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Abstract 
Understanding the consequences of protein coding mutations is important for many 
applications in biology and medicine. The vast number of possible mutations across species 
makes comprehensive experimental characterisation impossible, even with recent high-
throughput techniques, which means computationally predicting the consequences of 
variation is essential for many analyses. Previous variant effect prediction (VEP) tools, 
generally based on evolutionary conservation and protein structure, are often computationally 
intensive, making them difficult to scale and limiting potential applications. Recent 
developments in deep learning techniques, including protein language models, and biological 
data scale have led to a new generation of predictors. These models have improved prediction 
performance but are still often intensive to run because of slow training steps, hardware 
requirements and large model sizes. In this work we introduce a new highly scalable deep 
learning architecture, Sequence UNET, that classifies and predicts variant frequency directly 
from protein sequence. This model learns to build representations of protein sequence 
features at a range of scales using a fully convolutional U-shaped compression/expansion 
architecture. We show that it can generalise to pathogenicity prediction, achieving comparable 
performance on ClinVar to methods including EVE and ESM-1b at greatly reduced 
computational cost. We further demonstrate its scalability by analysing the consequences of 
8.3 billion variants in 904,134 proteins detected in a large-scale proteomics analysis, showing 
a link between conservation and protein abundance. Sequence UNET can be run on modest 
hardware through an easy to use Python package. 

Introduction 
Proteins are integral to biology, driving all the molecular and cellular processes that create life 
as we know it. The key to their success is the ability to create complex properties from limited 
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amino acid types, which allows the many and varied processes required in living organisms to 
be heritably encoded. Thus, understanding the impact of genotypic changes on proteins and 
the phenotypes they create is a major question in biology and medicine. The number of 
potential coding mutations in even a single protein meant it was impossible to measure all 
their consequences until recent multiplexed deep mutational scanning (DMS) assays1, and 
the number of genes and species means it is still impractical to measure consequences for all 
of them. This makes it very important to be able to predict variant effects, both to prioritise 
variants for experiments and for direct use in analyses. 
 
Most traditional variant effect predictors (VEP) are based on sequence conservation, known 
features such as binding sites and structural models. Many prediction tools take advantage of 
the natural experiment performed by evolution, using multiple sequence alignments (MSAs) 
to measure positional variation across species or individuals and estimate variant effects. For 
instance, SIFT4G2, EVCouplings3 and MutationAssessor4 are based entirely on conservation. 
Structure is also thought to be an important feature because structure determines protein 
function. Structure based models include FoldX5 and RoseTTA6, which use force field models 
to estimate variants’ impact on structural stability. These have previously been limited to 
proteins with high quality experimental or homology models, but recent developments in 
structure prediction, particularly AlphaFold27, makes them more widely applicable8. 
Conservation and structure can also be combined by machine learning models, alongside 
other knowledge such as active sites, PTMs and binding motifs. Machine learning predictors 
include PolyPhen29, Envision10 and Condel11. VEPs like these have been very impactful, 
allowing larger analyses and prioritising and interpreting experiments. 
 
Neural networks have been successfully applied to protein sequence tasks, including VEP. 
The lack of large scale labelled pathogenic variants makes directly training a deep learning 
VEP difficult, meaning they generally also use evolutionary conservation as a proxy for 
deleteriousness. For example, DeepSequence12 learns a deep generative model for a 
sequence family that aims to capture the probability of observing each mutant sequence and 
whose posteriors can therefore be used to predict pathogenicity. It was consistently found 
among the top VEPs across a diverse set of DMS results12,13. It has been refined in the 
Bayesian Variational Autoencoder (VAE) EVE model14, which outperformed previous methods 
on human DMS data and ClinVar variants. However, these models still require MSA based 
training for each protein of interest, making them very computationally demanding. Protein 
language models, for example UniRep15, AminoBert16 or ESM-1b17, also use unsupervised 
learning to capture position specific representations, which relate to a range of properties, 
including conservation, structural stability and secondary structure. They are trained to predict 
the identity of masked amino acids across many different sequences, meaning they learn 
general protein sequence properties. These produce sequence representations in a single 
forward pass but are still computationally intensive and often require top models to be trained 
for downstream applications, which is time consuming due to the large model size. 
 
An intermediate approach between capturing variation in a single protein family, as EVE does, 
and a general protein language model is to predict per position variant frequencies for any 
sequence, using labelled MSA training data. This frequency defines the position’s position 
specific scoring matrix (PSSM), summarising the cross species diversity and conservation of 
the sequence. This approach balances capturing additional information contained in specific 
MSAs with general applicability, being able to predict rapidly from any input sequence. The 
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link with conservation means such predictions could be used to predict deleteriousness 
directly or the model can be further fine-tuned using smaller scale labelled pathogenicity data. 
We apply this approach, presenting a fast, scalable deep learning predictor, Sequence UNET, 
and a corresponding python package. It uses a fully convolutional architecture to predict 
protein PSSMs from sequence with optional structural input. The model is trained to directly 
predict variant frequency or to classify low frequency variants, as a proxy for deleteriousness, 
and then fine tuned for pathogenicity prediction. It outperforms previous de-novo PSSM 
predictors, such as SPBuild, accurately classifies low frequency variants and achieves high 
VEP performance but with greater scalability. Further, our model has comparable performance 
on these tasks to models based on the much larger ESM-1b protein language model. These 
language models are much slower and require significantly more compute power as well as 
additional top model training time. We demonstrate the benefits of performance and scalability 
by rapidly calculating all possible variants for 904,134 proteins detected in a pan-genome 
proteomics analysis18, something that would be impossible or prohibitively time consuming 
with previous VEPs. 

Results 

Sequence UNET model architecture 
We have developed a highly scalable VEP, Sequence UNET (Fig. 1A), that uses a fully 
convolutional neural network (CNN) architecture to achieve computational efficiency and 
independence from length. Convolutional kernels also naturally integrate information from 
nearby amino acids (Fig. 1B). Since long range interactions frequently generate protein 
properties, we also designed the model to integrate distant information using a U-shaped 
compression/expansion architecture inspired by the U-NET image segmentation network19. 
Max pooling creates successively smaller layers that draw information from wide regions and 
the final classification is built up by processing features from each depth in turn, integrating 
information from a wide receptive field (Fig. 1C). Since protein structure contains information 
that is extremely difficult to extract from sequence alone the network supports an optional 
graph convolutional neural network20 (GraphCNN) module to summarise positional structural 
features (Fig. 1D), which are then concatenated with the sequence input. We provide a more 
detailed description of the model and its inputs and outputs in the Supplementary 
Information. 
 
The model outputs a matrix of per position features and can therefore be trained to predict 
various positional properties. We demonstrate two related VEP use cases: predicting rare 
variants, as a proxy for deleteriousness; and directly predicting every possible variant's 
frequency. We trained using ProteinNet21, which is a large collection of protein sequence and 
structure information, containing data from 104,059 structures from the PDB alongside 
matching variant frequencies from large MSAs based on 332,283,871 sequences. It is 
designed for machine learning applications and includes in-built training/validation/testing data 
splits based on sequence similarity and the CASP competition22. However, the focus on 
proteins with structural information may also create a bias that reduces performance on protein 
types that are difficult to characterise structurally. The test set is drawn from CASP12 target 
proteins, which have few if any related sequences included in the training data, meaning it 
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creates a challenging test of the models ability to generalise to unseen and often unusual 
sequence space. Training is very consistent, with a variance less than 10-5 in both validation 
loss and accuracy over 10 replicates. 
 
The trained models are highly efficient, allowing faster and larger scale prediction than 
comparable tools (Fig. 1E). For example, SIFT4G took 22 minutes and FoldX 232 hours to 
predict scores for all 24,187 possible variants of SARS-CoV-2 Spike protein23. The majority of 
VEPs fall within this range, with most requiring a computation intensive step such as structural 
sampling or MSA generation. The two most accurate neural network VEPs, EVE and 
DeepSequence, require both an MSA and training their latent variable model for each protein. 
In contrast, Sequence UNET took 420 milliseconds to compute predictions after an 85 second 
initialisation time (only required once per session). This enables larger scale analyses on 
compute clusters and rapid analyses on desktop hardware, saving valuable researcher time 
and resources. 
 

 
Figure 1 - Model Overview A: Sequence UNET model schematic. Blue rectangles represent 

intermediate layer output matrices and green the final prediction. B: Schematic of the 1D 
convolution operation, which processes features in surrounding positions. Many filters 

(coloured arrows) are learnt in each layer to build up output features. C: Illustration of the 
receptive field in each layer from a single output position. D: Schematic of the optional 

structural GraphCNN layer. E: Barchart showing the computation time taken to compute 
predictions for all variants in SARS-CoV-2 Spike protein by two commonly used tools, 
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SIFT4G and FoldX, and Sequence UNET. These tools were chosen for a previous analysis, 
but broadly span the typical timescales of current tools. 

 

PSSM prediction and frequency classification 
We trained two base Sequence UNET models, optimising performance for PSSM prediction 
using a softmax output layer and Kullbeck-Leibler divergence loss and variant frequency 
classification using a sigmoid output and binary cross entropy. Hyperparameters were tuned 
in both modes with the same results (selected parameters in Fig 1A). The PSSMs predicted 
by the model closely resemble true results (Fig S2A-B) and the frequency classifier 
significantly separates rare and common variants (Fig S3A-B). We find our models PSSM 
results correlate more strongly to true values in the ProteinNet test set than SPBuild24 (a state 
of the art de novo LSTM PSSM predictor), the amino acid propensities predicted by ESM-1b 
and the results from a top model using ESM-1b representations trained on ProteinNet CASP12 
95% thinned data (Fig 2A, Fig S2 C-D). Interestingly ESM-1b logits correlate much better with 
raw frequencies than normalised PSSMs, potentially because they are trained to identify the 
most likely amino acid at a position, not differentiate between the lower frequencies that are 
important for PSSMs. Including structural features slightly increases performance (𝜌 = 0.472 
vs 𝜌 = 0.451). Similar results are found for frequency classification (𝑓 < 0.01) over the 
ProteinNet CASP12 test set, with Sequence UNET achieving top performance equalling a top 
model using ESM-1b representations (Fig 2B). We only compared to one VEP (SIFT4G) as 
deleteriousness is related to but not equivalent to frequency classification, instead comparing 
more widely on other datasets. Different frequency thresholds lead to different classification 
performance (Fig S3D), suggesting very rare or common variants are easy to classify but 
intermediates are more challenging. We use the 𝑓 < 0.01 classifier and the PSSM predictor 
as the base for further comparisons and generalisation. 𝑓 < 0.01 was the most challenging 
threshold and a common cutoff for deleteriousness, so provides a lower bound for 
performance in a useful context. Further details on hyperparameter tuning and base model 
PSSM prediction and frequency classification performance are available in the 
Supplementary Information. 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493038doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493038
http://creativecommons.org/licenses/by/4.0/


 

 
Figure 2 - Base model prediction performance. A: Pearson correlation between predicted  
and true PSSM values comparison PSSM prediction performance for Sequence UNET, a 

single layer CNN, SPBuild, ESM-1b logits, an ESM-1b top model and BLOSUM62. B: ROC 
and PR curve AUC values comparing frequency classification performance of Sequence 

UNET with and without structural features, ESM-1b logits, an ESM-1b top model, a baseline 
single layer CNN, SIFT4G and BLOSUM62. All comparisons were made over the ProteinNet 

CASP12 test set. 

Generalising Sequence UNET 
 
Having shown good PSSM prediction and classification performance we next sought to show 
Sequence UNET generalises to predicting deleterious variants and compare performance to 
other tools. We tested generalisation on three datasets: labelled human protein variants from 
ClinVar, standardised deep mutational scanning (DMS) data25, and a set of gold standard S. 
cerevisiae variant classifications26. 
 
The model can also be fine-tuned to new tasks with additional training on external data, either 
refining the existing weights (fine-tuning) or replacing the final classification layer with a freshly 
initialised one (a top model). We trained ClinVar classification top models and fine-tuned 
models with and without structural features on top of the Sequence UNET frequency 
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classification model, using a random 95%/0.5%/4.5% training/validation/testing split across all 
pathogenic and neutral variants in the ClinVar dataset that occur in proteins in ProteinNet 
CASP12 training data. The weights of all but the top two model layers were frozen to prevent 
overfitting. We also trained simple single layer CNN models to predict ClinVar pathogenicity 
and frequency classification, to provide a lower bound for machine learning solutions to this 
problem. The fine-tuned models specifically predict pathogenicity probabilities for each variant 
at all positions (Fig. 3A). These predictions tend to be more similar for variants at a position, 
including the wild-type amino acid than the results of the frequency classification and PSSM 
models. This is partially because pathogenicity is related to the position's properties and 
importance but also suggests there might not be sufficient training data available to 
differentiate between different variants at one position beyond the average properties of that 
position. 
 
Top models and fine-tuned models achieve comparable performance profiles to many state of 
the art predictors (Fig. 3B). Performance is significantly better when only proteins with 
structural information are considered, suggesting this bias from the ProteinNet training data 
has impacted what the model learnt. A training set that was not restricted to proteins from the 
PDB would likely help rectify this bias. The top model performs slightly better than the fine-
tuning approach on variants with structure but worse on those without it, independently of 
whether the network utilised that information. This is perhaps because the freshly initialised 
final weights allow the network to learn new relationships specific to structured pathogenicity 
whereas fine-tuning maintains more general relationships. The fine-tuned UNET model only 
performs slightly worse than the much larger ESM-1v language model27 across all variants 
and performs better on variants with structural data, despite being a much smaller and more 
manageable network. Interestingly, actually utilising structural data slightly reduces the 
performance of the fine-tuned models, suggesting it is less related to pathogenicity. The base 
Sequence UNET frequency classification models generalise less well to this task, although 
still with comparable performance to models such as FoldX. This suggests the frequency 
based model does not fully capture deleteriousness without fine-tuning.  
 
The frequency classification model was initially trained with a range of frequency thresholds 
and the resulting models have different ClinVar generalisation performance (AUC0.01 = 0.73, 
AUC0.1 = 0.67, AUC0.0001 = 0.66, AUC0.001 = 0.65). This shows that the chosen threshold does 
impact performance on a given task and suggests 0.01 is the best threshold for pathogenicity 
prediction, which aligns with the fact that the mean allele thousand genomes frequency for 
benign variants is 0.112 and for pathogenic variants is 0.00828. 
 
Sequence UNET predictions would also be expected to relate to DMS results and confirmed 
neutral and deleterious S. cerevisiae variants. Comparing the distribution of Spearman’s rank 
correlation values across DMS datasets (Fig. 3C) shows the model generalises, although it 
performs slightly less well than top predictors on this task. A similar result is found with a ROC 
analysis of  S. cerevisiae variants (Fig. 3D), where Sequence UNET variations outperform 
FoldX but fall behind SIFT4G and ESM-1v. The model fine-tuned on ClinVar performs best in 
both cases, while the top model performs relatively poorly, even falling behind simple CNN 
models in some cases. This further suggests that the top model may be learning something 
more specific to ClinVar, which may be an artefact of the dataset but could also be a real 
biological feature of pathogenicity or human proteins. Together this confirms that the models 
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generalise well to other contexts, although their relative performance compared to other tools 
varies. 
 

 
Figure 3 - Generalising Sequence UNET A: Sequence UNET top model ClinVar 

pathogenicity predictions for the ProteinNet Casp12 test set record TBM#T0865. The wild-
type amino acid at each position is outlined. B: ROC AUC values comparing VEP 

performance over the ClinVar test set. Variants of Sequence UNET are coloured in purple, 
blue and red, single layer CNN models in green and several notable models in yellow. 

Instances tested on the subset of ClinVar with structural data are marked with asterisks (*). 
C: Mean and standard error of Spearman’s rank correlation coefficient between VEP 

predictions and standardised DMS data25 . Sequence UNET, ESM-1v, SIFT4G and FoldX 
predictions were available across all proteins while other tools were only available for human 

proteins. D: ROC AUC values comparing performance of VEPs at classifying known 
deleterious and neutral S. cerevisiae variants26. 
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High-throughput proteome scale predictions 
Modern high-throughput experimental approaches can generate very large quantities of data, 
requiring efficient computational approaches to process. For example, a recent pan-proteome 
analysis by Muller et al.18 collected protein abundance measurements from 103 species, 
detecting a total of 904,134 distinct proteins (Fig. 4A). Analysing this many proteins with the 
most commonly used predictors is very computationally intensive and would be prohibitively 
time consuming for many tools and research groups. For example, making predictions for 
161,825 variants across just 30 proteins as part of a combined deep mutational scanning 
analysis25 took SIFT4G 14.1 hours and FoldX 64.5 days of total compute time. To exemplify 
the scalability of Sequence UNET we made predictions for all 8.3 billion possible variants in 
this proteomics dataset, which took 1.5 hours on a GPU using a batch size of 100 (6.8 hours 
without batching) and 50.9 hours using only CPU (Fig. 4B). This also compares favourably 
with the ESM language model, even when using a single forward pass for all variants instead 
of independently masked passes for each variant as suggested27. ESM is both a much larger 
model and the attention mechanism scales quadratically with protein length, whereas the 
convolutional design of Sequence UNET scales linearly. This means Sequence UNET is 
significantly faster using CPU and for larger proteins on GPU. Small proteins are predicted at 
a similar rate on GPU, suggesting at this point other factors dominate. Sequence UNET also 
requires much less (V)RAM in all cases, making it significantly easier to deploy at scale and 
allowing batches of proteins to be processed simultaneously to increase efficiency. In contrast, 
even a batch size of 2 was prohibitive for ESM. These performance increases, combined with 
the Sequence UNET python package, makes large scale analyses more accessible, especially 
for those without high performance compute facilities. 
 
We used this large dataset of variant effect predictions for almost 1M proteins to compare 
protein abundance and predicted tolerance for sequence variation. Proteins that are 
expressed at higher abundances are generally expected to have more strongly constrained 
sequences than low abundance proteins29. This is thought to occur because highly expressed 
proteins need highly optimal sequences to avoid aggregation potentially driven by translation 
errors. However, most studies comparing abundance with sequence constraints have relied 
on a small number of species. In our analysis we found a significant correlation between 
protein abundance and predicted protein conservation in most of the 103 species in this 
dataset (Fig. 4C). Protein abundance is normalised against length and expressed as the log2 
fold change compared to median abundance in that species. Conservation is summarised for 
a protein as the mean number of predicted deleterious variants across positions. A similar 
correlation level is observed for Sequence UNET predictions, including PSSM prediction and 
frequency classification, and SIFT4G scores in H. sapiens, S. cerevisiae, E. coli and 
Mycoplasma proteins. The similarity between correlations based on SIFT4G scores and our 
predictions validates the use of Sequence UNET for such applications. 
 
The strength of conservation-abundance correlation varies a lot between species, including 
diminishing to nothing in a few cases. Eukaryotes tend to have the highest overall correlations 
(t-test vs Bacteria: 𝑝 = 7.6 × 10!", vs Archaea: 𝑝 = 1 × 10!#). However, looking more closely 
suggests this is partly caused by the fraction of TrEMBL proteins, which may include spurious 
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open reading frames and in our analysis tend to have weaker correlations in Archaea (Fig. 
4D). The variation in protein abundance and protein length (Fig. 4E) also impact the 
abundance correlation, suggesting that part of the difference may come from reduced overall 
variation in protein forms. Species with no significant correlation tend to be unusual organisms, 
for example the intracellular parasite Mycoplasma or extremophile archaea such as P. furiosus 
or T. litoralis, which would be expected to have unusual properties based on their biology. 
They may also contain more proteins without similarities to those in our PDB based training 
data. There is also a stronger correlation in Mycoplasma when cultured intracellularly, 
suggesting it behaves more conventionally in that state and is more abnormal outside the cell. 
Finally, a similar correlation between abundance and conservation determined by SIFT4G 
scores shows a similar pattern in Mycoplasma, although with lower intracellular correlation, 
suggesting the low correlations have biological rather than technical causes. This simple 
analysis demonstrates the utility of performant, scalable predictors for large analyses and 
working with high-throughput experimental results. 
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Figure 4 - High-throughput proteome analysis A: Number of proteins and species in the 
Muller et al. proteomics dataset. B: Computation speed comparison between SIFT4G, 

FoldX, single-pass ESM-1b and Sequence UNET on CPU and GPU. Sequence UNET was 
also tested running on GPU in batches of 100. The SIFT4G and FoldX computations were 

performed as part of an independant deep mutational scanning analysis25, ESM-1b was run 
on ProteinNet proteins and Sequence UNET computations are across this proteomics 
dataset. C: Pearson correlation coefficient between predicted conservation and protein 

abundance in each species. The error bounds of Pearson’s ρ are calculated with Fisher’s Z 
transform. Predicted conservation is summarised as the mean number of variants predicted 

to be deleterious across positions. Results are shown for Sequence UNET frequency 
predictions across all species and SIFT4G for Mycoplasma and species with data available 
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in Mutfunc30. The species’ phylogeny is also shown based on NCBI Taxonomy Common 
Tree. D: Boxplot showing distribution of correlation coefficients for each domain, split 

between proteins in SwissProt and TrEMBL. The p-value comes from a two sample unpaired 
T-Test. E: Relationship between Pearson correlation and standard deviation of raw protein 

abundance across species. F: Relationship between Pearson correlation and standard 
deviation of protein length across species. 

 

Discussion 
 
Variant effect prediction (VEP) is a central part of many computational genetic analyses, 
allowing researchers to assess new genomes or patient sequences, prioritise variants for 
follow up experiments and identify important functional and structural features of proteins. This 
has led to a range of VEP tools, using empirical and machine learning methods to predict 
deleteriousness from sequence and structure. However, most tools are restrictive to run, 
particularly for large scale analyses involving hundreds of proteins. They can be 
computationally expensive, often having slow multiple sequence alignments or more recently 
machine learning model training as a limiting step, and are often awkward to install correctly. 
Precomputed results are available for human proteins and some model organisms, for 
example in the MutFunc23,30 or dbNSFP31,32 databases and the webpages of many tools. 
Despite this, it is still difficult for many scientists to generate predictions for the proteins they 
need, especially when analysing a large number of proteins or less studied organisms. In an 
attempt to fill this niche, we developed a versatile neural network VEP that is fast, lightweight 
and easy to use, able to rapidly make exhaustive predictions about many proteins on a regular 
laptop and scale to multi-proteome analyses on compute clusters. 
 
Neural networks provide a powerful approach to fast, high quality predictions, utilising large 
datasets and a long, computationally intensive training process to distil complex relationships 
into numerical weights matrices. This means predictions can be made efficiently as long as 
the network architecture uses optimised operations and doesn’t require expensive external 
computations, for example multiple sequence alignment or structure relaxation. Neural 
network  models have also shown very high performance in other sequence based tasks33–35 
and variant effect prediction12,14 but there has not previously been a fully end-to-end neural 
network specialised VEP that operates directly on sequences. The Sequence UNET model 
architecture we arrived on takes inspiration from other CNN models, including from sequence, 
structure and image based tasks19, and combines them into a novel model. The U-shaped 
compression/expansion structure allows information to propagate across the protein, with the 
“receptive field” of neurons in the lower layers covering large regions of the original sequence 
in the same way they integrate information across images in the original UNET. This allows 
performant CNN operations to be used for a sequence based problem while allowing filters to 
learn sequence patterns at different detail levels. Similarly GraphCNNs are performant and 
have been shown to perform on protein structure tasks36–38, and their position invariance 
makes them a natural approach to including structural features. We experimented with various 
other methods of including structure, including torsion angles and calculated feature profiles, 
but found GraphCNNs gave best performance and efficiency.  
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The lack of labelled deleterious variant data at the scale required for deep learning led us to 
first capture general sequence and variant properties by training the model to predict variant 
frequencies, either as a PSSM predictor or a low frequency variant classifier, and then finetune 
for pathogenic variant classification using ClinVar data. This is similar to the protein language 
model paradigm, in which large models are first trained to predict amino acid sequences, 
capturing general properties, and the representation vectors they produce can be used as 
input into smaller downstream models. However, the size and design of the model makes it 
much more computationally efficient than most language models. 
 
The base Sequence UNET model achieves state of the art performance at de novo PSSM 
prediction and frequency classification, both independently useful tasks, and the fine tuned 
models reach top level performance at pathogenicity prediction, although the base model only 
generalises moderately well. There are also potential questions about performance on 
unstructured proteins, which are missing from ProteinNet, but this could be addressed by 
expanding the training data beyond structured proteins.  
 
Variant frequency can be measured analytically and other models can predict pathogenicity 
to a broadly similar accuracy, meaning the major strength of our model is computational 
efficiency. This enables analyses to be completed more rapidly and on weaker hardware and 
opens up potential large-scale analyses that would not be possible for more computationally 
demanding tools. For example, the multi-proteome analysis we performed here would have 
been extremely computationally expensive with many tools. Other possible applications 
include metagenome and microbiome analysis, where large numbers of new sequences are 
determined and need to be understood. Developing efficient models for structure, function or 
localisation prediction would also enhance work where a great many protein sequences are 
generated or need to be compared. Such methods can also be combined with slower, more 
accurate or analytical methods to identify the most important targets for detailed, computation 
intensive analysis, which gets the benefits of speed and performance by enabling accurate 
results from the important areas of a wide search space. 
 
There are various routes available that could improve our model in future, while maintaining 
computational efficiency. The role of protein structure is an obvious target for change, since it 
currently only adds a small performance boost despite structure being known to be critical for 
protein function. For example, a richer graph network section, graph attention mechanisms or 
pre-training the structural section to encode structural properties could all potentially improve 
performance. Removing the structure option altogether could also be beneficial because it 
would allow the model to be trained on a much larger sequence dataset, exposing it to more 
sequence variation and reducing the bias towards protein types with determined structures. 
Large sequence datasets, and lots of training data in general, has been found to greatly 
improve performance in many other models7,17,39. This would make the model setup more 
similar to protein language models, which also train to predict amino acid propensity on large 
sequence databases. The UNET sequence CNN portion of the network could also be 
adjusted, either by tweaking the current connections and parameters or switching to an 
alternate sequence processing architecture. For instance, powerful attention and transformer 
architectures could be incorporated into the network or used as a basis for a new model that 
maintains computational efficiency as a goal, although it does come with an inherent 
computation cost compared to convolution. 
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We have demonstrated a highly efficient, performant model for variant frequency and effect 
prediction, which enables larger scale analyses than have previously been possible with VEP 
packages, demonstrated by our multi-proteome conservation analysis. This could be 
beneficial for a range of biological problems where current models are slow enough to be 
prohibitive, for example metagenomics, microbiome research and analysing the large 
quantities of genomic sequences from the Darwin Tree of Life project40.  More generally, 
developing computationally efficient deep learning models that maintain high performance has 
great potential in other problems, speeding up predictions and providing approximate solutions 
where analytical approaches are prohibitive. This could enable new questions to be answered 
as well as making current analyses more economical, reducing compute time and 
consequently saving money and natural resources, including carbon41. 

Code and Data Availability 
A python package and weights for easily implementing the model as well as development 
code are available at github.com/allydunham/sequence_unet. This code fully defines the 
network and training procedures. We also developed a python package for loading and 
manipulating ProteinNet data (ProteinNetPy), which is available at 
github.com/allydunham/proteinnetpy.  
 

Methods 
Detailed methods and analysis are contained in the accompanying Supplementary 
Information. 
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