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The molecular chaperone heat shock protein 90 (HSP90)
works in concert with co-chaperones to stabilize its client
proteins, which include multiple drivers of oncogenesis
and malignant progression. Pharmacologic inhibitors of
HSP90 have been observed to exert a wide range of
effects on the proteome, including depletion of client
proteins, induction of heat shock proteins, dissociation
of co-chaperones from HSP90, disruption of client pro-
tein signaling networks, and recruitment of the protein
ubiquitylation and degradation machinery—suggesting
widespread remodeling of cellular protein complexes.
However, proteomics studies to date have focused on
inhibitor-induced changes in total protein levels, often
overlooking protein complex alterations. Here, we use
size-exclusion chromatography in combination with mass
spectrometry (SEC-MS) to characterize the changes in
native protein complexes following treatment with the
HSP90 inhibitor tanespimycin (17-AAG) in the HT29
colon adenocarcinoma cell line. After confirming the
signature cellular response to HSP90 inhibition (e.g.,
induction of heat shock proteins, decreased total lev-
els of client proteins), we were surprised to find only
modest perturbations to the global distribution of pro-
tein elution profiles in inhibitor-treated cells. Simi-
larly, co-chaperones that co-eluted with HSP90 displayed
no clear difference between control and treated condi-
tions. However, two distinct analysis strategies identi-
fied multiple inhibitor-induced changes, including sev-
eral known components of the HSP90 proteome, as
well as numerous proteins and protein complexes with
no previous links to HSP90. We present this dataset
as a resource for the HSP90, proteostasis, and cancer
communities (https://www.bioinformatics.babraham.ac.
uk/shiny/HSP90/SEC-MS/), laying the groundwork for
future mechanistic and therapeutic studies related to
HSP90 pharmacology. Data are available via Pro-
teomeXchange with identifier PXD033459.
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Introduction
The molecular chaperone Heat Shock Protein 90 (HSP90)
is required for the stabilization and activation of around
300 client proteins (see http://www.picard.ch/downloads/
Hsp90interactors.pdf for the latest client list), many of which are
oncogenic kinases that are mutated and/or hyper-activated in
malignancies (Jaeger and Whitesell, 2019). Furthermore, HSP90
may act as an ‘enabler’ of oncogenesis and malignant progres-
sion, potentially supporting tumor heterogeneity and contribut-
ing to drug resistance (Lacey and Lacey, 2021). Pharmacologic
inhibitors of HSP90 have therefore been pursued as anti-cancer
agents, either alone or in combination. However, none of the 18
HSP90 inhibitors clinically tested to date have shown sufficient
efficacy and tolerability to progress to FDA approval (Yuno et al.,
2018; Workman, 2020). Part of the discrepancy between promis-
ing in vitro data and underwhelming clinical benefit could be due
to insufficient data on the pharmacodynamic response to HSP90
inhibition (Butler et al., 2015). Nevertheless, there is continu-
ing interest in HSP90 as a pharmacologic cancer target, includ-
ing in anti-cancer immunotherapy (Zavareh et al., 2021), as well
as a recent application for approval of one HSP90 inhibitor for
chemotherapy-relapsed gastro-intestinal stromal tumors (https://
www.taiho.co.jp/en/release/2021/20210914.html)(Honma et al.,
2021)). HSP90 inhibition has also shown potential beyond the
cancer field, e.g., as a broad-spectrum anti-viral (Wang et al.,
2017) (including activity against SARS-CoV2 (Goswami et al.,
2021)), and as a gero-protector for healthier ageing (Fuhrmann-
Stroissnigg et al., 2018; Janssens et al., 2019)). Therefore, im-
proving our understanding of the molecular responses to HSP90
inhibition at a global, proteome-wide scale could provide more
rational strategies for patient selection and stratification across a
variety of pathologies.
Global approaches could also help clarify the mechanisms under-
lying the tumor selectivity of HSP90 inhibitors—a phenomenon
that has long been a matter of debate (Chiosis and Neckers, 2006;
Workman, 2004). HSP90 functions as a homodimer and acti-
vates its client proteins in an ATP-dependent manner in con-
cert with dozens of co-chaperones (Pearl, 2016; Schopf et al.,
2017). Initially reported for the oncogenic protein kinase clients
ERBB2 and CRAF in cancer cell lines treated with the nat-
ural product HSP90 inhibitor geldanamycin (Mimnaugh et al.,
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1996; Schulte et al., 1995, 1996), it is now well-established that
HSP90–client protein complex disruption, client ubiquitylation,
and client degradation by the proteasome are all general compo-
nents of the cellular response to pharmacologic HSP90 inhibition.
Given the number of oncoproteins that make up the HSP90 client
list, a major rationale for deploying HSP90 inhibitors in cancer
is the destabilisation and disruption of signalling networks criti-
cal for oncogenesis and malignant progression. However, several
alternative or additional mechanisms have been proposed, includ-
ing the tumor-selective accumulation of several different HSP90
inhibitors, as well as their much higher affinity for the hyper-
activated HSP90 complexes specifically observed in tumor cells
(Chiosis and Neckers, 2006; Kamal et al., 2003; Wang et al., 2019).
This latter stress-associated assembly of high molecular-weight
complexes, containing multiple chaperones and co-chaperones—
more recently referred to as the ‘epichaperome’—may potentially
be more predictive of patient response than expression levels of
the chaperones or their individual oncogenic protein clients per
se (Wang et al., 2019). Furthermore, systemic dysregulation of
chaperones and other quality control machineries that together
make up the proteostasis network is a hallmark of several other
ageing-related pathologies (Hipp et al., 2019). Given the clinical
interest in exploiting disease-altered states of epichaperome and
proteostasis networks (Brehme et al., 2019), unbiased systems-
wide analysis of how such higher-order protein assemblies are
perturbed by HSP90 inhibitors and other proteostasis modulating
agents could be valuable for maximising therapeutic benefit.
To date, proteomic studies aiming to characterize the HSP90-
dependent proteome can be separated broadly into two cate-
gories (Weidenauer et al., 2017). The first set of these comprise
mass spectrometry-based comparative proteomics to identify pro-
teins whose abundances change following HSP90 inhibitor treat-
ment (Maloney et al., 2007; Schumacher et al., 2007; Sharma
et al., 2012; Voruganti et al., 2013; Wu et al., 2012). The
experimental design of such HSP90 inhibition-altered proteome
studies generally involves use of inhibitor concentrations and/or
time-points that result in degradation of well-characterized client
proteins. While this approach undoubtedly has been fruit-
ful, it misses client proteins whose levels do not change drasti-
cally, have slower degradation kinetics, or form non-functional
oligomers/aggregates. It also ignores functionally consequential
alterations in protein complexes whose total abundances would
not be expected to change, including components of epichaper-
ome assemblies (e.g., co-chaperones, ubiquitylation enzymes), as
well as a diverse range of protein complexes reliant on HSP90 for
their correct assembly and maintenance (Makhnevych and Houry,
2012). To highlight this last point, a recent multi-parametric
study found that HSP90 inhibition elicits much more widespread
alterations to the proteome on the basis of changes in protein sol-
ubility, rather than changes in total abundance, across the same
biological samples (Sui et al., 2020). Notably, only the solubility-
based comparisons could identify protein complex subunits known
to require HSP90 for their assembly into mature complexes but
not for their stability.
Some of the limitations inherent in abundance-based differential
proteomics can be addressed through the second category of pro-
teomics approaches, which employ direct ‘interactomics’ combin-
ing affinity-based assays with mass spectrometry (Rodina et al.,
2016) or high-content fluorimetry (Taipale et al., 2012) as a read-
out (Weidenauer et al., 2017). However, these bait : prey-based
techniques are also limited in scope. They are mostly unsuitable

for detecting weak or highly labile interactions, and changes ob-
served in a protein : protein interaction following inhibitor treat-
ment could be confounded by inhibitor-induced changes in the
protein’s total abundance—thus making it difficult to interpret
the data without extensive follow-up validation. Furthermore,
indirect or downstream effects on protein complexes that do not
interact with the HSP90 machinery are ignored.
Ideally, studies would incorporate the strengths of both ap-
proaches, allowing global identification of proteins that change
in absolute abundance and/or in their distribution across dif-
ferent protein complexes—all in a single experiment. One po-
tential solution is native SEC-MS, first employing size-exclusion
chromatography (SEC) to separate protein complexes from a cell
homogenate (lysed under non-denaturing conditions) into differ-
ent fractions according to their molecular weight, followed by
bottom-up mass spectrometry (MS) of each individual fraction
(Heusel et al., 2019; Kirkwood et al., 2013; Salas et al., 2020).
Importantly, SEC-MS allows analysis of endogenous protein com-
plexes in cells without having to rely on affinity-tagged bait
and/or overexpression systems, which have the potential to intro-
duce artefacts. In this way, SEC-MS provides native molecular
weight-based elution profiles together with total abundance at a
proteome-wide level.
Here, we performed SEC-MS to characterize global changes to
native protein complex distributions upon HSP90 inhibition with
the geldanamycin-derivative tanespimycin (17-AAG) in the HT29
human colon adenocarcinoma cell line. We chose a tanespimycin
concentration (62.5 nm) demonstrated to trigger the molecular
signature of HSP90 inhibition (e.g., HSP70 induction) in this cell
line, but at an early enough treatment time (8 h) that the major-
ity of client degradation had yet to take place, so that we would
be able to see remodeling of client-containing protein complexes
(Samant et al., 2014). We identified 6,427 unique proteins over-
all, including 4,645 in at least three of the four biological repli-
cates. Known members of well-characterized protein complexes
displayed similar SEC-MS elution profiles. We were surprised
to find minimal changes to the profiles of most identified pro-
teins following HSP90 inhibition—including co-chaperones that
dissociated from HSP90 clients under the same treatment con-
ditions in previous immunoprecipitation studies. The lack of
changes to co-chaperones detected by SEC-MS—which was con-
firmed by independent SEC-Immunoblots—was not due to a lack
of target engagement, as the molecular signature of HSP90 in-
hibition was observed throughout our experiments. Neverthe-
less, we used two distinct analysis strategies to identify pro-
teins and protein complexes whose SEC-MS profiles changed ro-
bustly in our dataset. These included several proteins previ-
ously characterized as being HSP90-dependent, as well as nu-
merous novel hits—two of which we validated for biological im-
portance. We present this dataset as a resource to the HSP90,
proteostasis, and cancer communities (available to explore as a
web-based Shiny app at https://www.bioinformatics.babraham.
ac.uk/shiny/HSP90/SEC-MS/), providing novel candidates for
further mechanistic and therapeutic studies.
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Figure 1. SEC-MS approach to investigate changes in native protein complex distributions following HSP90 inhibition.
(A) Workflow for SEC-based protein complex isolation and LC-MS/MS-based identification in HT29 colon cancer cells treated with 5 x GI50 (62.5 nM) of the HSP90 inhibitor tanespimycin
or mock-treated with DMSO. (B) UV chromatogram from one of the four control (DMSO-treated) biological replicates displaying the profile of the HT29 total cell lysate as it eluted from
the Superose® 6 SEC column across 24 fractions. The retention time (in minutes) and UV absorbance (at 215 nm) are represented on the x- and y - axes, respectively. Protein standards
of known molecular weights (IgM, Immunoglobulin M; IgG, Immunoglobulin G; BSA, Bovine Serum Albumin; Ub, Ubiquitin) were injected onto the same column, and their elution peaks
were used to estimate the molecular weight (MW) range for each fraction using the R package CCprofiler. (C) Upset plot showing number of proteins identified in each of the four
biological replicates (Control, purple, and HSP90i, orange, represented separately). Same data depicted as Venn Diagrams in Fig S1A–B. (D) Heatmap of scaled mean intensities for
each of the 4,645 proteins filtered in (C). Mean intensities across the four replicates were calculated for each protein by fraction (1–24) and condition (Control or HSP90i). Scaling was
performed across all 48 fractions, such that the highest fraction intensity value for a protein was set at 1 regardless of whether it was observed in the Control or HSP90i condition. The
dendogram cut-offs based on Euclidean distance matrix with the Ward-D2 linkage method are illustrated to the left of the heat map. (E) Approach to calculate differentially-abundant
proteins based on summed intensities across all 24 SEC fractions, using the R package DEP. See also Fig S1I and Table S5. (F) Volcano Plot calculated using the R package DEP, based
on summed intensities for each of the 4,645 filtered proteins. Log2-transformed Fold Changes (log2FC) and negative log10-transformed adjusted p-values (two-tailed Student’s t-test with
Benjamini-Hochberg correction) are plotted on the x- and y - axes, respectively. Proteins with p < 0.05 and absolute log2FC > 1 (i.e., FC > 2) are magnified. Proteins identified as ‘hits’
in previous high-throughput HSP90 proteomics studies are in green, and HSF1 targets are outlined in magenta (see also Table S6). (G) Summed intensities of known protein products
of HSF1-activated genes (orange) and HSP90 clients (purple) are increased and decreased, respectively, following tanespimycin treatment. Box-and-whisker (Tukey) plots represent
median, interquartile range, and absolute range for the four biological replicates. Adjusted p-values (Benjamini-Hochberg correction) calculated during differential expression analysis in
(E) are indicated below each plot. (H) Gene Ontology Biological Processes (GOBPs) significantly enriched among the 35 upregulated differential proteins (DPs) identified in part (F) using
the GOnet, with the 4,645 filtered proteins used as the background for the enrichment analysis. Details of proteins and GO terms in the network are included in Fig S1J.

Results

SEC-MS provides a platform to investigate changes in protein
complex distributions following HSP90 inhibition.
We treated HT29 colon adenocarcinoma cells with the HSP90
inhibitor tanespimycin (HSP90i), or mock-treated with DMSO
vehicle (Control), for 8 hours before lysing in phosphate-buffer
saline (PBS) without detergents or any other chaotropes that dis-
rupt protein–protein interactions (Fig 1A). At this tanespimycin
exposure concentration and time, we had previously shown
that client protein interactions with HSP90 co-chaperones (e.g.,

CDC37, STIP1/HOP, AHA1) are disrupted but major client
degradation has yet to occur (Samant et al., 2014). Lysates from
each of the four Control or HSP90i replicates (eight samples to-
tal) were fractionated by SEC to separate the protein complexes
by molecular weight into 24 sequential fractions of equal volume
(Fig 1B). Each fraction was then subjected to standard proto-
cols for bottom-up proteomics involving enzymatic digestion and
LC-MS/MS, as described previously (Kirkwood et al., 2013). To
improve proteome coverage, we divided each fraction in two and
digested one with a 1:1 mixture of the proteases LysC and trypsin,
and the other with trypsin alone. Thus, we generated a total of
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384 samples for LC-MS/MS analysis. The resulting raw data
were analyzed using MaxQuant software (Tyanova et al., 2016).
Overall, MaxQuant identified 111,365 peptides across 7,401 pro-
teinGroups (Table S1). After removing false identifications, and
using a threshold of at least two peptides detected per protein at
a false discovery rate (FDR)<0.01, this equated to 6,804 protein
groups, representing 6,427 unique proteins (following consolida-
tion of duplicates into single entries)(Tables S2–S3).
Our data show a strong overlap between the biological replicates,
with 4,645 proteins detected in at least three of the four exper-
iments for either of the experimental conditions (i.e., Control
or HSP90i) (Fig 1C, Figs S1A–B). For these 4,645 proteins (Ta-
ble S4), there was a good pairwise correlation between the four
replicates—both when comparing the summed Label-Free Quan-
titation (LFQ) intensities across all fractions, and LFQ intensities
for each SEC fraction separately (Fig S1C). Using a heatmap to
visualize scaled mean intensities for each of the 4,645 proteins
across the 24 fractions (Fig 1D), we did not notice drastic dif-
ferences between the Control and HSP90i condition—suggesting
that HSP90 inhibition does not trigger widespread remodeling of
the native proteome.
In order to discount the possibility that this lack of obvious
changes to the SEC-proteome between our two conditions was
due to lack of target modulation (i.e., HSP90 inhibition), we set
out to confirm that tanespimycin treatment in our experiment
led to the molecular changes expected in response to HSP90 in-
hibition. As our study is the first HSP90 inhibitor-based analysis
of its kind, there were no other SEC-MS datasets for direct com-
parison. Therefore, we summed the individual intensities from all
24 fractions for the 4,645 filtered proteins, imputed missing val-
ues based on a left-shifted Gaussian distribution, and performed
limma-based differential expression analysis using the R package
DEP (Zhang et al., 2018) on these summed intensities (Fig S1D–
H). In this way, we identified proteins whose abundances changed
significantly between the Control and HSP90i conditions (Fig 1E–
F, Fig S1I, and Table S5–S6)—in essence replicating previous
bulk whole-proteome analyses of protein abundance changes in
HSP90 inhibitor-treated cells (Fierro-Monti et al., 2013; Maloney
et al., 2007; Quadroni et al., 2015; Savitski et al., 2018; Sharma
et al., 2012; Schumacher et al., 2007; Voruganti et al., 2013; Wu
et al., 2012). Of the 76 differential proteins (DPs) identified in
our summed analysis (adjusted p<0.05 and absolute log2(Fold
Change)> 2) (Fig S1I), 47 DPs had also been identified in pre-
vious HSP90 inhibitor-proteomic studies (Fig 1F–G and Fig S1I,
in green; Table S6), including 27 of the 41 down-regulated pro-
teins. Furthermore, we confirmed induction of the heat shock
response—triggered by activation of HSF1 following HSP90 in-
hibition (Bagatell et al., 2000)—as indicated by the presence of
20 HSF1 targets (Kovacs et al., 2019) among the 35 up-regulated
proteins (Fig 1F–G magenta outlines, Fig S1I magenta stars, Ta-
ble S6), and corresponding enriched Gene Ontology Biological
Processes (Pomaznoy et al., 2018) such as ‘response to heat’,
‘response to unfolded protein’, and ‘chaperone mediated protein
folding’ (Fig 1H, Fig S1J). Therefore, we were confident that we
had achieved HSP90 inhibition in our experiment.

Distinct SEC profiles and subtle changes following HSP90 inhi-
bition for HSP90 machinery subunits.
Having confirmed that the proteins whose overall summed abun-
dances changed in our dataset were consistent with previous bulk

proteomic studies of HSP90 inhibitor-treated cell lines, we pro-
ceeded with the aspect that was unique to our study: the fact
that we had SEC traces for each individual protein. We first fo-
cused on the same two molecular hallmarks of HSP90 inhibitor
treatment that we had evaluated with the summed differential
protein analysis, i.e., increased levels of the HSF1 target gene
products HSP72, HSP27, and BAG3, and depletion of the HSP90
client proteins CDK1, CDK6, and CHEK1, as well as AKT1
(Fig 2A–B, Fig S2A). In both cases, the SEC-MS profiles demon-
strated clear and consistent trends in line with the summed anal-
ysis. Products of HSF1 target genes showed a general increase
in all SEC fractions, as opposed to an increase in any particu-
lar sub-population (e.g., higher molecular weight oligomers that
represent the active form of small heat shock proteins (Haslbeck
et al., 2019))(Fig 2A, Fig S2A). Interestingly, we note that the
profile of HSF1 itself did not differ appreciably between Con-
trol and HSP90i conditions (Fig S2A), despite canonical mod-
els of heat shock response induction involving HSF1’s dissoci-
ation from HSP70 and/or HSP90 prior to trimerization, acti-
vation, and nuclear translocation (Masser et al., 2020; Pincus,
2020). In contrast to the aforementioned proteins, HSP90 clients
generally eluted in one clear peak near the estimated molecular
weight for the monomeric species, which had lower intensities in
the HSP90i condition—consistent with client protein destabiliza-
tion and degradation (Fig 2B). We validated the global SEC-MS
data by repeating our HSP90 inhibitor treatment and initial SEC-
fractionation, followed by SDS-PAGE and immunoblotting for in-
dividual proteins (SEC-IB). In the majority of cases, our targeted
immunoblot analysis correlated well with the mass spectrometry
readout. For example, SEC-IB confirmed the increase across all
fractions in HSP72 and BAG3, with the loading control GAPDH
remaining unchanged (Fig 2A).
Switching focus to HSP90, the two major cytoplasmic HSP90
isoforms were distributed almost exclusively in fractions 6–9 for
both SEC-MS and SEC-IB readouts (Fig 2C)—consistent with
a high molecular-weight oligomeric complex observed at 400–
500 kDa by targeted native complex separation approaches (Es-
kew et al., 2011; Moullintraffort et al., 2010). Note that these
HSP90 profiles indicate that a negligible fraction of the total
HSP90α and HSP90β population is present solely as dimers or
monomers in HT29 cells, consistent with higher-order HSP90-
containing ‘epichaperome’ assemblies in cancer (Kamal et al.,
2003; Rodina et al., 2016). Note also that the ER-resident HSP90
isoform HSPB1/GRP94 was also present almost exclusively in the
higher molecular weight fraction range, whereas the mitochon-
drial HSP90 TRAP1 mostly co-eluted as a monomer (Fig S2B)—
a finding that was also apparent when we plotted the SEC-MS
profiles of these HSP90 isoforms in a HeLa-CCL2 dataset (Heusel
et al., 2020)(Fig S2C). By contrast, the profiles of HSP72 and
HSP27 had multiple peaks representing both monomeric and
higher molecular weight populations (Fig 2A). Also in contrast
with the other heat shock proteins, neither the profiles nor total
abundance of the HSP90s changed between control and treated
conditions (Fig 2C, Fig S2B)—a finding that is consistent with
previous observations that HSP90 inhibition does not induce
HSP90 expression (Maloney et al., 2007; Ghalhar et al., 2014;
Karkoulis et al., 2010; Miao et al., 2019).
HSP90 functions as part of a large multi-protein complex, con-
sisting of dozens of co-chaperones that are required for vari-
ous parts of its ATP-dependent client activation cycle (Schopf
et al., 2017). We had previously shown that the HSP90 co-
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chaperones HOP, CDC37, AHA1, and p23 all dissociate from
HSP90-client protein complexes in HT29 cells under the same
tanespimycin treatment conditions employed in the present study
(Samant et al., 2014). Therefore, we were surprised to find min-
imal changes to the SEC profiles of HSP90 co-chaperones fol-
lowing HSP90 inhibition (Fig 2D, Fig S2D–E). Profiles of the co-
chaperones could be grouped according to their role in HSP90’s
ATP-driven client activation cycle. The early co-chaperones
STIP1/HOP and CDC37, both involved in the loading of client
proteins onto the chaperone, had major peaks that overlapped
with HSP90 (i.e., fractions 6–9)(Fig 2D). Later co-chaperones
that are involved in client maturation and release (e.g., AHA1,
p23) did not co-fractionate with HSP90 and were found in lower
molecular weight fractions (Fig 2D, Fig S2D). Note that the pro-
tein phosphatase PPP5C/Ppt1, which de-phosphorylates both
HSP90 and CDC37 prior to ATP hydrolysis by the chaperone
machinery (Soroka et al., 2012; Vaughan et al., 2008), also co-
eluted with the HSP90α/β peak (Fig S2D). Our findings suggest

that interactions between HSP90 and the late co-chaperones are
not preserved through the sample preparation protocol, and per-
haps that these interactions are weaker or more labile than those
between HSP90 and the early co-chaperones. Interestingly, of the
two main E3 ubiquitin ligases associated with the HSP90 machin-
ery, the tetratricopeptide (TPR) motif-containing co-chaperone
CHIP/STUB1 co-fractionated with HSP90, whereas CUL5 did
not (Fig S2E).
Following up the SEC-MS with SEC-IB analysis, we noticed sub-
tle yet clear changes to the distribution of co-chaperones—both
early and late—following HSP90 inhibition, with the fraction dis-
tributions becoming narrower in the treated samples (Fig 2E).
For both early (CDC37) and late (AHA1, p23) co-chaperones,
the tightening of the distribution was skewed towards the lower
molecular weight fractions, suggesting that the higher molecu-
lar weight fractions—which overlapped with the lower end of the
HSP90 SEC-IB distribution—were disrupted following HSP90 in-
hibition, in line with our previous observations (Samant et al.,

Figure 2. Profiling changes in the HSP90 machinery.
(A–B) Tanespimycin-induced induction of heat shock factor-1 (HSF1) regulated proteins HSP70/HSP72 and BAG3 (A), and depletion of the HSP90 client proteins CDK1, CDK6, CHEK1,
and AKT1 (B), observed in the SEC-MS dataset, and confirmed by SEC-Immunoblot (SEC-IB). GAPDH levels were used as a ‘loading’ control. (C) Both inducible (HSP90AA1/HSP90α)
and constitutive (HSP90AB1/HSP90β) cytoplasmic HSP90 isoforms elute predominantly between fractions 6 and 9, and do not change significantly following HSP90 inhibitor treatment.
(D) HSP90 co-chaperones considered to play a role early in HSP90’s ATP-dependent client maturation cycle (blue hues) co-elute with HSP90, whereas later co-chaperones (pink hues)
do not. See also Fig S2. (E) SEC-IB profiles of the HSP90 machinery identifies subtle yet clear shifts of co-chaperones to lower molecular weight fractions. All SEC-Immunoblots are
representative of three independent biological replicates.
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Figure 3. Complex-centric analysis to identify CORUM protein complexes in SEC-MS dataset.
(A) Global statistics of the proportion of the protein signal in each sample attributed to assembled or monomeric state in our dataset of 6,427 proteins, as estimated by CCprofiler.
(B) Number of CORUM-annotated protein complexes identified based on co-elution of the SEC-MS profiles of their constituent subunits, using CCprofiler or PCprophet packages. The
percentage of subunits identified are also indicated. (C) Mean scaled intensity profiles for each subunit of the hetero-oligomeric chaperones TRiC/CCT (top) and Prefoldin (bottom). Both
complexes were fully detected by CCprofiler, but the holo-enzyme consisting of Prefoldin and TRiC/CCT was not detected. (D) Heatmap of mean scaled intensities for TRiC/CCT and
Prefoldin complex subunits. The dendogram cut-offs based on Euclidean distance matrix with the Ward-D2 linkage method are illustrated to the right of the heat map. Similar data for
the 26S proteasome is shown in Fig S3C. (E) Number of proteins (left) and protein complexes (right) identified by PCprophet as being differentially regulated following HSP90 inhibition.
The protein complexes identified were further separated as those annotated on CORUM, and those that were ‘novel’ complexes. See Table S7 & S8 for full list of proteins and protein
complexes, respectively, identified by PCprophet. (F) Mean scaled intensity profiles for each identified subunit of the differential protein complexes SIVA1–XIAP–TAK (CORUM ID: 6283)
and BIRC5–AURKB–INCENP–EVI5 (CORUM ID: 1087). Established HSP90 clients are indicated in magenta. (G) Mean scaled intensity profiles (from Table S3) for selected differential
protein complexes, grouped according to their biological function. Protein–protein interaction networks consisting of subunits within these complexes are also shown. Green nodes
represent differential proteins identified using PCprophet’s protein-centric analysis. Edge width represents the number of experiments in which the interaction was confidently detected
by PCprophet, with the edge colour representing Control or HSP90i detections. Profiles of all 49 differential complexes are shown in Fig S4, and all protein–protein interactions networks
identified by PCprophet in Fig S5. Dashed vertical lines on linegraphs indicate the fraction in which the monomer would be detected, based on the UniProt-annotated molecular weight.

2014). This interpretation would also suggest either that most of
the co-chaperone population in both control and treated cells is
not in complex with HSP90, or that the majority of HSP90 : co-
chaperone interactions are too labile to withstand sonication and
fractionation, as required for the SEC protocol.

Identification of differential protein complexes based on SEC co-
elution feature detection.
The observation that certain HSP90 complex subunits co-eluted,
whereas others did not, drove us to determine more globally the
degree to which protein complexes were preserved in our dataset.
According to the R package CCprofiler—developed to analyse
SEC-MS data (Heusel et al., 2019)—an estimated 39–46% of the
protein mass was in the ‘assembled’ (vs. monomer) fraction size

range in our complete dataset of 6,427 proteins, with good con-
sistency across all eight samples (Fig 3A). The dataset contained
1,796 of the 2,532 proteins annotated in the CORUM protein
complex database (Ruepp et al., 2010)(Fig S3A), with 1,457 of
the 1,753 CORUM-annotated protein complexes represented at
50% subunit coverage or more (Fig S3B). When assessing co-
eluting subunits from the SEC fraction profiles, CCprofiler iden-
tified 247 CORUM protein complexes, defined as at least 50%
of the CORUM annotated subunits classified as co-eluting at
5% FDR (Fig 3B). An alternative SEC-MS protein complex pre-
dictor, PCprophet (Fossati et al., 2021), identified 408 CORUM
complexes with the same threshold of at least 50% of subunits
co-eluting (Fig 3B).
The discrepancy between protein complex coverage and co-elution
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in our dataset—and, indeed, in all SEC-MS studies to date (Fos-
sati et al., 2021; Heusel et al., 2019, 2020; Kirkwood et al., 2013;
Larance et al., 2013, 2016)—is likely due to a number of factors.
For one, not all CORUM-annotated complexes will be present
in all cell types. More importantly, the lysis conditions used—
involving considerable sample processing time prior to SEC-based
separation—will not preserve highly dynamic, transient, or labile
interactions. To illustrate the second point, the hetero-oligomeric
chaperones TRiC/CCT and Prefoldin co-eluted fully as individ-
ual protein complexes (major peaks in fractions 4–8 and 10–14,
respectively), but the higher-order holoenzyme CCT-Prefoldin
(Gestaut et al., 2019) was not preserved (Fig 3C–D). Similarly,
the majority of 20S proteasome core particle subunits eluted as
a peak distinct from the 19S regulatory particle (Fig S3C), sug-
gesting that the 26S proteasome holoenzyme (Bard et al., 2018) is
disrupted during sample processing. The 245 complexes CCpro-
filer identified in our dataset is of a similar order of magnitude
as other SEC-MS studies (Fig S3D), although the higher num-
bers in those studies were presumably as a result of smoother
elution profiles by SEC into more fractions, and/or fewer miss-
ing values due to use of data-independent acquisition for mass
spectrometry (DIA-MS). Indeed, when Heusel et al. re-analysed
their SEC-fractionated HEK293 cell lysate with data-dependent
acquisition mass spectrometry (DDA-MS) instead of DIA-MS,
they observed a >50% drop-off in CORUM complex identifica-
tion (298 vs. 621) using the same CCprofiler parameters (Heusel
et al., 2019)(Fig S3D).
Using PCprophet’s differential analysis workflow, we identified
699 proteins and 49 protein complexes as being significantly al-
tered between our two conditions (Fig 3E, Tables S7–S8). As a
percentage of the total positive IDs in the analysis, both the al-
tered proteins (13.4%) and complexes (15.3%) were lower than
that observed by Fossati et al. using the same PCprophet analysis
workflow for comparing HeLa-CCL2 cells at interphase vs. mi-
tosis (approximately 30% and 26%, respectively)(Fossati et al.,
2021). This was not necessarily surprising, given that HSP90 is
not a typical molecular chaperone responsible for general folding
of the majority of the proteome (as opposed to HSC70, for ex-
ample), but rather has a small subset of clients. Therefore, the
changes induced by HSP90 inhibition would not be as widespread
as the difference between two cell-cycle states.
The 49 HSP90i-modulated protein complexes identified through
PCprophet spanned diverse biological processes, consistent with
the diverse functional nature of HSP90’s clientele (Fig S4). Sev-
eral of these protein complexes contained bona fide HSP90 clients,
e.g., the oncoprotein kinases TAK1/MAP3K7 (Liu et al., 2008;
Shi et al., 2009), Aurora kinase B (Lange et al., 2002; Tera-
sawa and Minami, 2005), and class 3 PI3-kinases PIK3C3 and
PIK3R4 (Giulino-Roth et al., 2017; Moulick et al., 2011), as
well as their associated tumor suppressor Beclin1/BECN1 (Hasan
et al., 2020; Xu et al., 2011)(Fig 3F, Fig S4). Furthermore, mul-
tiple signaling hubs known to require HSP90 activity were repre-
sented, including several protein complexes central to cell polar-
ity (Baas et al., 2004; Benitez et al., 2014; Berezuk and Schroer,
2004) and kinetochore positioning during mitosis (Niikura et al.,
2006)(Fig 3G). Importantly, not all of these HSP90i-modulated
complexes are known direct HSP90 interactors. For example,
neither of the HSP90i-modulated kinetochore-related complexes
identified—MIS18 and NDC80—contain known HSP90 client pro-
teins. Rather, HSP90 inhibition is proposed to impair kinetochore
formation via destabilization and degradation of the MIS12 com-

plex subunit DSN1 and/or the centromere-localised Polo-like ki-
nase PLK1 (Davies and Kaplan, 2010; McKinley and Cheeseman,
2014; Niikura et al., 2017)—neither of which belong to NDC80
or MIS18 complexes. The identification of such indirect HSP90-
dependent complexes highlights the utility of our SEC-MS ap-
proach, as they would not have been identified using HSP90-
interactomics, nor by bulk differential proteomics (as the total
abundance of the constituent subunits did not change significantly
upon HSP90 inhibition).

Distinct HSP90 inhibitor-induced protein hits identified by
summed vs. individual fraction intensity-based differential anal-
ysis.
Despite the identification of multiple protein complexes known
to require HSP90 for their function (both directly and indirectly)
using PCprophet’s differential analysis workflow, we were con-
cerned that the limited number of total protein complexes pos-
itively identified would result in us missing important protein–
protein interaction changes for proteins not assigned to a specific
complex. Therefore, we complemented the automated PCprophet
analysis by searching for differences between Control and HSP90i-
treated samples at the SEC fraction level using the same differ-
ential analysis workflow we had used for the summed intensities
in Fig 1E–H, i.e., treating our dataset as 24 different Control vs.
HSP90i comparisons (Fig 4A).
We identified 366 unique DPs across all 24 fractions (Fig 4A, Ta-
ble S9). The majority of these proteins were only identified as DPs
in one of the 24 fractions. Although single fraction changes could
be indicative of important biological perturbations, we decided to
filter out such singleton DPs in order to increase stringency and
minimise the effect of stochastic fluctuations during SEC frac-
tionation. After this step, we were left with 62 proteins that were
DPs in two or more fractions (Fig 4A, Table S10).
We were surprised to see only eight common proteins between the
62 stringent fraction DPs and the 76 summed DPs from Fig. 1E–
H (Fig 4B). Of these common proteins, all except one—CDK1,
an HSP90 client—are known HSF1 target genes (Kovacs et al.,
2019). Indeed, the only enriched GOBP term in the set of 62
stringent fraction DPs was ‘chaperone-mediated protein folding’
(adjusted p=7.53e-7). This approach provides further evidence
that, with the exception of the most abundant heat shock pro-
teins, our SEC-based approach identifies a distinct set of proteins
compared to those that would be identified using total cell lysate-
based comparative proteomics.
Next, we generated protein–protein interaction networks for the
62 stringent DPs using either the STRING protein–protein inter-
action database (Szklarczyk et al., 2021) or the curated interac-
tome in the canSAR database (Mitsopoulos et al., 2021) (Fig 4C,
S6). Both tools yielded networks with significantly more edges
than expected by chance, i.e., 47 edges expected by chance; 99
edges between 54 nodes observed with STRING (p = 3.25e-11);
76 edges between 43 nodes observed with canSAR. These highly-
connected networks suggested that the 62 DPs as a group were bi-
ologically related. STRING’s built-in Markov Cluster Algorithm
(Enright et al., 2002) identified three large clusters (those with
>five nodes each); the largest of these clusters (Fig 4C, red nodes)
was heavily enriched in molecular chaperones and co-chaperones
(10 of the 12 cluster nodes), and included four of the eight DPs
common with the summed DPs (Fig 4C, dashed node outlines).
Another cluster contained numerous cell cycle and cytoskeletal
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proteins (Fig 4C, pink nodes). The final large cluster consisted of
nine mitochondrial proteins (eight from the mitochondrial ma-
trix), including members of the ATP5 synthase complex (3/6
subunits) and isocitrate dehydrogenase 3 (IDH3) complex (2/3
subunits)(Fig 4C, light green nodes).

The actin-binding oncoprotein Anillin is recruited to inhibited
HSP90 complexes.
As the largest cluster from our Stringent Fraction DP network
(Fig 4C, red nodes) consisted exclusively of well-characterised
heat shock response proteins, we decided to focus on the other
two clusters to gain potentially novel biological insight. Of
the four highest-confidence interactions within the cell cycle
and cytoskeletal protein cluster (STRING edge confidence>0.9),
CDK1, PBK, and PDS5A were previously identified as HSP90
inhibitor-modulated proteins (Sui et al., 2020; Wu et al., 2012).
We therefore probed further into the fourth node in this high-
confidence edge network: ANLN/Anillin, a cytoskeletal scaffold
protein that links RhoA, actin, and myosin during cytokinesis.
Anillin is emerging as an important regulator of the Epithelial-to-
Mesenchymal Transition (EMT) during malignancy (Naydenov
et al., 2021; Xu et al., 2019), and is upregulated in a variety of tu-
mors—including colon cancer (Lian et al., 2018; Wang et al., 2016;
Zhang et al., 2018a,b). Here, Anillin almost met our hit criteria in
the initial global analysis of summed intensity changes (Fig 1E–
H), missing out because it fell just under the fold change thresh-
old (Fig 5A boxplot, p=0.0117, log2FC=0.86). The degree of
Anillin modulation was strikingly consistent with the HSP90i-
induced Anillin changes observed when we analysed previous pro-
teomics datasets in HeLa cervical (p=0.0002, log2FC=0.94),
MDA-MB-231 triple-negative breast (p=0.0411, log2FC=0.92),
and CAL-27 oral squamous (p=0.0007, log2FC=1.28) carci-
noma cell lines (Sharma et al., 2012; Wu et al., 2012). Using

our individual fraction-based approach, Anillin was a hit in frac-
tions 6 and 7 (Fig 5A linegraph, asterisks). Although Anillin’s
SEC profile at first glance looked typical of HSF1-induced pro-
teins, we noticed a subtle shift in the major peak towards higher
molecular weight fractions in the HSP90i conditions (Fig 5A, line-
graph), as opposed to a global increase across almost all fractions
(e.g., compared with HSP72, HSP27, and BAG3 SEC profiles
in Fig 2A). This shift was even more apparent with an SEC-IB
readout (Fig 5A, immunoblots). As this shift resulted in more of
the Anillin population overlapping with the HSP90 peak (Fig 5A,
linegraph, dashed lines), it occurred to us that Anillin might
be interacting with HSP90 complexes, and that this interaction
was increased upon HSP90 inhibition. Indeed, immunoprecipi-
tation of endogenous HSP90 confirmed that Anillin is recruited
to HSP90-containing complexes following tanespimycin treatment
(Fig 5B).
We hypothesized that recruitment of Anillin to inhibited HSP90
complexes may be an important part of the cellular response to
HSP90 inhibition. Knockdown of Anillin by pooled siRNAs for
six days resulted in a 42% and 49% reduction in HT29 cell via-
bility and confluency, respectively, vs. the negative non-targeting
control (Fig 5C, S7A–B). Although this reduction in cell viability
made it difficult to assess any further effect of Anillin knockdown
on HSP90 inhibitor sensitivity (Fig S7C), we identified a two-
fold reduction in tanespimycin GI50 concentration to 2.9 nm (vs.
6.6 nm for the negative non-targeting control siRNAs)(Fig 5D).
These findings lend further weight to the role of Anillin in malig-
nancy (Naydenov et al., 2021; Tuan and Lee, 2020), and suggest
effects on HSP90-mediated networks as at least a partial mecha-
nism for its pro-tumor function.

Figure 4. Identifying proteins whose SEC profiles changed following HSP90 inhibition at an individual fraction level
(A) Approach to calculate differential proteins based on individual SEC fraction intensities between Control and HSP90i conditions, using the R package DEP. Heatmaps depict log2FC
for the 366 proteins identified as hits (absolute log2FC > 1 and adjusted p-value < 0.05) in any of the 24 SEC fractions (‘All Fraction DPs’, left), and those identified as DPs in two
or more fractions (‘Stringent Fraction DPs’, right), using the R package DEP. Hits were clustered (Euclidean distance with Ward-D2 linkage) before plotting as heatmaps. Colours to
the right of the Stringent Fraction DPs heatmap represent Markov clusters calculated on STRING-db with an inflation parameter of 2 (see also part (C)). (B) Venn/Euler diagram (R
package ‘eulerr’) representing the number of common proteins between the 366 All Fraction DPs and 62 Stringent Fraction DPs in (A), and 76 summed intensity-based DPs from Fig 1.
(C) Network generated by STRING protein–protein interaction database using the 62 Stringent Fraction DPs as the input. Colours represent clusters from Markov clustering (inflation
parameter = 2). Solid and dashed lines indicate protein–protein interactions (edges) within and between clusters, respectively; weight of lines between nodes indicate strength of evidence
for the interaction on STRING (both functional and physical protein associations). Proteins also identified via summed intensity analysis are depicted with dashed circular outlines.
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Figure 5. Actin-binding protein Anillin/ANLN is recruited to inhibited HSP90 com-
plexes.
(A) Left, total ANLN/Anillin protein levels increase following HSP90 tanespimycin treat-
ment (p = 0.0017, log2FC = 0.86). Right, SEC-MS and SEC-IB elution profiles indicate
a shift towards higher molecular weight complexes for the major Anillin peak following
HSP90 inhibition. This includes an increase in the same fractions as the HSP90 elu-
tion peak (linegraph, dashed lines). (B) Anillin co-immunoprecipition with HSP90 is in-
creased following tanespimycin treatment. HT29 human colon cancer cells were treated
with 5 x GI50 (62.5 nM) tanespimycin, or mock-treated with the same volume of vehicle
DMSO control, for 8 h. HSP90 immunoprecipitation (IP) was performed on 1 mg of lysate
protein from each condition, and the resultant immunoblots (IB) were probed for HSP90
and Anillin, as indicated. 15 µg of lysate protein was loaded for the ‘Total’ lanes. (C, D)
Knockdown of Anillin reduces HT29 cell viability and results in a two-fold sensitization to
tanespimycin. HT29 cells were treated for 48 h with siTOOLs pool of 30 siRNAs (25 nM to-
tal concentration) targeted against Anillin (ANLN), non-targeting control NTC, untargeted
control UTC, or death-inducing control PLK1, followed by treatment for 96 h with a range
of tanespimycin concentrations (except for PLK1), or mock-treatment with vehicle control
(0.1 % DMSO), while still in the presence of the original siRNAs. Confluency was mon-
itored every 8 h throughout the time-course by Incucyte® (see Fig S7). Cell viability at
the end of the time-course (144 h total) was measured using CellTiter-Blue® cell viability
assay. Cell viability results for the mock vehicle-treated controls only are plotted in (C),
with adjusted p-value (as determined by one-way ANOVA with Tukey’s multiple compari-
son test) for Anillin vs. NTC. Lines and error bars represent mean +/- standard error for
each condition from three biological replicates (EXP1–EXP3, different shapes). Plotting all
the dose-response data (D) identified two-fold sensitization to tanespimycin treatment on
Anillin knockdown in HT29 cells, with GI50 reduced to 2.9 nM (vs. 6.6 nM for NTC). Points
and error bars represent mean +/- standard error for each condition. Dose-response curve
fitting was performed using the ’Log[Inhibitor] vs. normalized response – Variable slope’
non-linear regression model in Graphpad Prism. See Fig S7C for dose-response curves
relative to vehicle-treated (0.1 % DMSO) NTC control.

Mitochondrial IDH3 is a novel HSP90-dependent protein com-
plex.
Finally, switching focus to the mitochondrial matrix-enriched
cluster from our Stringent DP Network (Fig 4C), we were espe-
cially interested in the IDH3 complex, as the third subunit was
identified in our less stringent list of 366 DPs at the individual
fraction level. The total levels of any of the three subunits of the
IDH3 complex did not change (p>0.05 and absolute log2FC<1)
(Fig 6A, boxplots). Therefore, the IDH3 complex would not be
identified as a hit through traditional bulk proteomics. Plot-
ting the SEC-MS traces, however, brought to light clear changes
in a certain sub-population of IDH3 subunits in HSP90i-treated
cells (Fig 6A, linegraphs). The bulk of the signal for all three
subunits was in low molecular weight fractions, most likely rep-
resenting the monomeric species. These peaks were the same
in control and HSP90 inhibitor-treated conditions. However, a
minor peak around fraction 10—representing a larger molecular
weight complex of approximately 300 kDa—was clearly reduced
following HSP90 inhibition for all three subunits. This would

Figure 6. Mitochondrial isocitrate dehydrogenase 3 (IDH3) complex is disrupted
upon HSP90 inhibition.
(A) Left, Box/Tukey plots illustrate that total levels of the three IDH3 protein complex sub-
units do not change following HSP90 inhibition. Right, SEC profiles identify a high molec-
ular weight peak (corresponding to the size of the octameric IDH3 complex) that is sig-
nificantly reduced for all three subunits in HSP90 inhibitor-treated cells. Asterisks depict
significantly differential fractions. (B) IDH3 activity is significantly reduced upon HSP90
inhibition in HT29 human colon adenocarcinoma, HCT116 human colon carcinoma, and
BT474 human breast ductal carcinoma cell lines. Activity was measured using the IDH
Activity Assay Kit (Sigma) according to manufacturer’s instructions, using NAD+ as the
co-factor. See Fig S8A for the corresponding assay with NADP+ as the co-factor, for esti-
mating IDH1 and IDH2 activity. Adjusted p-values (two-tailed Student’s t-test) are shown.

be consistent with the size of an octameric complex, thought to
represent the active form of IDH3 in cells (Huh et al., 1997).
We reasoned that HSP90 could play an important role in the
maintenance of active IDH3 complexes. We showed using a cell-
based reporter assay that IDH3 activity is reduced by >50% fol-
lowing HSP90 inhibition in HT29 cells, as well as in two other
cell lines—the HCT116 colon carcinoma, and BT474 breast duc-
tal carcinoma (Fig 6B). The effect was specific to this IDH com-
plex, as the activities of IDH1 and IDH2—which use NADP+

as a co-factor, rather than NAD+––were unaffected (Fig S8A).
Finally, we confirmed that this was a general effect of HSP90 in-
hibition by performing the same assay in cells treated with two
other HSP90 inhibitor chemotypes in HCT116 cells (Fig S8B).
We therefore identify the IDH3 complex as a novel component
of the HSP90-dependent proteome that would most likely have
remained uncharacterised using traditional bulk proteomics or
interactomics approaches.

Discussion
Defining the scope of the HSP90-dependent proteome has been
a subject of enquiry in both basic and translational biology for
over a decade (Citri et al., 2006; Hartson and Matts, 2012; Mal-
oney et al., 2007; Samant et al., 2012; Schumacher et al., 2007;
Weidenauer et al., 2017). Here, we present an alternative ap-
proach to expand insight into this challenge, employing changes
in the native complex profiles of the proteome rather than re-
lying on changes in bulk abundance or direct interacting part-
ners of HSP90. After confirming target engagement (i.e., HSP90
inhibition) in our dataset through summed differential protein
analysis (Fig 1, Fig S1), we discovered through plotting SEC pro-
files of the HSP90 machinery that certain interactions were pre-
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served, whereas others were almost entirely lost in these experi-
ments (e.g., HSP90 interactions with early vs. late co-chaperones)
(Fig 2, Fig S2). This ‘all-or-nothing’ phenomenon also held true
at a global level: numerous obligate hetero-oligomeric protein
complexes (e.g., TRiC/CCT and Prefoldin; 20S and 19S pro-
teasome) co-eluted, whereas larger holo-complexes (e.g., CCT-
Prefoldin; 26S proteasome) did not (Fig 3C–D, Fig S3C). Em-
ploying a complex-centric peak co-elution approach through the
packages CCprofiler and PCprophet, we identified 49 HSP90i-
modulated protein complexes between the Control and HSP90i
condition (Fig 3E–G, Fig S4). These included several protein
complexes containing known HSP90 clients, as well as protein
complexes involved in downstream HSP90-dependent biological
processes. To complement this complex-centric approach, we per-
formed differential expression analysis at an individual fraction
level, yielding 62 stringent differential proteins (Fig 4). Finally,
we validated two novel hits from these stringent fraction-level dif-
ferential proteins—Anillin (Fig 5, Fig S7) and the IDH3 complex
(Fig 6, Fig S8)—identifying these as potentially important com-
ponents of the HSP90-dependent proteome.
Our approach provides several novel insights into the HSP90
inhibition response that have so far remained uncharacterised
through traditional comparative proteomics (e.g., mass spec-
trometry of Control vs. Treated whole cell lysates) or interac-
tomics (e.g., mass spectrometry of HSP90 or co-chaperone co-
immunoprecipitates; LUMIER and other bait : prey interaction
screens). This was perhaps best exemplified by the limited over-
lap between differential proteins (DPs) identified with our individ-
ual fraction approach and those identified for summed intensities
(Fig 4 vs. Fig 1E–H)—especially as the same workflow was used
in both analyses. We demonstrate the utility of our dataset by
identifying two as yet uncharacterized components of the HSP90-
dependent proteome, that were only identified as DPs with our
individual fraction-level analysis.
We discovered that Anillin abundance was significantly altered
in previous HSP90 inhibition datasets (Sharma et al., 2012; Wu
et al., 2012); yet it had not, to our knowledge, been validated in
these or any other HSP90-related studies. We followed up this DP
for two main reasons. In the context of the present study, Anillin’s
shift to higher molecular weight fractions upon HSP90 inhibi-
tion was a relatively rare trait in the dataset. We therefore rea-
soned that Anillin might be recruited to specific complexes upon
HSP90 inhibition—and even that this recruitment might occur
at the level of HSP90 complexes directly, given the significant in-
crease by fraction-level differential analysis in the HSP90 elution
peak (Fig 5A). This was confirmed by co-immunoprecipitation
of Anillin with HSP90, which increased following tanespimycin
treatment (Fig 5B). The second reason for our interest in Anillin
was a growing body of research showing its role in tumor pro-
gression, across a range of indications (Hall et al., 2005; Lian
et al., 2018; Naydenov et al., 2021; Tuan and Lee, 2020; Wang
et al., 2016; Xu et al., 2019; Zhang et al., 2018a,b). Our finding
that Anillin knockdown for six days results in a smaller number
of viable cells (Fig 5C) is consistent with this protein’s central
role in cytokinesis (Piekny and Maddox, 2010). Although the
effect of Anillin knockdown on sensitivity to tanespimycin was
relatively modest (Fig 5D), it is suggestive of a potential relation-
ship between HSP90 inhibitor efficacy and Anillin levels—which,
as we have discussed, is overexpressed in several cancers. Anillin
provides yet another potential link between the HSP90 machin-
ery and cancer cell invasion, together with the cell polarity and

kinetochore assembly-associated protein complexes identified as
HSP90i-modulated by PCprophet in this study (Fig 3G).
Whereas careful mining of previous HSP90 inhibition proteomics
datasets might have identified Anillin as a HSP90-modulated pro-
tein, the mitochondrial IDH3 complex has not been associated
with the HSP90 inhibition response—and likely would have re-
mained uncharacterised in this context through targeted inter-
action or differential abundance approaches. Importantly, we
found that HSP90 inhibition specifically impaired activity of the
IDH3 complex and not of the other two IDH family members
IDH1 and IDH2 (Fig 6B, Fig S8). IDH3 is not as well charac-
terized as IDH1 and IDH2 in the context of cancer and other
diseases (Tommasini-Ghelfi et al., 2019); however, more recent
studies implicate aberrant expression of IDH3—especially the al-
pha subunit—in malignancy (May et al., 2019; Zeng et al., 2015;
Zhang et al., 2015). This is likely related to the fact that rewiring
of energy metabolism is an extended hallmark of cancer (Hanahan
and Weinberg, 2011). Indeed, the Warburg effect—where cells
switch from mitochondrial oxidative phosphorylation to glycoly-
sis as their predominant means of ATP production, even under
oxygen-rich conditions—is commonly observed during the malig-
nant process. As part of the tricarboxylic acid cycle, IDH3 would
play a key role only in ATP production in cells that have not un-
dergone Warburg-like metabolic transformations. Future studies
could test whether the degree of glycolytic shift of a tumor corre-
lates negatively with its sensitivity to HSP90 inhibitors. Further-
more, the fact that healthy cells are presumably more dependent
on the tricarboxylic acid cycle—and therefore IDH3—than cancer
cells might contribute to a narrowing of the therapeutic window
for HSP90 inhibitors in vivo. More recent data suggest that IDH3
levels decrease during senescence (Cao et al., 2019)—a finding of
potential importance in light of the interest in HSP90 inhibitors
for targeting senescent cells (Fuhrmann-Stroissnigg et al., 2018).
Despite the novel biology revealed in this study, several limita-
tions of SEC-MS—as well as potential improvements—became
apparent during our analysis. Almost 1,500 CORUM protein
complexes were detected at greater than 50% subunit coverage
(Fig S3B), yet CCprofiler and PCprophet assigned only 245 and
408 CORUM complexes, respectively, as having co-eluting SEC
traces (Fig 3B). This number was slightly lower than existing pub-
lished SEC-MS studies (Fig S3E), which could be caused by a
number of technical and/or biological differences in our dataset.
For example, at the biological level, HT29 colon carcinoma cells
could have fewer or more labile protein complexes than HEK293
and HeLa cells—two workhorse cell lines with wide-ranging ab-
normalities at the genetic and protein level (Landry et al., 2013;
Lin et al., 2014). At the technical level, a key component of
unbiased complex-centric proteome profiling algorithms such as
those implemented by CCprofiler and PCprophet is the consis-
tent identification of the same set of target proteins in consecutive
SEC fractions (Heusel et al., 2019). Co-elution feature detec-
tion is therefore greatly diminished by missing values: a common
problem in label-free DDA-MS, which relies on stochastic pep-
tide sampling and MS/MS fragmentation of only the top ‘n’ pep-
tides or other ions in a specified mass-to-charge ratio window (Jin
et al., 2021; Webb-Robertson et al., 2015). Missing values are sub-
stantially reduced using DIA workflows such SWATH-MS (Dow-
ell et al., 2021; Ludwig et al., 2018), for which both CCprofiler
and PCprophet were primary developed. Further factors limit-
ing protein complex identification in our dataset (compared with
previous datasets benchmarked by CCprofiler and PCprophet) in-
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clude separation of the cell lysate into a smaller number of SEC
fractions, and the use of protein-level rather than peptide-level
intensity data. Although we could have used the peptide-level
intensities from MaxQuant for CCprofiler and PCprophet, we
decided to avoid this approach in light of recent findings that
peptide-level quantification results in significantly lower true posi-
tive rates than protein-level quantification for label-free DDA-MS
data, especially with four replicates or fewer (Dowell et al., 2021).
The most informative experiment in assessing the impact of the
various differences between our dataset and previously published
datasets on protein complex identification has been provided by a
SEC-MS study where the authors re-ran their samples using DDA
instead of DIA (Heusel et al., 2019). Despite separating the lysate
into three times as many SEC fractions as our study (81 vs. 24),
and using peptide-level rather than protein-level intensities as the
data input, CCprofiler identified 298 CORUM protein complexes
from their DDA-SEC-MS dataset—only modestly more than our
245 protein complexes. Therefore, DIA appears to be the ma-
jor contributor to the higher protein complex identifications in
the more recent published SEC-MS studies. If DDA must be
used, protein- or peptide- level labelling workflows (e.g., SILAC,
TMT) could help to improve protein complex identification by
reducing technical variability and/or missing values between con-
ditions (Muntel et al., 2019; O’Connell et al., 2018; Stepath et al.,
2020).
The limitation in protein complex detection also undoubtedly
affected the ability to classify HSP90i-modulated complexes
through PCprophet. Even among the 49 HSP90i-modulated com-
plexes, we noticed that the majority of these had subunits whose
abundances changed between the two conditions, without the re-
maining subunit profiles being drastically redistributed. If a pro-
tein complex was being disrupted as a whole, one would expect all
the subunits of the complex to have at least one shifted peak (i.e.,
the co-elution peak for the disrupted complex). This interpreta-
tion was confirmed when we plotted the proteins differentially-
regulated between Control and HSP90i conditions identified by
PCprophet’s protein-centric workflow onto the protein complexes
it identified through its complex-centric workflow (Fig S5). Very
few complexes—aside from those with only two subunits—had
the majority of their constituent subunits identified as differen-
tially regulated. Therefore, we were unsure how many of our
HSP90i-modulated complexes were truly being disassembled fol-
lowing HSP90 inhibition. This was one of the major rationales for
us proceeding with the individual fraction-level differential anal-
ysis described in Fig 4. Indeed, the IDH3 complex SEC profiles
demonstrated a more typical signature of disassembly, i.e., a sig-
nificantly reduced peak, at the expected molecular weight of the
functional complex, for all three constituent subunits following
HSP90 inhibition (Fig 6A).
With more studies employing SEC-MS and other co-
fractionation-based MS approaches, we expect our dataset
(e.g., Table S2) to continue being of use as newer analysis
pipelines, software, and best-practices are developed (Schlos-
sarek et al., 2021; Pang et al., 2020; Serwetnyk and Blagg, 2021).
We also hope our study lays the foundation for other cutting-
edge mass spectrometric approaches that increase resolution of
treatment-induced changes to protein complexes or organellar
proteomes, including SEC-SWATH-MS (Heusel et al., 2020), the
various LOPIT techniques (Geladaki et al., 2019; Mulvey et al.,
2017), and Dynamic Organellar Maps (Itzhak et al., 2016). A

combination of these approaches could prove especially useful to
test the epi-chaperome concept (i.e., that cancer cells are more
dependent on highly inter-connected chaperone networks than
non-cancer cells) with respect to HSP90 inhibition (Wang et al.,
2019).
Another useful future comparison would be SEC-MS with other
HSP90 inhibitors—especially those that bind HSP90 outside of its
N-terminal ATPase pocket, such as C-terminal domain binders
of the novobiocin family (Donnelly and Blagg, 2008) or cova-
lent inhibitors targeting cysteine residues (Li et al., 2021; Zhu
et al., 2021). C-terminal HSP90 binders represent an area of re-
newed interest (Armstrong et al., 2016; Bhatia et al., 2018; Goode
et al., 2017; Park et al., 2020; Terracciano et al., 2018) due to
their general propensity to inhibit chaperone activity without in-
ducing the cytoprotective heat shock response—one of the major
explanations proposed for the limited tumor-killing effect of N-
terminal HSP90 inhibitors (Bickel and Gohlke, 2019). In a sim-
ilar vein, inhibitors that target only a subset of the pan-HSP90
proteome by interfering with specific chaperone : co-chaperone in-
teractions (e.g., HSP90 :CDC37 to target only protein kinase
clients)(Serwetnyk and Blagg, 2021), or only certain HSP90 iso-
forms (Khandelwal et al., 2018; Park et al., 2020; Sanchez-Martin
et al., 2020; Stothert et al., 2017), are also being explored for
clinical use. The ability of SEC-MS to identify remodeling events
downstream of HSP90 in a global and unbiased manner should
make this an attractive approach for rational development and
deployment of next-generation HSP90 family inhibitors to the
patients and pathological indications most likely to benefit.

Methods

Cell culture
HT29 human colon adenocarcinoma, HCT116 human colon carci-
noma, and BT474 human breast ductal carcinoma cells purchased
from ATCC (LGC Promochem) were cultured in DMEM (Invit-
rogen) and supplemented with 10% fetal calf serum (PAA Lab-
oratories), 2mm L-glutamine, 0.1mm non-essential amino acids
and 100U of penicillin and streptomycin (all from Invitrogen) at
37 °C in a humidified incubator with 5% CO2 and sub-cultured at
70% confluency. Cells were confirmed as mycoplasma-free using
the Venor Mycoplasma PCR Detection Kit (Minerva Biolabs),
and were authenticated by short tandem repeat DNA profiling.

Compound treatment and cell lysis for SEC
Five 15 cm dishes (50% confluent) of HT29 cells were treated
with 62.5 nm tanespimycin (Invivogen, CA, USA) (equivalent to
5x GI50 for the cell line), or mock-treated with equivalent vol-
ume of DMSO. The GI50 concentration for the cell line was de-
termined by 96 h sulforhodamine B assay (Holford et al., 1998),
and defined as the drug concentration that reduced the mean ab-
sorbance at 540 nm to 50% of vehicle-treated controls. After 8 h,
the cells were scraped on ice in 500 µL of ice-cold PBS contain-
ing cOmpleteTM Protease Inhibitor Cocktail EDTA-free (Roche)
and PhosStop (Roche). The collected cells were sonicated with a
Diagenode Bioruptor (30 cycles: 30 s on, 30 s off) at 4 °C and then
centrifuged at 17,000 g for 10min at 4 °C. Samples were filtered
through 0.45 µm Ultrafree-MC centrifugal filter units (Millipore)
at 12,000 g for 10min.
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SEC, enzymatic digestion, and peptide clean-up
Using a Dionex UltiMate 3000 HPLC system (Thermo Scientific),
lysates were injected (200 µL per injection) onto a Superose® 6
10/300GL column (GE Healthcare, UK) equilibriated with PBS
(pH7.2) with a flow rate of 0.2mLmin−1. 24 200 µL fractions
were collected in a low protein-binding 96-deep-well plate (Ep-
pendorf, Germany). Approximate protein concentrations were
estimated using the EZQTM Protein Quantitation Kit (Thermo
Scientific). Tris-HCl (1m, pH 8.0) was added to each fraction to
a final concentration of 0.1m Tris-HCl to adjust the pH to 8.0.
After reduction and alkylation using DTT and iodoacetamide, re-
spectively, proteins in each fraction were digested to peptides for
18 h at 37 °C using either trypsin alone or both LysC & trypsin
diluted in 0.1m Tris-HCl pH8.0 at a final enzyme to protein ra-
tio of 1:50 by weight. For peptide desalting, trifluoroacetic acid
(TFA) was added to a 1% (v/v) final concentration, and peptides
were purified using a Sep-Pak tC18 96-well µ-elution plate (Wa-
ters). Peptides were eluted in 500 µL of 50% (v/v) acetonitrile,
0.1% TFA, and dried in a SpeedVac prior to resuspension in 5%
(v/v) formic acid. Peptide concentrations were determined using
the CBQCA assay (Thermo Scientific) after 25-fold dilution of
peptide samples in 0.1m borate buffer, pH 9.3.

LC-MS/MS and analysis of spectra
Using a Thermo Scientific Ultimate 3000 nanoHPLC system, 1 µg
of peptides in 5% (v/v) formic acid (approximately 10 µL) was
injected onto an AcclaimTM PepMapTM C18 nano-trap column
(Thermo Scientific). After washing with 2% (v/v) acetonitrile in
0.1% (v/v) formic acid, peptides were resolved on a 150mm x
75 µm AcclaimTM PepMapTM C18 reverse-phase analytical col-
umn over a gradient from 2% to 80% acetonitrile over 100min
with a flow rate of 300 nLmin−1. The peptides were ionized by
nano-electrospray ionization at 1.2 kV using a fused silica emit-
ter with an internal diameter of 5 µm (New Objective, Woburn,
MA). Tandem mass spectrometry analysis was carried out on
an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific)
using CID fragmentation. Data-dependent acquisition (DDA) in-
volved acquiring MS/MS spectra on the 30 most abundant ions
at any point during the gradient. The raw MS proteomics data
have been deposited to the ProteomeXchange Consortium (http:
//proteomecentral.proteomexchange.org) via the PRIDE partner
repository (Perez-Riverol et al., 2021) with the dataset identifier
PXD033459.
Raw data were processed using MaxQuant software (http://www.
coxdocs.org/doku.php?id=maxquant:start, version 1.5.1.3)(Cox
and Mann, 2008) using the default settings and searched against
the human UniProt database (June 7, 2011) with common con-
taminant entries. The settings used for MaxQuant analysis
were: enzymes set as LysC/P and Trypsin/P, with maximum
of 2 missed cleavages; fixed modification was Carbamidomethyl
(Cys); variable modifications were Acetyl (Protein N-term), Car-
bamidomethyl (His, Lys), Carbamidomethyl (N-term), Deami-
dation (Gln, Asn), DiCarbamidomethyl (His, Lys), DiCar-
bamidomethyl (N-term), Gln to pyro-Gle, Oxidation (Met); Mass
tolerance 20 ppm (FTMS) and 0.5Da (ITMS); False Discovery
Rate for both protein and peptide identification was 0.01. The
‘Re-quantify’ and ‘Match between runs’ features were both en-
abled. See Table S1 for the proteinGroups.txt output file from
MaxQuant analysis.
Note that initial attempts to analyse the 384 raw files with

MaxQuant indicated errors in reading five files from the EXP2
samples (trypsin-digested fractions 17, 22, & 24 in the Con-
trol condition, and LysC+trypsin-digested fractions 1 & 2 in the
HSP90i condition). Therefore, for these fractions, only the sam-
ple digested with the other (MaxQuant-readable) enzyme schema
was included in the MaxQuant input files.

Initial SEC-MS data filtering and exploration
All data filtering, exploration, and statistical analyses were per-
formed using a combination of Microsoft Excel and R (https:
//cran.r-project.org/, version 3.6.2) with Tidyverse, unless oth-
erwise stated. Specific R packages are referenced in the following
text. The proteinGroups.txt file from the MaxQuant analysis
(Table S1) was used as the input data for all downstream statis-
tical analysis reported here. Of the 7,401 entries in the protein-
Groups.txt file, we filtered out 134 entries identified as potential
contaminants, 91 as reverse matches, and 200 that were only iden-
tified by site. Additionally, 172 entries were removed as they were
only identified by a single peptide. Of the remaining 6,804 pro-
teinGroups entries, we consolidated into single entries the splice
variants, duplicated Entrez protein IDs, and duplicated HUGO
Gene Names—resulting in 6,427 unique protein entries for all
subsequent analyses (Table S2). Gene Names that were not auto-
matically assigned by MaxQuant were manually added from their
Entrez protein IDs. To establish overlap and correlation between
protein identifications across replicates, we used the R packages
‘UpSetR’ (Conway et al., 2017)(Fig 1C), ‘ggvenn’ (Fig S1A-B),
and ‘heatmap.2’ (Fig S1C). For scaled intensities in heatmaps
and linegraphs, LFQ fraction intensities were scaled (using ‘resca’
function from R package ‘metan’ (Olivoto and Lúcio, 2020))(Ta-
ble S3). Scaling was performed per experiment (EXP1–EXP4)
across all 48 fractions, such that the highest fraction intensity
value for a protein in each EXP was set at 1, regardless of whether
it was observed in the Control or HSP90i condition. For filtering
based on number of replicates, we filtered for the proteins that
had non-zero LFQ intensities in at least 1 of the 24 fractions (ei-
ther Control or HSP90i condition—not necessarily both), in at
least 3 of the 4 replicates, resulting in a list of 4,645 proteins (Ta-
ble S4). Heatmaps in Figs 1D, 3D, and 4A were generated using
the R packages ‘hclust’ for hierarchical clustering based on Eu-
clidean distance with Ward-D2 linkage method and ‘heatmap.2’
for heatmap plotting. All boxplots, linegraphs, and Volcano plots
were generated using the ‘ggplot2’ R package, unless otherwise
stated.

Limma-based differential expression analysis
All data shown at a total or summed level (i.e., without individual
fraction values) have been processed in the following way. Start-
ing with the list of 4,645 filtered proteins (Table S4), we added up
all 24 LFQ intensities (F01:F24) for Control and HSP90i condi-
tions separately. After log2-transforming and normalizing these
data (variance-stabilizing normalization)(Fig S1D–E), we evalu-
ated missing values, which were clearly biased towards proteins
with lower LFQ intensities (Fig S1F). Additionally, there were
a larger number of missing values in Experiment 1 (both Con-
trol and HSP90i)(Fig S1G). Based on these observations, we im-
puted the missing values using a manual left-censored Missing
Not At Random (MNAR) method against a Gaussian distribu-
tion with a left-shift of 1.8 and a scale of 0.3. Using these param-
eters, we performed differential expression analysis using the R
package DEP (https://bioconductor.org/packages/release/bioc/
html/DEP.html) (Zhang et al., 2018) on the contrast between
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HSP90i and Control, with differentially-expressed proteins (DPs)
set as those with an adjusted p-value of < 0.05 and an absolute
log2FC threshold of 1 (i.e. Fold Change < -2 or > 2). The ad-
justed p-values depicted in summed boxplots for all figures are
based on differential expression values calculated by this work-
flow. To calculate enriched Gene Ontology (GO) terms, we sepa-
rately entered the significantly down-regulated (no enriched GO
terms) and up-regulated (Fig 1H, Fig S1J) DPs into GOnet (Po-
maznoy et al., 2018), using the full list of 4,645 filtered proteins
as the background. Networks were visualized using CytoScape
(version 3.8.2). For individual fraction-level differential analysis
of the filtered 4,645 proteins (Fig 4, Table S9–S10), the same
workflow was followed as for the summed protein intensities, ex-
cept treating each of the 24 fractions as a separate Control vs.
HSP90i DEP analysis, and without imputation of missing val-
ues. The DPs from each of the 24 fractions were combined, re-
sulting in 366 DPs (Table S9). For the stringent fraction DPs
(Table S10), only proteins that were DPs in two or more frac-
tions were included. The network of stringent fraction DPs (Fig
4C) were generated using the STRING protein–protein interac-
tion database (https://string-db.org/, version 11.5), with the fol-
lowing parameters: full STRING network type (both physical and
functional interactions); edge thickness indicating strength of ev-
idence for interaction; minimum required interaction score= 0.4
(medium confidence); Markov Clustering (MCL) with inflation
parameter= 2. GO term enrichment analysis was also performed
on STRING, using the full list of 4,645 filtered proteins as back-
ground. The canSAR curated interactome-based network (Fig
S6) was generated using the canSAR Protein Annotation Tool
(https://cansarblack.icr.ac.uk/cpat). The canSAR interactome
contains > 1million binary interactions for > 19,000 human pro-
teins. Interaction types are classified to reflect the method of
experimental determination. A confidence level in the existence
of a direct binary interaction is assigned in canSAR based on the
type of the experiment and the number of independent publica-
tions reporting the interaction. All experimental determination
types were included with a confidence level of >= 0.1.

CCprofiler and PCprophet protein complex detection
To identify the number of CORUM-annotated protein complexes
preserved in our dataset, we used either CCprofiler (Heusel et al.,
2019) or PCprophet (Fossati et al., 2021), with the data frame of
6,427 proteins used as a starting point (Fig S2). For CCprofiler,
missing values in the computed list of protein traces were imputed
by fitting a spline interpolation, and normalized by cyclic loess
(Bludau et al., 2021). The proportion of intensities in assembled
and monomer range (Fig 3A) were estimated using the CCpro-
filer ‘summarizeMassDistribution’ function. For feature detec-
tion purposes, protein traces were aggregated across conditions
and replicates by summing up intensity values in each fraction.
All subsequent complex-centric feature detection and co-elution
(Fig 3B, Fig S3A–B) was performed against the default CORUM
complexes reference data frame ‘corumComplexHypothesesRe-
dundant’ in CCprofiler. Decoy complex queries were generated
from this reference data frame (min_distance=2), and pro-
tein complex features were detected from our normalized pro-
tein traces with the following parameters: corr_cutoff=0.9, win-
dow_size= 5, rt_height= 1, smoothing_length=5, collapse_-
method=“apex_network”, perturb_cutoff=5%. The resultant
complex features were filtered according to their apparent molec-
ular weight (min_monomer_distance_factor= 1.2). The com-
plex co-elution peak groups with the largest number of co-eluting

protein subunits (‘getBestFeatures’ function) were then selected
for statistical scoring at a 5% FDR. For PCprophet, data from
Table S2 was separated into 8 separate txt files (Ctrl_1–Ctrl_-
4, HSP90i_1–HSP90i_4), together with a sample ID key and
calibration table for molecular weight estimation, as outlined in
PCprophet instructions (https://github.com/anfoss/PCprophet/
blob/master/PCprophet_instructions.md). PCprophet was then
run (using Python v3.7.3) on this dataset with default parame-
ters against the CORUM database (using the ‘coreComplexes.txt’
file included in PCprophet), except with calibration by molecu-
lar weight (-cal) turned on, mapping of gene names to molecular
weight (-mw_uniprot) included as a file from UniProt, and molec-
ular weight-based complex collapsing (-co CAL flag). From the
PCprophet output, the ‘DifferentialProteinReport.txt’ file was
used to identify differential proteins with a ‘Probability_differ-
ential_abundance’> 0.5 (Fig 3E, Table S7), and a combination
of the ‘ComplexReport.txt’ and ‘DifferentialComplexReport.txt’
files to identify positive complexes (‘Is Complex’=Positive) and
differential complexes (‘Is Complex’=Positive AND ‘Probabil-
ity_differential_abundance’> 0.5)(Fig 3E, Table S8). The SEC
profiles of all subunits identified by PCprophet in different
complexes were plotted as linegraphs (Fig 3F–G, Fig S4). The
protein–protein interaction networks (Fig S5) were generated by
importing ‘PPIReport.txt’ PCprophet output into CytoScape
(colour=Control or HSP90i; edge width= count(‘Replicate’)
grouped by Control or HSP90i), and differential proteins from
Table S8 were mapped onto the network nodes.

SEC-Immunoblotting
The cell culture, compound treatment, cell lysis, and SEC pro-
tocols used for SEC-MS were followed as closely as possible
for validation by SEC-IB. Five 15 cm dishes (80% confluent) of
HT29 cells were treated with 62.5 nm tanespimycin (equivalent to
5 xGI50 for the cell line), or mock-treated with equivalent vol-
ume of DMSO. After 8 h, the cells were scraped on ice in 500 µL
of ice-cold PBS containing cOmpleteTM Protease Inhibitor Cock-
tail EDTA-free (Roche) and Phosphatase Inhibitor Cocktails 1 &
2 (Sigma). The collected cells were sonicated with a Branson-Tip
Sonicator (high power, 3 cycles: 30 s on, 30 s off) at 4 °C and then
centrifuged at 17,000 x g for 10min at 4 °C. Samples were filtered
through 0.45 µm Ultrafree-MC centrifugal filter units (Millipore)
at 12,000 x g for 10min. BCA protein assays (Pierce) were per-
formed on the filtrates for protein quantification.
Using an ÄKTApurifier UPC 10 FPLC system (GE Healthcare),
lysates in PBS with protease and phosphatase inhibitor cocktails
were injected (500 µL per injection, corresponding to 1–3mg total
protein) onto a Superose® 6 10/300GL column (GE Life Sciences)
equilibriated with PBS (pH7.2) with a flow rate of 0.2mLmin−1.
After 10mL of void volume, 500 µL fractions were collected us-
ing a low protein-binding 96-deep-well plate (Eppendorf). Frac-
tions were aliquoted and stored at -80 °C before adding 3X Blue
Loading Buffer (Cell Signaling Technologies) to 25 µL of each
fraction, and running on NuPAGE 4–12% Bis-Tris gels (Invit-
rogen). Following gel transfer onto nitrocellulose (Invitrogen),
membranes were blocked in Tris-Buffered Saline (50mm Tris-HCl,
pH 7.5, 150mm NaCl) with 1% Tween-20 (TBS-T) supplemented
with 5% BSA (for HOP immunoblotting) or milk powder (for all
other antibodies) for 1 h before incubating with the appropriate
concentration of primary antibody diluted in TBS-T with BSA
or milk powder overnight. Antibodies for HSP90α/β (sc-7947,
1:500), CDC37 (sc-5617, 1:500), and AHA1 (sc-50527, 1:500)
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were from Santa Cruz Biotechnology; p23 (ab92503, 1:10,000)
and Anillin (ab99352, 1:2,000) from Abcam; BAG3 (10599-1-AP,
1:1,000) from Proteintech; Hop (#4464, 1:2,000) from Cell Signal-
ing Technologies; and HSP70/HSP72 (ADI-SPA-810-D, 1:2,500)
from Enzo Life Sciences. Membranes were then washed with
TBS-T (3x, 5min each) and incubated with horse radish perox-
idase (HRP)-conjugated secondary antibodies (GE Healthcare).
Following another wash step in TBS-T, the HRP signal was de-
tected by incubation with PierceTM ECL Western Blotting Sub-
strate (Thermo Scientific) and exposure to Hyperfilm ECL (GE
Healthcare). Immunoblots shown are representative of three in-
dependent experiments.
For the HSP90 co-immunoprecipitation experiment shown in
Fig 5B, 1mg of lysate from HT29 cells treated with tane-
spimycin or mock vehicle control as described above was
diluted in modified RIPA buffer (50mm Tris-HCl pH7.5,
150mm NaCl, 1% IGEPALCA-630, 0.5% sodium deoxycholate,
0.02%SDS, cOmpleteTM Protease Inhibitor Cocktail EDTA-free
(Roche)) to 190 µL final volume and incubated with 10 µL anti-
HSP90 conjugated magnetic beads (clone SJ-90; LSBio catalog
no. LS-C171164) for 1 h at 4 °C under rotary agitation. Two neg-
ative controls were incubated in parallel: one with a 50:50 mix
of the tanespimycin and mock-treated HT29 lysates (1mg total
protein) in the presence of control magnetic beads without any
conjugated antibody (LifeSensors, catalog no.UM400M) (‘–IgG’),
and a second control with the anti-HSP90 magnetic beads incu-
bated with modified RIPA buffer only (‘+IgG’). Following five
washes with modified RIPA buffer to remove unbound proteins,
co-immunoprecipitated proteins were eluted from the magnetic
beads by incubating with 10 µL 4X LDS Sample Buffer (Abcam)
at 70 °C for 10min, followed by transfer of the eluate into a sepa-
rate tube and a further 10min incubation at 70 °C in the presence
of DTT (50mm final concentration) to reduce the eluted proteins
fully. Eluted proteins were loaded onto separate gels for each
individual immunoblot. SDS-PAGE and immunoblotting were
performed as described above, except with rabbit anti-HSP90
clone C45G5 (Cell Signaling Technologies #4877, 1:2,000) for the
HSP90 immunoblot, and a 1:500 dilution (instead of 1:2,000) for
the Anillin immunoblot.
See Fig S9 for uncropped images of all immunoblots displayed in
this manuscript.

Anillin knockdown experiments
siPools (siTools Biotech GmbH) comprising 30 siRNAs target-
ing Anillin (ANLN), Polo-like kinase 1 (PLK1), or no recog-
nised mammalian gene (Non-targeting control, NTC), or ster-
ile water (untargeted control, UTC), were complexed for 15min
with DharmaFECT4 transfection lipid (Horizon Discovery) in
75 µL/well OptiMEM (Invitrogen) at room temperature. Fol-
lowing the 15min incubation, 2,000 HT29 cells in 75 µLDMEM
(without Penicillin/Streptomycin) were added to each well, giv-
ing a final concentration of 25 nm siRNA and 0.8% lipid. Cells
were incubated at 37 °C, 5% CO2 in an Incucyte® Zoom (Sarto-
rius AG) and scanned every 8 h for 2 days. After 2 days, 75 µL
tanespimycin (final concentrations from 0.137–300 nm) or DMSO
(0.1% final concentration) was added to each well. Cells con-
tinued to be scanned every 8 h for a further 4 days before being
assessed for the number of viable cells using Cell Titer Blue®

(Promega) according to the manufacturers instructions. Cellular
viability and confluency at each concentration of tanespimycin
were calculated as a percentage of the DMSO control for the re-

spective siRNA treatment with the dose response curves plotted
as non-linear functions with variable slope in GraphPad Prism
v. 9.0.0 (GraphPad Software). The effect of siRNA knockdown
on cells was calculated as a percentage of the NTC. All experi-
ments were performed in biological triplicate.

Isocitrate dehydrogenase activity assays
IDH activity was measured using the Isocitrate Dehydrogenase
Activity Assay Kit (Sigma catalog no. MAK062) according to
the manufacturer’s protocol, with NAD+ or NADP+ used as the
co-factor for IDH3 or IDH1/2, respectively. Briefly, 1 million
HT29, HCT116, or BT474 cells were scraped on ice in 200 µL
ice-cold IDH Assay Buffer (Sigma, Catalog Number MAK062A),
centrifuged at 13,000 x g for 10min at 4 °C. 50 µL of this cell
lysate was added to an equal volume of the manufacturer’s Master
Reaction Mix, with NAD+ or NADP+ for quantification of IDH3
or IDH1 & IDH2 activity, respectively. Absorbance readings at
450 nm for the samples compared with the NADH standard curve
(always run in parallel with the samples) were used to estimate
IDH activity.

Manuscript preparation
This manuscript was prepared in Overleaf (http://www.overleaf.
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SUPPLEMENTARY TABLE LEGENDS

Table S1. Original proteinGroups.txt file from MaxQuant. Data-frame of 7401 rows and 1595 columns. See MaxQuant
documentation (http://www.coxdocs.org/doku.php?id=maxquant:table:proteingrouptable) for column descriptions.
Table S2. Data-frame of 6,427 unique proteins. Data-frame of 6,427 rows and 194 columns, containing HUGO classification
Gene Names, Entrez Protein IDs, and all Label-Free Quantitation (LFQ) intensity values.
Table S3. Data-frame of scaled intensities for the 6,427 unique proteins. Data-frame of 6,427 rows and 194 columns,
containing HUGO classification Gene Names, Entrez Protein IDs, and scaled intensity values. LFQ intensities from Table S2 were
grouped by protein and replicate, and scaled between 0 and 1, i.e., ‘1’ represents the fraction with the maximum intensity observed
for that protein in that experiment (EXP1–EXP4), regardless of whether that maximum intensity fraction was in the Ctrl or HSP90i
condition.
Table S4. Filtered data-frame of 4,645 proteins found in at least 3 of 4 experiments for either treatment condition.
Data-frame of 4,645 rows and 194 columns, containing HUGO classification Gene Names, Entrez Protein IDs, and all LFQ intensity
values.
Table S5. Differential expression analysis for summed intensities from 4,645 filtered proteins. Data-frame of 4,645
rows and 19 columns, containing: HUGO classification Gene Names (‘Name’); Entrez Protein IDs (‘ID’); log2-transformed LFQ
intensities for each of the eight experiments; molecular mass in kDa (‘mw_kDa’); whether or not any intensities were imputed for the
analysis (‘Imputed’); the number of missing values that needed to be imputed (‘num_NAs’); confidence intervals (CI.L and CI.R);
log2-transformed fold change (‘LFC’); Benjamini-Hochberg-corrected adjusted p-values (‘p.adj’); unadjusted Student’s t-test p-values
(‘p.val’); and whether or not the protein is identified as significant, based on p.adj< 0.05 and diff>1 or < -1 (‘Significant’).
Table S6. Characterisation of the 76 summed Differential Proteins (DPs) with respect to previous HSP90 inhibitor
proteomics studies. Data-frame of 76 rows by 17 columns, containing: HUGO classification Gene Names (‘Name’); Entrez Protein
IDs (‘ID’); alternative names for protein (‘Alt_names’); unadjusted Student’s t-test p-values from DEP analysis (‘p.val’); Benjamini-
Hochberg-corrected adjusted p-values from DEP analysis (‘p.adj’); log2-transformed fold change from DEP analysis (‘LFC’); whether
or not the protein is identified as significant, based on p.adj< 0.05 and diff>1 or < -1 (‘Significant’); whether the protein increased or
decreased in abundance upon HSP90 inhibition (‘Direction’); whether the protein was identified as a DP in previous HSP90 proteomics
studies (‘Previously_Identified_DP’), whether the protein was identified as a DP (TRUE), not identified as a DP (FALSE), or not iden-
tified at all (NA) in the specific study (‘Savitski2018’, ‘Quadroni2015’, ‘Fierro-Monti2013’, ‘Voruganti2013’, ‘Sharma2012’, ‘Wu2012’);
whether or not the protein is identified as an HSP90 interactor (https://www.picard.ch/downloads/Hsp90interactors.pdf)(‘PicardList’)
or an HSF1 target gene (https://hsf1base.org/)(‘HSF1_target’).
Table S7. Differential proteins identified by PCprophet. Data frame of 5,199 by 4 columns, containing: HUGO classifi-
cation Gene Names (‘Name’); PCprophet-calculated ‘Abundance_log_marginal_likelihood’ for null and alternative hypotheses; and
‘Probability_differential_abundance’, with values > (but not equal to) 0.5 representing differential proteins.
Table S8. HSP90i-modulated protein complexes identified by PCprophet. Data frame of 320 by 24, containing: CO-
RUM ‘ComplexID’; protein subunits from ComplexID identified as co-eluting (‘Members’); PCprophet-calculated ‘Abundance_log_-
marginal_likelihood’ for null and alternative hypotheses; ‘Probability_differential_abundance’, with values > (but not equal to) 0.5
representing differential complexes; CORUM ‘ComplexName’; ‘Organism’ complex was identified in; alternative names for complex
(‘Synonyms’); ‘Cell line’ complex was identified in; subunits(UniProt IDs); subunits(Entrez IDs); protein complex purification method;
GO description; FunCatID; FunCat description; subunits(Gene name synonyms); Complex comment; Disease comment; SWISSPROT
organism; Subunits comment; gene names of all subunits annotated in the complex (‘subunits(Gene name)’); PubMed ID; full protein
name of all subunits in the complex (‘subunits(Protein name)’).
Table S9. Log2-transformed Fold Change (LFC) values calculated by R package DEP for 366 All Fraction Differential
Proteins (DPs). Data-frame of 366 rows by 25 columns, containing: HUGO classification Gene Names (‘Name’) and log2-transformed
fold change from DEP analysis in each fraction (‘LFC_F01’–‘LFC_F24’).
Table S10. Log2-transformed Fold Change (LFC) values calculated by R package DEP for 62 Stringent Fraction
Differential Proteins (DPs). Data-frame of 62 rows by 28 columns, containing: HUGO classification Gene Names (‘Name’); Markov
cluster ID (‘Cluster_Number’) and colour (‘Cluster_Colour’) from STRING network, as illustrated in Fig 4C; number of nodes present
in the Markov cluster (‘Node_Count’); and log2-transformed fold change from DEP analysis in each fraction (‘LFC_F01’–‘LFC_F24’).
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Figure S1. Reproducibility between replicates (EXP1–EXP4) and differential protein analysis of summed intensities in SEC-MS dataset.
(A) Venn diagram showing overlap between the proteins identified in each biological replicate (EXP1–EXP4). (B) Venn diagram to show total
number of proteins identified in 1, 2, 3, or 4 biological replicates. For (A) and (B), proteins identified in either Control or HSP90i conditions were
combined. (C) Heatmap showing Pearson correlation coefficients between the four biological replicates for each of the 24 SEC fractions, indi-
vidually and summed, under both experimental conditions. (D) Quantile-quantile plots of log2-transformed summed LFQ intensities from filtered
dataset (4,645 proteins) indicate a similar heavy-tailed distribution in all experiments. This type of distribution is typical in mass-spectrometry-
based proteomics data. (E) Box/Tukey plots showing spread of summed intensities for each experiments before and after background correction
and variance-stabilizing transformation. (F) Linegraphs showing densities (top) and cumulative fractions (bottom) of log2-transformed summed
intensities for proteins with (TRUE) and without (FALSE) missing values. Data indicate that proteins with missing values tend to have lower
summed intensities. (G) Heatmap of entries from 4,645 filtered proteins list with at least one missing value across the eight samples. (H)
Heatmap summarizing Pearson correlation coefficients for summed intensities across all experiments. (I) Heatmap showing row-centered in-
tensities for all 76 significant differential-expressed proteins based on summed intensity values. Clusters are drawn from Euclidean distance.
Heatmap and plots in (D)–(G) were generated from built-in functions in R package ‘DEP’. (J) Gene Ontology Biological Processes (GOBPs)
significantly enriched among the 35 upregulated differential proteins (DPs) identified in Fig 1F using GOnet, with the 4,645 filtered proteins used
as the background for the enrichment analysis. DPs linked to the enriched GO terms are shown.
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Figure S2. SEC-MS profiles of components of the Heat Shock Protein machinery. (A) SEC-MS profiles of other heat shock-induced
proteins and their transcriptional activator HSF1. (B) SEC-MS profiles of organelle-specific HSP90 isoforms HSP90B1/GRP94 (endoplas-
mic reticulum) and TRAP1 (mitochondria). (C) SEC-SWATH-MS profiles from Heusel et al., 2020, for HSP90 isoforms HSP90AA1/HSP90α,
HSP90AB1/HSP90β, HSP90B1/GRP94 (endoplasmic reticulum) and TRAP1 (mitochondria), from interphase and mitotic HeLa-CCL2 cells. Pro-
files were generated using SECexplorer-cc (https://sec-explorer.shinyapps.io/hela_cellcycle/). Solid lines represent mean values for the top two
peptides across three replicated for each protein. Shaded areas represent the standard error of the mean. Diamonds indicate estimated fraction
for the monomer peak of each protein, based on the UniProt-annotated molecular weight. (D) SEC-MS profiles of other tetratricopeptide (TPR)-
domain co-chaperones of HSP90. Only PPP5C/PP5 had a major elution peak in the same fractions as HSP90. (E) SEC-MS profiles of two
E3 ubiquitin ligases known to be recruited to HSP90 following HSP90 inhibition. Only STUB1/CHIP co-eluted with HSP90. Neither E3 ubiquitin
ligase displayed an altered profile following HSP90 inhibition.
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Figure S3. Tight clustering of proteins within, but not between, regulatory particle (RP, 19S) and core particle (CP, 20S) of the 26S
proteasome. (A–B) Pie charts illustrating the number of proteins (A) and protein complexes (B) annotated in the CORUM protein complex
database that were covered in our dataset of 6,427 proteins. (C) Heatmap of scaled intensities for subunits of the 19S regulatory particle and
20S core particle complexes that make up the 26S proteasome. The dendogram cut-offs based on Euclidean distance matrix with the Ward-D2
linkage method are illustrated to the left of the heat map. (D) Benchmarking the number of CORUM-annotated protein complexes identified
by CCprofiler from our dataset compared with previous published SEC-MS studies. The cell line, MS acquisition method (data-dependent
acquisition, DDA, or data-independent acquisition, DIA), number of SEC fractions collected, and number of protein complexes identified by
CCprofiler (using a cut-off of >= 50 % of subunits co-eluting) are indicated. The number of complexes identified are according to those reported
in each study, except for Larance et al., which pre-dates CCprofiler, and was re-analyzed using CCprofiler in Heusel et al. 2019.
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Figure S4. SEC profiles of all HSP90i-modulated protein complexes identified by PCprophet. Scaled median intensities for all subunits
from the protein complex identified as co-eluting by PCprophet were plotted. CORUM ID numbers are indicated in the title. For complexes with
multiple CORUM IDs, only one graph was plotted (e.g., ‘Cytochrome c oxidase, mitochondrial’ CORUM IDs 530, 538, and 542; ‘CCT complex,
testis specific’ CORUM IDs 150 and 3072). Novel protein complexes not annotated in CORUM are indicated with the prefix “cmplx”. Dashed
vertical lines on linegraphs indicate the fraction in which the monomer would be detected, based on the UniProt-annotated molecular weight.
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Figure S5. Protein–protein interactions networks identified in complete dataset. Protein–protein interaction networks generated by
PCprophet based on our complete dataset of 6,427 proteins. Networks were generated using Cytoscape based on ‘PPIreport.txt’ PCprophet
output. Green nodes represent differential proteins identified using PCprophet’s protein-centric analysis. Edge width represents the number of
experiments in which the interaction was confidently detected by PCprophet, with the edge colour representing Ctrl or HSP90i detections.
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Figure S6. Stringent DP protein–protein interaction network generated using canSAR curated interactome database. The list of 62 strin-
gent fraction DPs from Fig 4 were entered into the canSAR Protein Annotation Tool (https://cansarblack.icr.ac.uk/cpat), with edges representing
interactions from canSAR’s curated interactome. Edge width represents confidence of evidence (’edge quality’) for interaction between the two
nodes. Node colours represent clusters from Fig 4.
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Figure S7. Knockdown of Anillin by siRNAs reduces cell confluency and viable cell number. (A, B) Knockdown of Anillin reduces HT29 cell
confluency compared with non-targeting control (NTC) and untargeted control (UTC). HT29 cells were treated for 48 h with siTOOLs pool of 30
siRNAs (25 nM total concentration) targeted against Anillin (ANLN), non-targeting control NTC, untreated control UTC, or death-inducing control
PLK1, followed by 96 h with a range of tanespimycin concentrations (except for PLK1), or with mock treated with vehicle control (0.1 % DMSO),
while still in the presence of the original siRNAs. Confluency was monitored every 8 h throughout the time-course by Incucyte®. Lines and shaded
regions represent mean +/- standard error from four biological replicates (EXP1–EXP4) for each condition. (B) Confluency measurements for
vehicle control-treated cells from each siRNA condition in A. (C) Knockdown of Anillin reduces number of viable HT29 cells compared with non-
targeting control (NTC) and untargeted control (UTC). Percentage viability of HT29 cells from part A at the end of the siRNA and tanespimycin
treatments (144 h total) by CellTiter-Blue® assay relative to vehicle-treated (0.1 % DMSO) NTC control was measured with an Incucyte®. Points
and error bars represent mean +/- standard error for each condition. Dose-response curve fitting was performed using the ‘Log[Inhibitor] vs.
normalized response – Variable slope’ non-linear regression model in Graphpad Prism.
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Figure S8. Activity of the mitochondrial Isocitrate Dehydrogenase 3 (IDH3) complex, but not IDH1 or IDH2, is reduced by treatment
with multiple HSP90 inhibitors. (A) Combined activities of IDH1 & IDH2 are not significantly reduced upon HSP90 inhibition in HT29 colon
adenocarcinoma, HCT116 colon carcinoma, and BT474 breast ductal carcinoma cell lines. Activity was measured using the IDH Activity Assay
Kit (Sigma) according to manufacturer’s instructions, using NADP+ as the co-factor—which is used by both IDH1 and IDH2. See Fig 6B for
corresponding assay with NAD+ as the co-factor, for estimating IDH3 activity. (B) IDH3 activity is significantly reduced upon treatment with the
chemotypically distinct HSP90 inhibitors luminespib (AUY922) and BIIB021, in HCT116 colon carcinoma cells. Activity was measured using the
IDH Activity Assay Kit (Sigma) according to manufacturer’s instructions, using NAD+ as the co-factor.
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Figure S9. Uncropped images of immunoblots displayed in this manuscript. See ’SEC-Immunoblotting’ section in Methods for antibodies
and dilutions used.
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