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Abstract

We introduce TCRconv, a deep learning model for pre-
dicting recognition between T-cell receptors and epi-
topes. TCRconv uses a deep protein language model
and convolutions to extract contextualized motifs and
provides state-of-the-art TCR-epitope prediction accu-
racy. Using TCR repertoires from COVID-19 patients,
we demonstrate that TCRconv can provide insight into
T-cell dynamics and phenotypes during the disease.

Main

T-cell receptors (TCRs) form diverse repertoires
through V(D)J recombination, which allows T-cells to
recognize a large variety of antigens. Short peptide
sequences from the antigens, called epitopes, are pre-
sented to T-cells via major histocompatibility com-
plex (MHC) molecules, and successful recognition of
an epitope-MHC complex by a TCR results in T-cell
activation. Discovering epitope-specific TCRs holds
the potential to provide clinically relevant insights into
TCR repertoires in fields ranging from vaccine design
and diagnostics to immunotherapy biomarker identifi-
cation.

Latest high-throughput sequencing technologies have
enabled profiling large quantities of TCR sequences.
Concurrently, several methods have been proposed
for predicting TCR-epitope recognition1,2,3,4,5. Pre-
vious work has shown that while the complementarity-
determining region 3 (CDR3) is crucial for the predic-
tion, it is beneficial to utilize also other TCR regions,
and the paired TCRαβ sequences1,2,3,4. We focus on
major open questions in TCR-epitope prediction: how
to utilize efficiently all TCR regions that determine
epitope-specificity, handle TCR cross-reactivity, and
use TCR-epitope prediction methods for unsupervised
analysis of TCR-repertoires.

Here, we present TCRconv, a convolutional deep neural
network that utilizes rich contextualized transformer
embeddings of TCRs to predict epitope recognition
(see Fig. 1a, Supplementary Fig 1, and Methods for
details). Unlike the previous methods, TCRconv mod-
els TCR specificity as multilabel predictor that nat-
urally accounts for TCR cross-reactivity. The trans-
former model BERT (Bidirectional Encoder Represen-
tations from Transformers) transfers information from
the complete TCR sequence to the CDR3 embedding
from which the convolutional networks then extract
and utilize contextualized motifs.
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FIG 1

TCRconv evaluation. 
(a) TCRconv pipeline. (i) The TCR sequence determined by V(D)J recombination contains the complementarity-determining regions. TCR⍺ and/or TCRβ sequences can be used, 

here TCRβ is shown. (ii) ProtBERT embedding is created for each TCR sequence and the CDR3 embedding, transfused with information from its context, is extracted. (iii) The 
multilabel predictor produces simultaneously separate predictions for each epitope.

(b) Comparing TCRconv to other methods using average AUROC and AP scores. 
(c) The AUROC scores for TCRconv predictions correlate negatively with the diversity of the epitope specific TCRs (Pearson correlation -0.72). 
(d) Increasing the embedding context size increases the predictive AUROC score. The schematics on top show the approximate sections included in different context sizes. 

CDR3 + X refers to CDR3 embeddings with context size X and complete TCR to embeddings for complete TCRs without extracting only the CDR3 parts. TCRconv uses 
CDR3 + full (bolded).

Results for panels b-d are obtained using stratified 10-fold cross-validation on VDJdbβ-large dataset. 

Figure 1: TCRconv evaluation. (a) TCRconv pipeline. (i) The TCR sequence determined by V(D)J recombination
contains the complementarity-determining regions. TCRα and/or TCRβ sequences can be used, here TCRβ is shown.
(ii) ProtBERT embedding is created for each TCR sequence and the CDR3 embedding, transfused with information from
its context, is extracted. (iii) The multilabel predictor produces simultaneously separate predictions for each epitope.
(b) Comparing TCRconv to other methods using average AUROC and AP scores. (c) The AUROC scores for TCRconv
predictions correlate negatively with the diversity of the epitope specific TCRs (Pearson correlation -0.72). (d) Increasing
the embedding context size increases the predictive AUROC score. The schematics on top show the approximate sections
included in different context sizes. CDR3 + X refers to CDR3 embeddings with context size X and complete TCR to
embeddings for complete TCRs without extracting only the CDR3 parts. TCRconv uses CDR3 + full (bolded). Results
for panels b-d are obtained using stratified 10-fold cross-validation on VDJdbβ-large dataset.

2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493034doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493034
http://creativecommons.org/licenses/by-nc/4.0/


We compared the accuracies of TCRconv and previous
methods that include Gaussian processes (TCRGP2),
deep learning methods (DeepTCR3, ERGO-II4,
SETE5), and TCRdist1. We collected two epitope-
specific TCRβ datasets from VDJdb6, a comprehen-
sive VDJdbβ-large consisting of data with all confi-
dence levels and a smaller high-quality VDJdbβ-small
(Supplementary Table 1 and Methods). Prediction ac-
curacies are quantified using average precision (AP),
which accounts for class imbalances, and area under
the receiver operating characteristic curve (AUROC).
TCRconv achieves the highest AP and AUROC scores
on VDJdbβ-large (33% and 3% improvement to the
second best DeepTCR) (Fig. 1b). High AP scores
are essential as minimizing false positive predictions
with large TCR repertoires and small TCR clones7

is crucial. Overall, all methods performed better on
the higher confidence, albeit smaller, dataset VDJdbβ-
small (Supplementary Fig. 2, Supplementary Table 2).

As TCRs can be cross-reactive (Supplementary Fig.
3), TCRconv benefits from using a single multilabel
predictor that can predict a TCR to recognize several
epitopes. Whereas, to account for cross-reactivity with
previous binary1,2 and multiclass classifiers3,5, a large
set of separate (one-vs-all) classifiers had to be trained,
one for each epitope. TCRconv performs well also with
cross-reacting TCRs (Supplementary Fig. 4). Fur-
ther, consistent with previous results1,2, we confirmed
that prediction accuracy across epitopes correlates neg-
atively with the diversity of the TCRs recognizing these
epitopes (Fig. 1c, Supplementary Fig. 5a, and Meth-
ods).

CDR3 is essential in epitope recognition, but struc-
tural8 and computational1,2 evidence suggests that
CDR1 and CDR2, that mainly contact the MHC, may
also interact with the epitope and aid the prediction.
We next evaluated how much of the TCR sequence
around the CDR3 should be used as context. The pre-
diction AUROC score improves gradually from 0.68 to
0.77 when the context size is increased from no context
to full context on VDJdbβ-large (Fig. 1c), indicating
that BERT successfully conveys relevant information
from the context to the CDR3 embedding. With both
datasets the AUROC and AP scores improve or re-
main the same when using context before CDR1 (Sup-
plementary Fig. 5b). Remarkably, the entire TCR em-
bedding is not needed, but using the CDR3 embedding
with full context provides similar or slightly better re-
sults. The MHC can also affect the TCR-epitope recog-
nition, but our analysis suggests the HLA-types do not
have a substantial effect on the prediction (Methods

and Supplementary Fig. 6).

We studied the effect of TCRα and TCRβ on TCR-
epitope prediction on VDJdbαβ-large dataset of paired
TCRαβ sequences (Supplementary Table 1 and Meth-
ods). We find substantial performance improvement
from using both chains over either chain individually
(Supplementary Fig. 7).

Finally, we demonstrate how to utilize TCRconv
on repertoire data to track T-cell dynamics9 during
COVID-19 and reveal the phenotypes of SARS-CoV-2
specific T-cells in moderate and severe COVID-19. We
first trained a TCRconv model specifically for SARS-
CoV-2 epitopes using ImmuneCODE10 and VDJdbβ-
large data (Methods, Supplementary Fig. 8, and Sup-
plementary Table 3).

To track the T-cell dynamics, we predicted each TCR’s
specificity to the selected SARS-CoV-2 epitopes in 110
healthy control11 and 493 COVID-19 patient10 reper-
toires (Supplementary Table 4). For each repertoire,
we quantified the normalized frequency of TCRs pre-
dicted to be SARS-CoV-2-specific during COVID-19.
Fig. 2a shows that the frequency of SARS-CoV-2-
specific T-cells is highest during the first two days after
diagnosis and starts to decrease during the first week.
In contrast, with IAV, CMV, EBV, and HCV (Fig. 2a
and Supplementary Fig. 9) the normalized frequency
remains lower.

To link TCR-specificity to T-cell phenotype, we uti-
lized scRNA+TCRαβ-seq of CD8+ T-cells from bron-
choalveolar lavage samples of nine COVID-19 pa-
tients12. As expected, SARS-CoV-2-specific T-cells
were more abundant than T-cells recognizing other
tested viruses (CMV, EBV, IAV) (Fig. 2b). Moreover,
in patients with moderate disease (n=3) the SARS-
CoV-2-specific T-cells most often had tissue-resident
memory phenotype (overexpression of ZNF683, CD69,
TCF7) (Fig. 2b, Supplementary Fig. 9). In patients
with severe disease (n=6), we found SARS-CoV-2-
specific T-cells to have possibly overtly proliferating
(MKI67) and exhausted (HAVCR2/TIM3, CTLA4)
phenotype, with high expression of co-stimulatory sig-
nals (ICOS, TNFRSF4/OX40R, GITR) and IFNG
(Fig. 2b). These findings refine previous findings13

by suggesting that patients with a moderate disease
course form T-cells capable of elimating SARS-CoV-2
with minimal tissue damage while T-cell overactivation
in patients with a severe disease leads to an inappro-
priate tissue damage.

TCRconv is available at github.com/emmijokinen/

tcrconv.
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FIG 2

Analyzing TCR repertoires of COVID-19 patients with TCRconv. 
(a) Dynamics of (i) SARS-CoV-2 (ii) IAV, and (iii) CMV-specific T-cells in terms of frequency normalized by the number of virus-related epitopes. There are 20 epitopes for SARS-

CoV-2, eight for IAV, and nine for CMV. Each data point corresponds to a repertoire and is colored by its dataset (Supplementary Table 2). Symbols “*” indicate statistically 
significant increase in frequency compared to Healthy samples (see Methods and Supplementary Table 5). 

(b) Phenotypes of SARS-CoV-2-specific CD8+ T-cells from bronchoalveolar lavage samples from patients with moderate (n=3) or severe (n=6) COVID-19 disease. (i) UMAP 
representation of CD8+ T-cell phenotypes, (ii) clustering with epitope-specific T-cells marked, (iii) proportions of epitope specific T-cells, (iv) phenotype distribution of virus 
specific T-cells. 

*** * **

Figure 2: Analyzing TCR repertoires of COVID-19 patients with TCRconv. (a) Dynamics of (i) SARS-CoV-2 (ii) IAV,
and (iii) CMV-specific T-cells in terms of frequency normalized by the number of virus-related epitopes. There are 20
epitopes for SARS-CoV-2, eight for IAV, and nine for CMV. Each data point corresponds to a repertoire and is colored
by its dataset (Supplementary Table 2). Symbols “*” indicate statistically significant increase in frequency compared
to Healthy samples (see Methods and Supplementary Table 5). (b) Phenotypes of SARS-CoV-2-specific CD8+ T-cells
from bronchoalveolar lavage samples from patients with moderate (n=3) or severe (n=6) COVID-19 disease. (i) UMAP
representation of CD8+ T-cell phenotypes, (ii) clustering with epitope-specific T-cells marked, (iii) proportions of epitope
specific T-cells, (iv) phenotype distribution of virus specific T-cells.
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Methods

Data

For training and testing our model, we have con-
structed three data sets of human TCR-sequences from
the data available in the VDJdb database6 (vdjdb.
cdr3.net). VDJdb gives confidence scores from 0-
3 for each of its entries, 0 for low confidence or no
information (a critical aspect of sequencing or speci-
ficity validation is missing), 1 for moderate confi-
dence (no verification or poor TCR sequence confi-
dence), 2 for high confidence (has some specificity
verification, good TCR sequence confidence), and 3
for very high confidence (has extensive verification
or structural data), see more detailed description in
github.com/antigenomics/vdjdb-db. For VDJdbβ-
large, we selected TCRβs with all confidence scores,
and with at least 50 unique TCRβs for each epitope.
This resulted in a data set with 51 distinct epitopes
and 30 503 unique TCRβs. For VDJdbβ-small we
chose TCRβs with at least a confidence score of 1 and
at least 40 unique TCRs per epitope, which resulted
in 1977 unique TCRs specific to 21 epitopes. Finally,
VDJdbαβ-large consists paired TCRαβ sequences with
all confidence scores and at least 50 unique TCRαβs
per epitope, in total 20200 unique TCRs and 18 epi-
topes. A TCR is considered as unique if the combina-
tion of its CDR3 and V- and J-genes is unique. Table
1 summarizes these datasets and the cross-reactivities
of the TCRs are visualized in Supplementary Fig. 3.
As the requirements for the datasets overlap, so do
the datasets, for example VDJdbβ-large contains the
complete VDJdbβ-small dataset. VDJdbβ-large and
VDJdbβ-small were collected in January 2021 and
VDJdbαβ-large in September 2021 which explains why
some of the SARS-CoV-2 epitopes are only present in
VDJdbαβ-large. All presented model evaluations are
conducted using a stratified 10-fold cross-validation,
where TCRs specific to each epitope are distributed
to the folds as evenly as possible. As our data set only
consists of unique TCRs, the same TCR can never be
both in training and test folds.

TCR Embeddings

Transformer based language models for proteins, such
as BERT (Bidirectional Encoder Representations from
Transformers), can capture protein folding as well as
learn useful representations of binding sites and com-
plex biophysical properties14. They have been success-
fully used in various tasks, including protein family and
protein interaction prediction15 and protein-specific
drug generation16, making them a plausible choice for
modeling TCRs as well. For constructing the TCR em-
beddings we used ProtBERT17 which is trained on 216
million UniRef100 sequences. The model was trained
with a token-prediction task and during the training

phase 15% of the tokens (amino acids) in the sequences
were replaced by a MASK token. The model con-
tains 16 attention heads in each multi-head attention
block on 30 layers, with 420 million parameters in to-
tal. The embedding dimension for each amino acid in a
sequence is 1024, resulting in an embedding dimension
of L×1024 for a sequence of length L. We constructed
the embeddings for TCRβ-sequences, defined by Vβ-
genes, CDR3β sequences, and Jβ-genes, whose lengths
varied between 103-137 amino acids. For our final em-
beddings, we extracted only the sections corresponding
to the CDR3β sequences from the TCRβ-embeddings.

We also attempted to make the ProtBERT model more
specialized to TCR sequences by fine-tuning it on 5
million TCRβ sequences from VDJdb6, and studies of
Emerson et al.11 and Dash et al.1 for 8 epochs but this
did not improve the prediction accuracies (mean AU-
ROC 0.848 and AP 0.575 on VDJdbβ-small dataset).
We also tested two ELMo (Embeddings from Language
Models) architectures, classical ELMo18 and masked
ELMo19, and trained them on a smaller dataset of
3 million TCRβ-sequences from the same sources as
those used in the BERT fine-tuning. The main differ-
ence between these two models is that instead of uni-
directional LSTMs, the masked ELMo uses a bidirec-
tional two-layered LSTM and when trained in the to-
ken prediction task, the predicted token (amino acid) is
masked to avoid leakage of information. We found that
both ELMo models produced reasonable accuracies in
the prediction task (mean AUROC and AP 0.838 and
0.539 for ELMo and 0.847 and 0.571 for masked ELMo,
on VDJdbβ-small dataset), and with masked ELMo we
achieved almost as good accuracy as with the BERT
embeddings.

CNN classifier

Our multilabel classifier consists of a parallel convolu-
tional unit and a simple linear unit. The classifier was
modified from the CNN classifier presented by Glig-
orijević et al.20 As shown in Supplementary Fig. 1,
the convolutional unit consists of parallel convolutional
layers with varying kernel sizes (5, 9, 15, and 21, with
120, 100, 80, and 60 filters, respectively) that can cap-
ture different length motifs. The outputs from these
layers are concatenated and fed through batch normal-
ization, rectified linear unit (ReLU) activation, and a
dropout layer with 0.1 dropout. Those are followed by
another convolutional layer (kernel size 3, 60 filters)
that can extract higher level features based on the out-
puts from the previous convolutional layers. Finally,
max pooling is performed over the sequence lengths,
which provides fixed sized outputs regardless of the
sequences’ lengths. The linear unit can more flexi-
bly utilize the expressive features of the BERT em-
beddings. It consists of a max pooling layer, a linear
layer, and a ReLU activation. The outputs of the con-

5

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493034doi: bioRxiv preprint 

vdjdb.cdr3.net
vdjdb.cdr3.net
github.com/antigenomics/vdjdb-db
https://doi.org/10.1101/2022.05.23.493034
http://creativecommons.org/licenses/by-nc/4.0/


volutional and linear units are concatenated and put
through a dropout layer with dropout 0.1 and batch
normalization and ReLU. The final linear layer gives
predictions simultaneously for each class that are sep-
arately squashed between 0 and 1 by a sigmoid layer.

For optimizing the network parameters, we use binary
cross-entropy which allows predictions for multiple epi-
topes to be 1. Positive answers for class c are weighted
by pc = nTCRs/(|c| · nclasses), where nTCRs is the num-
ber of TCRs in the training data, |c| is the size of class
c, and nclasses is the number of classes. We use a learn-
ing rate of 0.0002, except for the linear unit, for which
the learning rate is set to of 0.01.

For training the models, we use stochastic weight av-
eraging (SWA) with learning rate scheduling21. The
models are first trained for 2500 iterations (mini-
batches) without weight averaging but with cosine an-
nealing for the learning rate, so that the learning rates
gradually decrease. After that, the training is contin-
ued for another 500 iterations with stochastic weight
averaging on every iteration and again a decreasing
learning rate is used.

Comparison to other methods

We compared TCRconv to recently published meth-
ods for predicting TCR epitope-specificities, TCRGP2,
DeepTCR3, SETE5, TCRdist1, and ERGO-II4.
Apart from ERGO-II all the methods used epitopes
as class information to predict if a TCR would recog-
nize one of the predetermined epitopes. TCRGP is a
Gaussian process-based classifier that can utilize CDR3
or additionally any or all of the other CDRs from ei-
ther α- or β-chain or both, depending on what infor-
mation is available. Similarly to TCRconv, DeepTCR
uses convolutional neural networks, but with trainable
embedding layers for the CDR3s and V/D/J genes.
SETE on the other hand takes a PCA of 3-mer occur-
rences in CDR3s and uses gradient boosting decision
trees to classify CDR3-sequences, and TCRdist uses a
BLOSUM62 based distance measure between selected
CDRs to determine if new TCRs are closer to TCRs
specific to a certain epitope or to some control TCRs.
ERGO-II learns LSTM encodings for both CDR3s and
epitopes (or autoencoder embeddings for CDR3s) and
uses both the TCR and the epitope as inputs to predict
if a given TCR and epitope bind.

With TCRGP, DeepTCR, SETE, and TCRdist we
trained separate binary classifiers for each epitope, so
that TCRs known to recognize the epitope in question
are considered as positive data points and TCRs spe-
cific to other epitopes are considered as negative data
points. DeepTCR and SETE had options for multi-
class classification, but they did not provide support
for cross-reactive TCRs that our data contains. There-
fore, they would have had a disadvantage if trained as

multiclass classifiers as they then would have operated
with either conflicted or missing class labels.

We compared the above methods on our two data sets
using stratified 10-fold cross-validation. The TCR-
conv model was trained once for each fold and all the
known epitope-specificities are determined by multi-
hot encodings. With TCRGP, DeepTCR, SETE, and
TCRdist a separate model was trained for each epitope
in each fold. The folds used in the cross-validation were
the same for each of these methods. As suggested by
the authors, with DeepTCR 25 % and with ERGO-II
20 % of the training data was used as validation data
for determining early stopping when training the classi-
fiers. With ERGO-II, also as suggested by the authors,
we used all the positive TCR-epitope pairs in our data,
but additionally sampled five times more negative data.
Therefore, when with TCRconv e.g. TCR CASLS-
GRAPQHF, TRBV27*01 occurs once in the data set
with a multi-hot encoding indicating that it can rec-
ognize epitopes GTSGPIINR and GTSGPIVNR, with
ERGO-II it is repeated 12 times, twice in a positive
pair with both GTSGPIINR and GTSGPIVNR, and
ten times in negative pairs formed by randomly select-
ing ten of the other 19 epitopes in the VDJdbβ-large
data set.

TCR diversity

To estimate the diversity of N TCRs specific to a cer-
tain epitope, we utilized a diversity measure similar
to measures used in previous studies2,7. These mea-
sures are based on Simpson’s diversity index, but due
to the large variety of TCRs they measure similari-
ties between TCRs instead of exact matches. Here the
similarity between TCRs i and j is computed based on
the used embeddings xi and xj that have been aligned
based on IMGT numbering:

diversity =


N−1∑
i=0

N∑
j=i+1

exp

(
−
||xi − xj ||2Fro

2 s.d.2

)
1
2 (N − 1)N



−1

,

(1)
where s.d. is set to 10.4 (maximum feature-wise stan-
dard deviations multiplied by the median sequence
length 14.

The effect of HLA-type on the predictor

As the TCR regions outside the CDR3 do not often in-
teract with an epitope but may interact with the MHC
molecule presenting the epitope, the HLA-type of the
MHC can affect the recognition between the TCR and
the epitope. Therefore, utilizing these regions could
introduce a bias in the epitope-specificity prediction.
Although the available TCR-epitope-MHC complexes
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in VDJdb6 contain various HLA-types, most of the
data is restricted to HLA-A*02 and almost all the epi-
topes are presented by a single HLA-group (see Supple-
mentary Fig. 6a). This makes it difficult to model or
even assess how different HLA-types affect the TCRs’
ability to bind certain epitopes. To ensure that our
multilabel predictor is predicting a TCR’s ability to
bind to an epitope and not to the HLA presenting it,
we examined how much the results differ between dif-
ferent HLA-genes, and if TCRconv is trained on data
restricted by any HLA type or only with HLA-A*02
restricted data. The number of epitopes restricted by
each HLA-gene is limited and the prediction accuracy
varies considerably between epitopes, but Supplemen-
tary Fig. 6 indicates that differences between HLA-
genes are modest (AUROC across genes varies from
0.743 to 0.810 while AUROC across epitopes varies
from 0.532 to 0.996); panel b) and that the accuracy
is similar when TCRconv is trained on all data or only
with HLA-A*02 restricted epitopes (panel c). These
results suggest that TCRconv predicts TCR’s ability
to bind epitopes and not the HLAs.

TCRconv model for SARS-CoV-2 epi-
topes

For training TCRconv models for SARS-CoV-2 specific
epitopes, we utilized ImmuneCODE10 MIRA-data of
TCRs specific to MHC-I restricted peptides. To fully
exploit the data, we did the following preprocessing
with three options for the TCR-sequences: 1) If the
V- and J-genes and their alleles could be determined
from the nucleotide sequence (length 29 nucleotides),
we used the exact TCR amino acid sequence deter-
mined by the CDR3β, V- and J-genes. 2) If a V-
or J- gene could be determined but not its allele, we
set the allele to 01 and used it for constructing the
amino acid sequence. 3) If a gene could not be deter-
mined, we utilized a partial amino acid sequence that
we could determine based on the nucleotide sequence.
BERT embeddings were computed for these TCRβ se-
quences and the parts of the embeddings correspond-
ing to the CDR3s were extracted and used with the
classifier. TCR uniqueness was determined by these
longest amino acid sequences we could obtain. We se-
lected 139099 unique TCRβs specific to 188 peptide
groups with at least 50 unique TCRβs specific to them
(see Supplementary Table 3) and used stratified 10-fold
cross-validation with these TCRs to train TCRconv
model, whose performance in terms of mean AUROC
and AP is shown in Supplementary Fig. 8a. Supple-
mentary Fig. 8c shows AUROC and AP scores, and di-
versity of TCRs specific to each peptide group by their
genomic location. We then selected the twenty peptide
groups that performed best in terms of weighted mean
of AUROC and AP scores (both scores were scaled into
range [0,1]) and used the TCRs specific to them with

VDJdbβ-large dataset to construct the final predictor
(performance using stratified 10-fold cross-validation is
shown in Supplementary Fig. 8b).

Frequency of SARS-CoV-2 specific
TCRs in repertoires

We utilized TCR repertoires from ImmuneCODE that
contain at least 250000 TCRs and the number of days
between diagnosing the patient and collecting the sam-
ple is reported. As control data we used TCR reper-
toires of healthy subjects from Emerson et. al.11 that
also had at least 250000 TCRs and where the subject
age is at least 18 years. The data is described in Sup-
plementary Table 4. The sequences were preprocessed
in the same way as the ImmuneCODE MIRA-data and
each sample was downsampled to 250000 TCRs. Using
the TCRconv model for SARS-CoV-2 epitopes, we pre-
dicted the specificity of each T-cell within these reper-
toires. We chose a threshold separately for each epi-
tope that corresponds to false positive rate of 0.001.
With thresholds this strict we are not likely to find all
TCRs specific to the selected epitopes but have a high
confidence in that the TCRs predicted to recognize
these epitopes are true positives. We computed the fre-
quency of TCRs predicted to be specific to the SARS-
CoV-2 and normalized it by the number of SARS-CoV-
2 epitopes (20) to be better able to compare to re-
sponses for other viruses. A Linear regression analysis
was performed to assess if COVID patients have signif-
icantly higher frequency of virus specific T-cells than
healthy control subjects, and if the frequencies are pos-
itively correlated with subjects’ age. This was done
separately for each time interval using linear model
y = a + bccxcc + bagexage, where y is frequency, a is
offset, bcc is parameter for case-control covariate xcc
which is zero for control samples and one for case sam-
ples of the considered time interval, and bage is param-
eter for age covariate xage. See Supplementary Table 5
for significance of the parameters for case-control and
age covariates measured by one-tailed t-test.

Phenotypes of SARS-CoV-2 specific T-
cells in moderate and severe COVID-19

Count matrices, TCRαβ-seq results, and metadata
from Liao et al12 were downloaded from GEO
GSE145926. The data was analyzed mainly with
Python package scVI tools22 (v 0.14.5) and R pack-
age Seurat23 (v 4.0.4). Cells with > 10 % mitochon-
drial gene counts, < 1000 UMI counts, < 200 or >
6000 detected genes, and cells with no detected TCR
were filtered out. The highly variable genes were iden-
tified with “highly variable genes” function in scVI
tools with default parameters, which were then used
to learn latent embeddings with “model.SCVI” func-
tion in scVI tools with default parameters. The CD8+
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T-cells were then identified with SingleR24 (v 1.6.1),
and the process was repeated with scVI tools. The
obtained embeddings were then used for finding clus-
ters with ”FindNeighbors” and ”FindClusters” func-
tions and further visualized with UMAP dimensional-
ity reduction with “RunUMAP” function using default
parameters in Seurat. The optimal clustering threshold
was chosen as 0.2 based on visual inspection of the clus-
tering results in the UMAP reduced space. The mark-
ers used to define the clusters were found with Stu-
dent’s t-test using the ”FindMarkers” function in Seu-
rat with logfc.threshold = 0.25 from expression data
that was scaled with ”ScaleData” function with scaling
factor of 10000. Patients C141, C142, and C144 have
moderate COVID-19. Patients reported12 to have se-
vere (C143 and C145) or critical disease (C146, C148,
C149, and C152) were considered to

Data and code availability

Source code for TCRconv and all data used
for training and testing the model are avail-
able at github.com/emmijokinen/tcrconv. Al-
ternatively, epitope-specific data is available at
vdjdb.cdr3.net, (VDJdb data) and https://

doi.org/10.21417/ADPT2020COVID (ImmuneCODE
data). Implementation for the scRNA+TCRαβ-seq
data analysis is available at https://github.com/

janihuuh/tcrconv_manu. Repertoire data is avail-
able at https://doi.org/10.21417/ADPT2020COVID

(ImmuneCODE COVID-19 repertoires), and https://

doi.org/10.21417/B7001Z (control repertoires from
Emerson et al.). Data from Liao et al. is available
at GEO GSE145926.
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