance in predicting naturally presented HLA-I ligands could 

originate either from differences in modeling binding specificities or peptide length 

distributions. To explore these two aspects of HLA-I ligand predictors, we first 

computed the Euclidean distance between motifs predicted by each predictor at 

different %rank thresholds and those observed experimentally in HLA-I peptidomics 

data (Figure 2C, see Methods). We observed that motifs predicted with HLAthena and 

MixMHCpred2.0.2 (which had lower AUC and PPV in Figure 2A-B) were not more 

distant from those observed in HLA-I peptidomics data compared to those predicted by 

NetMHCpan and MHCflurry. This suggests that some of the differences observed in 

Figure 2A-B may come from better modeling of peptide length distributions of HLA-I 

molecules. To explore this hypothesis, we computed the predicted peptide length 

distributions at different %rank thresholds (see Methods). We then compared these 
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predicted peptide length distributions with those observed in HLA-I peptidomics 

samples (Figure 2D). Overall, we observed similar values for MixMHCpred2.2, 

NetMHCpan4.1 and MHCflurry2.0. MixMHCpred2.0.2 displayed less stable 

distributions across %rank thresholds, including an over-representation of longer 

peptides for high %rank (i.e., %rank between 2% and 10%) and an under-representation 

of such peptides for small %rank (i.e., %rank<1). HLAthena displayed a very clear 

under-representation of 9-mers, and over-representation of 8-, 10- and 11-mers across 

all %rank thresholds. The discrepancy was also observed when considering peptide 

length distributions from mono-allelic HLA-I peptidomics data (Figure S3E). These 

observations suggest that integrating peptide lengths, either as separate input nodes in 

neural networks (NetMHCpan and MHCflurry) or by stable renormalization of the raw 

scores (MixMHCpred2.2), is important to accurately capture the length distribution of 

naturally presented HLA-I ligands across different alleles.  

 

Models of TCR recognition improve predictions of neo-epitopes 

To expand upon previous attempts to capture biochemical properties of epitopes that 

increase TCR recognition propensities (Calis et al., 2013; Chowell et al., 2015; Schmidt 

et al., 2021), we collected data from 70 recent neo-antigen studies. This resulted in 596 

verified immunogenic neo-epitopes, as well as 6084 non-immunogenic peptides tested 

experimentally (see Methods and Dataset S3). Most of the immunogenic and non-

immunogenic peptides were previously selected based on HLA-I ligand predictors and 

as a result show much higher predicted binding to HLA-I compared to random peptides 

(Figure 3A). To correct for this bias in our data, we further included for each neo-

epitope 99 peptides randomly selected from the same source protein as additional 

negatives (see Methods and Dataset S3). We then used these data to train a PRedictor 

of Immunogenic Epitope (PRIME2.0). PRIME2.0 is based on a neural network and 

uses as input features the predicted HLA-I presentation score (-log(%rank) of 

MixMHCpred2.2), the amino acid frequency at positions with minimal impact on 

binding to HLA-I and more likely to face the TCR (Schmidt et al., 2021), and the length 

of the peptide (Figure 3B, see Methods). Compared to our previous work (PRIME1.0 

(Schmidt et al., 2021)), the training set of PRIME2.0 is more realistic in terms of 

predicted HLA-I binding of the negatives (i.e., broad coverage of the range of %rank 

values without major enrichment in predicted ligands). We performed multiple cross-

validation based on randomly splitting the data (standard 10-fold cross-validation), 
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iteratively excluding specific alleles (leave-one-allele-out cross-validation), or 

iteratively excluding data from specific studies (leave-one-study-out cross-validation) 

(see Methods). The last two cross-validations are important to minimize the risk that 

our model captures properties specific for one over-represented allele (e.g., HLA-

A*02:01) or one large study that would not apply to other alleles or other studies. 

Overall, we observed improved predictions with PRIME2.0 (Figure 3C and Figure 

S4A), even if most of the neo-epitopes considered in this work had been predicted by 

NetMHCpan and several of them are part of the training of NetMHCpan, MHCflurry 

and PRIME1.0. We also restricted our benchmark to peptides experimentally tested 

(i.e., excluding random negatives from the test sets) (Figure 3D and Figure S4B). 

Again, PRIME2.0 displayed better performance than HLA-I ligand predictors. In this 

case PRIME1.0 performed similarly to PRIME2.0, consistent with the fact that 

PRIME1.0 was mainly trained on peptides (both immunogenic and non-immunogenic) 

with high predicted presentation on HLA-I molecules. 

To further interpret the impact of amino acids found in epitope positions more likely 

to impact TCR recognition (green box in Figure 3B), we compared the frequency of 

these amino acids between the positives (i.e., epitopes) and the negatives (i.e., non-

immunogenic peptides) used in the training of PRIME2.0 for different ranges of 

MixMHCpred %ranks (Figure 3E). Our results reveal an enrichment in aromatic and 

hydrophobic residues among epitopes and a depletion of charged or polar residues, 

which is consistent with previous studies (Calis et al., 2013; Schmidt et al., 2021). The 

enrichment is especially pronounced for epitopes with predicted low binding to HLA-I 

(%rank between 1% and 10%). These observations support the following model of TCR 

recognition. For high affinity HLA-I ligands the presence of specific amino acids n the 

region which is recognized by the TCR is less important because the high stability of 

the peptide-HLA-I complex increases the probability of stable TCR binding. 

Conversely, for low affinity HLA-I ligands, the presence of specific amino acids 

favoring TCR recognition becomes more important and helps counterbalancing the 

lower stability/affinity of the peptide-HLA-I complexes. 

 

Immunogenicity predictions reveal SARS-CoV-2 CD8+ T-cell epitopes 

To further illustrate the use of PRIME, we prospectively applied it to the proteome 

of SARS-CoV-2 and selected a list of 213 peptides with PRIME2.0 %rank lower or 

equal to 0.5 with at least one of the 15 most common HLA-I alleles (see Methods and 
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Dataset S4A-B). We then in vitro primed CD8+ T cells from 6 donors (Dataset S4C) 

with pools of the predicted peptides and deconvolved the IFNg ELISpot responses to 

the level of single epitopes (see Methods and Figure 4A). Three donors had been tested 

positive for SARS-CoV-2 (i.e., 1GZ0, 1HHU, 1HHT) and no donor had been 

vaccinated (samples collected early 2020). In total, we could identify 19 immunogenic 

peptides, with 2 of them (YFIASFRLF and QWNLVIGFLF) identified in two different 

donors (Table 1). Eight of these epitopes had not been observed in previous studies 

including the two identified in multiple donors (Table 1). Three additional epitopes had 

been reported with other allelic restrictions (LYLYALVYF, FTSDYYQLY, 

YFPLQSYGF). To validate these observations, we used peptide-HLA multimers to 

stain CD8+ T cells recognizing nine of these epitopes in four donors for which enough 

cells were available (Leu163, Leu184, 1HHT and 1HHU). All epitopes could be 

confirmed (Figure 4B). We then measured the functional avidity (EC50) of the CD8+ T 

cells recognizing these epitopes. The functional avidity displayed some variability, 

ranging from low micro-molar to sub-nano-molar values (Figure 4C). The highest 

avidity was observed for the HLA-A*29:02 restricted YFPLQSYGF epitope in a 

SARS-CoV-2 positive donor (1HHU). This epitope had been previously observed in 

patients with a restriction to HLA-A*24:02 (Saini et al., 2021). HLA-A*29:02 and 

HLA-A*24:02 are part of the same HLA-I supertype (A24) and display some overlap 

in their binding motifs, including preference for F at both P2 and PW anchor residues. 

This suggests that the YFPLQSYGF epitope may be immunogenic in several patients 

with HLA-I alleles of the A24 supertype. 

To gain insights in the clonality of the CD8+ T cell populations recognizing these 

epitopes, we sorted CD8+ T cells recognizing seven of these epitopes and sequenced 

separately the alpha and beta chains of their TCRs (Figure 4D, Dataset S5). Different 

epitopes were recognized by different numbers of TCRs. For epitopes recognized by 

several TCRs, one or two alpha and beta chains had significantly higher frequency, 

suggesting that the recognition may be primarily driven by the pairing of such chains 

(Figure S5A). For the QYIKWPWYIW epitope from the Spike protein (donor Leu184), 

naïve and effector/memory CD8+ T cells recognizing this epitope were sorted 

separately (Figure S5B). We observed a high diversity of TCR chains among naïve 

CD8+ T cells (Figure 4D). Reversely, a unique clone (TCRQYI: TRAV20*01-

CAALNYGGATNKLIF-TRAJ32*01 and TRBV4-3*01-CASSPSGGAYEQYF-
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TRBJ2-7*01) was found in the effector/memory CD8+ T cells (Figure 4D). This unique 

TCR was identified in effector/memory CD8+ T cells recognizing QYIKWPWYIW 

displayed both on HLA-A*23:01 and HLA-A*24:02 (Figure S5C, Dataset S5), as 

expected since HLA-A*23:01 and HLA-A*24:02 have very high sequence similarity 

and almost identical binding motifs (Figure S1). We next asked if the same TCR could 

be found in other individuals. The same beta chain was found in 19 SARS-CoV-2+ 

donors in the ImmuneCODE database, which is a large repertoire of TCRb chains from 

SARS-CoV-2+ donors (Nolan et al., 2020). The same alpha and beta chains were also 

found in the TCR repertoire of one of the two SARS-CoV-2+ donors analyzed in a 

recent study (Minervina et al., 2021). Moreover, the same alpha chain and a highly 

similar beta chain (same CDR3b sequence) were found in the other donor of this study 

(Figure S5D). Both donors were HLA-A*24:02+. These observations suggest that the 

recognition of the QYIKWPWYIW epitope may be mediated by the same TCR in 

multiple donors. 

The donor where recognition of the QYIKWPWYIW epitope was observed 

(Leu184) had not been tested positive for SARS-CoV-2 and had not received any 

SARS-CoV-2 vaccine. Therefore we hypothesized that the monoclonal population of 

effector/memory CD8+ T cells recognizing this epitope could originate from previous 

exposure to other coronaviruses. This hypothesis is supported by the fact that the 

QYIKWPWYIW epitope is almost perfectly conserved in the Spike protein of SARS-

CoV-1 (QYIKWPWYVW, I>V mutation at position 9). To verify our hypothesis, we 

stained cells transfected with TCRQYI with the QYIKWPWYVW – HLA-A*24:02 

multimer. Our results demonstrate that TCRQYI is able to recognize this SARS-CoV-1 

epitope (Figure 4E). These results are consistent with the observation that previous 

exposure to other coronaviruses can confer some immunity to SARS-CoV-2 (Braun et 

al., 2020; Loyal et al., 2021). 

In a recent study, the 9-mer peptide (QYIKWPWYI) fully overlapping with the 10-

mer epitope recognized by TCRQYI was shown to elicit an immuno-dominant CD8+ T-

cell response and the QYIKWPWYI – HLA-A*24:02 complex was crystallized 

(Shimizu et al., 2021). This structure shows that the three non-anchor aromatic 

sidechains shared with the 10-mer investigated in our work (i.e., W5, W7 and Y8) are 

all facing outside of the HLA-I binding site and therefore are likely to interact with the 

TCR (Figure 4F). The presence and orientation of the aromatic sidechains in this 
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immuno-dominant epitope of the Spike protein are consistent with the model of 

improved TCR recognition propensity of aromatic residues, which underlies the 

PRIME algorithm. 

 

Discussion 
 

CD8+ T-cell epitopes play central roles in immune responses against infectious 

diseases and cancer, and represent promising targets for personalized cancer 

immunotherapy treatments. In this work, we trained both a predictor of antigen 

presentation (MixMHCpred) and a predictor of immunogenicity (PRIME). By 

expanding the training set and optimizing the algorithms, we could demonstrate 

improved predictions for both HLA-I ligands and class I neo-epitopes. 

A key element of any machine learning predictor is the quality and depth of the 

training data. Consistent with previous studies (Alvarez et al., 2019; Fritsche et al., 

2021; Gfeller et al., 2018), our results reveal that different types of putative 

contaminants can be found in both poly- and mono-allelic HLA-I peptidomics data. 

Contaminants include peptides with trypsin-like motifs or peptides coming from other 

HLA-I alleles, including in samples that were assumed to be mono-allelic. These results 

emphasize the importance of carefully applying quality controls before using such data 

for training HLA-I ligand predictors (Fritsche et al., 2021). 

The comparison between observed and predicted HLA-I binding motifs 

demonstrated lower distances for motifs predicted by MixMHCpred2.2 compared to 

other predictors (Figure 2C). While this may contribute to the improved predictions 

observed in the independent validations of Figure 2A-B, it is important to point out that 

this analysis is influenced by the fact that MixMHCpred2.2 was trained on the same 

data used to derive the observed motifs. Results in Figure 2C should therefore not be 

interpreted as validation of the improved predictions of MixMHC2pred2.2, but only as 

an indication that other tools do not differ much in the modelling of HLA-I binding 

motifs, and that the most important differences are found at the level of peptide length 

distributions. 

The analysis of the data used to train the predictor of immunogenicity (PRIME) 

confirmed the importance of aromatic residues, especially tryptophan. In line with 

previous studies and crystal structures of TCR-peptide-MHC complexes (Calis et al., 
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2013; Devlin et al., 2020; Schmidt et al., 2021; Shimizu et al., 2021), we suggest that 

this preference reflects the ability of tryptophan to engage into stable molecular 

interactions with the TCR. However, we cannot exclude that other factors play a role 

in the importance given to tryptophan in PRIME. First, tryptophan tends to be slightly 

depleted in MS-based HLA-I peptidomics studies (Abelin et al., 2017; Bassani-

Sternberg et al., 2017). This may bias HLA-I ligand predictors trained on such data, 

and PRIME may be correcting for this bias. Second, recent studies have demonstrated 

that peptides genomically encoded with a W can undergo a W>F substitution during 

protein synthesis (Pataskar et al., 2022). Considering that several studies used tandem 

mini-genes to identify neo-epitopes, we cannot exclude that some of the W-containing 

epitopes used in the training of PRIME were actually presented on HLA-I molecules 

with a W>F substitution, which contributed to overcome central tolerance and increase 

their immunogenicity. This supports a model where tryptophan containing protein 

segments are especially promising neo-epitope candidates, both in terms of improving 

TCR recognition and overcoming central tolerance.  

Applying our tool to the SARS-CoV-2 proteome, we could uncover several epitopes, 

including one (QYIKWPWYIW) recognized by a monoclonal population of antigen-

experienced CD8+ T cells with an effector/memory phenotype. This epitope has very 

high homology with SARS-CoV-1 (QYIKWPWYVW) and is 100% conserved in all 

common variants of SARS-CoV-2. This suggests that CD8+ T-cell responses elicited 

against this epitope by previous infection, vaccination or cross-reactivity with SARS-

CoV-1 may be effective across all SARS-CoV-2 variants. 

Overall, our work provides improved approaches for both antigen presentation and 

TCR recognition predictions of class I epitopes, and reveals new SARS-CoV-2 

epitopes. In terms of HLA-I ligand predictions, a decent accuracy had already been 

reached by many existing tools (Gfeller et al., 2018; O’Donnell et al., 2020; Reynisson 

et al., 2020). Much harder is the task of predicting TCR recognition, both because of 

the smaller size of the training data and because of the many other factors that influence 

TCR recognition (e.g., co-receptors, cytokines, etc.). Efforts focusing on generating 

high quality immunogenicity training data and developing machine learning 

frameworks to harness these data will be key to further improve class I epitope 

predictions. 
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Methods 
 

Data collection and curation 

Naturally presented HLA-I ligands of length 8 to 14 were collected from 244 

samples, coming from 24 different HLA-I peptidomics studies (see Dataset S1). These 

comprise both mono- and poly-allelic samples. All data were retrieved from the original 

studies to prevent any filtering based on HLA-I ligand predictors. When only filtered 

data had been published in the original studies, access to unfiltered data was kindly 

provided to us by the authors of these studies. All samples were processed with the 

motif deconvolution algorithm MixMHCp in order to identify shared HLA-I motifs 

across samples sharing the same alleles, following our previously established procedure 

(Bassani-Sternberg and Gfeller, 2016; Bassani-Sternberg et al., 2017; Gfeller et al., 

2018). All samples were manually reviewed and peptides assigned to motifs that could 

not be unambiguously assigned to one allele were not considered. Peptides assigned to 

the flat motif (trash) in MixMHCp or to motifs corresponding to alleles not supposed 

to be in the sample were considered as predicted contaminants. The final dataset of 

naturally presented HLA-I ligands consists of 258,814 unique peptides, representing 

384,070 peptide-HLA-I interactions with 119 different HLA-I alleles. 59 alleles were 

observed in both mono- and poly-allelic samples, 22 only in poly-allelic samples, and 

38 only in mono-allelic samples. This curated set of naturally presented HLA-I ligands 

is available in Dataset S2. Binding motifs of HLA-I alleles were plotted with ggseqlogo 

(Wagih, 2017). 

Immunogenic neo-epitopes were retrieved from several neo-antigen studies and 

were completed by neo-epitope data from IEDB (Vita et al., 2019) (tcell_full_v3.csv 

file, downloaded on March 27, 2021), excluding potential overlap (see Dataset S3). 

Both immunogenic and non-immunogenic mutated peptides were considered. This 

resulted in 596 experimentally verified neo-epitopes (10 8-mers, 391 9-mers, 148 10-

mers and 47 11-mers) and 6084 experimentally verified non-immunogenic peptides 

(Dataset S3). 

 

Computing peptide length distributions. 

Peptide length distributions were established by computing the fraction of naturally 

presented HLA-I ligands of each length 𝑙 ∈ [8,14] for each allele. For each of the 59 
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alleles found in both mono-allelic and poly-allelic samples, peptide length distributions 

were also computed separately for ligands coming from mono-allelic and poly-allelic 

samples (Figure 1C). 

 

Training of MixMHCpred 

MixMHCpred2.2 was trained based on our curated set of naturally presented HLA-

I ligands, following the procedure described in (Gfeller et al., 2018). The main 

difference consists of a more stable modelling of peptide length distributions. In 

mathematical terms, the score of a peptides X of length L with allele h is given by: 

𝑆!(𝑋) =
𝑀(!,$)(𝑋) − 𝐶(!,$)

𝐷(!,$)
. 

𝑀(!,$)(𝑋)  represents the raw score of peptide X given by the Position Weight 

Matrices representing the motif of allele h for L-mers, including normalization by 

background frequencies and BLOSUM62 based pseudocounts, as described in (Gfeller 

et al., 2018). The correction factors 𝐷(!,$) were computed so that 𝑆!(𝑋) has a standard 

deviation of 1 over a set of 100’000 peptides of length L randomly selected from the 

human proteome (i.e., 𝐷(!,$) represents the standard deviation of the scores of these 

peptides). The correction factors 𝐶(!,$) were computed so that the length distribution of 

the top 0.1% of 700’000 random peptides (taken from the human proteome with 

uniform length distribution between 8- and 14-mers) follows exactly the peptide length 

distribution of allele h observed in HLA-I peptidomics data. In mathematical terms, 

defining 𝑃!(𝐿)	as the experimental peptide length distribution for a given allele h, 

𝐶(!,$) corresponds to the raw score 𝑀(!,$)(𝑋6), where 𝑋6 represents the L-mer peptide 

ranked 100&000 × 0.001 × (𝐿max − 𝐿min + 1) × 𝑃!(𝐿)  among the set of 100’000 

random L-mer peptides, with 𝐿min = 8  and 𝐿max = 14 . Given the observed 

discrepancies between peptide length distributions from mono and poly-allelic samples 

(Figure 1C), peptide length distributions from poly-allelic samples were always used, 

when available. %ranks given as output of MixMHCpred2.2 were estimated based on 

the distribution of scores 𝑆!(𝑋) of a set of 700’000 random peptides (100’000 of each 

length from 8 to 14), as done in other HLA-I ligand predictors. Consistent with 

recommendations for other tools (Reynisson et al., 2020), these %rank should be used 

for ranking candidates to be experimentally validated. The new version of 

MixMHCpred was benchmarked against NetMHCpan4.1 (Reynisson et al., 2020), 
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MHCflurry2.0 (O’Donnell et al., 2020), HLAthena (Sarkizova et al., 2019) and 

MixMHCpred2.0.2 (Gfeller et al., 2018) using naturally presented HLA-I ligands 

identified in unmodified tissues. To ensure that the HLA-I peptidomics samples used 

for this benchmark were not part of the training of any of these tools, we used (i) HLA-

I peptidomics datasets coming from 10 menigioma samples measured in (Gfeller et al., 

2018) that were not integrated in the training of any version of MixMHCpred, 

NetMHCpan, MHCflurry or HLAthena and were not uploaded in IEDB and (ii) HLA-

I peptidomics samples from (Pyke et al., 2021) which were published after the latest 

release of these tools, excluding sample ‘1180157F’ due to ambiguity in HLA-I typing. 

4-fold excess of random negatives were added by randomly selecting peptides from the 

human proteome. For this comparison, we restricted to peptides of length 8 to 11, since 

HLAthena cannot be run for longer peptides. PPV in the top 20% (which is equivalent 

to recall with 4-fold excess of random negatives) and AUC values were computed for 

each sample and each predictor. 

 

Comparing predicted and experimental HLA-I motifs. 

To compare HLA-I motifs predicted by different tools (Figure 2C), we randomly 

selected 100’000 peptides from the human proteome for each length 𝑙 ∈ [8,11] (higher 

values of 𝑙 were not considered in this comparison, since the number of ligands is much 

smaller, and HLAthena is limited to 8- to 11-mers). For each allele and each HLA-I 

predictor, we computed the %rank of each peptide. Predicted motifs for different %rank 

thresholds were computed based on the peptides that had a %rank lower or equal to the 

thresholds, by computing the amino acid frequencies at each positions (20 x 𝑙 matrices). 

These frequencies were compared to those observed in experimental HLA-I ligands, 

using the Euclidean distance (D motifs). The average of the motif distances was plotted 

in Figure 2C for each peptide length and each %rank threshold. Only cases with at least 

20 ligands predicted by all predictors and observed experimentally were considered. 

 

Comparing predicted and experimental peptide length distributions. 

As with predicted motifs, peptide length distributions predicted by each predictor at 

different %rank thresholds were computed based on 100’000 randomly selected 

peptides from the human proteome for each length 𝑙 ∈ [8,11]. The average peptide 
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length distribution over all alleles available in all predictors is shown in Figure 2D for 

each predictor and each %rank threshold. 

 

Training of PRIME 

The new version of PRIME (v2.0) was trained using a fully connected neural 

network with 5 hidden nodes (mlp package in R (Bergmeir and Benítez, 2012)). The 

input layer consists of 28 nodes (Figure 3B). The first input node encodes the predicted 

binding to the HLA-I molecule (-log(%rank), predicted by MixMHCpred). The twenty 

next input nodes encode amino acid frequencies at positions with minimal impact on 

predicted affinity to HLA-I and more likely to interact with the TCR (Schmidt et al., 

2021). The last seven input nodes encode the length of the peptide (one-hot encoding 

of lengths 8 to 14). 

The set of experimentally verified immunogenic and non-immunogenic peptides 

was used to train PRIME2.0. As this set of peptides is heavily skewed towards peptides 

with high predicted affinity (Figure 3A), 99-fold excess of negatives were further added 

by randomly selecting for each immunogenic neo-epitope 99 peptides from the same 

source protein (non-mutated), for a total of 58,905 random peptides (for one neo-

epitope, the source protein could not be found, and no random peptide was included for 

this neo-epitope). The length of these negatives was randomly chosen between 8 and 

14. The use of only human (mutated) peptides in both positives and negatives prevents 

potential biases in amino acid frequencies due to different GC content across different 

organisms. 

To benchmark the new version of PRIME, we first performed a standard 10-fold 

cross-validation, by randomly splitting the data in ten groups, iteratively training the 

model on nine groups and testing on the remaining one. Given that our dataset of 

immunogenic neo-epitopes is skewed towards frequent HLA-I alleles and towards 

studies where many neo-epitopes had been reported, we also performed a leave-one-

allele-out, respectively a leave-one-study-out, cross-validation, using iteratively as test 

set each allele, respectively each study, with more than two experimentally validated 

immunogenic and two experimentally validated non-immunogenic peptides. 

 

Predictions of SARS-CoV-2 epitopes 

The SARS-CoV-2 reference proteome was downloaded from UniProt on March 22, 

2020 and peptides of length 8 to 11 were retrieved. The list of HLA-I alleles was 
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established by taking the top 15 most frequent alleles in the TCGA cohort (Dataset 

S4B). Peptides with a %rank lower or equal to 0.5 for PRIME2.0 for at least one allele 

and coming from the five proteins SPIKE, VME1, VEMP, NCAP, AP3A were first 

considered. A few peptides from R1AB were further manually included as they came 

from regions with several predicted epitopes for multiple alleles. The final list consists 

of 213 peptides (Dataset S4A). 

 

Donors and regulatory issues 

Six donors were recruited (Leu163, Leu158, Leu184, 1GZ0, 1HHT, 1HHU). The 

HLA-I typing was known for all six donors and the last three donors (1GZ0, 1HHT, 

1HHU) had been tested positive for SARS-CoV-2 (PCR tests) (Dataset S4C). The 

recruitment and blood withdrawal were approved by regulatory authorities and all 

donors signed informed consents (protocol TRP0014, BASEC_ID : 2018-01838). 

 

Identification of SARS-CoV-2 epitopes 

The 213 peptides were purchased at ThermoFisher (>80 % purity), solubilized in 

DMSO at 10 mM, aliquoted and kept at -80°C. CD8+ T cells were isolated (ref 130-

045-201, Miltenyi) from cryopreserved PBMC (for SARS-CoV-2 positive donors) or 

fresh leukapheresis (for SARS-CoV-2 negative donors). For SARS-CoV-2 positive 

donors (1HHU, 1HHT, 1GZ0), due to the limited number of PBMCs, total CD8+ T cells 

were used for further in vitro stimulation. For the other three donors (Leu163, Leu158. 

Leu184), naive and effector/memory CD8+ T cells were isolated by Fluorescence-

activated Cell Sorting (FACS) upon staining with anti-CD8 antibody (344710 

BioLegend), anti-CCR7 antibody (353227 BioLegend) and anti-CD45RA antibody 

(304108 BioLegend) for 30 min at 4°C. After three washes with FACS buffer (PBS 0.5 

% FBS 2 mM EDTA) cells were incubated 10 min with DAPI (Sigma 10236276001) 

at 250 nM and washed again three times. Total CD8+ T cells (donors 1GZ0, 1HHT, 

1HHU), naïve (CCR7+ and CD45RA+) CD8+ T cells (donors Leu163, Leu158, Leu184) 

and effector/memory (CD45RA-) CD8+ T cells (donor Leu184 – not enough 

effector/memory cells available for the other donors) were collected separately and then 

co-incubated (106 mL-1) with autologous irradiated CD8-depleted PBMCs and pools of 

11 to 24 peptides (1 µM) in RPMI supplemented with 8 % human serum and IL-2 

(50 IU mL−1 for 48 h and then switch 1mL of media with 150 IU mL−1 every 48h, split 
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as necessary to get minimum 106 Cell.mL-1). IFNγ Enzyme-Linked ImmunoSpot 

(ELISpot) was performed at day 12 post-stimulation. One day before ELIspot, cells 

were incubated in r8 media without IL2. ELISpot assays were performed using pre-

coated 96-well ELISpot plates (Mabtech  3420-2APT-10) and counted with Bioreader-

6000-E (BioSys). All peptide pools giving a specific response (considered if at least 10 

spots for 100 000 incubated cells and 2 times the background signal, obtained by 

incubation of cells without peptide) were deconvoluted by repeating ELISpot assays 

with individual peptides. 

 

Peptide-HLA multimer validation of SARS-CoV-2 epitopes and sorting of CD8+ T 

cells 

Peptides found as immunogenic in the ELISpot assays were resynthesized with a 

purity >95 % and used for production of peptide-HLA multimers (Peptide and Tetramer 

Core Facility of the University Hospital of Lausanne). CD8+ T cells were incubated 

with multimers (1/50 dilution) 45 min at 4°C in FACS buffer (PBS supplemented with 

0.5 % FBS and 2 mM EDTA), isolated by FACS and either directly used for TCR 

sequencing or expanded with autologous irradiated CD8-depleted feeders in RPMI 

supplemented with 8% human serum, phytohemagglutinin (1 µg mL-1) and IL2 (150 

IU mL-1). 

 

Functional avidity assay 

Functional avidity of antigen-specific CD8+ T-cell responses was assessed by 

performing in vitro IFNγ Enzyme-Linked ImmunoSpot (Mabtech) assay with limiting 

peptide dilutions (ranging from 10 μg mL-1 to 10 pg mL-1) as described earlier (Viganò 

et al., 2012). For all peptide concentrations, ELISpot signals were measured in two 

replicates and the average of the two replicates was used to compute EC50 values. EC50 

values reported in Figure 4C were computed by fitting sigmoid curves with the 

“ec50estimator” package in R (https://github.com/AlvesKS/ec50estimator). For 

EYADVFHLYL, enough cells were available for only one replicate. For the HLA-

A*29:02 restricted YFPLQSYGF epitope, single clones were isolated and the EC50 

values represent the average over all clones coming from two different pools (error bars 

represent the standard deviation between the average values in the two pools). For this 

epitope, peptide concentrations ranging from 10-11 to 10-6 were used, as the first 

response was stronger than for other epitopes (Figure 4C). 
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Bulk TCR sequencing 

mRNA was extracted using the Dynabeads mRNA DIRECT purification kit 

according to the manufacturer instructions (ThermoFisher) and was then amplified 

using the MessageAmp II aRNA Amplification Kit (Ambion) with the following 

modifications: in vitro transcription was performed at 37°C for 16 h. First strand cDNA 

was synthesized using the Superscript III (Thermofisher) and a collection of 

TRAV/TRBV specific primers. Unique Molecular identifiers (UMI) of length 9 were 

added to each read. TCRs were then amplified by PCR (20 cycles with the Phusion 

from NEB) with a single primer pair binding to the constant region and the adapter 

linked to the TRAV/TRBV primers added during the reverse transcription. A second 

round of PCR (25 cycles with the Phusion from NEB) was performed to add the 

Illumina adapters containing the different indexes. The TCR products were purified 

with AMPure XP beads (Beckman Coulter), quantified and loaded on the MiSeq 

instrument (Illumina) for deep sequencing of the TCRa/TCRb chain.  

 

TCR sequence analyses 

The fastq files were processed with MIGEC (Shugay et al., 2014), using default 

parameters to demultiplex them and identify the TCRa and TCRb clonotypes. For each 

sample, the frequency of each TCR chain was computed based on UMI corrected 

counts. Only TCRs with more than one UMI count and representing more than 1% of 

the total UMI counts were considered (Dataset S5). TCRs with the same amino acid 

sequences were merged in Figure 4D and Figure S5A. 

The beta chain of the TCRQYI (TRBV4-3*01-CASSPSGGAYEQYF-TRBJ2-7*01) 

recognizing the QYIKWPWYIW epitope and found in effector/memory CD8+ T cells 

of Leu184 was used to search TCRb repertoires in the ImmunoCode database (Nolan 

et al., 2020) through the iReceptor web platform (Corrie et al., 2018). Both the alpha 

and beta chains were used to query separately the TCRa and TCRb repertoires of the 

two SARS-CoV-2+ patients in Minervina et al. (Minervina et al., 2021). The closest 

hits (Figure S5D) were defined as those having the same CDR3 sequence and the most 

similar CDR1 and CDR2, based on sequence identity (100% identity for the alpha chain 

in both donors, 100% identity for the beta chain in donor M). 
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TCRQYI transfection in Jurkat cells and recognition of the SARS-CoV-1 homologous 

epitope 

TCRQYI full-length a and b chains were in silico designed and obtained by Thermo 

Fisher Scientific as strings. Strings have been amplified and purified by silica 

membrane columns (NucleoSpin PCR Clean-up, Macherey-Nagel) and used as 

individual templates for mRNA in vitro transcription using the HiScribe T7 In vitro 

transcription kit (NEB), followed by lithium chloride precipitation, as instructed by the 

manufacturer. RNA polyadenylation and molecular size were assessed by gel 

electrophoresis in denaturing conditions. Purified RNA was quantified using a Qubit 

BR Assay kit (Thermo Fisher Scientific) and resuspended in H2O at 1-2µg/mL followed 

by storage at -80°C, until used. 

TCRa and TCRb pairs were transfected into a recipient Jurkat cell line (T cell 

activation bioassay NFAT, Promega) that was further engineered by knocking out the 

endogenous TCRa and TCRb chains using CRISPR/Cas9 and by stable transduction 

with CD8A and CD8B. Cells were propagated following the manufacturer’s 

instructions. For TCR transfection, 1x106 Jurkat cells were co-electroporated with 3 µg 

of each TCR chain using a Neon Transfection System 100µl kit (Thermo Fisher 

Scientific) with the following parameters: 1325V, 10ms, 3 pulses. After 

electroporation, cells were immediately resuspended in complete medium and 

incubated at 37°C for 18-20 hours before staining. TCRQYI electroporated Jurkat cells 

were stained with a PE conjugated QYIKWPWYVW–HLA-A*24:02 multimer 

(synthesized in house), washed once and further stained with anti-CD3 APC-Fire 

(Biolegend), -CD4 PE-CF594, and -CD8 FITC (BD Biosciences) fluorophore-

conjugated anti-human antibodies. Aqua live dye (Thermo Fisher Scientific) was used 

to access viability. As control, Jurkat cells electroporated with H2O (mock) were stained 

in parallel. The samples were acquired by a iQue Screener PLUS (Intellicyt) flow 

cytometer and analysed by FlowJoX. 

 

Data accessibility 
 

MixMHCpred (v2.2) and PRIME (v2.0) are available at 

https://github.com/GfellerLab/ and through the web interface 

http://prime.gfellerlab.org/. TCR sequencing data were deposited at GEO (accession 
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number: GSE201212). The HLA-I ligand and neo-epitope datasets used to train 

MixMHCpred and PRIME are available in Dataset S2 and S3. 
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Figures 

 
Figure 1: Integration and curation of HLA-I peptidomics data reveal binding 

motifs and peptide length distributions for more than hundred alleles. (A) Motif 

deconvolution includes identification of motifs and predicted contaminants with 

MixMHCp, as well as motif annotation by identifying shared motifs across samples 

sharing the same allele. The example shows the deconvolved motifs in two poly-allelic 

samples that share the HLA-B*37:01 allele (‘donor1’ and ‘HCC1143’ in Dataset S1), 

as well as the mono-allelic HLA-B*37:01 sample. (B) Examples of binding motifs and 

peptide length distributions obtained by motif deconvolution and used to train 

MixMHCpred2.2. (C) Peptide length distributions for alleles observed in both mono-

allelic and poly-allelic HLA-I peptidomics data. Each curve represents the average 

peptide length distribution across these alleles. (D) Fraction of predicted contaminants 

across different lengths (average over all samples).  
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Figure 2: Models of HLA-I binding specificities and peptide length 

distributions improve predictions of naturally presented HLA-I ligands. (A) 

Boxplot of AUC and PPV values for the different predictors considered in this study 

applied on the 10 HLA-I peptidomics samples from (Gfeller et al., 2018). (B) AUC and 

PPV values obtained for HLA-I peptidomics samples from (Pyke et al., 2021). (C) 

Euclidean distance between observed and predicted HLA-I binding motifs at different 

%rank thresholds for each HLA-I ligand predictor (average over all alleles available in 
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each predictor). (D) Predicted peptide length distributions at different %rank thresholds 

for each HLA-I ligand predictor (average over alleles available in all predictors). 

Dashed lines show the peptide length distributions observed in naturally presented 

HLA-I ligands (average over all alleles). P-values in (A) and (B) were computed with 

paired Wilcoxon test. 
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Figure 3: Models of TCR recognition improve predictions of neo-epitopes. (A)                                                                                                                                                          

experimentally validated immunogenic (green) and non-immunogenic (red) peptides, 

as well as random peptides (orange) used to train PRIME. (B) Architecture of neural 

network of PRIME2.0. The first input node corresponds to the predicted binding to the 

HLA-I allele (-log(%rank) from MixMHCpred2.2). The next 20 nodes correspond to 

amino acid frequencies on residues with minimal impact on predicted affinity to the 

HLA-I allele (green box). These positions were determined as previously described 

(Schmidt et al., 2021). The last seven nodes correspond to the length of the peptide (i.e., 

8 to 14, one-hot encoding). (C) Benchmarking of PRIME2.0 based on 10-fold cross-

validation, leave-one-allele-out cross-validation and leave-one-study-out cross-
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validation. Each bar shows the average AUC within the different types of cross-

validations (see also Figure S4A). (D) Same cross-validation as in (C) after excluding 

randomly generated negatives in the test set (see also Figure S4B). (E) Normalized 

amino acid frequencies at positions with minimal impact on predicted affinity to HLA-

I for immunogenic versus non-immunogenic peptides used to train PRIME2.0 within 

different ranges of predicted HLA-I binding (%rank of MixMHCpred). 
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Figure 4: Immunogenicity predictions reveal SARS-CoV-2 CD8+ T-cell 

epitopes. (A) IFNg ELISpot results for the peptides tested individually (i.e. after 

deconvolution of the pools). Immunogenic peptides are shown in green. Stars indicate 

peptides for which enough CD8+ T cells were available for peptide-HLA multimer 

validation and functional avidity assays. Donors are indicated above each peptide 

group. For donor Leu184, two epitopes (LFLTWICLL and QYIKWPWYIW) were 

tested with both effector/memory and naïve CD8+ T cells. (B) Staining of CD8+ T cells 
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with peptide-HLA multimers for nine epitopes from donors for which enough CD8+ T 

cells could be obtained (i.e. donors Leu163, Leu184, 1HHT and 1HHU, see Table 1). 

For QYIKWPWYIW, effector/memory CD8+ T cells were used and the multimer was 

built with HLA-A*24:02 (see also Figure S5C). (C) Functional avidity (EC50). Error 

bars represent the standard deviation of two replicate, except for EYADVFHLYL 

where only one replicate could be performed due to limited amount of CD8+ T cells. 

(D) Number of distinct alpha and beta chains identified in TCRs recognizing the seven 

epitopes for which TCR sequencing could be performed. (E) QYIKWPWYVW – HLA-

A*24:02 multimer staining of TCR- Jurkat cells transfected with TCRQYI. The negative 

control on the right represents TCR- Jurkat cells not transfected with any TCR. (F) 

Crystal structure (PDB: 7EJL) of the 9-mer QYIKWPWYI epitope (yellow) in complex 

with HLA-A*24:02 (grey). The aromatic residues at non-anchor positions (W5, W7 

and Y8) point outside of the HLA-I binding pocket and towards the TCR binding 

interface. For clarity, the a1 helix of the HLA-I is not shown. 
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Table 1: List of immunogenic SARS-CoV-2 epitopes. 

 

Donor HLA-I typing Epitope 
sequence 

Source 
protein 

Known epitopes 
with their 

reported allelic 
restriction 

Cells 
available 

for 
multimer 
validation 

Alleles used 
in the 

multimer 
validation 

TCR 
Seq 

Leu163 
A0102,A0201, 
B4901,B5101, 
C0701,C1402 

LYLYALVYF AP3A A2402 Yes C1402 Yes 

YFIASFRLF VME1  Yes C1402 Yes 

Leu158 
A1101,A2402, 
B1801,B3501, 
C0401,C1203 

ECSNLLLQY SPIKE  No  No 

LWLLWPVTL VME1 A2402 No  No 

YFIASFRLF VME1  No  No 

QWNLVIGFLF VME1  No  No 

LPPAYTNSF SPIKE 
B0702, B3501, 

B5301 No  No 

Leu184 
A2301,A2402, 
B3502,B4901, 
C0401,C0701 

QYIKWPWYIW SPIKE A2301 Yes A2402/A2301 Yes 

QWNLVIGFLF VME1  No  No 

SYFIASFRL VME1 A2402 No  No 

RFLYIIKLI VME1  Yes A2402 Yes 

EYADVFHLYL R1AB  Yes A2402/A2301 Yes 

1GZ0 
A0102,A0201, 
B0801,B5101, 
C0701,C1502 

FTSDYYQLY AP3A 
A0101, A2402, 

A2902 No  No 

LPFGWLIV AP3A B5101 No  No 

1HHU 
A0103,A2902, 
B4403,B7301, 
C1505,C1601 

NRNRFLYII VME1  No  No 

DLSPRWYFYY NCAP A0201, A2902 No  No 

LSPRWYFYY NCAP  No  No 

YFPLQSYGF SPIKE A2402 Yes A2902 No 

1HHT 
A1101,A3201, 
B4002,B4402, 
C0202,C0501 

SASKIITLK AP3A 
A0301, A1101, 

B5701 Yes A1101 Yes 

QSASKIITLK AP3A  Yes A1101 No 

ATSRTLSYYK VME1 A1101, A3001 Yes A1101 Yes 
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