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Abstract

Phylogenetic placement is the problem of placing “query” sequences into an existing
tree (called a “backbone tree”) whose leaves are aligned sequences, and has applica-
tions to updating large trees and microbiome analysis. While substantial advances have
been made in developing methods for phylogenetic placement, to date the most accu-
rate approaches (e.g., pplacer and EPA-ng) are based on maximum likelihood, and these
methods tend to have computational challenges when the backbone tree is large. Of the
two, EPA-ng can scale to larger backbone tree sizes than pplacer (which seems to be
limited to about 5,000-leaf backbone trees), but pplacer seems to have better accuracy
than EPA-ng when it can run. Divide-and-conquer methods have been developed to ad-
dress the limited scalability of pplacer, which operate by finding a small subtree of the
backbone tree for the given query sequence, and then placing into that small subtree;
SCAMPP is a recent development that shows particular benefits. Another approach, which
is specific for pplacer, is taxtastic, which provides numeric model parameters in a form
that helps pplacer run on larger datasets. In this study, we examine the potential of
using both these approaches for scaling pplacer to large datasets, exploring the impact
on accuracy as well as on running time and memory usage. We show that the combina-
tion of techniques (i.e., pplacer-taxtastic-SCAMPP) produces the best accuracy of all
placement methods to date, with excellent speed and reduced memory usage. Finally,
we explore how changing the subtree size associated with the SCAMPP framework changes
the runtime-accuracy trade-off, and discuss avenues for future research. Our software
for pplacer-taxtastic-SCAMPP is available at https://github.com/gillichu/PLUSplacer-
taxtastic.
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1 Introduction

Phylogenetic placement is the problem of placing sequences (called ‘queries’) into an existing
phylogeny (called a ‘backbone tree’). The backbone tree is assumed to have sequences at the
leaves already in an alignment. There are two leading applications of phylogenetic placement
methods: updating a large phylogenetic tree (which is of interest to evolutionary biologists)
and doing taxon identification and abundance profiling for microbiome samples. Both ap-
plications benefit from large backbone trees (see, for example, the discussion in [15] for how
increasing backbone tree size improves abundance profiling for metagenomics).

The most accurate of the current phylogenetic placement methods operate using maxi-
mum likelihood, and so require the query sequences to already be aligned to the backbone
sequences; examples of such methods include pplacer [9] and EPA-ng [3]. Other types of
methods have been developed for phylogenetic placement that are not based on maximum
likelihood; a recent example is APPLES-2 [1], which uses branch lengths and distances com-
puted between the query sequence and the leaves in the backbone tree to place each query
sequence. APPLES-2 is much faster than pplacer and EPA-ng and has lower memory re-
quirements, but is not as accurate as pplacer. Moreover, to date none of the alternative
approaches have been as accurate as the maximum likelihood-based methods. Instead, their
advantage is computational efficiency, rather than accuracy. Given our interest in accuracy,
our focus is on the maximum likelihood placement methods.

Maximum likelihood-based placement pipelines operate by estimating numerical model
parameters, such as branch lengths defining expected numbers of substitutions and the sub-
stitution rate matrix for the Generalized Time Reversible model [20], and then use these
numerical model parameters to find the best edge into which to place each query sequence,
using maximum likelihood. In fact, these methods also output the top placements, each with
its probability for being the placement edge. Both pplacer and EPA-ng use RAxML [18] soft-
ware for these numeric model parameter estimations (albeit different versions of RAxML).

Of these two, pplacer seems to have a slight edge for accuracy [2], but is also more
computationally intensive than EPA-ng. Moreover, pplacer fails to run on many datasets (or
rather produces illegal outputs) when the backbone tree exceeds about 10,000 sequences. The
issue for pplacer (but not for EPA-ng), according to a recent study [21], may be numerical,
so that once the backbone tree is very large, the log likelihood scores may become too large
in magnitude for pplacer. Thus, pplacer fails to run on datasets with more than about 10,000
sequences (occasionally succeeding on somewhat larger datasets). While EPA-ng does not
seem to have the same numerical issues as pplacer, it also has computational costs that make
it unable to run on datasets with more than about 30,000 sequences [21]. Thus, both of the
leading maximum likelihood methods have limitations to somewhat small backbone trees.

Two approaches have been used to address the limited scalability of pplacer. The first is
a software package taxtastic [4], which computes the numerical model parameters on the
backbone tree (required for the maximum likelihood placement of query sequences) using
FastTree 2 [14] instead of RAxML. This substitution allows pplacer to run on larger datasets
without producing negative infinity log likelihood values, as shown in [1, 21].

The other approach for improving the scalability of pplacer uses divide-and-conquer, so
that each query sequence is placed into a subtree of the backbone tree rather than into the
entire backbone tree. The techniques that have used this approach include pplacer-SCAMPP
[21] and pplacer-DC [5]. The details of the two methods differ, but pplacer-SCAMPP achieved
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better scalability, reduced runtime and memory usage, and better accuracy, so we focus on
pplacer-SCAMPP.

The fundamental technique in pplacer-SCAMPP is as follows. Given the backbone tree
and a query sequence q, the leaf l(q) that is closest to q with respect to Hamming distance is
selected, and then a subtree of the B nearest leaves to l(q) is extracted. This subtree is called
the placement subtree, and is the subtree into which the query sequence q is placed using
pplacer. Finally, the placement edge for q in the placement subtree (and the exact location
within that edge’s length for q’s insertion) determines where q is added into the backbone
tree. An analysis of settings for B in [21] showed that setting B = 2000 gave generally the
best accuracy: much smaller settings reduced accuracy in all settings, and sometimes using a
larger setting for B greatly increased error. This approach with B = 2, 000 allowed pplacer-
SCAMPP to place into backbone trees with 200,000 leaves with high accuracy. Moreover,
pplacer-SCAMPP with this setting was more accurate than APPLES-2, and even faster
than APPLES-2 on the largest backbone trees when placing fragmentary sequences. Finally,
for a fixed setting for B, pplacer-SCAMPP is very fast (linear time) and has low memory
requirements.

Despite these advances, as far as we know, nothing is known about the relative accuracy
of pplacer (used in default mode, which means using RAxML for branch length estimation)
compared to pplacer-taxtastic (i.e., using taxtastic for branch length estimation). In addition,
very little is known about the relative accuracy of pplacer-taxtastic compared to pplacer-
SCAMPP. Finally, no study has combined these techniques to see how the two methods
operate together; that is, follow the SCAMPP divide-and-conquer framework, but instead of
using pplacer in default mode to place the query sequence into the placement subtree, use
pplacer-taxtastic. Furthermore, pplacer-SCAMPP allows the parameter B to be provided by
the user, the fact that pplacer-taxtastic can run on larger backbone trees means we could
use larger settings for B (which determines the size of the placement subtree) when using
pplacer-taxtastic for the placement step. This paper reports on a study evaluating these
placement methods, in a sequence of experiments.

2 Study Design

2.1 Overview

We explored four phylogenetic placement pipelines, which depend on both the method used
to estimate numeric parameters as well as the phylogenetic placement method. The phy-
logenetic placement methods we studied are: pplacer-default (also referred to simply as
pplacer), pplacer-taxtastic, pplacer-SCAMPP, and pplacer-taxtastic-SCAMPP. We used two
collections of simulated datasets to evaluate accuracy (since the true tree is not known for
biological datasets).

Our experiments focused on scalability to large datasets and accuracy on large datasets,
both when placing full-length sequences (the application relevant to adding sequences into
large phylogenies) and when placing fragmentary sequences (the application most relevant to
analyses of reads produced in microbiome analyses and metagenomics).
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Figure 1: (Placement pipelines): The input is a backbone tree (“phylogenetic topology”),
an alignment on the backbone sequences, and an aligned query sequence. In the first step, we
estimate the numeric parameters on the backbone tree using a selected maximum likelihood
code (i.e., RAxML 7.2.6 or FastTree 2.). We then use the specified phylogenetic placement
method (i.e., pplacer, pplacer-SCAMPP, or pplacer-SCAMPP-taxtastic). Each of these has
a specific technique that is recommended for the previous step (i.e., numeric parameter esti-
mation).
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2.2 Placement pipelines studied

The input to a phylogenetic placement pipeline is a backbone tree (in which the leaves
are already aligned) and a single query sequence. (Since the query sequences are inserted
independently, the extension to multiple query sequences is trivial). The pipelines we explored
first estimate branch lengths and other numeric parameters for each backbone tree, then use
the specified phylogenetic placement method to insert the query sequence into the tree. The
phylogenetic placement methods we studied are:

• pplacer-default (also referred to simply as pplacer).

• pplacer-taxtastic

• pplacer-SCAMPP

• pplacer-taxtastic-SCAMPP

The developers of the phylogenetic placement methods each specify a particular method for
numeric parameter estimation; these are indicated in Figure 1. In particular, the taxtastic
package recommends use with FastTree-2 numeric parameters, whereas pplacer (default)

recommends use with RAxML v7.2.6 (and by extension, pplacer-SCAMPP recommends use
with RAxML v7.2.6).

The pplacer-default pipeline This is the use of pplacer in default mode, which operates
as follows. Given a backbone alignment and tree, we use RAxML v. 7.2.6 to estimate numeric
parameters on the topology. We then place the query sequence(s) into the tree using pplacer.

The pplacer-taxtastic pipeline Given a backbone alignment and tree, we use FastTree-2
to estimate the numeric parameters on the topology. Then, we use the taxtastic package
to reformat the tree topology, numeric parameters and alignment into a reference package
for use with pplacer. Then, pplacer uses this reference package to place queries into large
datasets.

The pplacer-SCAMPP pipeline Given a backbone alignment and tree, we use RAxML
7.2.6 to estimate the numeric parameters on the topology. Then, given a query sequence,
pplacer-SCAMPP uses the SCAMPP framework to find the nearest leaf (using Hamming dis-
tance) to the given query sequence, and uses this to extract a placement subtree of size B
(with B=2, 000 by default, as recommended in [21]). To place the query sequence into the
subtree, pplacer-SCAMPP runs pplacer for query placement. The placement in the subtree
provides the location as well as how the selected branch subdivides its branch length, which
is then used to place the query sequence.

The pplacer-SCAMPP-taxtastic pipeline This is identical to pplacer-SCAMPP except
for the numeric parameter estimation, as we now describe. Given a backbone alignment
and tree, we use FastTree 2 to estimate the numeric parameters on the topology. Then,
given a query sequence, pplacer-SCAMPP-taxtastic uses the SCAMPP framework to find the
nearest leaf (using Hamming distance) to the given query sequence, and uses this to extract a
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placement subtree of size B. Since pplacer-taxtastic can potentially run on larger trees than
pplacer, the optimal value for B may be larger than its default setting in pplacer-SCAMPP. To
place the query sequence into the subtree, pplacer-SCAMPP-taxtastic builds a taxtastic

reference package on the subtree using the backbone sequences and numeric parameters, and
provides pplacer with this taxtastic reference package for query placement.

2.3 Datasets

We explore the phylogenetic placement methods on four publicly available simulated datasets
(ROSE 1000M1, ROSE 1000M5, RNASim, nt78). We have summarized the empirical properties
of each dataset in Table 1.

ROSE 1000-sequence datasets The ROSE datasets (1000M1 and 1000M5) have 1000
sequences each and were simulated with substitutions (under the GTR+GAMMA model)
with medium length indels using ROSE [19]; these were originally simulated for the SATé
study [8] but have also since been used in studies of alignment accuracy [17, 16, 13] and
placement accuracy [10]. We used the provided binary model trees and the true alignment.
Each model condition dataset contains 20 replicates. In this study, we arbitrarily chose
the first 5 replicates, where each replicate contains 1, 000 taxa. We explore our phylogenetic
placement methods on the 1000M1 and 1000M5 datasets, where theM indicates a “medium”
gap length, and 1 indicates the highest rate of evolution, whereas 5 indicates the lowest rate
of evolution [8]. The rates of evolution are also reflected in the average p-distance (i.e.,
normalized Hamming distance) for each of these datasets.

RNASim-VS We use the RNASim-VS datasets, which are subsets of the million-taxon
RNASim simulated dataset [11]. The RNASim simulation is under a non-homogeneous bio-
physical fitness model which reflects selective pressures to maintain the RNA secondary
structure (as opposed to sites that evolve identically and independently down the tree)
[11]. This RNASim dataset has been widely used in studies evaluating alignment accuracy
[11, 16, 17, 12] and random subsets of the RNASim dataset (RNASim-VS) have also been
used to study phylogenetic placement accuracy [21, 1]. This dataset was specifically used
to study APPLES, APPLES-2, pplacerDC, pplacer-SCAMPP, and in this paper will be used
to evaluate pplacer-SCAMPP -taxtastic. The RNASim Variable-Size (RNASim-VS) datasets
provide true phylogenetic trees, multiple sequence alignments and estimated FastTree-2 [14]
maximum likelihood trees. We use three subsets from the RNASim-VS dataset, containing
50, 000 sequences, 100, 000 and 200, 000 sequences. We refer to each subset as RNASim-50k,
RNASim-100k and RNASim-200k. For RNASim-50k we arbitrarily choose to use the first 5
replicates. For the two larger datasets, we run on one replicate (arbitrarily picking R0).

nt78 This dataset contains 78, 132 sequences and 20 simulated replicates, and was created
to study FastTree-2 [14]. We chose the first replicate to use as it has been used in other
studies as well [21]. The nt78 dataset was simulated with ROSE [19] under the HKY model to
resemble 16S sequences, and with different evolutionary rates for each site selected from 16
different rate categories. See the Appendix for additional information about this simulated
dataset.
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Dataset seqs
align
length

type
p-distance
average

p-distance
maximum

prop
gaps

reps

nt78 [14] 78,132 1,287 simulated .404 .639 .006 1

RNASim-50k [11] 50,000 1,620 simulated .410 .618 .051 5

RNASim-100k [11] 100,000 1,620 simulated .410 .618 .051 1

RNASim-200k [11] 200,000 1,620 simulated .410 .618 .051 1

ROSE 1000M1 [7] 1,000 3,895 simulated .697 .770 .738 5

ROSE 1000M5 [7] 1,000 1,762 simulated .501 .607 .426 5

Table 1: Nucleotide Dataset Statistics: We provide details for all the datasets used in
this study. All used datasets are publicly available. The first column provides the dataset
name. For each dataset, we provide the number of sequences, alignment length, type of
alignment, p-distance (normalized Hamming distance) average and maximum, proportion of
gaps and number of replicates.

Fragmentary Protocol We evaluated the placement methods when given fragmentary
sequences on the RNASim-VS and nt78 datasets. Given a query sequence with original length
lo, a random starting position was selected by sampling from a normal distribution. Two
sequences of different length were generated for each query sequence: in the low fragmentary
case, sequence length was sampled using N (µ = .25lo, σ = 60). In the high fragmentary
case, sequence length was sampled using N (µ = .10lo, σ = 10). Note that these distributions
were chosen because 154 basepairs is close to the Illumina read sequence length, making
a study of placing read-length query sequences more relevant to downstream applications
of phylogenetic placement. The fragment lengths for both RNASim-VS and nt78 are both
reported in the context of those experiments.

Leave-one-out Experiments All experiments in this study were run as leave-one-out
experiments, with results reported on a per-query basis. For all datasets, we randomly choose
200 sequences to be used as the query sequences. Thus, for a given dataset with n sequences,
with one selected as a query sequence, we use each phylogenetic placement method to place
the selected query sequence into the backbone tree containing the other n− 1 sequences.

2.4 Criteria

We evaluated phylogenetic placement accuracy using delta error, a distance metric quantify-
ing the increase in estimation error incurred by placing the query sequence into the backbone
tree [21, 2]. Suppose T is the backbone tree used, T ∗ is the true tree, and P is the tree
produced when the query q is added into backbone tree T using the phylogenetic placement
pipeline. Let L represent the set of leaves in T , and let B(t) refer to the set of bipartitions
for a tree t. Then the equation for delta error is provided below:

∆e(P ) = |B(T ∗)\B(P )| − |B(T ∗|L)\B(T )|

Note that delta error is always non-negative, and that regardless of whether the estimated
backbone tree used for placement contains errors, if the query sequence is placed on the same
edge as in the reference tree, the delta error can still be 0.
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2.5 Experiments

• Experiment 1: We compared the behavior of pplacer-default and pplacer-taxtastic
when placing full-length query sequences using ROSE-1000M1, ROSE-1000M5, and nt78

datasets.

• Experiment 2: We explored pplacer-taxtastic and pplacer-SCAMPP on nt78 and
RNASim-50k, using both full and fragmentary query sequences.

• Experiment 3: We evaluate the impact of changing the subtree size in pplacer-SCAMPP

-taxtastic, on both the nt78 and RNASim-VS and nt78 datasets, in comparison to
pplacer-SCAMPP and pplacer-taxtastic.

All experiments were performed on the UIUC Campus Cluster, using the secondary queue
with a time-limit of 4 wall-time hours per query and 64 GB of available memory.

3 Results and Discussion

3.1 Experiment 1

In Experiment 1 we explored the behavior of pplacer (default) and pplacer -taxtastic

on the simulated ROSE and nt78 datasets. On the 1000-sequence ROSE 1000M1 and 1000M5
datasets (Figures 2 (a) and (b), respectively), we observe that pplacer (default) and
pplacer-taxtastic have very close delta error, with perhaps a slight advantage to pplacer-
default. However, pplacer-default does not run on the nt78 dataset with 78,132 se-
quences (Figure 2 (c)) while pplacer-taxtastic does succeed in running, showing a com-
putational advantage when using pplacer-taxtastic. Other trends we observe show that
pplacer-taxtastic and pplacer-default have similar runtimes (with a slight advantage to
pplacer-taxtastic) when both can run. Finally, both methods incur lower delta error on the
lower rate of evolution (1000M5) than on the higher rate of evolution (1000M1). Both meth-
ods consume negligible memory. Thus, there is a clear advantage to using pplacer-taxtastic
on large backbone trees where pplacer (default) fails to run.

3.2 Experiment 2

Experiment 2 explored the behavior of pplacer -taxtastic and pplacer-SCAMPP on the
simulated nt78 and RNASim-50k datasets, using both full and fragmentary query sequences.
On the RNASim-50K datasets (Figure 3), there were no noteworthy differences in delta error
except for the shortest query sequences, where pplacer-taxtastic had lower error than
pplacer-SCAMPP. However, pplacer-SCAMPP was consistently faster and used less memory
than pplacer-taxtastic.

On the nt78 dataset (Figure 4), we see bigger differences between the methods. Specif-
ically, with the exception of the full-length sequences (where both do very well), pplacer
-taxtastic has much lower delta error than pplacer-SCAMPP, an improvement of several
orders of magnitude. On the other hand, for all query lengths, pplacer-SCAMPP is signifi-
cantly faster and consumes less memory than pplacer-taxtastic.
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Figure 2: (Experiment 1) Comparison between pplacer(default) and pplacer-
taxtastic on the ROSE and nt78 datasets. (a) Results on the ROSE 1000M1 datasets,
(b) Results on the ROSE 1000M5 datasets, and (c) Results on one replicate of the nt78
dataset containing 78, 132 sequences. The left two columns show per-query delta error re-
sults, the middle two columns show average per-query runtime to place each sequence, and the
two rightmost columns illustrate per-query memory consumption. For delta error we present
standard error, and for runtime and memory consumption we present standard deviation.
Note that the runtime and memory usage y-axes are different between the ROSE and nt78
datasets. The ROSE 1000M1 and 1000M5 datasets contain 1, 000 sequences and 5 replicates
each. 1000M1 has a high rate of evolution and 1000M5 has a low rate of evolution. The “X”
indicates that pplacer (default) failed with an out of memory error on these experiments.
Peak memory usage on the ROSE datasets is negligible, so that panels (a) and (b) do not
show visible memory usage for either method.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.23.493012doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: (Experiment 2): Comparison between pplacer-SCAMPP and pplacer-
taxtastic on RNASim-VS datasets using both full and fragmentary query se-
quences. Per-query results on the fragmentary RNASim (simulated) dataset containing
50, 000 sequences. Panel (a) shows results on full length sequences, panel (b) shows results
on 0.25 fragment length (385 basepairs) and panel (c) shows results on 0.10 fragment length
(154 basepairs). For all panels, the first column shows per-query delta error results, the sec-
ond column shows average per-query runtime to place each sequence and the third column
illustrates per-query memory consumption. For delta error we present average standard er-
ror, and for runtime and memory consumption we present standard deviation. Please note
that the value for B, which determines the placement subtree size for pplacer-SCAMPP ,is
set to the default (B = 2, 000).
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Figure 4: (Experiment 2): Comparison between pplacer-SCAMPP and pplacer-
taxtastic on the nt78 datasets when placing full and fragmentary query sequences.
Per-query results on the nt78 (simulated) dataset containing 78, 132 sequences. Panel (a)
shows results on full length sequences, panel (b) shows results on 0.25 fragment length (322
basepairs), and panel (c) shows results on 0.10 fragment length (127 basepairs). For all
panels, the first column shows per-query delta error results, the second column shows average
per-query runtime to place each sequence and the third column illustrates per-query memory
consumption. For delta error we present average standard error, and for runtime and memory
consumption we present standard deviation. Note that the y-axes are different for
runtime and memory usage between the full-length and fragmentary datasets.
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Method delta error runtime (s) peak memory (GB)

pplacer-SCAMPP-taxtastic (2k) 6.83 27.50 0.09

pplacer-SCAMPP-taxtastic (10k) 3.86 79.43 0.63

pplacer-SCAMPP-taxtastic (20k) 2.30 164.88 1.79

pplacer-SCAMPP-taxtastic (30k) 1.25 358.25 2.68

pplacer-SCAMPP-taxtastic (40k) 0.90 482.88 3.53

pplacer-SCAMPP 6.91 14.65 0.02

pplacer-taxtastic 0.69 323.86 6.46

Table 2: Summary of results from Experiment 3, when placing 0.25 fragment query
sequences into the nt78 dataset (see Figure 5).

3.3 Experiment 3

Experiment 3 evaluates pplacer -SCAMPP -tax using several different subtree sizes on the
nt78 and RNASim datasets. Figure 5 (see also Table 1) illustrates pplacer -SCAMPP -tax’s
behavior as the setting for B changes (which changes the placement subtree sizes in the
SCAMPP framework). We observe the accuracy-runtime trade-off as we increase the place-
ment subtree size on both fragment query lengths. As pplacer -SCAMPP -tax incurs less delta
error as the placement subtree size increases, but the runtime and memory consumption also
increase. As expected, pplacer -SCAMPP -tax greater delta error on the shorter fragment
lengths, but the runtime and memory consumption on 0.10 fragment query sequences is less
than on the longer 0.25 fragment query sequences.

We see that pplacer-SCAMPP-taxtastic (20k) uses a fraction of the runtime used by
pplacer-taxtastic. All pplacer-SCAMPP-taxtastic variants tested definitively improve on
the peak memory usage when compared to pplacer-taxtastic. Additionally, we see that
as the subtrees grow larger, the runtime and memory increase but the error decreases. From
Table 2, we can observe that pplacer-taxtastic still performs best in terms of the delta
error. However, pplacer-SCAMPP-taxtastic (40k) achieves similar delta error accuracy,
while consuming slightly less time and significantly less memory.

In Figure 6, we explored the same per-query results on large RNASim datasets. In par-
ticular, we looked at RNASim-100k and RNASim-200k with 100, 000 and 200, 000 sequences
respectively. On each dataset, we compared variants of pplacer-SCAMPP -tax using dif-
ferent sizes of subtrees, pplacer-SCAMPP and pplacer-taxtastic. However, as we can see
from Panel (a), pplacer-SCAMPP suffers slightly higher delta error while pplacer-taxtastic
achieves slightly lower delta error on RNASim-100k. We observe that as the size of the place-
ment subtree increases, the average delta error for pplacer-SCAMPP-tax decreases and the
runtime increases.

In Panel (b) of Figure 6, we see that all methods which can run perform quite similarly
in terms of delta error. Notably, unfortunately pplacer-taxtastic was completely unable
to run due to an out of memory error. In terms of runtime and memory consumption, we
see that pplacer-SCAMPP actually takes more time (perhaps due to the memory constraints).
Consistently, however, we see that pplacer-SCAMPP-tax increases in runtime and memory
consumption as the size of the placement subtree increases.
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Figure 5: (Experiment 3): Comparison between pplacer-SCAMPP-taxtastic,
pplacer-SCAMPP and pplacer-taxtastic when varying subtree placement size
and placing fragmentary query sequences into the nt78 tree. Per-query results on
the nt78 (simulated) dataset containing 78, 132 sequences. Panel (a) shows results on 0.25
fragment length (322 basepairs) and panel (b) shows results on 0.10 fragment length (127
basepairs). For all panels, the first column shows per-query delta error results, the second
column shows average per-query runtime to place each sequence and the third column illus-
trates per-query memory consumption. For delta error we present average standard error,
and for runtime and memory consumption we present standard deviation. Please note that
the y-axes are different between the full-length and fragmentary datasets. Along the x-axis
the methods are sorted by the placement subtree size B, given parenthetically. Specific num-
bers are shown for the 0.10 fragmentary case in Table 2.
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Figure 6: (Experiment 3): Comparison between pplacer-SCAMPP-taxtastic,
pplacer-SCAMPP and pplacer-taxtastic when varying subtree placement size and
placing fragmentary query sequences in the RNASim-100K and RNASim-200K
datasets. Per-query results placing 0.25 fragmentary query sequences into the RNASim-
100k and RNASim-200k (simulated) datasets. Panel (a) shows results on the 100, 000-leaf
backbone tree and panel (b) shows results on the 200, 000-leaf backbone tree. For both pan-
els, the first row shows per-query delta error results, the second row shows average-per-query
runtime to place each sequence and the third row illustrates per-query memory consumption.
For delta error we present average standard error, and for runtime and memory consumption
we present standard deviation. pplacer-taxtastic failed with an out of memory error (64 GB
provided to each placement job) for each of the 200 query sequences for the RNASim-200k
dataset.
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4 Conclusion

This study set out to understand two different techniques for scaling pplacer, a highly accu-
rate phylogenetic placement method, to large backbone trees. The first of these techniques
is taxtastic, which provides the numeric model parameters needed by pplacer, and the
second of these techniques is SCAMPP, which uses divide-and-conquer. We provided conclu-
sive evidence that both techniques are able to improve scalability (though SCAMPP is superior
in this regard) and that SCAMPP also reduces runtime and memory usage (but this is not
true for taxtastic). The two techniques have different impacts on placement accuracy, with
taxtastic typically not changing accuracy but SCAMPP sometimes reducing accuracy com-
pared to pplacer-taxtastic (when used with its default setting for B = 2000, which allows
it only to place into subtrees of size 2000). This shows the benefit of being able to place into
the full backbone tree (achieved by pplacer-taxtastic) compared to only placing into a
(relatively small) placement tree when using pplacer-SCAMPP. However, we note that the re-
striction to placement subtrees with only 2000 leaves in pplacer-SCAMPP is due to pplacer’s
tendency to fail or have poor accuracy on larger backbone trees, due to numerical issues. We
also note that pplacer-taxtastic does not have this limitation, as our study shows it can
be used with very large backbone trees (seemingly up to 100, 000 sequences).

These observations (and most importantly on the ability to use pplacer-SCAMPP on larger
placement subtrees) led to the design of a combined method, pplacer-SCAMPP -taxtastic,
which follows the SCAMPP pipeline but replaces default pplacer by pplacer-taxtastic. Fur-
thermore, because pplacer-taxtastic can be used with large backbone trees, this replace-
ment allows pplacer-SCAMPP-taxtastic to be used with larger settings for the placement
subtree size B.

Our study shows that pplacer-SCAMPP -taxtastic provides the best features of both
techniques for improving scalability of pplacer, achieving the same scalability as pplacer-SCAMPP
(which has been shown to scale to backbone trees with 200,000 sequences, matching the scala-
bility of APPLES-2), and matching (and in some cases improving) on the placement accuracy
of pplacer-SCAMPP when the parameter B is increased. Moreover, this approach allows the
user to select the value for B based on preferences: when accuracy is more important, increas-
ing B (perhaps as a function of the backbone tree size) can be helpful, but when speed and
memory usage is more important, keeping B small (e.g., B = 2000) can be most desirable.

This study suggests several avenues for further research. Perhaps the most intriguing
question is why taxtastic benefits pplacer: it improves scalability to larger backbone trees
(though it still fails on the largest backbone trees we examined, with 200,000 sequences),
and in some cases improves accuracy. Understanding the conditions where it improves ac-
curacy is certainly of interest, but understanding why it consistently improves scalability is
also important. We hypothesize that taxtastic helps pplacer overcome its numerical insta-
bility noted in [21], which is why it is able to scale to larger backbone trees; this may also
help it to improve accuracy on backbone trees where likelihood scores become very large in
magnitude. But how it achieves this is unclear. As taxtastic can be used with both RAxML

and FastTree-2 numeric parameters, one particularly interesting question is whether the
improvement in delta error should be attributed to the FastTree-2 numeric parameters or
whether it should be attributed to the taxtastic package.

Finally, this paper also suggests that increasing B, which specifies the placement subtree
size within the pplacer-SCAMPP -taxtastic framework, does not hurt accuracy and can
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improve accuracy, albeit at the cost of slower runtime and higher memory usage. However,
the impact of this choice depends on the dataset, with significant accuracy benefits obtained
in some cases but none in others (e.g., compare nt78 to RNASim-VS). At this time, it is
unclear why there is such a difference between model conditions, and in particular no obvious
empirical property (such as average p-distance) that would suggest the use of a larger value
for B. Future work is needed to understand this issue, so as to inform practice.

Finally, we did not use biological datasets to evaluate placement accuracy. This is in
contrast to some studies (e.g., [6]) that used biological datasets, and calculated placement
error with respect a “reference tree” for the species set, based on an estimated tree on the
dataset. Because estimated trees have error, we do not consider topological distance to an
estimated tree to be a reliable indication of placement accuracy. Moreover, with the exception
of species trees for certain subsets of species, the true evolutionary tree is rarely known
with confidence. Importantly, gene trees are less reliably known than species trees, given
the limited phylogenetic signal in any gene alignment. Finally, given discordance between
gene trees and species trees, using a species tree as the “reference” is also problematic for
evaluating phylogenetic placement accuracy. For this reason, we used a variety of simulated
model conditions to explore phylogenetic placement methods. Instead, rather than using
binary trees that are estimated as the reference tree, it would be better to use only the highly
supported edges in the estimated maximum likelihood tree to define a reference (e.g., as
done in [8]). One challenge for this kind of analysis, however, is that computing very large
maximum likelihood trees with branch support is challenging for the dataset sizes we examine
here (e.g., 50,000 sequences and more). Thus, future work is necessary to develop rigorous
and feasible ways of using biological datasets to evaluate phylogenetic placement methods.

The authors would like to thank Eleanor Wedell for her helpful input as well as for
providing datasets and scripts.
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A Summary

We provide commands for running pplacer -taxtastic, pplacer -SCAMPP, and pplacer

-SCAMPP -taxtastic. We use the published FastTree-2 results (tree and numeric parameters
estimated under Minimum Evolution) on the nt78 datasets [21]. The scripts to calculate
delta error was adapted from a published script [1], and borrow utilities from newick_utils.
Further details are provided in the published scripts here. Datasets used from [21] can be
found here.

B Reference Package

B.1 Numeric Parameters

For pplacer-SCAMPP on the ROSE datasets, we compute branch lengths using RAxML
(v7.2.8).

• RAxML-7.2.8-ALPHA/raxmlHPC-PTHREADS -f e -g reference.nwk -m GTRGAMMA

-s alignment.phylip -n outname -p 1984 -T 16 -w outdir/

For all datasets, we compute branch lengths using FastTree-2 in order to run pplacer

-taxtastic.

• FastTreeMP -nosupport -gtr -gamma -nt -log reestimated.fasttree.log

-intree intree.fasta < alignment.fasta > reestimated.fasttree.tree

C Placement Methods

pplacer-SCAMPP (v2.0.0, Accessed: May 10, 2022) (github): “jobID” is only necessary
if running several jobs at once. Please note that there is now a newer version of pplacer-
SCAMPP, which handles fragmentary query sequences slightly more quickly. Experiments 3
(RNASim) and 4 were run with this fix.
On the RNASim-200k dataset, we use the published FastTree estimated branch lengths [21].
As all subsets of the RNASim-VS dataset come from the same million-sequence tree, we expect
the numeric parameters estimated on the RNASim-100k dataset containing 100, 000 sequences
to be quite similar to the numeric parameters for RNASim-200k. As no RAxML v. 7.2.6

info file or estimated tree was published [1], we use the numeric parameter file for the
RNASim-100k R0 dataset.

• python pplacer-SCAMPP.py -i tree_info.log -t backbone_pp.tree -d out_dir/

-a full_msa.aln -b 2000 -n jobID

pplacer-taxtastic: The new version of pplacer-taxtastic (using the speedup in plac-
ing fragmentary query sequences implemented on May 16, 2022) was run for results on
RNASim-100k and RNASim-200k. For all other datasets and results on fragmentary query
sequences, the version of pplacer-taxtastic not implementing this speedup on fragmen-
tary query sequences was used.
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• taxtastic/taxtastic-env/bin/taxit create -P ng-my.refpkg -l name --aln-fast

ref.fa --tree-file backbone_pp.tree --tree-stats reestimated.fasttree.log

pplacer-SCAMPP-taxtastic (github):

• python pplacer-tax-SCAMPP.py -i reestimated.fasttree.log

-t backbone_pp.tree -d outdir -q query.fa -b 2000 -o jplace_name -a ref.fa

-r ref.fa -n 1563

D The nt78 simulated dataset

The nt78 simulation protocol has some interesting features worth considering. According to
the FastTree-2 documentation for these datasets, the internal branch lengths were “trun-
cated to be no less than 0.001 (corresponding to roughly 1 substitution along the internal
branch. To make such short branch lengths with Rose... branch lengths [were scaled] by
1, 000x (not 100x) and set MeanSubstitution = 0.00134” [14].
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