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Abstract 20 

The use of georeferenced information on the presence of a species to predict its distribution 21 

across a geographic area is one of the most common tools in management and conservation. 22 

The collection of high-quality presence-absence data through structured surveys is, however, 23 

expensive, and managers usually have more abundant low-quality presence-only data 24 

collected by citizen scientists, opportunistic observations, and culling returns for game 25 

species. Integrated Species Distribution Models (ISDMs) have been developed to make the 26 

most of the data available by combining the higher-quality, but usually less abundant and 27 

more spatially restricted presence-absence data, with the lower quality, unstructured, but 28 

usually more extensive and abundant presence-only data. Joint-likelihood ISDMs can be run 29 

in a Bayesian context using INLA (Integrated Nested Laplace Approximation) methods that 30 

allow the addition of a spatially structured random effect to account for data spatial 31 

autocorrelation. These models, however, have only been applied to simulated data so far. 32 

Here, for the first time, we apply this approach to empirical data, using presence-absence and 33 

presence-only data for the three main deer species in Ireland: red, fallow and sika deer. We 34 

collated all deer data available for the past 15 years and fitted models predicting distribution 35 

and relative abundance at a 25 km2 resolution across the island. Models’ predictions were 36 

associated to spatial estimate of uncertainty, allowing us to assess the quality of the model 37 

and the effect that data scarcity has on the certainty of predictions. Furthermore, we validated 38 

the three species-specific models using independent deer hunting returns. Our work clearly 39 

demonstrates the applicability of spatially-explicit ISDMs to empirical data in a Bayesian 40 

context, providing a blueprint for managers to exploit unused and seemingly unusable data 41 

that can, when modelled with the proper tools, serve to inform management and conservation 42 

policies.     43 
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1 - Introduction 44 

 Methods to accurately predict species distributions have been central to wildlife 45 

management, conservation of endangered species, control of invasive species, and 46 

improvement of human-wildlife coexistence (Nyhus 2016, Frans et al. 2021). Species 47 

distribution models (SDMs) correlate species occurrence to variables reflecting climatic and 48 

environmental conditions, allowing us to understand spatiotemporal drivers of species 49 

occurrence in different areas or under different climatic conditions (Guisan and Zimmermann 50 

2000). SDMs have increased in complexity since their origin, aiming to improve the 51 

predictions based on environmental variables, to account for spatial autocorrelation, and to 52 

include different data types, such as presence-only, occurrence, or presence-absence (Guisan 53 

and Thuiller 2005, Elith and Leathwick 2009, Guillera-Arroita et al. 2015).  54 

 SDMs have been developed to deal with systematically collected data with strict 55 

control for effort, methodology and spatial coverage, although these are typically expensive 56 

to collect and are thus scarce and with low spatial coverage (Hortal and Lobo 2005, Miller et 57 

al. 2019). Unstructured data, where collection effort, protocol, and exact location may not be 58 

specified, offer an alternative, more abundant even though less accurate source of information 59 

with the potential to give relevant insights about species ecology. Unstructured data may 60 

range between museum records and opportunistic citizen science observations, sometimes 61 

collected using recent advances in technology such as smartphone applications (Boyce and 62 

Corrigan 2017, Pacifici et al. 2017); in game species, unstructured data can be originated 63 

from culling returns (Nagy-Reis et al. 2021). Although unstructured datasets may be more 64 

abundant and have wider spatial and temporal coverage than structured data, their use in 65 

SDMs raises issues such as the need to carefully consider observation bias and the 66 

underestimation of local occurrence rates due to the lack of information on the observational 67 

process (Yackulic et al. 2013, Pacifici et al. 2017).  68 
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 Differently from structured data, unstructured and opportunistic datasets do not 69 

include species absences and, to be used in a species distribution model, pseudo-absences 70 

need to be randomly generated in locations where the species could have been present but 71 

were not observed (Lobo et al. 2010). Although different SDM techniques have been 72 

developed to work specifically with one (e.g. presence-absences) or another (e.g. presence-73 

only) type of data (Elith et al. 2006, Aarts et al. 2012, Isaac et al. 2019), both data types are 74 

often available for a single species, area, and time period, introducing the possibility of 75 

combining them. Two approaches have been developed to cope with this analytical 76 

challenge: data pooling and model-based data integration (or Integrated Species Distribution 77 

Models, ISDMs).  78 

 The data pooling approach combines datasets prior to entering a model, by degrading 79 

the higher quality dataset until it has a common observation process with the lower quality 80 

dataset (e.g. converting a presence-absence dataset to presence-only observations, Ahmad 81 

Suhaimi et al. 2021). Alternatively, ISDMs avoid losing data quality in the most accurate 82 

dataset by considering the two datasets as different representations of the same distribution, 83 

and thus modelling them together combining the two likelihoods (joint-likelihood approach, 84 

Pacifici et al. 2017). Additional advantages have become obvious in ISDMs: on the one hand, 85 

including an unbiased structured dataset (i.e. a presence-absence dataset) helps compensate 86 

for potential biases in presence-only datasets (Simmonds et al. 2020); on the other hand, 87 

ISDMs improve the ability to predict over a wider geographic area by combining a spatially 88 

restricted presence-absence dataset with an overlapping, but more extensive, presence-only 89 

dataset (Simmonds et al. 2020).  90 

 As datasets become increasingly complex, the challenge for SDMs is to find 91 

appropriate ways to account for the spatial structure of the observations and their intrinsic 92 

autocorrelation. Hierarchical Bayesian models allow for the inclusion of a spatially structured 93 
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random effect (i.e. spatial field) that captures all the spatially explicit structures that might 94 

influence the distribution of observations (Paradinas et al. 2017, Lezama-Ochoa et al. 2020).  95 

In addition, Integrated Nested Laplace Approximation (INLA) methods have recently been 96 

implemented within the R-INLA package (Rue et al. 2009, Bakka et al. 2018) and the more 97 

recent development of the inlabru package (which provides easy access to most R-INLA 98 

functionality for spatially structured data, Bachl et al. 2019). INLA provides a 99 

computationally fast modelling environment for hierarchical Bayesian models where 100 

complex spatially structured random effects can be added to models for a wide variety of 101 

response variables (e.g. binomial models for presence-absence data or Poisson models for 102 

presence-only and count data, Bakka et al. 2018).  103 

 The above mentioned methods can help to model species distributions and understand 104 

their drivers, turning them into a great tool for wildlife conservation and management 105 

(Linnell and Zachos 2011). Since the latter half of the 20th century, ungulate populations 106 

across Europe have shown similar expansive trends and increased local densities (Apollonio 107 

et al. 2010, Putman et al. 2011), placing them at the heart of human-wildlife coexistence 108 

research. Human-ungulate coexistence has permeated a wide variety of land-uses, among 109 

them the damage to commercial forestry plantations (Chadwick et al. 1996, Spake et al. 110 

2020) and crops (Linnell et al. 2020); the transmission of diseases to livestock and eventually 111 

humans (Gortázar et al. 2012); and collisions with vehicles (Langbein et al. 2011). Most 112 

management plans depend on regulating the populations through hunting quotas, which 113 

requires a good assessment of population densities, locally and globally (Putman et al. 2011, 114 

Krausman and Bleich 2013, Richardson et al. 2020). However, despite the importance of 115 

having accurate estimates of population densities and distributions to inform management, 116 

survey methods are rarely coordinated or standardised, and most information comes from 117 
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private stakeholders’ efforts to survey local populations (Liu and Nieuwenhuis 2014) or, at 118 

most, population estimates based on hunting returns (Apollonio et al. 2010). 119 

Ireland provides a representative study case to apply recent advances with ISDMs to 120 

ungulate management, being home to expanding populations of native red deer (Cervus 121 

elaphus), and non-native fallow (Dama dama) and sika deer (Cervus nippon, Carden et al. 122 

2011). Despite the recent population expansion of the three species (Purser et al. 2010, Liu 123 

and Nieuwenhuis 2018), Ireland lacks a national management plan for any of its deer species 124 

and, currently, management is limited to hunting permits that do not limit hunters on where 125 

(e.g. high-density hotspots), how many, and which deer (e.g. species, age and sex classes) to 126 

hunt. This is due to the lack of an empirical basis on deer distribution and relative abundance 127 

needed to set harvest quotas, maintain healthy populations and improve human-wildlife 128 

coexistence (Millspaugh et al. 2009, Williams 2011, Nagy-Reis et al. 2021). Up until now 129 

ISDMs within an INLA context had only been applied to simulated data (Simmonds et al. 130 

2020, Ahmad Suhaimi et al. 2021); here, for the first time, we demonstrate how this approach 131 

can be applied to empirical data. 132 

Specifically, we collated all data available on deer distribution in Ireland previously 133 

collected by several stakeholders at different spatio-temporal scales. We also collected 134 

original data using ad hoc web tools we created and made accessible to deer stakeholders. 135 

Our goal is to demonstrate how ISDMs can integrate structured and unstructured data to 136 

produce and validate predicted distributions for each species of deer present in Ireland, 137 

fundamental to inform science-based management practices. This study aims at 138 

demonstrating the applicability of an approach that can be adapted more broadly, and 139 

ultimately produce more accurate distributions of species that can be used for science-140 

informed wildlife conservation and for the management of human-wildlife conflicts.  141 
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2 – Methods 142 

2.1 Studied species 143 

There are three species of deer well distributed through Ireland, red deer, sika deer, 144 

and fallow deer. Red deer are native to Ireland (but see Carden et al. 2012), whereas fallow 145 

deer were introduced by the Anglo-Normans in the 12th century (Beglane et al. 2018) and 146 

sika deer were initially introduced for ornamental purposes in 1860s in the Wicklow 147 

mountains not far from Dublin (Powerscourt 1884).  148 

To gather all data available on deer in Ireland and Northern Ireland (NI, UK), we 149 

contacted (1) Coillte (https://www.coillte.ie/), which provided the results of the systematic 150 

deer presence-absence surveys in part of the 440,000 ha of forests they manage in Ireland, 151 

and (2) the British Deer Society (https://bds.org.uk/), which provided survey data on the 152 

presence-absence of deer in NI. These first two datasets were the only presence-absence (PA) 153 

data available for the entire island. We collated presence-only (PO) data from (1) the British 154 

Agri-Food and Biosciences Institute (https://www.afbini.gov.uk/) which provided geotagged 155 

data on culling returns from NI. We also downloaded all observations from (2) Ireland's 156 

National Biodiversity Database (https://biodiversityireland.ie/), a citizen science platform 157 

where users can submit deer observations, (3) iNaturalist (https://www.inaturalist.org/), an 158 

international platform with the same goal; (4) and the platform CEDaR 159 

(https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-160 

Recording.aspx) which curates all data for NI obtained from citizen science platforms and 161 

other surveys; and (5) the web survey (https://smartdeer.ie/) we developed ad hoc to collect 162 

PO data from Irish deer stakeholders  163 

We obtained a total of 29,140 PA observations and 4,185 PO observations, spanning 164 

between 2007 and 2022 (the vast majority being collected in the last decade, see Table 1 for 165 
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full details on the temporal resolution of data). From these, we generated three separate 166 

datasets, one for each species (red, sika, and fallow deer), to run one model for each. In 167 

addition to the PO and PA data introduced above, we gathered hunting culling returns from 168 

the National Park & Wildlife Service (NPWS, https://www.npws.ie/), responsible for issuing 169 

hunting licences. Culling returns are an alternative source of data (Milner et al. 2006, Forsyth 170 

et al. 2022), and we retained this dataset to validate the ISDMs we built by integrating PO 171 

and PA data. 172 

2.2 Data collection and pre-processing 173 

2.2.1 Presence absence (PA) data 174 

PA data for each species were obtained from Coillte based on surveys performed in a 175 

fraction of the 6,000 properties they manage (Table 1), by asking property managers (who 176 

visit the forests they manage on a regular basis) whether deer were present and, if so, what 177 

species. Properties range in size from less than one to around 2,900 ha, and to assign the PA 178 

value to a specific location, we calculated the centroid of each property using the function 179 

st_centroid() from the package sf in R (Pebesma 2018). The survey was mainly performed in 180 

2010 and 2013, in addition to further data collected between 2014 and 2016. Some properties 181 

were surveyed only once in the period 2010-2016, but for those that were surveyed more than 182 

once, the value for that location was considered “absence” if deer had never been detected in 183 

the property in any of the surveys, and “presence” in all other cases. In addition to these 184 

surveys, Coillte commissioned density surveys based on faecal pellet sampling in a subset of 185 

their properties between the years 2007 and 2020. Any non-zero densities in these data were 186 

considered “presences”, and all zeros were considered “absences”. These data were also 187 

summarised across years when a property had been repeatedly sampled, and counted as 188 

presence if deer had been detected in any of the samples (Table 1).  189 
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PA data for NI were obtained from a survey carried out by the British Deer Society in 190 

2016. The survey divided the British territory in 100 km2 grid cells and deer presence was 191 

assigned based on public contributions, which were then reviewed and collated by experts. 192 

Since 100 km2 grid cells are quite large, we did not, as with the Coillte properties, calculate 193 

the centroid of each cell and assign the PA value of the cell to it. Instead, we randomly 194 

simulated positions within each cell and assigned the presence or absence value of the cell to 195 

each of them. We performed a sensitivity analysis to calculate an optimal number of positions 196 

that would capture the environmental variability within each cell (Suppl material S1), which 197 

was set to 5 random positions per grid cell. After processing, we obtained a total of 920 PA 198 

data across NI (Fig 1a).  199 

2.2.2 Presence only (PO) data 200 

PO data were collected from various sources, mainly (but not only) from citizen 201 

science initiatives. The National Biodiversity Data Centre (NBDC) is an Irish initiative that 202 

collates biodiversity data coming from different sources, from published studies to citizen 203 

contributions. From them, we obtained all contributions on the three species, a total of 1,430 204 

records. To this, we added the 164 records of deer in Ireland downloaded from the iNaturalist 205 

site, another citizen contributed database that collects the same type of data. From the 206 

resulting dataset, we (1) removed all observations with a spatial resolution lower than 1 km2; 207 

(2) did a visual inspection of the data and comments, and removed all observations that were 208 

obviously incorrect (i.e. at sea or that the comment specified it was a different species); (3) 209 

filtered out all the fallow deer reported in Dublin’s enclosed city park (Phoenix Park) to avoid 210 

biases caused by the large amount of people reporting deer from the capital; and (4) filtered 211 

duplicate observations by retaining only one observation per user, location, and day. The 212 

Centre for Environmental Data and Recording (CEDaR) plays a similar role to the NBDC in 213 

Northern Ireland. They provided 872 records of deer in NI, coming from different survey, 214 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.23.493051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493051
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

scientific, and citizen science initiatives, from which we removed all records provided with a 215 

spatial resolution lower than 1 km2. The location and species of 469 deer culled between 216 

2019 and 2021 in NI were obtained from the British Agri-Food and Biosciences Institute. For 217 

the observations that did not have specific coordinates, we derived them from the location 218 

name or postcode if provided. 219 

As part of a nationally funded initiative to improve deer monitoring in Ireland 220 

(SMARTDEER), we developed a bespoke online tool to facilitate the reporting of deer 221 

observations by the general public and all relevant stakeholders e.g. hunters, farmers, or 222 

foresters. Observations were reported in 2021 and 2022 by clicking on a map to indicate a 1 223 

km2 area where deer have been observed. For each user and session, we calculated the area of 224 

the surface covered in squares, and simulated a number of positions proportional to the size 225 

of the polygon and distributed them within it to generate a number of exact positions 226 

equivalent to the area were the user had indicated an observation (details in Supp material 227 

S1). In total, the SMARTDEER tool allowed us to collect 4,078 presences across Ireland and 228 

NI (Table 1, Fig. 1b). 229 

Table 1. Summary of the presence-absence (PA, structured data) and presence-only (PO, 

unstructured data) datasets gathered for Ireland and Northern-Ireland (NI, UK).  

Data type Source Years Red deer Sika deer Fallow deer 

PA BDS survey 2016 920 920 920 

Coillte density surveys 2007 - 2020 417 417 417 

Coillte desk surveys 2010 - 2016 4 936 4 936 4 936 

TOTAL  6 273 6 273 6 273 

PO Citizen Science 2005 - 2021 408 573 394 

AFBI culling returns 2017 - 2021 7 169 259 

Smartdeer web survey 2021 - 2022 507 460 528 

Others 2001 - 2018 51 35 69 

TOTAL  973 1 237 1 250 

 230 

 231 
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Figure 1:  presence-absence (A) and presence-only (B) data for each deer species (see Table 1 for 

sample sizes and temporal resolution). Presence-absence data were provided by Coillte in Ireland 

and by the British Deer Society in Northern Ireland (NI, UK), while presence-only data were 

collated from a wide variety of sources including citizen science data, location of culled animals, 

and our own web tools specifically designed for deer stakeholders (https://smartdeer.ie/).  

The data used in the models were collected between 2007 and 2022. Deer populations 232 

expanded in Ireland until 2008 (Carden et al. 2011), and according to culling return data have 233 

somewhat stabilised since then (NPWS official data). Although the range expansion of deer 234 

species would merit further investigation, here we provide for the first time an accurate 235 

modelled distribution of the three main species of deer in Ireland, and since the data are 236 

scarce, we have made use of all available data without considering the temporal trends. A 237 
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continued data collection scheme will provide enough data to study population size and range 238 

changes, but this is beyond the scope of this manuscript. 239 

2.3 Statistical model 240 

To integrate the two datasets into one model for each species, we used functions from 241 

the PointedSDMs package (https://github.com/PhilipMostert/PointedSDMs). This package is 242 

designed to construct ISDMs from different data sources by employing the functions from the 243 

inlabru package (Bachl et al. 2019), within the R-INLA framework (Rue et al. 2009). 244 

Through the functions provided in the package, we constructed a joint likelihood model, with 245 

the PA data modelled as a Bernouilli distribution (Isaac et al. 2019), modelling the 246 

probability of observing an individual at each location s   247 

𝑌𝑠 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝑝𝑠) 248 

𝑐𝑙𝑜𝑔𝑙𝑜𝑔(𝑝𝑠) = 𝛼1 + 𝛽1𝑥1+ . . .  +𝛽𝑛𝑥𝑛 + 𝜉𝑠 249 

 where 𝑌𝑠 is the binary response variable (PA) and 𝑝𝑠 is the probability of presence. This is 250 

linked to the linear predictor by a complementary log-log link function (cloglog, Ahmad 251 

Suhaimi et al. 2021). The linear predictor is composed of a dataset-specific intercept (𝛼1), a 252 

set of covariates (𝑥1 𝑡𝑜 𝑥𝑛) and their coefficients (𝛽1𝑡𝑜 𝛽𝑛), and a dataset-specific random 253 

spatial effect (spatial field) to account for the spatial structure of the data (𝜉𝑠).  254 

In turn, the PO data are modelled as a log-Gaussian Cox process with intensity 255 

function  256 

𝑁(𝐴) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ∫
𝐴

𝜆(𝑠)𝑑(𝑠) 257 

𝑙𝑜𝑔(𝜆(𝑠)) = 𝛼2 + 𝛽1𝑥1+ . . .  +𝛽𝑛𝑥𝑛 + 𝜔𝑠 258 

where N is the expected number of presences in the study area (A), λ is the intensity function, 259 

𝛼2 is the dataset-specific intercept, the same vector of covariates with their effect sizes as in 260 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.23.493051doi: bioRxiv preprint 

https://github.com/PhilipMostert/inlabruSDMs
https://doi.org/10.1101/2022.05.23.493051
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

the PA model, and another data-specific spatial field (𝜔𝑠).  The use of the cloglog link in the 261 

binomial model allows its response to be interpreted on the same scale as the response of the 262 

Poisson model, which allows the sharing of parameters between likelihoods (Bowler et al. 263 

2019). Spatial fields from both processes (PO, PA) are modelled as Gaussian random fields 264 

with Matérn covariance functions, which are approximated using a triangulation of the study 265 

area (called a mesh) through stochastic partial differential equations fitted in a Bayesian 266 

context through integrated nested Laplace approximations (Lindgren et al. 2011).  267 

2.3.1 Prior specification 268 

The spatial fields are controlled by two hyperparameters –range and marginal variance. 269 

The range controls the smoothness of the spatial field (i.e. the distance between peaks and 270 

throughs), and the variance controls the magnitude of these peaks and throughs. In the 271 

Bayesian context in which we are fitting this model, we need to set prior values to these two 272 

hyperparameters. To do so, we use Penalised Complexity (PC) priors, a newly developed 273 

framework that allows easily interpretable and controllable priors (Simpson et al. 2014). PC 274 

priors are weakly informative (allowing the posterior of each hyperparameter to be mainly 275 

controlled by the data) and penalise model complexity by “pulling” the model towards its 276 

simplest realisation (the “base” model), which has infinite range and zero variance (i.e. a 277 

completely flat spatial field, absence of spatial structure). To set the priors, we inform the 278 

model of “how far it is allowed to deviate” from those base models using the following 279 

specifications: 280 

- The prior on the range (ρ) is set providing the lower tail quantile 𝜌0 and the 281 

probability 𝑃(𝜌) so that 282 

𝑃𝑟𝑜𝑏(𝜌 < 𝜌0) =  𝑃(𝜌) 283 
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or “the probability that the true range (𝜌) is smaller than 𝜌0 is 𝑃(𝜌)”. For example, if we set  284 

𝜌0 to be 50 and 𝑃(𝜌) to be 0.05, we are telling the model that the probability of the true range 285 

of the spatial field being smaller than 50 km is 5%. In this way we are limiting the range to 286 

values between infinite (the base model) and 50, i.e. we are saying that the smallest that the 287 

range could possibly be is 50 km with a probability of 95%.  288 

- The prior on the variance is set on the standard deviation, providing the upper tail 289 

quantile 𝜎0 and the probability 𝑃(𝜎) so that  290 

𝑃𝑟𝑜𝑏(𝜎 > 𝜎0) = 𝑃(𝜎) 291 

or “the probability that the true standard deviation 𝜎 is larger than 𝜎0 is 𝑃(𝜎)”. For example, 292 

if we set 𝜎0 to be 0.5 and 𝑃(𝜎) to be 0.05, the probability of the true standard deviation being 293 

larger than 0.5 is 5%, so effectively the standard deviation value is limited between 0 (the 294 

base model) and 0.5 with a 95% probability.  295 

Priors have to be carefully specified, but there is no absolute rule for it, so the 296 

decisions that go into the prior choice are an essential part of the modelling process. In this 297 

case, we started off with a prior for the range (for both the PO and PA spatial fields, and for 298 

the three species) that was equal to the size of the triangles of the mesh (40 km). In this way, 299 

we are providing the minimum amount of information to the model, as we are setting the 300 

lower limit for the range as the limit of the resolution of the model. For the standard 301 

deviation, we started with a prior of 1 for all spatial fields, a value large enough to serve as an 302 

appropriate upper limit.  303 

2.3.2 Covariate selection 304 

Raster environmental covariates used in the models were obtained from the 305 

Copernicus Land Monitoring Service (© European Union, Copernicus Land Monitoring 306 

Service 2018, European Environment Agency (EEA)), whereas the vector layers (roads, 307 
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paths) were obtained from the Open Street Map service (OpenStreetMap contributors, 2017. 308 

Planet dump [Data file from January 2022]. https://planet.openstreetmap.org). Vector layers 309 

were transformed into distance layers (distance to roads, distance to paths) using the 310 

distance() function from the package raster, and into density layers (density of roads, paths) 311 

using the rasterize() function of the same package (Hijmans 2021). All raster layers were 312 

resampled to the lowest resolution available in the used covariates, resulting in a 1 km2 313 

resolution. A full description of the process of covariate selection (including screening for 314 

collinearity) can be found in the supplementary material (Supp mat. S1). The covariates 315 

eventually used in the model were elevation (m), slope (degrees), tree cover (%), small 316 

woody feature density (%), distances to forest edge (m, positive distances indicate a location 317 

outside a forest, negative distances indicate a location within a forest), and human footprint 318 

index (Venter et al. 2016, 2018). All covariates were scaled by subtracting the mean and 319 

dividing by the standard deviation before entering the model (function scale() from the raster 320 

package).  321 

2.3.3 Spatial predictions 322 

From the fitted models, we used the predict() function from the inlabru package to 323 

obtain predicted deer densities in a 25 km2 grid. Since models were fitted in a Bayesian 324 

context, the prediction obtained at each location is not a point value but a distribution, from 325 

which we can produce the mean and the standard deviation, thus obtaining a spatial estimate 326 

of the uncertainty of the prediction. We used the same function to obtain the prediction of the 327 

spatial effects, which can provide an indication of the spatial autocorrelation structure of each 328 

of the datasets. The model is designed on the assumption that not all individuals have been 329 

observed and although in theory the total abundance can be predicted integrating the intensity 330 

of the process over all the study area, an imperfect detection will affect the predicted total 331 

abundance. In all our models the total predicted abundances were grossly underestimated, so 332 
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we decided to use the predictions in the linear scale and, rescaled from 0 to 1, use them as 333 

relative abundances instead of total abundances or densities.  334 

2.4 Model validation 335 

To validate the results of our models, we obtained culling return data from the NPWS, 336 

aggregated by county between 2008 and 2018. The data consist of the number of harvested 337 

deer of each species by county (ranging from 826 to 7,500 km2) and year, and the number of 338 

hunting licences issued. To consider the increase in hunting pressure affecting the number of 339 

deer harvested, we corrected each year and species data by the number of licences issued, and 340 

then aggregated the data of the past 10 years by calculating the mean. Thus, we obtained 341 

average deer harvested (corrected by number of licences) for each county. From our ISDMs, 342 

we obtained the predictions this time in the response scale, to obtain aggregated abundances 343 

by county, and then used a linear model to investigate how well our models predicted county-344 

level culling returns, using the R2 score to evaluate the performance of the models.   345 

3 – Results 346 

We developed one model for each species, including effects for six covariates (tree 347 

cover, density of small woody features, distance to the forest edge, slope, elevation, and 348 

human footprint index), and two spatial fields, one for the PO data and one for the PA data 349 

(Fig. S6). For red and sika deer the priors specified above for the spatial fields provided good 350 

enough posterior estimates, and we did not modify them to allow the data distribution to 351 

inform the model output. For fallow deer, a standard deviation of one proved insufficient to 352 

capture the variability of the PO spatial field, so we ran the model again with a prior value of 353 

two (Table 2). 354 

 355 
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Table 2. Priors’ specification and posterior distribution estimated for the spatial fields in the three 

species-specific models (red, sika, fallow deer) for both presence-absence (PA) and present-only 

(PO) data. Spatial fields are defined in our model by their range and standard deviation (St. dev). 

Priors are set on these parameters as point values, and posterior distributions are obtained which we 

have summarised here as “mean (standard deviation)”. 

 PA data PO data 

Species  Range St. dev Range  St. dev. 

Red deer Prior 40 1 40 1 

Posterior distr. 269.1 (80.0) 0.6 (0.1) 206.5 (21.5) 1.3 (0.1) 

Sika deer Prior 40 1 40 1 

Posterior distr. 266.5 (70.6) 0.6 (0.1) 207.4 (33.4) 1.5 (0.1) 

Fallow deer Prior 40 1 40 2 

Posterior distr. 193.8 (47.7) 0.7 (0.1) 171.5 (26.8) 1.46 (0.1) 

The posterior range and SD of the spatial fields showed larger ranges and smaller SD 356 

for the PA data than for the PO data, reflecting the differences in spatial structure of each 357 

dataset. PA data points are more evenly distributed throughout, while PO data points display 358 

more clustering.  359 

The covariate effects for the three models (Fig. 2) showed that the three species had, 360 

in general, similar ecology in terms of environmental preferences, i.e. sika, red, and fallow 361 

deer were more likely to be observed within forests (negative values of distance to forest 362 

edge) with high tree cover densities. Elevation had a small but significantly negative effect on 363 

the distribution of the three species, and while slope did not have a clear effect in red and 364 

fallow deer distribution (CIs overlap zero), sika deer seemed to prefer areas with steeper 365 

slopes. The three species distributions seemed to match areas with greater human footprint, in 366 

line with the expectation that bare and unpopulated lands are less attractive to deer.   367 
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Figure 2. Covariate effects for each of the models for red (top, black), sika (middle, orange) and fallow 

(bottom, blue) deer. Circles represent the median value of the effect, while the bars represent the 95% 

credible intervals (CIs).  

From each of the models we obtained a spatial prediction that allowed us to plot a 368 

mean prediction and its standard deviation (Fig. 3). Red deer hotspots were detected in the 369 

NW and SW of Ireland. Sika deer were present at higher relative abundances in a hotspot at 370 

the east coast, and more diffusely in the SW, overlapping with a red deer hotspot. Lastly, 371 

fallow deer are mainly distributed in the midlands. For all species, the standard deviation was 372 

larger in NI, reflecting the scarcity of PO data in that region.  373 
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Figure 3. Mean (top) and standard deviation (bottom) of the spatial predictions for red, sika and fallow 

deer. The values indicate relative abundances, with 0 reflecting absence of the species and values closer 

to 1 representing the areas where the species is more abundant.  

For the three models, ranges were larger and marginal variances smaller for the spatial 374 

fields of the PA datasets (Table 2, Fig. S1) than for those of the PO datasets, reflecting the 375 

more regular structure and thus lesser spatial autocorrelation of the dataset.  376 

Our ISDMs predicted distribution and relative abundance across Ireland, and, when 377 

aggregated by county, these predictions were in high agreement with the independent dataset 378 

of culling returns corrected by hunters’ licences. The validation analysis showed that our 379 

models were particularly good in predicting distribution and relative abundance for sika deer 380 

(R2 = 0.69), followed by red (R2 = 0.52) and fallow deer (R2 = 0.44).  381 
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Figure 4 Validation plots for the ISDMs predicting red (A), sika (B) and fallow deer (C) distribution 

and relative abundance. Predictions of the ISDMs (x-axis, aggregated county-level abundance) are 

regressed against average culling returns (corrected by hunter licences at the county level, y-axis)  

 382 

4 – Discussion  383 

4.1 Applicability of joint likelihood models in an INLA context to real data 384 

Our results demonstrated the practical applications of ISDM in the INLA Bayesian 385 

context for the first time with real data, a method that so far had only been applied to 386 

simulated datasets (Simmonds et al. 2020, Ahmad Suhaimi et al. 2021). Despite the scarcity 387 

and low quality of the data, our models managed to successfully produce not only a 388 

prediction of the distribution for each species, but also to map the uncertainty. The predicted 389 

distributions displayed small standard deviations across most of the island, efficiently 390 
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reflecting the regions where data are less abundant, demonstrating how fewer data relate to 391 

less certain predictions. Furthermore, we validated the predictions with an external dataset to 392 

ensure their accuracy, finding that our models performed well in predicting county-level 393 

culling returns. Thus, we provide accurate science-based relative abundance maps that 394 

integrate all previous knowledge about deer distribution in Ireland, setting a path for future 395 

data gathering initiatives with conservation and management in sight.  396 

The separate spatial random fields for each dataset allowed us to capture the different 397 

observational processes. Although usually PA data come from organised surveys designed to 398 

avoid exhibiting any spatial structure, the PA data in our model might have exhibited some 399 

spatial structure, which would have been absorbed by the PA-specific spatial field. In the 400 

same way, PO data came from many different sources, including citizen science initiatives 401 

that would have a clear observational bias towards more populated areas or those used for 402 

recreation, but also other opportunistic observations that would have a less clearly defined 403 

observational bias. Thus, the use of a PO specific spatial field was more suited for capturing 404 

the spatial structure in that dataset than the addition of a covariate that could represent the 405 

bias, such as the human footprint index or the distance to roads (Dorazio 2014).  406 

4.2 Deer distributions and relative abundances in Ireland 407 

Our model predicted two main hotspots for red deer. The hotspot in the SW was 408 

centred around the Killarney National Park, a herd under conservation measures such as a 409 

hunting ban in the area (Carden et al. 2012). This ban is reflected in our validation plots, 410 

where our red deer model seemed to predict a larger abundance than what is reflected in the 411 

culling returns, since the culling returns of red deer in that county would be disproportionate 412 

small compared to the reality as much of their range is protected from hunting. The other 413 

hotspots to the NW coincided with areas where modern introductions of red deer have taken 414 
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place in the past two centuries (Purser et al. 2010), and the diffuse populations along the 415 

eastern coast correspond to the area where the first recorded introduction of red deer into 416 

Ireland took place in 1246 (McDevitt et al. 2009). 417 

The sika deer model showed two very clear hotspots in the E and SW of the island, 418 

and two less dense populations in the NW, reflecting the history of their introduction in 419 

Ireland (Purser et al. 2010). There was considerable overlap between the populations of red 420 

and sika deer, which could merit further study on their habitat and diet preferences to 421 

investigate the possible niche, spatial, or temporal segregation that might facilitate 422 

coexistence. From our covariate effects, sika seemed to differ in habitat preferences with red 423 

deer (non-overlapping CIs) in tree cover density and small woody feature density, where sika 424 

deer seemed to prefer denser cover than red deer, and particularly in slope, where sika 425 

seemed to prefer steeper slopes than the other two species. This difference might be reflecting 426 

some habitat or space use partitioning due to competition, but it also might be related to the 427 

fact that sika deer seem to prefer more acidic soils, which would allow them to exploit young 428 

conifer plantations (Alfredsson et al. 1998). In addition, the distribution overlap of the two 429 

species causes concerns with regards to the hybridisation between the two, which has been 430 

observed both in captivity and in the wild (Abernethy 1994) and which could be a threat to 431 

the genetic purity of the Kerry herd (Smith et al. 2014).  432 

Fallow deer were predicted to be the most widespread species, distributed mostly over 433 

the areas from where the other two species were largely absent. This might be due to different 434 

habitat and food preferences, since fallow deer are known to be more obligated grazers than 435 

either red or sika deer (Obidziński et al. 2013), or due to competitive exclusion, but it could 436 

also be a reflection of the founder effect since fallow deer seem to have slow range expansion 437 

rates from where their populations are first established (Ward 2005). Nevertheless, since the 438 

last published distribution in 2008 (Carden et al. 2011), fallow deer distribution seems to 439 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.23.493051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493051
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

have expanded northward, now displaying a continuous distribution from the SE coast 440 

through the midlands and the west and all the way up to the NW coast. 441 

4.3 Joint likelihood models as a tool for management in data-scarce scenarios 442 

Our predicted distributions described an island where deer of at least one species were 443 

omnipresent, with some regions where two species spatially overlap. The covariates showed 444 

that although the three species preferred areas with dense tree cover and within forests or 445 

small woody features, that did not necessarily mean that deer shy away from human presence, 446 

reflected in our models by a positive effect of human footprint index. That is, however, more 447 

reflective of Ireland's natural habitats than of deer preferences: Ireland and NI have a large 448 

proportion of heavily modified habitat (approximately 69% of Ireland and 76% of NI are 449 

covered by farmland, (2021b, 2021a), with most of their agricultural land devoted to 450 

permanent and rough grazing grasslands, very attractive to deer (Drennan et al. 2005, O'Mara 451 

2012), The forests, small and patchily distributed, are mostly non-native and are present 452 

within mosaics dominated by human modified habitats, making it almost impossible for deer 453 

to avoid anthropomorphised environments. This has obvious consequences for human-454 

wildlife coexistence, since deer have more opportunities to interact heavily with human 455 

resources such as roads, commercial forestry and farms. Thus, these results constitute a 456 

starting point for management, by providing information on areas where the relative densities 457 

of the relevant deer species are higher, and where targeted actions would be most effective.  458 

With this research, we have demonstrated the use of joint Bayesian spatial models 459 

fitted through INLA methods to obtain accurate distributions and relative abundances of 460 

species. Our models have been validated with independent data, proving their accuracy even 461 

with low quality, patchy data, which makes them a useful tool for the management and 462 

conservation of wildlife in most contexts where a data collection protocol has not been 463 
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established. Our work now opens new exciting future scenarios, because the same type of 464 

model can be adapted to estimate actual abundances by including data on the number of 465 

individuals (e.g. group sizes) and sampling effort, leading ISDMs to produce even more 466 

accurate information on species abundances which are so essential for science-informed 467 

management. 468 
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