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Summary 1 
Respiratory diseases impose an immense health burden worldwide. 2 

Epidemiological studies have revealed extensive disparities in the incidence and 3 
severity of respiratory tract infections (RTIs) between males and females. It is 4 
recently hypothesized that there might also be a nasal microbiome axis contributing to the 5 
observed sex disparities, but without evidence. In this work, we study the nasal 6 
microbiome of healthy young adults in, as of today, the largest cohort based on deep 7 
shot-gun metagenomic sequencing. We mainly focus on the bacteriome, but also 8 
integrate the mycobiome to get a more holistic perspective. De novo assembly is 9 
performed to catalog the nasal bacterial colonizers/residents, which also identify and 10 
therefore account for uncharacterized components of the community. The bacteriome 11 
is then profiled based on the non-redundant metagenome-assembled genomes (MAGs) 12 
catalog constructed therefrom. Unsupervised clustering reveals clearly separable 13 
structural patterns in the nasal microbiome between the two sexes. Following this link, 14 
we systematically evaluate sex differences for the first time and reveal extensive sex-15 
specific features in the nasal microbiome composition. More importantly, through 16 
network analyses, we capture markedly higher ecological stability and antagonistic 17 
potentials in the nasal microbiome of females than that of males. The analysis of the 18 
keystone bacteria of the communities reveal that the sex-dependent evolutionary 19 
characteristics might have contributed to this difference. 20 

Highlights 21 

The non-redundant nasal bacterial MAGs catalog constructed from ultra-deeply 22 
sequenced metagenomic data provides a valuable resource. 23 

Integrating nasal bacteriome and mycobiome data provides a more holistic perspective 24 
for the understudied human nasal microbiome. 25 

Unsupervised clustering helps uncover extensive sex differences in the nasal microbiome 26 
compositions. 27 

Network analyses capture markedly higher ecological stability and antagonistic potentials 28 
in the nasal microbiome of females than that of males. 29 

Sex-dependent genetic evolutionary forces play a role in the shaping of keystones in the 30 
nasal microbial community. 31 

32 
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Introduction 1 

Respiratory diseases impose an immense health burden worldwide, affecting billions of 2 
people's lives and accounting for over 10% of all disability-adjusted life-years (DALY) 3 
as of 2019 according to the Global Burden of Diseases (GBD) study (Ferkol and 4 
Schraufnagel, 2014; GBD 2019 Diseases and Injuries Collaborators, 2020; Jin et al., 2021; 5 
Viegi et al., 2020), let alone the catastrophic impact of the COVID-19 pandemic. Sex is a 6 
significant factor in many diseases. Epidemiological studies have revealed extensive 7 
disparities in the incidence and severity of respiratory tract infections (RTIs) between 8 
males and females. Males are generally more commonly and severely affected by most 9 
RTIs than females across all age groups (Falagas et al., 2007; Jacobsen and Klein, 2021; 10 
Jin et al., 2021). A greater mortality rate for males was also observed in COVID-19 11 

(Klein et al., 2020; Scully et al., 2020; Vahidy et al., 2021). Sex-specific differences in 12 
immunity mediated by sex chromosome complement, genes and sex hormones can play 13 
important roles in the observed disparity (Jacobsen and Klein, 2021; Scully et al., 2020; 14 
Vahidy et al., 2021). Nevertheless, the mechanism remains unclear. The nasal 15 
microbiome has been implicated in different respiratory diseases (Fazlollahi et al., 2018; 16 
Gan et al., 2021; Kumpitsch et al., 2019; Mahdavinia et al., 2016; Ramakrishnan and 17 
Frank, 2018; Rhee et al., 2021; B. G. Wu et al., 2019). It is recently proposed that there 18 
might also be a nasal microbiome axis contributing to the observed sex disparities (Shah, 19 
2021). 20 

The nasal bacterial community is characterized by a high prevalence of Corynebacterium 21 
spp., Propionibacterium spp. and Staphylococcus spp., with most components belonging 22 
to phyla Actinobacteria, Firmicutes and Proteobacteria (Human Microbiome Project 23 
Consortium, 2012; C. M. Liu et al., 2015). In addition to bacterial colonizers, the nasal 24 
cavity also harbors a mycobiota (Jung et al., 2015), as well as the presence of viruses. 25 
However, the nasal microbiome studies are hitherto still limited to small sample sizes or 26 
16S rRNA gene-based sequencing (Wenkui Dai et al., 2019; de Steenhuijsen Piters et al., 27 
2020; Earl et al., 2018; Kaul et al., 2020; C. M. Liu et al., 2015; Yan et al., 2013). Sex 28 
differences in the nasal microbiome have never been systematically evaluated. Liu et al. 29 
identified seven community state types (CSTs) of the nasal bacterial community in a 30 
cohort of 86 twin pairs above 50 years old, and found no significant difference in the 31 
CST distribution between the two sexes despite higher microbial loads in the nasal cavity 32 
of males. This is not surprising considering that even in the most researched gut 33 
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microbiome, sex differences only came to light very recently through large-scale 1 
population studies (la Cuesta-Zuluaga et al., 2019; Sinha et al., 2018; X. Zhang et al., 2 
2021). In a well-designed large cohort, which nicely limited variability in potential 3 
confounding factors, such as genetic background, geographic residence, and diet habits 4 
etc., Zhang et al. demonstrated sex-specific aging trajectories of the gut microbiome. 5 
They showed that the differences were especially evident between age-matched male 6 
adults and premenopausal female adults (approximately below ~50 years old), and 7 
gradually diminished after 50 years of age. 8 

It is increasingly recognized that the nasal microbiome might function as a gatekeeper in 9 
respiratory health (Wenfang Dai et al., 2018; Man et al., 2017). The nasal cavity is 10 
featured by limited nutrients and adhesion surfaces (Krismer et al., 2014), and represents 11 
a major reservoir for opportunistic pathogens, such as Staphylococcus aureus, 12 
Streptococcus pneumoniae, and Haemophilus influenzae (Clark, 2020). The microbes in 13 
this niche are hence in constant competition, and sometimes form cooperative relation, to 14 
gain self-fitness (Brugger et al., 2020; De Boeck et al., 2021; Zipperer et al., 2016). 15 
Extensive antimicrobial substance productions have been identified in nasal microbes, 16 
which can be potential mediators of the interactions (De Boeck et al., 2021; Donia et al., 17 
2014; Donia and Fischbach, 2015; Iwase et al., 2010; Janek et al., 2016; Zipperer et al., 18 
2016). The competitive (antagonistic) and cooperative (synergistic) interactions influence 19 
both the initial colonization of pathogens and the thereafter dynamics. Network-based 20 
approaches have been proved to be helpful in deciphering complex interactions and are 21 
increasingly applied in the microbial field. Understanding the nature of microbial co-22 
occurrence and correlation patterns within and cross domains may provide insights into 23 
the ecological systems as well as related human diseases. Through network-based 24 
analyses, researchers studying bronchiectasis exacerbations found that patients of 25 
different exacerbation risks featured distinct microbial interaction networks (Mac Aogáin 26 
et al., 2021). Instead of the implicated single pathobiont Pseudomonas, it is the 27 
interaction network that is associated with the exacerbation risk. While cross-domain 28 
interactions are rarely explored, Tipton et al. recently showed that compared to single 29 
domain networks, bacteria-fungi combined networks had higher overall connectivity and 30 
increased attack robustness (Tipton et al., 2018). More importantly, network analyses can 31 
help elucidate and prioritize the keystones of a community, which may not be the species 32 
dominant in abundance, and sometimes can even be unknown "microbial dark matter" 33 

(Banerjee et al., 2018; Zamkovaya et al., 2020). 34 
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In this work, we study the nasal microbiome of healthy young adults in a so far largest 1 
cohort based on deep shotgun metagenomic sequencing. We mainly focus on the 2 
bacteriome, but also integrate the mycobiome to get a more holistic perspective. De novo 3 
assembly is performed to catalog the nasal bacterial colonizers/residents, which also 4 
identify and therefore account for uncharacterized components of the community. The 5 
bacteriome is then profiled based on the non-redundant metagenome-assembled genomes 6 
(MAGs) catalog constructed therefrom. Unsupervised clustering reveals clearly separable 7 
patterns between the two sexes, implying a distinct structure of the nasal microbiome 8 
between males and females. Following this link, we systematically evaluate sex 9 
differences for the first time and reveal extensive sex-specific features in the nasal 10 
microbiome composition. More importantly, through network analyses, we capture 11 
markedly higher stability and antagonistic potentials in the nasal microbiome of females 12 
than that of males, in the shaping of which the sex-dependent evolutionary characteristics 13 
might have played a role as revealed by the keystone bacteria of the communities. 14 

Results 15 

Characterizing the nasal bacteriome and mycobiome 16 

To characterize the nasal microbiome of healthy young adults, we performed deep 17 
shotgun metagenomic sequencing on 1,593 anterior nares samples from the 4D-SZ cohort 18 
(C. Chen et al., 2021; Jie et al., 2021a; 2021b; X. Liu et al., 2022; Zhu et al., 2021) (Table 19 
S1). In total, 128.21 terabases raw data were generated with an average of 80.48 20 
gigabases for each sample (Table S2). A single sample assembly, and single sample 21 
binning strategy (see Methods) was employed to reconstruct genomes from the ultra-22 
deeply sequenced metagenomic data. A total of 4,197 metagenome-assembled genomes 23 
(MAGs) were assembled at a threshold for quality control of >50% completeness and <= 24 
10% contamination. To compile a non-redundant MAGs catalog, we performed de-25 
replication with 99% of the average nucleotide identity (ANI). At the end, a catalog of 26 
974 non-redundant MAGs for human nasal associated bacteria were retained, which 27 
included 718 high-quality (completeness > 90% & contamination < 5%) and 256 medium 28 
quality (completeness > 50% & contamination < 10%) ones (Figure 1a; Figure S1). 16S 29 
rRNA genes had been detected in about 45% of the 974 MAGs (Figure 1a). To explore 30 
the taxonomic coverage of this catalog, we classified the MAGs according to 95% 31 
average nucleotide identity. Overall, we obtained 232 species from 13 known phyla, with 32 
150 annotated to known genomes in the GTDB database, and the other 82 as newly 33 
identified (unknown) (Figure. 1b). The unknown species spanned over all of the 13 phyla, 34 
with the largest number from Bacteroidota. For four phyla, including Fusobacteriota, 35 
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Eremiobacterota, Deinococcota and Bdellovibrionota, only unknown species were 1 
discovered. This suggests that the habitat of the nasal cavity featured drastically distinct 2 
characteristics from other habitats where the species of these phyla are often identified, 3 
e.g. Fusobacterium nucleatum of phylum Fusobacteriota is often detected in oral and 4 
fecal samples. Additionally, we identified six novel genera from phylum Proteobacteria, 5 
Bacteroidota and Firmicutes_A, and one novel family from phylum Eremiobacterota, 6 
which cannot be assigned to any known taxa of the respective level at the level-specific 7 
phylogenetic distance cut-offs (Table S3). Notably, our data also improved the genome 8 
completeness of a singleton taxon, namely QFNR01 sp003248485 (90.42% completeness, 9 
compared with 75.15% completeness in GTDB; Table S3). Overall, the majority of the 10 
MAGs in the catalog belonged to Actinobacteriota, Proteobacteria and Firmicutes, which 11 
is typical for the human nasal microbiome (Clark, 2020; Dimitri-Pinheiro et al., 2020; 12 
Human Microbiome Project Consortium, 2012). 13 

Natural products of human microbiota are increasingly recognized as important mediators 14 
for a variety of microbe-host and microbe-microbe interactions, which in turn can be 15 
explored for potential pharmaceutical applications (Donia and Fischbach, 2015; 16 
Milshteyn et al., 2018; Sugimoto et al., 2019). As an example, a nasal isolate of 17 
Staphylococcus lugdunensis has recently been shown to produce a novel antibiotic, 18 
lugdunin, a non-ribosomally synthesized bioactive natural product, which is bactericidal 19 
against major human pathogens and prohibits the colonization of S. aureus in the nasal 20 
cavity (Zipperer et al., 2016). We therefore screened for the presence of secondary 21 
metabolites biosynthetic gene clusters (BGCs) encoded within the 974 non-redundant 22 
MAGs using antiSMASH (Blin et al., 2013; 2018; Medema et al., 2011) (Table S3b). In 23 
total, we detected 2,921 BGCs, which were primarily inferred as synthesized terpenes, 24 
nonribosomal peptides (NRPs), types I polyketide synthases (PKSs), siderophores and 25 
other unspecified ribosomally synthesised and post-translationally modified peptide 26 
products (RiPPs). Notably, 514 of them were screened from MAGs newly identified from 27 
the nasal microbiome in this cohort (Figure S2b). In addition, 1,975 (67.2%) of the 28 
detected gene clusters were novel clusters, most of which were from Actinobacteriota, 29 
Firmicutes and Proteobacteria (Figure S2c). These data, in particular the high number and 30 
proportion of novel clusters, suggests that the nasal microbiota may serve as a rich 31 
reservoir for new antibiotics or other pharmaceuticals. 32 

To profile the nasal microbiome composition, the metagenome data were first mapped to 33 
the constructed non-redundant nasal MAGs catalog and generated the bacterial profile for 34 
each sample. The most abundant species were mainly from genera Corynebacterium, 35 
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Staphylococcus, Moraxella, Cutibacterium, Dolosigranulum, and Lawsonella. 1 
Accumulative abundance analysis showed that top-ranked 17 species accounted for over 2 
90% of the overall composition, suggesting that the nasal bacterial community was 3 
dominated by a few taxa (Figure S3). To characterize the mycobiome composition, we 4 
aligned our high-quality cleaned metagenome data to a manually curated database with 5 
Kraken. In total, we identified 607 fungal species in this cohort with the most from phyla 6 
Ascomycota and Basidiomycota (Figure 1c). While the bacterial community was 7 
dominated by several species, the mycobiome was more evenly distributed, taking over 8 
50 species to account for ~90% of the overall fungal mycobiome composition. 9 
Aspergillus spp. and Malasseziaceae spp., among others, are the most abundant fungi in 10 
the nasal cavity of this cohort (Figure S3). 11 

Unsupervised clustering helps uncover sex differences in the nasal microbiome 12 
composition 13 

To gain a holistic perspective of the microbial structure, we integrated the bacterial and 14 
fungal community profile with a weighted similarity network fusion approach. 15 
Unsupervised clustering of the resultant similarity matrix classified the cohort into three 16 
clusters (Figure 2a; see Methods). Permutational multivariate analysis of variance 17 
(PERMANOVA) on bray dissimilarity showed that these clusters explained over 18% of 18 
the variance in the composition between any two or among all three clusters (Figure 2b). 19 
In particular clusters 2 and 3 contained samples almost exclusively from single sex, i.e. 20 
male and female, respectively. Even in cluster 1 the similarity matrix featured two 21 
separable patterns corresponding to two sexes, suggesting distinctive structures in the 22 
nasal microbiome composition between males and females.  23 

Following this link that unsupervised clustering uncovered, we systematically evaluated 24 
the sex differences in the nasal microbiome composition. PERMANOVA confirmed that 25 
sex was a significant covariant for the nasal bacteriome, mycobiome as well as the 26 
bacteria-fungi integrated microbiome (Table S4). In the bacteria-fungi integrated profile 27 
we observed a significantly higher Shannon diversity in males than in females (Figure 2c; 28 
Table S5). However, this observation was mainly attributed to the mycobiome. No 29 
significant difference in the Shannon diversity of the bacteriome was detected. For 30 
individual microbial taxon, we performed linear discriminative analysis (LDA) and 31 
identified considerable significant associations between the relative abundances and sex. 32 
Specifically, at the species level 59 bacteria and 148 fungi, and at the genus level 24 33 
bacteria and 23 fungi, were significantly different in abundance between males and 34 
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females (Figure 2d; Table S6). Interestingly, the taxa number enriched in females almost 1 
doubled that in males. Notably, Staphylococcus aureus, a commonly known opportunistic 2 
pathogen in the nasal cavity, was not only more prevalent but also significantly more 3 
enriched in females. Meanwhile, Corynebacterium accolens, Corynebacterium 4 
pseudodiphtheriticum, and Dolosigranulum pigrum, for which cooperative or competitive 5 
relationships with S. aureus have been identified in former studies via association and 6 
experimental validation (Brugger et al., 2020; De Boeck et al., 2021; Krismer et al., 2017; 7 
Yan et al., 2013), as the most abundant species among others in this cohort, were also 8 
significantly more abundant in females. Additionally, Lactobacillus spp., typically found 9 
in the female vagina, has been recently reported to have a niche in the human nose and 10 
may exert a beneficial effect (De Boeck et al., 2020). In our cohort, Lactobacillus spp. 11 
were also detected, with females characterized by a higher relative abundance of L. iners 12 
and L. crispatus than males.  13 

Network analyses capture markedly higher ecological stability and antagonistic 14 
potentials in the nasal microbiome of females than that of males 15 

Having uncovered extensive sex differences in the microbial composition, next we aimed 16 
to determine if the nasal microbiome featured different ecological relationship 17 
characteristics between males and females. To characterize the microbial interactions 18 
within each sex, we employed an integrated approach combining COAT (composition-19 
adjusted thresholding), HUGE (High-dimensional Undirected Graph Estimation), MI 20 
(mutual information) and Bray-Curtis dissimilarity to construct the co-occurrence 21 
networks (Figure 3a; see Methods). The inferred interactions between microbes, as nodes 22 
in the graphs, were represented by signed edges in the network, with positive for 23 
cooperative/synergistic relation and negative for competitive/antagonistic relation. The 24 
total number of interactions (edges) was very close between the two sexes with a 25 
marginally higher number of negative interactions in females. Splitting the entire network 26 
into three sub-networks, i.e. within the bacteria domain, within the fungi domain and 27 
cross bacteria-fungi domain, revealed that the cross-domain sub-network accounted for 28 
over half of the negative interactions (Figure 3b; Table S7).  29 

The functioning of complex networks largely relies on their robustness (Matchado et al., 30 
2021), a better understanding of which can provide valuable insights into RTI 31 
susceptibility and pathologies. We thus adopted a sensitive and reliable measure, namely 32 
natural connectivity (Peng and J. Wu, 2016; J. Wu et al., 2010; X.-K. Zhang et al., 2013), 33 
to quantify the stability of the inferred networks. To simulate the influence of microbes' 34 
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loss on the network, we performed random attacks and assessed the stability of the 1 
remaining network (hamster et al., 2019) (see Methods). Intriguingly, the network 2 
robustness was much higher for females than for males. While the human nasal 3 
microbiome is increasingly regarded as a gatekeeper of respiratory health, opportunistic 4 
pathogens do often present even in healthy individuals. Thus, the negative/antagonistic 5 
interactions are of particular interest. When only considering the negative interactions, 6 
we observed that  much higher robustness for females still held. Significant separations of 7 
the natural connectivity plot were observed between the networks of males and females, 8 
for both the entire network and the negative network (P-value < 2.2e-16; Figure 3c and 9 
3d). Higher overall natural connectivity for females largely remained until over half of 10 
the species were removed, further confirming that females characterized a more stable 11 
network with more intensive interactions and higher antagonistic potentials which may 12 
provide stronger resistance against opportunistic pathogens. Additionally, comparison of 13 
the random attack results between the cross-domain network and within domain networks 14 
demonstrated that the fungal mycobiome made a great contribution to the network 15 
robustness. Interestingly, a recent study also suggested that fungi played a stabilizing role 16 
in the lung and skin microbial ecosystems (Tipton et al., 2018). 17 

Sex-dependent genetic evolutionary forces in the shaping of keystones in the nasal 18 
microbial community 19 

Network analysis can be a powerful tool for inferring keystone taxa of the microbial 20 
communities (Banerjee et al., 2018; Layeghifard et al., 2016; Matchado et al., 2021; 21 
Zamkovaya et al., 2020). To this end, we adopted a novel influential node detection 22 
method, integrated value of influence (IVI), which captures all topological dimensions of 23 
the networks, to assess the importance of individual taxon of the community (Salavaty et 24 
al., 2020). Notably, the IVIs of most taxa derived from the entire networks of males and 25 
females were considerably different (Table S8), indicating different levels of importance 26 
of the respective taxa potentially eliciting in the microbial community of each sex. 27 
Moreover, IVI only weakly correlated with relative abundance (Figure S4), suggesting 28 
that the most abundant taxa may not necessarily exert the strongest influences in the 29 
community (Banerjee et al., 2018; Zamkovaya et al., 2020). Keystone microbes represent 30 
the ones contributing the most to the robustness of the community. With a permutational 31 
approach (see Methods) we derived the keystone sets for males and females, which 32 
included 13 and 10 taxa respectively (Figure 4a). Intriguingly, the keystone sets for males 33 
and females both contained taxa from bacterial and fungal domains, but with completely 34 
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different specific components and remarkably different IVIs between the two sexes for 1 
each keystone.  2 

Evolution is important for ecological dynamics in bacterial communities. To illuminate 3 

the genetic evolutionary characteristics of the keystones for each sex, we evaluated the 4 

selection of environmental pressures for the keystone bacteria by estimating the pN/pS 5 

ratio within each genome for each sample (Garud and Pollard, 2022; Schloissnig et al., 6 

2013). The results showed that the pN/pS ratios varied among different species, but were 7 

mostly below one for both males and females (Figure 4b). This suggested that the 8 

evolution of the keystone bacteria was largely predominated by long-term purifying 9 

selection. On the other hand, the pN/pS ratios differed significantly between males and 10 

females in some of the keystone bacteria, including male-specific keystone 11 

Staphylococcus warneri and female-specific keystone Anaerococcus provencensis, 12 

Stenotrophomonas geniculata, and Finegoldia s1 (Figure 4b). This can potentially be in 13 

relation to sex-specific evolutionary constraints confronted by the microbes in the nasal 14 

cavity of males and females, such as different levels of immunoinflammatory 15 

characteristics. 16 

On the gene level, however, we observed considerable deviations in pN/pS ratios of the 17 

same keystone taxa between males and females, indicating sex-dependent selective 18 

pressures and genetic adaptations (Figure 4c, Figure S5; Table S9). For instance, the 19 

nasal cavity is noted for limited resources available, such as iron limitation (Krismer et al., 20 

2014; Kumpitsch et al., 2019; Stubbendieck et al., 2019). Notably, the 974 nasal bacterial 21 

MAGs encoded remarkably more siderophores (Figure S2b), one of the main 22 

mechanisms for bacterial iron sequestering, compared to that detected in the large 23 

collection of human gut bacterial MAGs derived from over 10,000 samples (Almeida et 24 

al., 2019). Although Neisseria sicca, a common nasopharyngeal commensal, does not 25 

encode siderophores (Marri et al., 2010), we found the female keystone N. sicca_D 26 

underwent positive adaptation in genes encoding TonB-dependant siderophore receptors 27 

(mean pN/pS ratio of 1.168) in females, with which the bacteria can exploit siderophores 28 

produced by other members of the community for iron sequestering. In contrast, in males 29 

it was subjected to purifying selection in these genes with a mean pN/pS ratio of 0.195. In 30 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493011doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493011


 11 

a male keystone bacterium, Staphylococcus haemolyticus, we also observed that genes 1 

encoding IucA/IucC family siderophore biosynthesis protein showed relaxed purifying 2 

selection in males (mean pN/pS ratio of 0.496) but tight purified selection in females 3 

(mean pN/pS ratio of 0.116). Gene yfmC in S. haemolyticus, which encodes Fe(3+)-4 

citrate-binding protein involved in iron transport, was purged in males (mean pN/pS 5 

ration of 0) whereas showed tight purified selection (mean pN/pS ratio of 0.259) in 6 

females. Antibiotics represent another major category of stresses for bacteria, for which 7 

resistance evolves over time. As a global emerging multidrug-resistant organism, 8 

Stenotrophomonas maltophilia has been most commonly associated with respiratory 9 

infections in humans (Brooke, 2012) and isolated predominantly in elderly males of 10 

hospitalized lower RTI patients (Chawla et al., 2014). Like the other MacA-MacB-TolC 11 

tripartite efflux pumps, S. maltophilia MacB has been previously revealed to drive 12 

resistance to a variety of antibiotics, such as macrolides, aminoglycosides and 13 

polymyxins, in concert with MacA adaptor protein and TolC outer membrane exit duct 14 

(Crow et al., 2017; Koronakis, 2018; Lin et al., 2014). Interestingly, we found in S. 15 

maltophilia_L the gene coding for MacB exhibited strong positive selection in males, but 16 

tight negative selection in females (mean pN/pS ratio: 2.73 vs. 0.08). Together, the 17 

keystone bacteria exhibited highly sex-specific genetic evolutionary characteristics in 18 

niche-specific or sex-biased stress-related functional units, which was in close relation to 19 

their role in the respective network of each sex. This suggests that the genetic 20 

evolutionary forces might have played a role in the shaping of the keystones of the nasal 21 

microbial community of each sex. The effect might even be mutual, such that interactions 22 

of the keystones spurred evolution which in turn reinforced their role as keystone, or the 23 

other way around.  24 

Discussion 25 

With advances in sequencing technologies, microbial research is no more restricted to 26 
cultivation. Great efforts have since been made to characterize the human microbiome. 27 
However, most of the studies rely on 16S rDNA amplicon-based or gene-centric 28 
microbial community characterization, which is heavily skewed by microbes that are 29 
easily cultivatable or the most researched habitats' residents, such as the human gut 30 
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microbiome (Bolyen et al., 2019; Callahan et al., 2016; MetaHIT Consortium et al., 2014; 1 
Segata et al., 2012; Woyke, 2019; Xie et al., 2016). Recently, genome-resolved 2 
metagenomics through de novo assembly has transformed our understanding of the 3 
microbiome composition, which can meanwhile provide valuable knowledge of 4 
individual species for deciphering their biological roles. The human microbiome has a 5 
strong niche specialization both within and among individuals (Human Microbiome 6 
Project Consortium, 2012). Large reference genome catalogs have been constructed for 7 
the human gut and oral microbiome, and massively expanded the known species 8 
repertoire of the respective habitats (Almeida et al., 2019; 2021; Nayfach et al., 2019; 9 
Pasolli et al., 2019; Zhu et al., 2021). Here in this work, we leveraged ultra-deeply 10 
sequenced metagenome data from a large cohort of healthy young adults and constructed 11 
a non-redundant nasal associated bacterial MAGs catalog. It represents the first endeavor 12 
in cataloging the human nasal microbial reference genome, and makes a great 13 
contribution to the global effort for characterizing the human microbiome. The catalog 14 
provides a valuable resource for profiling the nasal microbiome and developing new 15 
antibiotics or other pharmaceuticals in future studies. Meanwhile, it makes it possible for 16 
uncovering potentially important unknown taxa in this ecosystem. 17 

Respiratory health is of vital importance for human beings. The COVID-19 pandemic has 18 
made it unprecedentedly clear. Sex biases have been widely noted in different types of 19 
respiratory diseases, COVID-19 included as well. Heightened immunity in females 20 
renders them generally less affected by infections, but more prone to autoimmunity 21 
diseases (Jacobsen and Klein, 2021; Scully et al., 2020; Vahidy et al., 2021). Sex 22 
hormones and chromosomes can also play important roles. However the underlying 23 
mechanisms remain unclear. Recently it has been argued that the nasal microbiome might 24 
also play a role in the observed disparities between males and females, but unfortunately 25 
lacked support and evidence (Shah, 2021). In this work, unsupervised clustering of the 26 
nasal microbiota revealed clearly separable patterns between males and females. This led 27 
us to further systematically evaluate the sex differences in this community and uncovered 28 
extensive sex-specific features. Females harbored higher abundances of more taxa, 29 
including the commonly known respiratory tract opportunistic pathogen, Staphylococcus 30 
aureus, and several species formerly identified associating with it. Intriguingly, the 31 
interaction networks of females also featured higher robustness and stronger antagonistic 32 
interaction potentials than males. The connection of such characteristics with lower 33 
susceptibility and severity of RTIs in females compared to males warrants further 34 
investigation. While bacterial interaction networks are widely studied and cross-domain 35 
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interactions are rarely explored, our work integrated the bacteriome and mycobiome and 1 
gained a more holistic perspective of the community. Our results suggested that the 2 
mycobiome might play an important stabilizing role, in an echo of a former study (Tipton 3 
et al., 2018). Through network analysis, we identified sex-specific keystone microbes, 4 
which also included formerly unknown taxa, demonstrating the power and necessity of 5 
cataloging the community through de novo assembly. The sex-dependent evolutionary 6 
characteristics of the keystone bacteria strongly correlated with their role played in the 7 
microbial community of each sex, i.e. as a keystone for one sex but not for the other, 8 
suggesting a role of the evolutionary forces in the shaping of the keystones, which may 9 
have further contributed to the formation of the communities. For instance, the 10 
nasopharyngeal commensal N. sicca_D, acts as the most influential keystone in females 11 
while undergoing positive genetic adaptation in response to niche-specific stress 12 
condition as of iron limitation, which might have contributed to the formation of the more 13 
stable nasal microbial communities against infections. On the other hand, S. 14 
maltophilia_L, a male-prone respiratory infection associated multidrug-resistant organism, 15 
acts as the most influential keystone in males and exhibited strong positive selection for 16 
antibiotic resistance relevant efflux pumps, which may further predispose males more 17 
vulnerable to infections. 18 

In conclusion, we leveraged in this work the most advanced techniques in the 19 
microbiome research field, and applied deep shotgun whole metagenome sequencing, de 20 
novo assembly, and network analyses to explore the understudied human nasal 21 
microbiome in the largest cohort as of today. Based on that, we constructed a non-22 
redundant nasal bacterial MAGs catalog, and revealed extensive sex differences in the 23 
nasal microbiome of healthy young adults. The results provide valuable insights into the 24 
observed discrepancies between males and females in respiratory tract diseases, and will 25 
help further our understanding of the microbial roles in pathology and etiology. 26 
Nevertheless, the findings are limited to mathematical modeling and inference, and 27 
experimental validation is desired in the future. Besides, interactions between viruses and 28 
bacteria widely exist, such as the synergism between influenza virus and S. pneumoniae 29 
(Bosch et al., 2013; Korten et al., 2019; McCullers, 2006). Though females are less 30 
contracted with most types of RTIs, they are indeed more vulnerable to certain 31 
respiratory viral pathogens, such as influenza (Klein et al., 2012). While we are in short 32 
of reliably profiled virome data, antagonistic potentials against influenza as well as other 33 
specific pathogens require further investigation.  34 
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Methods 17 

Collection of the nasal microbiome samples 18 

Extensive metadata and different biological samples were collected during physical 19 

examination in the 4D-SZ cohort as previously reported (Zhu et al., 2021). In this study, 20 

we collected anterior nare swabs from 1593 individuals of this cohort, with an average 21 

age of 29.9 (±5.13) years old, and sex information obtained for 439 males and 807 22 

females. Demographic characteristics of the participants were provided in Table S1. 23 

The anterior nare samples were self-collected by the volunteers following three steps. 24 

First, the sterile swab was moistened with sterile water before use. Then the pre-25 

moistened swab rotated three times around the inside of each nostril with approximately 26 

constant pressure. Last, dropping the swab into the 2ml BGI stabilizing reagent (Han et 27 

al., 2018) for the preservation of metagenome at room temperature and then stored at -80! 28 

for long-term storage. 29 

 30 

DNA extraction, sequencing, and quality control 31 
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DNA extraction of the stored samples was performed using the MagPure Stool DNA KF 1 

Kit B (MD5115, Magen) (Yang et al., 2020). Metagenomic sequencing was performed on 2 

the DNBSEQ platform (BGI, Shenzhen, China) (Q. Li et al., 2019) with 150 bp of paired-3 

end reads, which generated 854.7 billion pairs of raw reads (on average 536.5 million 4 

paired reads per sample, 159.6 million pairs of standard deviation). The metapi pipeline 5 

(https://github.com/ohmeta/metapi) was used to process the sequencing data. Quality 6 

control was first performed with strict standards for filtering and trimming the reads 7 

(average Phred quality score ≥ 20 and length ≥ 30) using fastp v0.20.1 (S. Chen et al., 8 

2018). Human reads were then removed using Bowtie2 2.4.2 (Langmead and Salzberg, 9 

2012) (human genome GRCh38). In total, 4.2 terabases of high-quality paired-end reads 10 

were retained with average 96.35% host ratio (Table S2).  11 

 12 

Recovery of the bacterial community 13 

A single sample assembly and single sample binning strategy was employed to 14 

reconstruct bacterial genomes from the preprocessed data using the metapi pipeline. 15 

Specifically, the high-quality reads of each sample were individually assembled by 16 

applying MEGAHIT v1.2.9 (D. Li et al., 2015) or SPAdes v3.15.2 (Nurk et al., 2017) (--17 

meta ). BWA-MEM v0.7.17 (H. Li and Durbin, 2009) with default parameters was then 18 

used to map reads back to the contigs, and the contig depth was calculated by 19 

jgi_summarize_bam_contig_depths (Kang et al., 2019). Metagenomic binning was 20 

performed with DAS Tool 1.1.2 (Sieber et al., 2018), combining CONCOCT v1.1.0 21 

(Alneberg et al., 2014), MaxBin v2.2.7 (Y.-W. Wu et al., 2016) and MetaBAT2 v 2.15 22 

(Kang et al., 2019) for each sample individually. CheckM v1.1.3 (Parks et al., 2015) was 23 

used to assess the quality of the MAGs. Bins with ≥ 80% completeness and ≤ 10% 24 

contamination were retained for further analysis (Stewart et al., 2018). All of the MAGs 25 

were then together dereplicated by dRep v3.0.1 (-pa 0.9 -sa 0.99 -nc 0.30 -cm larger -p 25) 26 

(Olm et al., 2017), in which the primary cluster using MASH with 90% ANI and the 27 

secondary cluster using ANImf with 99% ANI, resulting in 974 non-redundant MAGs. 28 
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The 16S rRNA sequences in the MAGs were searched by Barrnap v0.9 (--reject 0.01 --1 

evalue 1e-3, https://github.com/tseemann/barrnap) and tRNA sequences in the MAGs 2 

were searched by tRNAscan-SE 2.0.7 (Chan and Lowe, 2019) with default parameters. 3 

Taxonomic classification of the 974 non-redundant MAGs was assigned using GTDB-Tk 4 

v1.5.1 (Chaumeil et al., 2019) classify workflow with external Genome Taxonomy 5 

Database release 95. The phylogenetic tree of the 974 MAGs was built using GTDB-Tk 6 

v1.5.1. Genome-wide functional annotation was performed using EggNOG mapper 7 

v2.1.3 (Cantalapiedra et al., 2021) based on EggNOG v5.0 database (Huerta-Cepas et al., 8 

2019). The bacterial biome profile was then generated using CoverM with genome mode 9 

(--min-covered-fraction 0) (https://github.com/wwood/CoverM) based on the non-10 

redundant nasal bacterial MAGs catalog.  11 

 12 

Characterization of fungal community composition 13 

High-quality cleaned reads were mapped to a manually curated database using kraken2 14 

with default parameters to generate the fungal biome profile. This database contained 15 

39,559 species in total, including human genome GRCh38, GTDB r95, fungi and protists 16 

from NCBI. 17 

 18 

Unsupervised clustering 19 

The weighted similarity network fusion (WSNF) analysis (Mac Aogáin et al., 2021) can 20 

integrate multi-biome data and cluster samples into distinct groups using taxonomic 21 

richness of each biome as the weight of SNF. In this study, for 1593 participants, we 22 

filtered bacteria and fungi with relative abundance greater than 1e-4 and 1e-3, 23 

respectively, in addition to a prevalence greater than 10%. Finally, 122 bacteria and 131 24 

fungi remained. Three clusters were derived with WSNF from the filtered dataset. Other 25 

parameters are set as default. 26 

 27 
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Co-occurrence analysis of microbial interaction 1 

To mitigate the influence of spurious correlation, a modified co-occurrence analysis 2 

based on ensemble methods was implemented (Faust et al., 2012). In this study, we made 3 

modification of this co-occurrence analysis by replacing some methods in the ensemble. 4 

First, we implemented COAT (composition-adjusted thresholding) (Cao et al., 2018) 5 

instead of Spearman and Person correlation. Then we replaced HUGE (High-dimensional 6 

Undirected Graph Estimation) (Zhao et al., 2012) with GBLM (generalized boosted 7 

linear models). Last, the sign of the correlation depends on COAT and HUGE. Overall, 8 

the ensemble contained MI (mutual information), Bray-Curtis dissimilarity, COAT and 9 

HUGE. The final interaction score aggregated the normalized absolute edge scores, and 10 

the sign was assigned based on COAT and HUGE. The final P-value was merged using 11 

the weighted Simes test. 12 

With the modified ensemble method, we conducted co-occurrence analysis on the filtered 13 

nasal microbiome dataset (as described in Unsupervised clustering) for males and 14 

females. Filtering out of the low abundance and low prevalence taxa of the microbiome 15 

data helped to avoid artificial interactions resulted from random noises though at the 16 

expense of sensitivity loss for weak signals. Following the co-occurrence analysis, the 17 

nasal microbial interaction networks were established with a threshold of P-value lower 18 

than 1e-3 for males and females. 19 

 20 

Stability of microbial co-occurrence network 21 

Natural connectivity is a robustness measure of complex networks (Morone and Makse, 22 

2015). Higher natural connectivity indicates higher network stability. In this study, we 23 

performed random attack by removing randomly selected nodes for 1000 times and 24 

assessed normalized natural connectivity for each remaining network (R package pulsar). 25 

The number of nodes removed was sequentially increased from 1 to all the nodes. The P-26 

value of robustness between male and female networks was calculated following two 27 

steps. First, for each attacked network, compare the 1000 natural connectivity between 28 
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the two sexes with Wilcoxon rank-sum test. Second, a merged P-value was measured 1 

using the weighted Simes test, with the number of remaining nodes as the weight.  2 

 3 

Selection of keystone taxa in the co-occurrence networks 4 

We selected keystones based on the IVI (Integrated Value of Influence) (Salavaty et al., 5 

2020), which is an integrative method for the evaluation of node influence within a 6 

network. To determine the keystones of each network, we utilized a permutational 7 

approach by comparing each robustness attack along the IVI decreasing axis with random 8 

attacks (as control). The keystone set was then decided based on P-value < 0.001 9 

calculated from the 1000 permutations. Through analysis, we got 13 and 10 key players 10 

of male and female network, respectively. 11 

 12 

pN/pS ratios 13 

SNVs of nonsynonymous and synonymous variants at the gene and genome levels were 14 

identified for the keystone taxa using inStrain (Olm et al., 2021). The pN/pS ratio was 15 

calculated using the formula ((nonsynonymous SNVs/nonsynonymous 16 

sites)/(synonymous SNVs/synonymous sites)). 17 

 18 

BGCs prediction 19 

BGCs (biosynthetic gene clusters) type and location of non-redundant MAGs were 20 

predicted using AntiSMASH 6.0.0 (Blin et al., 2021) (--cb-knownclusters). Novel BGCs 21 

were defined which did not match the Minimum Information about a Biosynthetic Gene 22 

cluster (MIBiG) database. 23 

 24 

Statistical analysis and data visualization. 25 
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LDA analysis  1 

For discriminant analysis of the microbiome between males and females, the effect size 2 

of linear discriminant analysis was implemented using the webtool available at 3 

http://huttenhower.sph.harvard.edu/galaxy/ 4 

Permanova analysis 5 

ADONIS (permutational multivariate analysis of variance using distance matrices) 6 

testing between the observed clusters or sex was performed using R package vegan v2.5-7 

7 with 4999 permutations. 8 

Diversity analysis.  9 

The nasal microbiome α-diversity (within-sample diversity) was calculated using the 10 

Shannon index at the species level (R package vegan). The differences between males 11 

and females were assessed with Wilcoxon rank-sum test.  12 

Correlation of IVI and relative abundance 13 

The correlation between IVI and relative abundance of the keystone taxa was measured 14 

by Spearman’s correlation. 15 

Visualization 16 

The co-occurrence network was visualized using Cytoscape 3.9.0. The heatmap of 17 

similarity score was drawn by ComplexHeatmap(2.10.0). The boxplot was drawn by 18 

ggpubr(2.10.0).  19 

 20 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493011doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493011


 30 

 1 

Fig. 1 Overall representation of the microbes in anterior nares of healthy young 2 
adults. 3 

a, Phylogeny of 974 non-redundant bacterial MAGs (metagenome-assembled genomes) 4 
detected in anterior nares. It constituted five layers representing respectively: 1 for 5 
phylum, 2 for MAGs quality, 3 for if 16s rRNA detected, 4 for if classified in the species 6 
level and 5 for if isolated as depicted in the GTDB database. b, Proportion of unknown 7 
and known bacterial species in each phylum with the absolute number indicated in the 8 
brackets respectively. c, Number of fungal species in each phylum. 9 
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 1 

 2 

Figure 2. Unsupervised clustering and sex differences in the nasal microbiome 3 
composition.   4 

a, Heatmap illustrating WSNF similarity scores stratified by unsupervised clustering 5 
through bacterial and fungal datasets, with cluster and sex information indicated by the 6 
bars on the top. b, Permanova analysis (permutational multivariate analysis of variance 7 
using distance matrices) results demonstrating significant variation of the nasal 8 
microbiome among the observed clusters. c, Comparison of α-diversity (Shannon index) 9 
between males (green) and females (brown) for bacteria (P=0.3), fungi (P<2.2×10-16) and 10 
bacteria-fungi integrated (P<2.2×10-16) respectively through Wilcoxon test. d, 11 
Comparison of LDA effect size (LEfSe) between males (green) and females (brown) 12 
illustrating discriminative taxa of bacteria (left) and fungi (right). Only the top 30 13 
discriminative taxa by LDA score were shown. 14 
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 1 

 2 

Fig3. Network characterization of the nasal microbiome for males and females 3 

a, Nasal microbial interaction network of males and females. Node size represents the 4 
integrated value of influence (IVI) for each taxon. Red and blue lines indicate positive 5 
and negative interactions respectively. The top 3 bacteria and fungi by relative abundance 6 
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are annotated with blue and red fonts respectively. b, Summary table of network 1 
characteristics of males and females c-d, Attack robustness of each network of total 2 
interaction (c) and negative interaction (d) for males (green) and females (brown) as 3 
measured by natural connectivity. Line and box reflect median and IQRs.  4 

 5 

Fig 4. Characteristics of the keystone taxa identified in male and female nasal 6 
microbial interaction networks 7 

a, The integrated value of influence (IVI) of the keystone taxa of males (left) and females 8 
(right). Green and brown bars represent the IVI of the respective taxa in the male and 9 
female networks respectively. b, The pN/pS ratio of keystone bacteria for individuals 10 
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shown by heatmap and boxplot. Green and brown represent male and female respectively 1 
(vertical bar: keystone belongs to male or female network; horizontal bar: male and 2 
female individuals; boxplot: pN/pS ratios for male and female individuals). c, The pN/pS 3 
ratio for 3 bacterial keystones in gene levels of male (y-axis) and female (x-axis) 4 
participants with COG category. The stars represent the genes which have been described 5 
in detail in the main text. 6 
 7 
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