
Rates and spectra of de novo structural mutation in Chlamydomonas reinhardtii

Eugenio López-Cortegano1,*, Rory J. Craig1,2,*, Jobran Chebib1, Eniolaye J. Balogun3,4 and Peter D.

Keightley1

1. Institute of Ecology and Evolution, University of Edinburgh, UK

2. California Institute for Quantitative Biosciences, UC Berkeley, USA

3. Department of Ecology and Evolutionary Biology, University of Toronto, Canada

4. Department of Biology, University of Toronto Mississauga, Canada

*These authors contributed equally to this work

Corresponding author: peter.keightley@ed.ac.uk

Running title: Rates and spectra of structural mutations

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.23.493040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493040
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Genetic variation originates from several types of spontaneous mutation, including single nucleotide

substitutions, short insertions and deletions (INDELs), and larger structural changes. Structural mutations

(SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation and

genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates

of rates and spectra of single nucleotide and INDEL mutations in many species, yet the rate of new SMs is

largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines

derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii. The SM

rate is highly variable between strains and MA lines, and SMs represent a substantial proportion of all

mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra also differs considerably between

the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation

is associated with heterogeneity in the number and type of active transposable elements (TEs), which

comprise major proportions of SMs in both strains (CC-1952 22% and CC-2931 38% of SMs). In CC-2931,

a Crypton and a previously undescribed type of DNA element caused 71% of chromosomal rearrangements,

while in CC-1952 a Dualen LINE was associated with 87% of duplications. Other SMs, notably many large

duplications in CC-2931, were likely products of various double-strand break repair pathways. Our results

demonstrate that diverse types of SMs occur at substantial rates and support prominent roles for SMs and

TEs in evolution.
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Introduction

Since the development of the Modern Synthesis in evolutionary biology, the existence of chromosomal

changes visualised in cytogenetic studies led to the hypothesis that structural mutations (SMs) could be an

important source of variation leading to evolutionary change by natural selection (Dobzhansky and Epling,

1948; McClintock 1950; Ohno 1970). All genetic variation has its origin in new mutations, and efforts to

estimate the rate of mutations started early in the 20th century by analysis of mutation accumulation (MA)

experiments, in which spontaneous mutations are allowed to accumulate in lines of small effective

population size where natural selection is ineffective (Muller 1928; Bateman 1959; Mukai 1964). The advent

of whole-genome sequencing technology led to the possibility of directly estimating the rate, spectra and

distribution of mutations in the genome by sequencing MA lines, and later by the sequencing of parents and

their offspring. Studies of these kinds have been carried out in many species (Halligan and Keightley 2009;

Yoder and Tiley 2021), but the short-read sequencing technology applied reliably detects only single

nucleotide mutations (SNMs) and short insertions and deletions (INDELs), and little is known about the rates

at which SMs occur de novo.

SMs include larger insertions and deletions (often defined as those >50 bp), duplications, transposable

element (TE) insertions and excisions, and chromosomal rearrangements such as inversions and

translocations. Such large structural changes may be expected to have larger fitness effects than SNMs and

INDELs, and the structural variation that arises from SMs has been implicated in many evolutionary

phenomena, including adaptation and speciation.   For example, duplications can increase the copy number of

functional sequences, and gene duplication provides the raw material for gene family evolution via processes

including neo- and subfunctionalization (Kuzmin et al. 2022). Inversions may result in recombination

suppression, and the subsequent evolutionary divergence of ancestral and inverted haplotypes has been

implicated in local adaptation, speciation and sex chromosome evolution (Kirkpatrick and Barton 2006;

Kirkpatrick 2010). Inversions may also give rise to ‘supergenes’, which preserve the linkage of multiple

co-adapted loci and can underlie complex phenotypes (Joron et al. 2011, Küpper et al. 2015). Translocations

and other major rearrangements can similarly suppress recombination and may directly cause reproductive

isolation (Faria and Navarro 2010; Potter et al. 2017), while deletions have also been linked to genomic

differentiation during speciation (Zhang et al. 2022). In particular, appreciation for the diverse evolutionary
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roles of TEs is ever increasing. TE insertions in functional sequences can drive rapid phenotypic adaptation

(van’t Hof et al. 2016) and TEs can contribute substantially to regulatory sequence over evolutionary

timescales (Chuong et al. 2017; Zhao et al. 2018). TE activity has been linked to phenomena including

genome size evolution (Gregory 2005), genomic ‘turnover’ (gain and loss of DNA) (Kapusta et al. 2017) and

speciation (Ricci et al. 2018; Tusso et al. 2022). TEs may also mediate large deletions, duplications and

chromosomal rearrangements (Gray 2000), either directly as a byproduct of their transposition machinery

(e.g. as in the classic Ac/Ds system (Zhang et al. 2009)) or via non-allelic homologous recombination

between interspersed TE copies (Konkel and Batzer 2010). Finally, aside from their evolutionary importance,

SMs are generally associated with deleterious effects and have been implicated in several human diseases

and cancers (Weischenfeldt et al. 2013; Inaki and Liu 2012). SMs are also likely to become increasingly

relevant in applied fields such as breeding, since structural variation has been associated with commercially

important traits (Jayakodi et al. 2020; Song et al. 2020).

Fully understanding the evolutionary importance of structural variation requires a thorough knowledge of the

rates at which the various types of SMs occur. Recently, advances in long-read sequencing technology have

led to substantial improvements in the ability to assemble near-complete eukaryotic genomes and stimulated

the development of bioinformatic tools for the discovery of structural variation (Rhoads and Au 2015; Jain et

al. 2018; Mahmoud et al. 2019; Miga et al. 2020; De Coster et al. 2021). These advances now enable the

study of de novo SMs in MA lines. Here, we use Pacific Biosciences (PacBio) HiFi sequencing to

characterise the rates and spectra of SMs in two divergent strains of the single celled green alga

Chlamydomonas reinhardtii. MA lines were generated in a previous study (Morgan et al. 2014) and we have

previously used Illumina sequencing to investigate the rates and spectra of SNMs and INDELs (Ness et al.

2015). C. reinhardtii is an excellent model for mutation research, since its relatively large genome (~111 Mb)

and short generation time (~2.5 generations per day) enables the rapid accumulation of large numbers of new

mutations in a short time, and the species has been used to explore diverse genomic properties of new

mutations (Ness et al. 2012; Sung et al. 2012; Böndel et al. 2021; López-Cortegano et al. 2021). We find that

the rates and spectra of SMs differ substantially between MA lines and strains, and that SMs can represent a

substantial proportion of the overall mutation rate.
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Results

Structural mutation detection

We performed PacBio HiFi or continuous long read (CLR) sequencing of MA lines of the C. reinhardtii

strains CC-1952 (N=4 MA lines, all HiFi) and CC-2931 (N=8, six HiFi and two CLR). These geographically

distinct strains were selected on the basis of their relatively low (CC-1952, overall μ = 4.05 x 10-10 per site

per generation) and high (CC-2931, μ = 15.6 x 10-10) SNM and INDEL rates estimated in our MA

experiment, where lines were maintained for ~1,050 generations by single cell descent (Morgan et al. 2014;

Ness et al. 2015). To perform strain-specific detection of SMs in the MA lines, we first produced

near-complete reference assemblies for both ancestral strains. The 17 C. reinhardtii chromosomes were

assembled into 50 and 39 contigs with N50s of 4.25 and 3.81 Mb, for CC-1952 and CC-2931, respectively

(Fig. S1). We subsequently defined nearly 98% of each ~111 Mb ancestor genome as ‘callable” (i.e. sites

where SMs could be called with high confidence; see Methods and Fig. S2). This represents a substantial

increase over the ~71% obtained in our previous study using short-read technology (Ness et al. 2015). We

sequenced MA lines at sufficient depth of coverage to produce highly contiguous assemblies (Fig. S1),

enabling us to call SMs using three approaches: directly from MA line PacBio read alignments against the

appropriate ancestral reference using Sniffles (Sedlazeck et al. 2017), from MA line PacBio assembly

alignments against the reference using MUM&Co (O'Donnell and Fischer 2020), and from Cactus

pan-genomes using vg (Garrison et al. 2018; Armstrong et al. 2020). Sniffles and MUM&Co were run

individually for each MA line, while all MA lines from each strain were analysed collectively with vg from a

single strain-specific Cactus alignment. We subsequently collated and manually curated all variant calls

using a combination of read visualisation and mapping approaches (Fig. 1A).

We classified our curated dataset of SMs (a total of 120 in CC-1952 and 443 in CC-2931; Table S1) into

eight categories: expansions and contractions of tandemly repeated sequence (e.g. in microsatellites or

satellite DNA, collectively termed tandem repeat mutations, TRMs), duplications, deletions, insertions and

excisions of mobile elements, and inversions and translocations (Fig. 1B). The different callers varied

substantially in their ability to identify different SM types (Fig. 1C). Only 19.2% of SMs were called by all

three tools, highlighting the importance of combining approaches. vg was most successful overall, calling

79.4% of SMs and 22.4% uniquely, although it called only 20.0% of inversions and translocations.
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MUM&Co called only 16.7% of TRMs, although it identified 64.5% of SMs in other categories. Sniffles

called 47.2% of SMs and was generally outperformed by the assembly-based approaches, although it was

superior in identifying duplications (calling 62.7% of duplications and 39.0% uniquely). The assembly-based

methods failed to call duplications >30 kb (i.e. longer than the reads) since they were generally collapsed and

absent in the assemblies. We also called 7.3% of SMs manually, most of which were transposable element

(TE) insertions located at the breakpoints of other complex SMs (e.g. inversions and translocations).

Figure 1. Structural mutation detection. A) Flowchart of the SM calling pipeline. Steps are organised from top to

bottom in four stages: genome assembly, mapping and alignment, SM calling, and SM curation. Software used in each

step is shown in red text, and file formats are in blue text. “Manual” indicates variants that were curated directly from

alignment files. “x1” indicates that each dataset (reads or assemblies) was analysed individually, “xN” indicates that all

MA lines for a given strain were analysed collectively. B) Schematics illustrating the eight different types of SM called.

The ancestral state is shown above and the mutated state below. C) Intersection of the number of curated SMs identified

by each calling method across all MA lines (for the two strains, CC-1952 and CC-2931, combined). In vertical bars, the

number of SMs is coloured by SM type. Horizontal bars (in grey) show the total number of SMs called by each method.
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The three approaches also differed markedly in the proportions of rejected calls (i.e. variants that could not

be classified as genuine SMs), and all three returned more rejected calls than confirmed SMs (reaching 3x as

many for vg; Fig. S3). Rejected calls generally fell in three categories: calls made within regions that we had

defined as uncallable (which were not considered further), MUM&Co or vg calls that received assembly

support but not read support (i.e. ‘valid’ calls introduced by assembly errors), or calls that received support

from neither assemblies nor reads (unsupported variants). Considering the ratio of rejected calls to confirmed

SMs in CC-2931, Sniffles performed best (1.14), followed by MUM&Co (1.81) and vg (3.42). However,

these ratios varied considerably depending on the type and sequence context of the rejected call. All

categories of rejected calls were associated with repetitive sequence (Fig. S4). The uncallable regions

correspond to the most repetitive parts of the genome (generally very long satellite arrays), and despite

representing only ~2% of sites, a substantial proportion of calls were made in these regions (26.4%).

Considering callable regions, tandem repeats of all lengths were a major source of both assembly errors and

unsupported variants. After excluding all tandem repeats, the ratio of unsupported variants to confirmed SMs

improved for all callers, falling from 0.21 to 0.17 for MUM&Co and from 0.91 to 0.20 for vg, although

substantial proportions of calls attributed to assembly errors remained (Fig. S3). Consequently, although our

results show that callers are capable of detecting SMs in tandemly repeated regions (expansions and

contractions, particularly vg, Fig. 1C), attempting to do so runs the risk of introducing many false positives

in fully automated pipelines. Rejected calls are further discussed in the Supplementary Material.

Rates and spectra of structural mutations

The rates and spectra of SMs were remarkably different between the two strains (Fig. 2A, B). CC-2931 MA

lines experienced ~85% more SMs than CC-1952 MA lines, and total SM rates were significantly different

between the strains (μSM (CC-1952) = 2.58 x 10-10 and μSM (CC-2931) = 4.30 x 10-10 per site per generation; W test, P =

4.04 x 10-3). However, the within-strain variance in μSM among MA lines was ~12% higher than between

them (ANOVA test, F = 10.84, P = 8.12 x 10 -3). In terms of the number of bases affected, CC-2931 MA lines

experienced larger SMs than CC-1952, and also experienced more types of SM (Fig. 2A). We observed only

three SMs >20 kb in length in CC-1952 MA lines, whereas almost all large chromosomal rearrangements

were found only in CC-2931, i.e. there were 1.75 inversions (median ~243 kb) and 2.50 translocations per

CC-2931 MA line, compared to a single 5.2 kb inversion across all CC-1952 MA lines. Deletions were also
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rare in CC-1952 (<1 per MA line on average), as were mobile excisions, due to a relative lack of active

cut-and-paste DNA transposons (see below).

Figure 2. Spectrum and rate of structural mutations. A) Mean number of SMs by type (in colours) and length (in kb,

rounded to 0.5 kb) per MA line. A total of 5 uncharacterized rearrangements of unknown length in CC-2931 MA lines

are excluded. B) The SM rate per site per generation (μ, on a log10 scale) is plotted as open points and boxplots for

different types of structural mutations. Data points represent individual MA lines. C) Mutation rates for different

mutation types across the CC-1952 and CC-2931 MA lines. Only lines sequenced by PacBio HiFi are included. The

percentage at the top of the bar indicates the proportion of SMs relative to all mutation types (SMs, SNMs and

INDELs).

Although there were clear differences between the strains, some SM properties were shared by CC-1952 and

CC-2931. TRMs were the most common category of SMs <3 kb in length in both strains (representing 60.8%

and 35.0% of all SMs in CC-1952 and CC-2931, respectively) and occurred at similar rates between the two

strains (median μTRM (CC-1952) = 1.68 x 10-10, μTRM (CC-2931) = 1.60 x 10-10, W test, P = 0.93). Mobile insertions

dominated the spectra of SMs >3 kb in length (representing 21.7% and 37.9% of all SMs in CC-1952 and

CC-2931, respectively), although the median rate of mobile insertions was ~2.5x higher in CC-2931 (14.08 x

10-11) than in CC-1952 (5.15 x 10-11). Duplications were also relatively common in both strains (12.5% and
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9.9% of all SMs in CC-1952 and CC-2931, respectively), although duplications in CC-1952 (median 0.9 kb)

were significantly shorter than in CC-2931 (median 12.9 kb; W test, P = 2.98 x 10 -6). Duplications were more

frequent than deletions in the two strains (W test, P < 1.5 x 10-2), and also significantly longer in CC-2931

(median length 12.9 kb vs. 1.7 kb, respectively; W test, P = 1.81 x 10 -2). Duplications and deletions affected

coding and other genic sequences at rates similar to their genome-wide distributions (Fig. S5), suggesting

that they could have considerable fitness effects.

In addition to identifying SMs, we used the PacBio HiFi reads to call SNMs and INDELs <50 bp in length.

This analysis suggested that SMs represent 6.0% of the total mutation rate in CC-1952, and 11.7% in

CC-2931. However, most mutations affecting short lengths of sequence were called in tandem repeats

(~60%), and given the uncertainty of variant calling in these sequences, we recalculated mutation rates

excluding these regions. This had a minor effect on the relative contributions of SMs to the total rate (i.e.

SMs represented 5.8% of mutations in CC-1952, and 11.8% in CC-2931; Fig. 2C). We did not find a

significant correlation between μSM and either SNM or INDEL mutation rates among MA lines in either

strain. Disregarding covariance terms between SM, SNM and INDEL mutation rates, variance in μSM

explained 4.3% of total mutational variance in CC-1952 and 9.7% in CC-2931. Hence, our results suggest

that SMs, including those that could have functional consequences, occur at a rate approximately 10-fold

lower than the rate of SNMs and INDELs combined, yet their rates are highly variable between strains.

Active transposable elements

With the exception of one putative mobile satellite in CC-2931 (see below), all mobile elements were TEs.

We found that the two strains differed markedly in the number and diversity of active TE families. There

were 12 families from seven TE subclasses active in CC-2931, and only three families from two subclasses

active in CC-1952. We also observed considerable heterogeneity in insertion rates among MA lines and TE

families (Fig. 2B, Fig. 3A). In CC-2931, per family rates ranged from a single insertion in only one MA line

(e.g. the LINE Dualen-4b_cRei) to 62 insertions (minimum one per MA line, maximum 15) of the Crypton

CryptonF-1_cRei.

The most active retrotransposons in CC-2931 were an autonomous (Chlamys-9_cRei) and nonautonomous

(Chlamys-N4_cRei) pair of Penelope-like elements (PLEs), which generally caused very short insertions (of
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median length 128 bp) due to 5’ truncation. All Chlamys insertions were into introns, which was broadly

consistent with the underlying distribution of their (C)n microsatellite target (Craig et al. 2021b), but was

nonetheless more frequent than expected (Fig. 3B, C). The remaining CC-2931 TEs were various types of

DNA transposons. The cut-and-paste DD(E/D) transposons EnSpm-3_cRei (autonomous) and

EnSpm-N3_cRei (nonautonomous) were active in all lines. EnSpm insertions were significantly enriched in

intergenic regions distant from genes, although unlike other TE families they were not underrepresented in

coding sequence (Fig. 3C). Consistent with a higher efficiency of nonautonomous transposons relative to

their longer autonomous counterparts (Han et al. 2013), we observed a net increase in copies of

EnSpm-N3_cRei (three ancestral copies compared to a mean of 3.6 copies in the MA lines) and decrease in

EnSpm-3_cRei (three ancestral copies compared to a mean of 2.4 copies in the MA lines). The net increase in

EnSpm-N3_cRei copies can presumably be attributed to transposition during DNA replication (Feschotte and

Pritham 2007). Also note that the number of insertions for these elements are minimum estimates (Fig. 3A),

since several cut-and-paste transpositions may have occurred during the experiment that were not captured at

the final time point.

We observed 12 insertions of copy-and-paste Helitrons, including the particularly long 20.4 kb autonomous

Helitron2-7_cRei (Fig. 3B). We also observed an unusual pair of copy-and-paste transposons, here named

Un12 (autonomous) and Un3 (nonautonomous), which inserted upstream of “RG” target sequences (R

indicating purine) and caused variable length target site duplications. Un12 contains a gene with introns that

encodes a protein containing an HUH endonuclease of the Rep superfamily, a widespread domain in

prokaryotes and viruses that is also found in eukaryotic Helitrons and prokaryotic IS200-IS605 and

IS91/ISCR transposons (Kazlauskas et al. 2019). However, since the Un12 protein lacked a helicase domain

and featured only one catalytic tyrosine (i.e. Y1 rather than Y2, Fig. 3B), these elements appear to be the first

known members of a new group of eukaryotic TEs. We have since found similar TEs in several other taxa

and their wider distribution will be described elsewhere. Un3 was the second most active TE, with insertions

in all lines and a maximum of 22 insertions in L13 (Fig. 3B). Un3 and Un12 insertions were significantly

underrepresented within coding sequence and introns (Fig. 3C).
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Figure 3. Active transposable elements. A) Number of insertions per TE family per MA line. Families with <2

insertions per strain are not shown. TE subclasses are shown in colours (red: PLE; yellow: LINE; blue: Helitron; purple:

Un12/Un3; orange: Crypton; green: DD(E/D) transposon). Autonomous (darker colours) and nonautonomous (lighter

colours) families that putatively rely on the same transposition machinery are grouped. The prefix of each TE name

gives the superfamily (except Un12/Un3). B) Schematics of active TE families (to scale). Terminal inverted or direct

repeats are shown by grey arrows, terminal sequences are shown above the main TE bodies (solid black lines), and

insertion targets are shown next to black arrows. Coding sequence and introns of genes are shown by blocks and
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connecting lines, with domains coloured. RT = reverse transcriptase, GIY-YIG = GIY-YIG endonuclease, RNH =

Ribonuclease H, APE = apurinic/apyrimidinic endonuclease-like endonuclease, RLE = restriction-like endonuclease,

JCP = Josephin-related cysteine protease,  Rep = replication protein (HUH endonuclease), Hel = helicase, PHD = plant

homeodomain finger, DDE = DDE transposase, YR = tyrosine recombinase, GCR1_C = DNA-binding domain. C)

Distribution of specific TE family insertions relative to genomic annotations in CC-2931. Autonomous and

nonautonomous pairs were considered together. Error bars show a random expectation based on 1,000 insertions,

adjusted for the genomic distribution of family-specific target sequences. Intergenic sequence is divided into proximal

(within 500 bp of a gene) and more repetitive distal (>500 bp from a gene) sequences.

We observed two families of autonomous Cryptons, including CryptonF-1_cRei, which was the most active

TE in CC-2931. To our knowledge these are the first observations of active Cryptons. Goodwin et al. (2003)

proposed a model of insertion via site-specific recombination between a short donor sequence at one

terminus of a Crypton and a near-identical target sequence at the integration site, catalysed by the

Crypton-encoded tyrosine recombinase. Our data were consistent with this model, e.g. CryptonF-1_cRei

terminated in the motif “CACCG” and targeted “CAYCG” (Y indicating pyrimidine; Fig. 3B). However, it

was also proposed that Cryptons would undergo excision. While we observed clean excisions that left behind

only the “CAYCG” target, the Cryptons increased in copy number, suggesting a more complex mode of

transposition. CryptonF-1_cRei insertions were enriched at gene-proximal intergenic sequences and 5’

untranslated regions (UTRs).

In contrast to CC-2931, only the LINE retrotransposon Dualen-4b_cRei was active in multiple CC-1952 MA

lines (with a range of four insertions in MA line 1 to nine in line 15, Fig. 3A). We also observed two

cut-and-paste DD(E/D) transposons: a single excision and insertion of a P element (P-2_cRei) in MA line 1

(i.e. L1), and an excision (and extinction) of a giant single-copy 31.7 kb Zisupton DNA transposon

(Zisupton-3_cRei) in L3.

Transposable element-mediated structural mutations

We found that TE insertion and excision events were associated with many other SM types (Table 1). The

number of TE insertions was positively correlated with the combined number of deletions, duplications,

inversions and translocations across all MA lines (Pearson’s product-moment correlation, t10 = 2.64, r = 0.64,

P = 0.02). Inversion and translocation breakpoints had a similar genomic distribution as TE insertions,

exhibiting a bias towards UTRs and intergenic sequences (Fig. S5). More specifically, 70.6% of inversions
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and translocations in CC-2931 MA lines involved either CryptonF-1_cRei or Un3/Un12 elements at one or

both of the breakpoints (Table 1), with one exception that involved truncated copies of both Un3 and

CryptonF-1_cRei. We also attributed a far smaller number of SMs to homology-mediated double-strand

break (DSB) repair mechanisms (Table 2), which are described further below.

Table 1. Proportion of SMs associated with TEs across MA lines of two C. reinhardtii strains. Note that one

translocation involved both CryptonF-1_cRei and Un3/Un12, and the number of TEs does not always match the number

of TE-mediated SMs.

Strain SM % associated with TEs (count/total) TE families (count)

CC-1952

Deletion 33.33 (1/3) Dualen-4b_cRei (1)

Duplication 86.67 (13/15) Dualen-4b_cRei (13)

Inversion 0 (0/1) NA

Translocation NA NA

CC-2931

Deletion 13.33 (2/15) CryptonF-1_cRei (2)

Duplication 2.27 (1/44) Dualen-4b_cRei (1)

Inversion 64.28 (9/14) CryptonF-1_cRei (8); Un3/Un12 (1)

Translocation 75.00 (15/20) CryptonF-1c_Rei (8); Un3/Un12 (8)

Rearrangements mediated by Un3/Un12 generally featured breakpoints that coincided with the 3’ end of the

transposons, most frequently repaired so that one derived chromosome featured two elements in a tail-to-tail

arrangement. For example, this outcome was observed in a reciprocal translocation between chromosomes

14 and 17 in CC-2931 L9 (Fig. 4A). While we do not yet understand the mechanism of these newly

discovered TEs, the presence of target site duplications suggest that they may cause DSBs, and their

simultaneous insertion at different genomic regions could lead to aberrant repair and rearrangements.

CryptonF-1_cRei-mediated rearrangements were associated with both insertions and excisions. For example,

CC-2931 L11 experienced a reciprocal translocation between chromosomes 9 and 11 involving insertions at

each breakpoint (Fig. 4B). Conversely, other events involved only one insertion, although in all cases we

observed a “CAYCG” target site at the other breakpoint. Notably, the high insertion rates of both

CryptonF-1_cRei and Un3/Un12 in CC-2931 L13 (Fig. 3A) resulted in a highly derived karyotype in this
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line (Fig. S6A). This included a cluster of non-reciprocal translocations involving four chromosomes,

mediated by three Un3 and one Un12 insertions that may have occurred simultaneously .

Remarkably, CryptonF-1_cRei was associated with six inversions in different MA lines on chromosome 16

(Fig. 4C). In the CC-2931 ancestor, chromosome 16 featured two CryptonF-1_cRei copies in opposite

orientation separated by ~233 kb. We did not observe this ancestral state in any of the eight MA lines. The

~233 kb region was inverted in four MA lines, with either none, one or both of the copies excised. In L2 and

L14 longer inversions were mediated between one of the CryptonF-1_cRei copies and independent

“CAYCG” target sites elsewhere on the chromosome (L2 ~830 kb between copy 1 and an upstream target

site; L14 ~991 kb between copy 2 and a downstream target site). The presence of target sites at each

breakpoint (featuring either an insertion or excision, or neither) in both inversions and translocations may

suggest a role for the site-specific recombination activity of the Crypton tyrosine recombinase enzyme in

mediating rearrangements.

It is also interesting to note that the CC-2931 ancestral genome has a rearranged karyotype relative to

CC-1952 and the standard reference genome, featuring two reciprocal translocations (Craig et al. 2021). The

breakpoints of these rearrangements were also associated with Un3 and Un12 insertions, implying that these

elements have been historically active either in the field or in the laboratory since isolation.

Finally, we observed duplications associated with the LINE Dualen-4b_cRei, which was most active in

CC-1952 (Fig. 3A), but also caused a single insertion (and associated duplication) in CC-2931. More than

half of the Dualen-4b_cRei insertions were associated with duplications >50 bp in length, representing 87%

of duplications in CC-1952 (Table 1). These duplications (of median length 900 bp, Fig. S7) resembled the

variable length target site duplications that flank insertions of non-LTR elements (LINEs and PLEs), i.e. the

duplicated sequence flanked either side of the Dualen insertions. Such target site duplications are caused by

resolution of the DNA nicks introduced during insertion, the distance between cleavage sites corresponding

to target site duplication length . These putative Dualen-4b_cRei target site duplications are considerably

longer than other large target site duplications reported previously, e.g. the 126 bp target site duplications

observed in R9 LINEs of rotifers (Gladyshev and Arkhipova, 2009). Active Dualens have not been observed

previously, and these exceptionally long target site duplications are possibly mediated by the dual action of
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RLE and APE endonucleases (Fig. 3B), which are uniquely present together in the Dualen clade (Kojima and

Fujiwara 2005).

Figure 4. Genomic rearrangements mediated by TEs. Translocations in CC-2931 MA lines 9 (A) and 11 (B). The

ancestor chromosomes are represented on the right half of each Circos plot, while the MA line chromosomes (as

contigs) are on the left. Chromosome numbers are given for the ancestor, while derived chromosomes (denoted with

“der”) are provided for the MA lines based on centromere annotation (dark grey regions). Scale is in megabases. CF-1

indicates CryptonF-1_cRei insertions. The direction of the arrows indicates the 5’ to 3’ orientation of the TE sequence.

C) CryptonF-1_cRei (CF-1) mediated inversions on chromosome 16 in CC-2931 MA lines. Ancestor and MA line

genomes are represented from top to bottom. The dark grey region represents the centromere, while the orange blocks

represent inversions. The purple region in L13 shows an Un3-mediated translocation with chromosome 9. Grey arrows

indicate the orientation of CryptonF-1_cRei from 5’ to 3’, while ‘X’ indicates CryptonF-1_cRei excisions.
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Homology-mediated structural mutations

We next attempted to identify homology-based DSB repair mechanisms that may have mediated the

remaining SMs. These included most deletions and duplications in CC-2931 (Table 2). Many mechanisms

associated with SMs involve DSB repair, which typically proceeds via two distinct pathways: homologous

recombination and canonical non-homologous end joining. As previously mentioned, homologous

recombination can induce SMs via recombination between interspersed paralogous sequences (i.e. via

non-allelic homologous recombination). Non-homologous end joining can also mediate SMs. For example,

two DSBs present on the same chromosome could be repaired aberrantly, yielding a deletion or inversion, or

two DSBs present on different chromosomes could yield a translocation. Several, other DSB repair pathways

that rely on varying lengths of homology tracts also exist (So et al. 2017). For example, both

microhomology-mediated end joining (~1-16 bp microhomology) and single-strand annealing (>30 bp

macrohomology) inherently generate deletions at single DSBs, since they involve a process where DNA ends

are degraded to single-strand sequences (i.e. DNA end resection) to reveal homology, followed by deletion of

any sequence overhanging the homology tract (i.e. heterologous flaps)  (Sfeir & Symington, 2015).

We found evidence of macrohomology (>30 bp) for only 5.1% of duplication events, one event in CC-1952

and two in CC-2931 (Table 2, Fig. S8), which could potentially have been caused by non-allelic homologous

recombination. In all three of these duplications, the paralogous sequence did not involve TEs. We found no

evidence of macrohomology-mediated deletions, suggesting little role for single-strand annealing in the

mediation of SMs. In contrast, we identified microhomologies in 27.8% of deletions, four in CC-2931 and

one in CC-1952 (Fig. 4A, Fig S.9). An interesting example of this phenomenon occurred in CC-2931 L6,

where we observed several clustered SNMs and INDELs flanking a deletion (Fig. S10), a phenomenon that

has been observed flanking DSBs repaired by microhomology-mediated end joining (Sinha et al. 2017).

Although such hypermutability was not observed for the other microhomology-associated deletions, they

were generally shorter than deletions where we detected no homology tracts (median length 225 bp vs. 2,945

bp; W test, P = 3.77 x 10-2). The shorter length of these deletions may be consistent with DNA end resection

involved in microhomology-mediated end joining.
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We also found three duplications in CC-2931 that showed five, three and two nucleotides of sequence

homology between their breakpoints. Although these could be consistent with microhomology-mediated

mechanisms, such homology may simply have occurred by chance: when we calculate the expectation of

such short homology from the random sampling of 20 bp sequences, the observed frequency of

microhomologies is not higher than the random expectation. Finally, we found no evidence of either micro-

or macrohomology at the breakpoints of the inversions and translocations not associated with active TEs.

However, we observed short deletions at several of the breakpoints of these rearrangements, potentially

consistent with repair via non-homologous end joining. Notably, 40% of non-TE associated inversions and

translocations occurred in a single CC-2931 line, L15 (Fig. S6B).

Table 2. Proportion of SMs associated with homology-based mechanisms in MA lines of two C. reinhardtii strains.

Strain SM % with macrohomology
(count/total)

% with  microhomology
(count/total)

CC-1952
Deletion 0 (0/3) 33.33 (1/3)

Duplication 6.67 (1/15) 0 (0/15)

CC-2931
Deletion 0 (0/15) 26.67 (4/15)

Duplication 4.54 (2/44) 6.82 (3/44)

Tandem repeat mutations

Tandemly repeated sequences are known to be hypermutable and evolve via mechanisms that include

replication slippage and unequal exchange (Lower et al. 2018). As mentioned above, unlike most other SMs,

tandem repeat mutations (TRMs, grouping expansions and contractions >50 bp) occurred at similar rates in

CC-2931 and CC-1952 MA lines, perhaps due to the independence of their underlying mechanisms

compared to other SMs. Approximately 22% of TRMs occurred in microsatellites (tandem repeats with

monomers <10 bp), and most of the remainder occurred in satellite DNA. It is important to note that the rate

of TRMs per site per generation is in fact several times higher than the genome-wide rate displayed in Figure

2B, since TRMs by definition can only occur in the tandem repeats (~12% of the genome), effectively

resulting in a smaller ‘callable’ genome.
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We also observed TRMs at the sequences that constitute the C. reinhardtii centromeres and subtelomeres.

The centromeres mostly consist of an L1 LINE retrotransposon, ZeppL-1_cRei (Craig et al. 2021a), and we

observed expansions and contractions of these sequences (generating 7.0% of TRMs), consistent with

centromere evolution via satellite-like mechanisms (e.g. unequal exchange) rather than active transposition.

Subtelomeres feature a unique satellite called Sultan, and we observed expansions and contractions of the

Sultan monomer within the same subtelomere, as hypothesised by Chaux-Jukic et al. (2021). Interestingly,

we observed one example in each of CC-1952 (~94 kb) and CC-2931 (~163 kb) of the truncation of a

chromosome terminus, followed by de novo telomere addition (i.e. “telomere healing”, Fig. S12). A small

number of TRMs involved the expansion or contraction of tandemly repeated gene families. Examples

included 5S ribosomal RNA arrays and clusters of the large Chlamydomonas-specific NCL gene family on

chromosome 15, which encode RNA binding proteins and appear to be experiencing rapid and ongoing

evolution in C. reinhardtii (Boulouis et al. 2015).

Finally, we observed one example of a “mobile” satellite, which caused four insertions ranging from ~0.5 to

>21 kb in three different CC-2931 MA lines. This satellite, MSAT-11_cRei, consists of an ~1.9 kb monomer

and does not feature any characteristics typical of a TE. We have recently observed mobile insertions of

MSAT-11_cRei in other C. reinhardtii strains (CC-1690 and CC-4532, Craig et al. in prep.). Although

mechanisms mediating satellite dissemination are not well understood, it has been observed in other species,

and may be an important mechanism in satellite evolution (Ruiz-Ruano et al. 2016).

Discussion

In total, we identified 563 SMs in 12 MA lines derived from the C. reinhardtii strains CC-1952 and

CC-2931. This provides, to our knowledge, the first direct estimates of the rates and spectra of de novo SMs

based on long-read sequencing of MA lines. In agreement with previous results on the rates of SNMs and

INDELs (Ness et al. 2015), the rates and spectra of SMs vary greatly between MA lines and strains. SMs

represented a substantial proportion of the overall genomic mutation rate in both strains (6% in CC-1952,

and 12% in CC-2931).
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Calling structural mutations from long-reads and assemblies

De novo mutations are inherently rare events, and methods for their detection must therefore be highly

accurate to reliably estimate their rates and spectra. Our ability to detect SMs was aided by major advances

in both long-read sequencing technology and structural variant callers. Nonetheless, our results show that the

detection of structural variants remains much more challenging than the detection of shorter variants, making

it necessary to use a combination of approaches. Because there was only partial overlap between variants

identified by different callers, it is possible that some SMs were undetected in our study. While a read-based

caller (Sniffles) was indispensable for the identification of many variants (especially duplications), this

approach failed to detect the full range of SMs, and methods based on genome assembly were also required.

The pan-genome approach implemented by Cactus and vg was particularly successful, calling almost 80% of

all curated SMs.

However, in all cases, our results demonstrated that structural variant callers are likely to yield high rates of

false positives, even when the analysed samples are nearly genetically identical, as in our experiment.

Although we curated many genuine SMs in tandem repeats, these regions appeared to be responsible for the

majority of false positive calls. Accurately calling SMs in tandem repeats may require specific tool

development, and given that manual curation of variants is unlikely to be manageable in larger and more

complex genomes than that of C. reinhardtii, masking of tandem repeats (including relatively simple

microsatellites) may be appropriate in automated analyses. The substantial contribution of assembly errors to

rejected calls may also warrant the use of multiple assemblers in variant calling, or the development of

methods that combine assembly-based structural variant detection with read-based verification. Overall, we

recommend sequencing samples with sufficient coverage to enable de novo assembly where possible,

followed by both assembly and read-based structural mutation or variant calling. If possible, manual

verification with visualisation tools such as IGV should also be performed.

Mechanisms underlying structural mutation and between strain heterogeneity in rates and spectra

Excluding expansions and contractions of tandem repeats, ~79% of SMs were associated with TEs. Of these

SMs, 84% were TE insertions and excisions, which formed major components of the SM spectra in both

strains. The remaining proportion involved other types of SMs putatively mediated by active TEs, including
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the majority of inversions and translocations in CC-2931, and almost all duplications in CC-1952. The C.

reinhardtii genome contains more than 200 TE families from a diverse array of subclasses and superfamilies,

almost all of which show evidence of recent activity (Craig 2021). However, none of the three TEs

implicated in mediating rearrangements or duplications have previously been observed as active elements:

Cryptons (Goodwin et al. 2003) and Dualen LINEs (Kojima and Fujiwara 2005) were first described from

multi-copy repeats in genetic and genomic data, while the Rep-encoding Un12 element found here has not

been described previously.

Beyond TEs, we generally found little role for homology-based mechanisms of DSB repair, with the possible

exception of the microhomology-mediated end joining pathway in mediating deletions of moderate lengths.

This is in stark contrast to studies of SM in yeast, where non-allelic homologous recombination has been

shown to be the predominant mechanism mediating deletions, duplications and rearrangements (Sui et al.

2020). Similarly, approximately 10-20% of de novo SMs in humans are thought to be mediated by non-allelic

homologous recombination (Parks et al. 2015). Instead of homology-based mechanisms, the

non-homologous end joining repair pathway may have been involved in many of the SMs not mediated by

TEs. This result is consistent with the very low rates of homologous recombination observed in C. reinhardtii

under vegetative growth (where the species is haploid), where non-homologous end joining is the dominant

DSB repair pathway (Ferenczi et al. 2021). The relative rates of non-homologous end joining and

homologous recombination in the repair of DSBs have been implicated in many aspects of genome

evolution, such as the evolution of base composition (Weissman et al. 2019) and intron density (Farlow et al.

2011), and it is likely that variation in the activity of different DSB repair pathways also leads to substantial

differences in SM spectra among species.

In our previous analysis (Ness et al. 2015) and re-analysis herein, which employed Illumina and PacBio HiFi

reads, respectively, we found substantial variation in the rates of SNMs and INDELs between the CC-1952

and CC-2931 strains. Nucleotide diversity among C. reinhardtii strains is high (i.e. π = ~2-3%; Flowers et al.

2015, Craig et al. 2019), and some of the within-species variation in mutation rates may be caused by

presence of mutator alleles in certain strains. Consistent with SNM and short INDEL mutations, the SM rate

in CC-1952 MA lines was significantly lower than in CC-2931 MA lines. Furthermore, we here found that

the SM spectra also differed substantially between the strains. CC-2931 has a higher overall rate of
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transposition than CC-1952, involving a more diverse array of TEs. As a result, CC-2931 MA lines

experienced many TE-mediated inversions and translocations that were absent in CC-1952. TE suppression

is not fully understood in C. reinhardtii, but likely occurs at transcriptional and post-transcriptional levels

(van Dijk et al. 2006) via mechanisms including repressive histone modifications (Jeong et al. 2002; Zhang

et al. 2002) and RNA interference (Casas-Mollano et al. 2008). Since the CC-2931 and CC-1952 genomes

both harbour many more potentially active TE families than we observed (see above), all but a few families

appear to be silenced effectively. TE suppression could conceivably differ between CC-2931 and CC-1952

due to genetic variation in genes involved in silencing pathways. Alternatively, environmental factors could

impact TE activity. Almost nothing is known about local adaptation in C. reinhardtii, although natural

isolates differ in their growth rates and fitness estimates under laboratory conditions (Morgan et al. 2014;

Kraemer et al. 2017). CC-1952 and CC-2931 were sampled almost 1,600 kilometres apart (from Minnesota

and North Carolina, respectively), and it is possible that they differ in their extent of adaptation to the highly

artificial laboratory environment. Such variation could potentially cause stress-related interactions with

transposition, which can be complex, and result in both TE activation or repression (Horváth et al. 2017).

Incidentally, although nothing is known about their rates of transposition, a similar number of TE families to

that which we observed in CC-2931 are known to be active in C. reinhardtii ‘laboratory strains’ (a collection

of related strains that almost all C. reinhardtii research is performed on), although all of the TEs active in

laboratory strains (e.g. Gulliver, TOC1, MRC1, Tcr1 and Tcr3; Craig 2021) differ from those that are active in

CC-2931. Therefore, CC-1952 may be exceptional in having few active TE families, compared to other C.

reinhardtii strains.

Appart from a higher rate of transposition, CC-2931 MA lines also may have experienced a higher rate of

DSBs than CC-1952 MA lines, which may explain the higher rates of duplications, deletions and

rearrangements, even after TE-mediated SMs have been accounted for. DSBs are generally considered the

most mutagenic DNA lesions (So et al. 2017) and are induced by intrinsic cellular factors (e.g. replicative

and oxidative stresses) and by exogenous sources (e.g. mutagens). The rate of DSBs in C. reinhardtii is,

however, not well-understood, and differences between the strains could arise from genetic or environmental

factors.
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Evolutionary implications of high and variable rates of structural mutation

Population-level long-read sequencing projects have generally found that structural variants are prevalent,

yet segregate at low frequencies, implying that most are strongly deleterious (Chakraborty et al. 2019;

Weissensteiner et al. 2020). Although we have not explored the relationship between SMs and fitness, the

genomic distribution of SMs suggests that many will have large fitness effects. We found that large deletions

and duplications affected coding and other exonic sequences at similar rates to their genomic distribution. In

contrast, a growing body of evidence suggests that coding sequences are less mutable than intergenic

sequences with respect to SNMs and INDELs (Lee et al. 2012; Belfield et al. 2018; Krasovec et al. 2017;

López-Cortegano et al. 2021; Monroe et al. 2022), presumably due to improved efficiency of the DNA repair

machinery or the presence of epigenetic factors affecting coding sequences. Furthermore, although certain

TE families exhibited insertion biases for introns (Chlamys PLEs) or intergenic sequence far from genes

(EnSpm DD(E/D) transposons), overall TEs exhibited a bias towards 5’ UTRs and gene proximal intergenic

regions, as has been observed for various other TEs (Zhang et al. 2020). Gene proximal TE insertions can

have important effects on gene expression, for example via the disruption of regulatory sequences, regional

effects of transcriptional silencing, or the deposition of new regulatory elements by the TE (Cridland et al.

2015; Uzunović et al. 2019; Rech et al. 2022). The breakpoints of chromosomal rearrangements (inversions

and translocations) also had a similar genomic distribution to that of TEs, due to their association. Although

not a factor in our experiment, translocations may also yield chromosomal imbalances and have substantial

deleterious effects in meiosis. Taken together with the relatively high fraction of the total mutation rate

explained by SMs herein, the genomic distribution of SMs implies that SMs may contribute a substantial

mutation load and potential for adaptive evolution.

Our results particularly highlight the prevalence and importance of TEs among SMs, and support a

prominent evolutionary role for TEs. As discussed, the heterogeneity in the rate and identity of TE insertions

between CC-2931 and CC-1952 contributed substantially to the overall differences in SM rates and spectra

between strains. Our results also suggest that different species, populations and even individuals may differ

considerably in their SM spectra as a result of their active repertoire of TEs. More work is required to

investigate the rate of new SMs in other species, elucidating the phylogenetic generality of results observed

here. In particular, it will be important to test whether similar within species variation in SM rates and spectra
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exists in other taxa. We hope that our results add to the weight of evidence supporting the importance and

prevalence of SMs, and further encourage the ongoing movement towards structural variant discovery via

assembly-based methods.

Methods

Biological samples and nucleic acids extraction

The MA line ancestors were Chlamydomonas reinhardtii wild strains CC-1952 (from Minnesota, 1986) and

CC-2931 (North Carolina, 1991), which were originally obtained from the Chlamydomonas Resource Center

(https://www.chlamycollection.org/). The MA experiment was conducted by Morgan et al. (2014). Briefly,

MA lines were initiated from the ancestor strains, and cultured on Bold’s medium agar plates under white

light at 25℃. MA lines were bottlenecked at regular intervals of 3 to 5 days by randomly picking single

colonies and transferring them from one plate to another, and maintaining them for ~1,000 generations

(within-strain mean numbers of generations were 1,066 for CC-1952 and 1,050 for CC-2931), after which

Illumina sequencing was performed. The original ancestors and MA lines from the end of the experiment

were cryopreserved in liquid nitrogen.

For this study, we revived the CC-1952 and CC-2931 ancestors along with several MA lines from

cryopreservation, and grew all samples in liquid Bold’s medium before transferring to agar slants in order to

produce stock cultures. Four CC-1952 MA lines (L1, L3, L6 and L15) and eight CC-2931 MA lines (L1, L2,

L6, L9, L11, L13, L14 and L15) were selected for sequencing together with the two ancestors. Cells were

inoculated in 6-well plate liquid cultures and grown for 4 days under constant light to produce sufficient

biomass for DNA extraction. High molecular weight genomic DNA was extracted using a

cetyltrimethylammonium bromide and phenol:chloroform protocol, following Craig et al. (2021a).

RNA was extracted in triplicate from independent cultures of the CC-2931 ancestor grown in liquid Bold’s

medium under constant light via a Maxwell RSC 48 instrument.
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Nucleic acids sequencing

All of the CC-1952 samples and six of eight CC-2931 MA lines were sequenced on the PacBio Sequel II

platform with a 30hr movie, using the circular consensus sequencing (CCS) mode to generate HiFi reads.

Samples were multiplexed, with between four and six samples per SMRT cell. Library and barcoding

preparation, sequencing, CCS analysis and demultiplexing were performed at the Earlham Institute

(Norwich, United Kingdom). Mean read length was ~20 kb and mean coverage ~30x per sample.

The CC-2931 ancestor and CC-2931 MA lines L2 and L9 were sequenced on individual SMRT cells using

the PacBio Sequel I platform with a 10hr movie, using the continuous long read (CLR) mode. Library

preparation and sequencing was performed at Edinburgh Genomics (Edinburgh, United Kingdom). Mean

read length was ~12 kb and mean coverage was ~55x per sample.

CC-2931 ancestor RNA-seq library preparation was conducted with the NEB mRNA stranded library

preparation kit and Illumina NovaSeq preparation. The three replicate samples were sequenced using

Illumina 100 bp paired-end sequencing. Library preparation and sequencing were performed by Genome

Quebec.

Genome assembly

MA lines were assembled de novo to the contig-level. Flye v2.8.2 (Kolmogorov et al. 2019) was selected for

assembly, since it produced assemblies that were most representative of the haploid state (i.e. other

assemblers yielded redundant contigs in repetitive regions). A genome length of 111.1 Mb was assumed (-g

111.1m in Flye). Post-processing was performed with purge_dups (Guan et al. 2020). Error correction was

only performed for the two CC-2931 MA lines (L2 and L9) sequenced using CLR, by applying two iterative

rounds of the Arrow algorithm (Hepler et al. 2016). The MA lines ancestors were assembled de novo to the

chromosome-level using a combination of assembly methods (see Supplemental Material).

Assembly metrics were quantified using QUAST v5.0.2 (Gurevich et al. 2013). Assembly completeness was

estimated using BUSCO v4.0.6 (Manni et al. 2021), which was run in genome mode using the

chlorophyta_odb10 dataset (“augustus_species chlamy2011”).
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Genome annotation

Structural annotation of the CC-2931 ancestor assembly was performed using BRAKER v2.15 (Brůna et al.

2021). RNAseq data were mapped to the assembly using STAR v2.7.9 (“--alignIntronMax 5000

--twopassMode Basic”) (Dobin et al. 2013). BRAKER2 was first run on an assembly softmasked for all

repeats (see below) using existing Augustus parameters for C. reinhardtii (“--species=chlamy2011

--skipAllTraining”). A second BRAKER2 run was performed with UTR prediction (“--stranded=+,-

--UTR=on”), where the input BAM alignments were split to forward and reverse strand read sets using

samtools v1.9 (Danecek et al. 2021). The run without UTR prediction was used as the primary annotation

based on a superior BUSCO score (protein mode). However, for gene models where coding sequence

coordinates had a one-to-one correspondence between the two runs (with variation permitted at only one

exon for models with >2 exons) the model with UTRs was introduced as a replacement. Gene models were

filtered if their coding sequence had a >30% intersect with transposable element (TE) sequence or a >70%

intersect with simple repeats (i.e. microsatellites) identified with RepeatMasker v4.0.9

(http://www.repeatmasker.org).

Repeat annotation was performed for the CC-2931 and CC-1952 ancestor assemblies. A custom library of C.

reinhardtii TEs and satellites (Craig 2021) was first passed to RepeatMasker. A small number of TE families

newly identified in this study were manually curated and added to the library using methods described by

Goubert et al. (2022). The RepeatMasker annotations were supplemented with additional microsatellites and

satellites identified by Tandem Repeats Finder (“2 7 7 80 10 50 1000 -f -d -m -ngs”) (Benson 1999). A final

set of tandem repeats for each assembly was produced by combining simple repeats and satellites from

RepeatMasker, satellites and microsatellites from Tandem Repeats Finder, and manually curated centromeric,

subtelomeric and ribosomal DNA array coordinates. Centromeres were identified based on the span of the

constituent LINE ZeppL-1_cRei (Craig et al. 2021a) and subtelomeres as any sequence telomere-proximal to

the characteristic spacer sequence (see Chaux-Jukic et al. 2021). A microsatellite was considered as a

tandem repeat sequence with a monomer length <10 bp, with tandem repeats consisting of any longer

monomer length considered satellite DNA.
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Mapping and alignment

MA line PacBio read mapping was performed against the appropriate reference assembly using pbmm2

(https://github.com/PacificBiosciences/pbmm2), adjusting the “--preset” flag for HiFi when appropriate. To

avoid false positives when calling variants, reads with tags indicating secondary alignments were removed

using samtools (Danecek et al. 2021).

MA line assemblies were aligned to the appropriate reference assembly using minimap2 (“-x asm5”) (Li

2018). For visualisation of certain tandem repeat mutations, unimap v0.1-r41

(https://github.com/lh3/unimap), a tool derived from minimap2 and optimised for assembly alignments, was

also used.

A pangenome alignment was produced for each ancestor and its MA lines using Cactus v1.3.0 (Armstrong et

al. 2020). All assemblies were first softmasked for repeats that had been first identified by RepeatMasker and

Tandem Repeats Finder (see above). Minigraph v0.15-r426 (“-xggs”) (Li et al. 2020) was used to produce the

GFA (Graphical Fragment Assembly) file that was provided as input for cactus-graphmap together with

softmasked assemblies. The resulting PAF file was then passed to cactus-align (“--pangenome --pafInput

--outVG”) in order to produce the final pangenome in VG (variation graph) format.

Callable sites

Callable sites were defined as genomic sites where structural mutations (SMs) could be called with high

confidence based on visualisation of the sequencing and assembly data. We previously defined callable sites

based on short-read mapping parameters (Ness et al. 2015; López-Cortegano et al. 2021). Here, we used

criteria based on the de novo genome assemblies of the ancestors and MA lines. First, the ancestor assembly

was aligned against itself with minimap2 (“-x asm5”), and genomic regions that were unrepresented in the

PAF file (i.e. that were mismapped) were deemed as uncallable (typically the most repetitive regions). Then,

a similar procedure was followed for each MA line, by aligning their assemblies to the ancestor genome,

extracting and merging mapping coordinates from the PAF file, and identifying unmapped regions. These

regions were intersected using bedtools v2.30.0 (Quinlan and Hall, 2010), so that unmapped regions present

in more than one line could be identified as uncallable (since lack of mapping in a single line could be an
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SM, such as a large deletion). Finally, a few such regions were manually reincluded as callable, based on

visualisation of assembly mappings in IGV (e.g. a region containing a DNA transposon that was excised, and

hence did not map, in multiple lines).

To compare callable sites between our previous Illumina sequencing and the PacBio sequencing described

here, callable site coordinates from Ness et al. (2015) were converted to the new ancestor assemblies. A

whole-genome alignment of the v5 reference assembly and the ancestor assemblies was generated using

Cactus (Armstrong et al. 2020). Coordinates were then lifted over to the relevant ancestor assembly using the

HAL tools command halLiftover (Hickey et al. 2013).

Structural mutation identification

SMs were called using three independent pipelines. Sniffles v1.0.12b (Sedlazeck et al. 2018) was used to call

SMs based on read alignments. BAM files were preprocessed using samtools-calmd to generate the MD tag,

which provides information on mismatching positions (i.e. variable coordinates in the reads). Sniffles was

first run on each MA line individually, and the resulting VCF files were merged using SURVIVOR v1.0.7

(Jeffares et al. 2017). Sniffles was then run again for all MA lines using the option “--Ivcf”, using the merged

VCF as input and enabling the calling of SMs that could be present in more than one MA line. SURVIVOR

was then used again to generate a multi-sample VCF.

MUM&Co v3 (O’Donnell and Fischer 2020) was used to call SMs from individual alignments of MA line

assemblies to their ancestral reference. MUM&Co calls variants based on alignments produced by MUMmer

v4 (Marçais et al. 2018). A genome size of 110 Mb was used (“-g 110000000”) and variants were obtained as

TSV and VCF files.

vg (variation graph tool; Garrison et al. 2018) was used to call variants directly from the pangenome

alignments using the deconstruct command. The resulting VCF file for each strain was reduced to variants

>50 bp.

All called variants in callable regions were manually curated via visualisation of read and assembly

alignments using IGV (Robinson et al. 2011). SMs were rejected if they were not supported unambiguously
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by the read alignments. Complex SMs, including large rearrangements and duplications, were further

visualised using Ribbon v1.1 (Nattestad et al. 2021). Duplications and deletions were curated as tandem

repeat expansions or contractions if they involved the duplication or deletion of one or more monomers of a

tandem repeat. Most fell within existing tandem repeat annotations (satellites and microsatellites, see above),

while a small number required manual inspection of insertion/deletion flanks by self-vs-self dotplots

generated using the MAFFT v7 online server (Katoh et al. 2019). Deletions that perfectly intersected with

TEs annotated by RepeatMasker were called as mobile excisions. Mobile insertions were identified by using

the inserted sequence as a blastn (Camacho et al. 2009) query against the repeat library and manually

inspecting the output. See Figures S11-S25 for examples of SM visualisation.

Variants >30 kb (approximately the upper limit of read lengths), including large inversions and

translocations, were manually curated based on the MA line assembly minimap2 PAF alignments files

(Supplementary S7). This process led to the identification of a small number of additional large SMs that

were not called by any of the three pipelines. Each inversion and translocation breakpoint was manually

checked for the presence of TE insertions, which could also be visualised with Ribbon. Five rearrangement

SMs could not be fully characterised (e.g. if one breakpoint was clearly supported but the second was in an

uncallable region) and were arbitrarily included as translocations.

SNMs and INDELs

Deepvariant 1.1.0 (Poplin et al. 2018) was used for calling SNMs and INDELs based on read alignments,

setting the option “--model_type=PACBIO”. Deepvariant was run on individual MA line alignment files. The

resulting VCF files were merged using GLNexus 1.3.1 (“ --config Deepvariant_unfiltered”) (Yun et al.

2020). The merged VCF file was further processed to retain only high quality calls (QUAL ≥ 20) of sites

called as homozygous genotype (deepvariant assumes diploid genomes) and biallelic variants, with a

minimum read depth of 8. In addition, only variant calls that were unique to a single MA line were retained

as mutations. All SNMs and INDELs were confirmed visually from IGV snapshots.
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Genomic distributions of SMs and TE insertions

The coordinates of SMs in CC-2931 were intersected with genomic annotations (coding sequence, introns,

etc.) using bedtools. Tandem repeat mutations (TRMs) and excisions were not analysed. Additionally, we

also calculated the extent of overlap of deletions, duplications and inversions based on the entire span of

these SMs. The observed distributions of SMs were compared against null expectations based on random

sampling of the callable genome. For the analysis of individual TE families the random expectation was

adjusted to account for insertion target sequences (see main text). The target motifs were identified using

SeqKit v2.1.0 (Shen et al. 2016) and these motifs were then sampled from the callable genome.

Sequence homology

To explore the role of different DSB repair pathways in SM generation, we searched for patterns of micro

and macrohomology at SM breakpoints, following Belyeu et al. (2021). We first searched for evidence of

macrohomology between the breakpoints of deletions, duplications, inversions and translocations that were

not previously associated with TEs (≥95% sequence identity detected by the megablast; Camacho et al.

2009). Query and target sequences were the 100 bp upstream and downstream from each breakpoint. In

addition to macrohomology, we looked for patterns of microhomology. Given that microhomology

mechanisms such as microhomology-mediated end joining can require as little as 2 bp of homology, we

manually investigated the 20 bp of sequence surrounding breakpoints.
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Data availability

Raw reads and genome assemblies will be deposited at the NCBI Sequence Read Archive (SRA) under

BioProject PRJNA839925.
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