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Abstract

Many deep learning approaches have been proposed to connect DNA sequence, epigenetic profiles, chromatin
organization and transcription activities. While these approaches achieve satisfactory performance in predicting
one modality from another, the representations learned are not generalizable across predictive tasks or across
cell types. In this paper, we propose a deep learning approach named EPCOT which employs a pre-training and
fine-tuning framework, and comprehensively predicts epigenome, chromatin organization, transcriptome, and
enhancer activity in one framework, which is also generalizable to new cell types. EPCOT not only achieves
superior predictive performance in individual predictive tasks, it also produces globally optimized sequence
representations that are generalizable across different predictive tasks. Interpreting EPCOT model also allows
us to provide a number of tools and services to the research community including mapping between different
genomic modalities, identifying TF sequence binding patterns, and analyzing cell-type specific TF impacts to
enhancer activity.

Main

Recent computational models have shown great promise capturing and connecting human genome, epigenome,
chromatin organization, and transcriptome at a genome-wide scale. Some of them predict epigenomic features
from DNA sequences [1, 2, 3, 4]. Some of them predict gene expression [5, 6, 3, 7], high-resolution 3D chro-
matin contact maps [8, 9, 10, 11], and enhancer activity [12, 13, 14] from DNA sequences or from epigenomic
feature profiles (Extended Data Fig.1). However, these models typically predict one modality from another
modality separately. To the best of our knowledge, there is no computational framework that is trained in
an end-to-end fashion to connect human genome, epigenome, 3D chromatin organization, and transcriptome,
and comprehensively reveal the relationships across different modalities. Another issue with many of these
computational models is the obscure of the cell type specificity and predictive task specificity. Some of these
models usually make predictions from the DNA sequence and are trained with multiple cell types altogether.
As a result, the trained model itself and the insight gained from the model are not specific to any cell type.
Although some models can predict for new cell types, it is unclear whether the models, representations and
insights learned are generalizable from one predicative task to another.

In this work, we propose EPCOT (comprehensively predicting EPigenome, Chromatin Organizaticon and
Transcription), a framework to comprehensively predict epigenomic features, gene expression, high-resolution
chromatin contact maps, and enhancer activity from DNA sequence and cell-type specific chromatin accessibil-
ity data (Fig.1a). The model leverages a popular pre-training and fine-tuning framework [15]. The pre-training
model has an encoder-decoder structure and performs epigenomic feature prediction (EFP). The encoder learns
sequence representations from the inputs, whereas the decoder captures dependence among epigenomic features
and selects sequence representations of interest to predict the epigenomic features. In the fine-tuning stage,
the sequence representations yielded from pre-training model’s encoder are transferred to predict downstream
tasks including gene expression prediction (GEP), chromatin organization prediction (COP), and enhancer
activity prediction (EAP). EPCOT achieves superior predictive performance or close to best performance with
less data in all the tasks. Additionally, EPCOT is generaliable to new, unseen cell types by only requiring
cell-type specific chromatin accessibility data. EPCOT also learns general sequence representations, which are
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generalizable among different predictive tasks, and the fine-tuned pre-training model is generalizable across
both different cell types and different predictive tasks.

In addition, EPCOT is interpretable and reveals biological insights. First, EPCOT’s pre-training model
learns meaningful embeddings and sequence binding patterns of predicted transcription factors (TFs), which
reflects their co-binding patterns or some unknown sequence patterns. Second, EPCOT captures the cell-type
specific relationships between epigenomic features and enhancer activity or gene expression by quantifying the
contributions of predicted epigenomic features in GEP or EAP, which demonstrates their potential utility when
public cell-type specific epigenomic feature profiles are limited.

Results

A pre-training/fine-tuning framework to predict detailed epigenome, high-resolution chro-
matin organization, transcription, and enhancer activity from cell-type specific chromatin
accessibility profiles

Our deep learning model, EPCOT uses a two-stage pre-training and fine-tuning framework. In the first pre-
training stage (Fig.1b left), a supervised pre-training model is designed to predict 245 epigenomic features
including transcription factors (TFs) and histone modifications, from the inputs of a 1.6kb genomic sequence
(1kb central genomic sequence with 300bp flanking regions both upstream and downstream) with its cell-type
specific chromatin accessibility profile. EPCOT’s pre-training model uses a unique encoder/decoder framework
[16, 17]. The encoder learns sequence representations of the inputs, which are used in downstream tasks, and
the decoder learns the dependence among the epigenomic features, and combine sequence representations to
predict epigenomic features.

In the fine-tuning stage (Fig.1b right), epigenomic feature related downstream tasks including detailed
epigenome, high-resolution chromatin organization (Hi-C, Micro-C, and ChIA-PET), transcription (CAGE-
seq and RNA-seq) and enhancer activity, are defined. Then a task-specific downstream model is built on the
sequence representations yielded from pre-trained model’s encoder to complete the corresponding downstream
task, still using the DNA sequence and cell-type specific chromatin accessibility profile. The benefits of the
pre-training/fine-tuning framework over classical individual task-specific predictive models are that it transfers
knowledge from one predictive task to another and allows comprehensively modelling multiple modalities
(Fig.1a,c).

Another innovative design of our EPCOT model is to use cell-type specific chromatin accessibility profile as
input to train a cell-type specific model and allow the generalizaibility across cell-type. The cell-type specific
chromatin accessibility profiles used as input makes the pre-training and fine-tuning model generalizable to
new cell types (in addition to the cell types used for training). Previous predictive models such as DeepSEA
[1] which predict epigenomic features across multiple cell lines from DNA sequence, cannot be generalized to
new cell types. Furthermore, using additional chromatin accessibility data improves the epigenomic feature
prediction performance [2], which can also benefit the downstream tasks.

In addition, EPCOT’s encoder/decoder framework assigns learnable embeddings to the pre-training labels
and captures their dependence to predict epigenomic features, as opposed to classical multi-task predictive
models where the labels are assumed to be independent. This unique framework allows us to model different
TF co-binding activities.
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Fig.1: A pre-training and fine-tuning framework to comprehensively predict multiple genomic modalities. a,
EPCOT predicts four modalities including EFP, GEP, COP, and EAP. b, Two-stage training of our EPCOT
model including pre-training (left) and fine-tuning (right). The pre-training EFP model takes the inputs of
1.6kb DNA sequence including the 300bp flanking regions upstream and downstream a 1kb region and its
chromatin accessibility signal. In the fine-tuning stage, a task-specific downstream model is built on the pre-
training model’s encoder with the inputs of multiple DNA sequences, and the downstream model is trained
to complete GEP, COP, and EAP tasks. c, EPCOT successfully predicts epigenomic features, CAGE-seq,
and Hi-C contact maps. EPCOT-predicted CAGE-seq, POLR2A, H3K4me3, and H3K27ac profiles, and Hi-C
contact maps with the targets are provided in a 960kb example region in GM12878.

Cell-type specific epigenomic feature prediction (EFP)

Our cell-type specific epigenomic feature prediction model is able to predict 245 epigeomic featured (including
236 TFs and 9 histone modifications). To the best of our knowledge, our EPCOT model predicts the most
abundant TFs among existing cell-type specific epigenomic feature prediction models [2, 18, 19, 20]. In addition,
majority of these models perform single-task training, which is inefficient to predict multiple TFs and hard
to learn the relationships among TFs. In contrast, we leverage a multi-task training framework capable of
predicting 245 epigenomic features in a single model and jointly capturing their dependencies.

EPCOT accurately predicted cell-type specific epigenomic features in a multi-task prediction framework.
Here we chose two baseline models scFAN [21] and FactorNet [2] which can be designed to perform multi-
task training, and compared them with EPCOT in cross chromosome and cross-cell type prediction. The
four cell lines (K562, MCF-7, GM12878, and HepG2) with most abundant epigenomic feature profiles from
ENCODE were used for training and cross-chromosome testing. Five additional cell lines (H1-hESC, A549,
HCT116, HeLa-S3, and IMR-90) were used for cross-chromosome and cross-cell type testing. Our model
predicted epigenomic features more accurately than the two baseline models in both cross-chromosome and
cross-cell type predictions (Fig.2a and Extended Data Fig.3b,c). Moreover, our model accurately predicted
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TFs and histone marks which are important for some downstream tasks such as gene expression prediction
and chromatin organization prediction (Fig.2d).

EPCOT’s pre-training model also learns meaningful embeddings for the 245 epigenomic features, which
reflects their co-binding patterns. As in natural language processing, if two words frequently appear together
in a sentence, the self-attention mechanism captures the high dependence of the two words during learning from
the corpus, the self-attention mechanism in our pre-training model is expected to capture the dependence among
these epigenomic features, which is reflected in the learnable label embeddings of the epigenomic features. We
hypothesized that if the epigenomic features co-bind frequently, then they can have similar label embeddings.
Therefore, we used the protein-protein interaction database and the known TF binding motifs to validate the
embeddings. First, we leveraged t-SNE algorithm [22] to embed the label embeddings into a two-dimension
space (Fig.2b). We observed that multiple TFs in the local t-SNE clusters had high-confidence interactions from
STRING database [23] or have similar binding motifs, which indicated that the epigenomic feature embeddings
reflect their co-binding patterns. In addition, since compressing the embeddings into two dimension might lose
important information, next we interpreted the label embeddings in their original 512 dimension. We identified
the nearest neighbors of each epigenomic feature based on the cosine distances between their embeddings, and
expected that the nearest neighbors can be validated by the confidence scores of protein interactions from the
STRING protein-protein interaction database. In particular, we set three groups which included three, five, and
ten nearest neighbors, respectively, and then counted the number of neighbor pairs that had high and medium
confidence scores, respectively (Fig.2c). We observed that nearest neighbors of TF label embeddings identified
more STRING protein-protein interactions than randomly sampling TF pairs, multiple neighbor pairs at least
had medium-confidence interactions. 155 unique pairs of neighbors had medium or high confidence interactions
(Supplementary Table 2). Therefore, the label embeddings of epigenomic features reflected their interaction
patterns.

To test if the TFs which have similar label embeddings have similar binding motifs, we used RSAT clustering
results of JASPAR motifs [24, 25]. From previous t-SNE plot, fourteen different TF motif clusters were
identified (excluding some TFs which do not have similar motifs, such as CTCF and REST). In addition,
with the same five nearest neighbors in higher dimension, we identified 63 pairs of embedding neighbors whose
binding motifs were in the same motif cluster, and 111 of all predicted TFs had known binding motifs from
JASPAR (Supplementary Table 1), which reflected that some TFs had similar label embeddings due to their
similar binding motifs.

Furthermore, the sequence patterns generated from attribution scores reflect TF binding patterns including
binding motifs and co-binding patterns. The attribution scores of DNA sequences toward TF binding reflect
the important regions that contribute to the TF binding prediction, which can be used to generate sequence
binding patterns, and these sequence patterns are able to recover TFs’ known binding motifs or reflect other
sequence binding patterns such as co-binding patterns [26, 27, 28]. From sequence patterns generated for each
TF using EPCOT, we first observed that sequence patterns of some TFs recovered their known binding motifs,
for example SPI1 (Fig.2e). In addition to known binding motifs, co-binding patterns were also reflected. For
example, we detected a known binding motif and a MEIS1 motif in PKNOX1’s sequence patterns, and this was
supported by high-confidence interaction score between PKNOX1 and MEIS1 in STRING. Furthermore, for
TFs with unknown binding motifs, their sequence patterns could be the binding motifs of other TFs that they
have interactions with. For example, the sequence patterns of NCOR1 which had unknown motifs on JASPAR,
included two NR2 family motifs and one JUN motif. In the STRING database, NCOR1 had high-confidence
interactions with JUN and NR2 family TFs such as HNF4A, PPARA, and NR2F1. Furthermore, unknown
sequence patterns were generated for some TFs. For example, a common but unknown sequence pattern was
generated for both ADNP and CHD4, and ADNP interacts with CHD4 to form a complex [29]. Additionally,
we observed that CTCF motifs frequently appeared in the sequence patterns of other TFs such as SMC3 and
ZNF143 which are shown to interact with CTCF.

The generated sequence patterns were available in our GitHub repository, along with their motif comparison
results using Tomtom [30] and the STRING scores of the interactions with motif-matched TFs.
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Fig.2: Epigenomic feature prediction and pre-training model interpretation. a, EPCOT outperforms FactorNet
in epigenomic feature prediction in the four pre-training cell lines. Each dot indicates the AUPR scores of an
epigenomic feature predicted by EPCOT and Factornet (a total of 656 EFP tasks across four cell lines). b,
A t-SNE plot of the epigenomic label embeddings reflects co-binding patterns. TFs that have high-confidence
interactions from STRING [23] or have binding motifs in the same cluster from RSAT [24], are shown in red
or green circles, respectively. Additionally, the root motifs of each binding motif cluster are provided, and two
examples of STRING protein interaction networks aligned with TF embeddings are provided, where the scores
on edges are the STRING confidence scores of the TF interactions. c, The number of TF embedding neighbor
pairs which are validated by the protein-protein interaction dataset STRING [23] at different confidence levels.
The nearest neighbors of label embeddings identify more STRING protein-protein interactions then randomly
sampling TF pairs. Three groups are set up where three, five, and ten nearest neighbors are selected for
each TF based on cosine similarity of their label embeddings. d, AUROC and AUPR curves show that
EPCOT accurately predicts seven representative epigenomic features which are essential in downstream tasks.
e, Sequence binding patterns of TFs generated from attribution scores. Some patterns recover known binding
motifs. Some patterns match other TFs’ motifs, which reflect co-binding patterns, and other patterns can be
unknown binding patterns.

Cell-type specific gene expression prediction (GEP)

EPCOT accurately predicts gene expression including CAGE-seq and RNA-seq as the downstream tasks,
and characterizes the relationships between epigenomic features and gene expression. Here we build two
downstream models, one to predict RNA-seq gene expression values from genomic regions centered at each
gene’s TSS which is consistent with previous predictive models [6, 5], and the other one is to predict CAGE-seq
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in a large genomic region depending on the resolution of CAGE-seq to be predicted. Both models take the
inputs of DNA sequences and DNase-seq.

In RNA-seq GEP, there exists two tasks, namely binary gene expression classification and gene expression
value regression for each protein-coding gene. Since gene expression can be predicted from histone marks,
several models [6, 5, 31] are proposed to predict RNA-seq gene expression from several histone mark profiles
within-cell type (i,e., using the cell-type specific histone marks to predict gene expression in the same cell
type). Compared to these models, EPCOT utilized less epigenomic feature data (EPCOT does not require
histone modification profiles as inputs) and achieved comparable performances in within-cell type prediction.
We first compared EPCOT with GC-MERGE [31] which leveraged six histone marks and chromatin contact
maps to predict RNA-seq gene expression in both classification and regression tasks from gene TSS regions.
We observed that EPCOT slightly outperformed GC-MERGE in the two pre-training cell lines (GM12878 and
K562) in both tasks, and achieved comparable performances in HUVEC (Fig.3a).

EPCOT accurately predicts gene expression for new cell types. In this task, EPCOT was trained on four
cell types (H1, A549, GM12878, and HeLa-S3) and tested on four different cell types. Here, we compared
our cross-cell type prediction results with the within-cell type prediction results from DeepChrome [6] and
AttentiveChrome [5] which used five histone marks to perform gene expression classification. We observed that
EPCOT which used less data, achieved comparable cross-cell type prediction performance with Deepchrome
and AttentiveChrome’s within-cell type prediction performance (Fig.3b and Extended Data Fig.4b,c).

Furthermore, the predicted epigenomic features from the pre-training model further predict gene expres-
sion simply through logistic regression models, which characterize the effects of epigenomic features to gene
expression prediction. We built two logistic regression models to predict gene expression from the predicted
values of all the epigenomic features or nine histone marks from the pre-training model, respectively. We first
observed that histone marks were sufficient to predict gene expression since additional TF information did
not increase the prediction accuracy (Fig.3d and Extended Data Fig.4a). Furthermore, the weights in the
logistic regression model characterized the contributions of histone marks in GEP (Fig.3c). We observed that
histone marks related to gene activation all received positive weights, whereas gene repression histones received
negative weights, and H3K4me1 which associates with enhancer regions received a weight close to 0, and the
negative weight of H3K4me2 may be due to its presence on poised promoters [32].

In the CAGE-seq GEP task, we compared EPCOT with GraphReg [7] in 5kb-resolution prediction by
using the same cross-validation strategy to obtain global results. EPCOT significantly outperformed Seq-CNN
and Seq-GraphReg which utilized cell-type specific DNase-seq, H3K4me3, and H3K27ac as pre-training and
predicted CAGE-seq from DNA sequences either using chromatin contact maps or not (Fig.3e). EPCOT also
achieved comparable performances with Epi-CNN and Epi-GraphReg which predicted CAGE-seq from cell-
type specific DNase-seq, H3K4me3, and H3K27ac tracks either using chromatin contact maps or not (Extended
Data Fig.4d). In this comparison, H1 was not a pre-training cell line, which indicated that only cell-type specific
DNase-seq was utilized in the prediction of H1’s CAGE-seq.

Furthermore, EPCOT predicts cell-type specific CAGE-seq in 1kb resolution for new cell types. We per-
formed within-cell type prediction on the four training cell types and performed cross-cell type prediction on
seven different cell types (Fig.3f). We separately trained two types of downstream models with two different
neural networks, LSTM and Transformer. The two downstream models had similar performance, but in H1’s
cross-cell type prediction, Transformer significantly outperformed LSTM. Additionally, we tested the ensemble
of the Transformer and LSTM models which took an average of the outputs from the two models, the ensem-
ble model achieved slightly better performance. Furthermore, EPCOT learned cell-type specific CAGE-seq
information associated with cell-type specific epigenomic features, in the cross-cell type prediction (Fig.3g). To
demonstrate the cross-cell type prediction accuracy, we simply compared EPCOT with the average Pearson
correlation reported in Enformer [3] and Basenji2 [33] (two dashed lines in Fig.3f). These two models have
different training frameworks and different scopes from us. Enformer and Basenji2 perform multi-task predic-
tion and predict CAGE-seq profiles in multiple cell types from the DNA sequence, and cannot be generalized
to new cell types. By contrast, EPCOT performs single-task training where the input chromatin accessibility
data and CAGE-seq are in the same cell type. Therefore, EPCOT predicts CAGE-seq for new, unseen cell
types if their chromatin accessibility profiles are available.
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Fig.3: Performance of EPCOT in the cell-type specific GEP task. a, EPCOT (both CNN and LSTM in down-
stream models) achieves comparable performance with GC-MERGE in RNA-seq gene expression regression
and classification tasks in three cell lines, GM12878, K562, and HUVEC. ‘PCC’ stands for Pearson corre-
lation which is the performance criterion used in gene expression value regression task, while AUROC and
AUPR measure binary gene expression score classification task. b, EPCOT accurately predicts cross-cell type
RNA-seq gene expression which is comparable with AttentiveChrome’s within-cell type prediction in K562. c,
Weights in the logistic regression (LR) GEP model (which uses the predicted values of nine histone marks from
the pre-training model) reflects their contributions to GEP. d, ROC curves of two LR models (one uses all the
predicted epigenomic features and the other one uses predicted histone marks only) indicate that histone marks
are sufficient to predict gene expression. e, EPCOT’s Pearson correlation across genomic bins associated with
all gene TSS is higher than Pearson correlation of Seq-GraphReg and Seq-CNN reported by GraphReg [7]. f,
Within-cell type and cross-cell type prediction performance of EPCOT in 1kb-resolution CAGE-seq prediction.
EPCOT is trained and tested on four cell types shown as the ‘training cell types’. Cross-cell type evaluation
is performed on the remaining seven cell types shown as ‘testing cell types’. Pearson correlation is calculated
across all genomic bins in the testing genomic regions, and the average Pearson correlation scores reported by
Enformer and Basenji2 are shown as two dashed lines. g, Predicted CAGE-seq and histone marks for two new
cell lines (H1-hESC and HeLa-S3) at a 200kb region from the EPCOT model trained on GM12878, K562, HU-
VEC, and IMR-90. The CAGE-seq peaks at gene TSS are predicted and also aligned with predicted H3K4me3
and H3K27ac peaks in both cell lines, which indicates that EPCOT learns cell-type specific information. The
gene annotations are plotted by pyGenomeTracks[34].
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High-resolution chromatin organization prediction (COP)

EPCOT predicts high-resolution Hi-C and Micro-C contact maps, and ChIA-PET as one of the downstream
tasks (Fig.4a). The downstream models consist of a trunk and a prediction head, the trunk pools and update the
high-level sequence representations from low-level sequence representations output from pre-training model’s
encoder. The prediction head is similar to Akita [8], which transforms representations on 1D sequence into
representations on 2D contact matrices and predicts the contact maps (Extended Data Fig.2b).

In Hi-C contact map prediction, we predicted the upper triangle of OE-normalized contact matrices in 5kb
resolution from Juicebox [35] within 1Mb genomic regions. EPCOT accurately predicted the high-resolution
Hi-C contact maps in six cell lines (Supplementary Table 3). We included two baselines, namely Epiphany [36]
and DeepC [9] which predict 5kb-resolution Hi-C contact maps. Epiphany predicted OE-normalized Hi-C by
using five epigenomic feature tracks, and DeepC predicted percentile normalized Hi-C from the DNA sequence
which also utilized an epigenomic-feature supervised pre-training model. In addition, the two models used
1Mb regions to predict the diagonal only, which required more computation resource than predicting the upper
triangular contact matrix of each 1Mb region. The prediction performance reported in the two works and
the performance of EPCOT were summarized in Supplementary Table 3. EPCOT achieved higher Pearson
correlation and Spearman correlation scores in the same predicted cell lines. Additionally, between the two
different types of neural networks, LSTM and Transformer in EPCOT downstream model’s trunk, Transformer
always achieved better performance than LSTM.

Furthermore, EPCOT also predicted cross-cell type Hi-C contact maps. Similar to HiC-Reg [37], an ensem-
ble of two models which trained on the cell lines with most read counts (GM12878 and HFF), were leveraged
to predict on three different cell lines, namely HepG2, IMR-90, and K562 (Fig.4c and Extended Data Fig.5a).
Hi-C contact maps of two cell lines with low read depth were also predicted, the cell-type specific salient regions
in contact maps associated with cell-type specific epigenomic features were predicted by EPCOT (Fig.4b).

EPCOT also accurately predicted Micro-C contact maps. Here two baselines which predicted high-
resolution Micro-C contact maps, Akita [8] and CAESAR [10] were chosen, and Micro-C contact maps in
two cell lines H1 and HFF, were predicted. The first baseline AKITA predicted Micro-C contact maps in
2,048bp resolution from DNA sequence, so to be consistent with Akita, we predicted the upper triangle of
2kb-resolution Micro-C contact maps in 1Mb genomic regions. Pearson and Spearman correlation of predicted
and target log(observed/expected) contact values were calculated for each bin pair in every region of the test
set. EPCOT achieved significantly higher Spearman correlation scores than Akita (Supplementary Table 3),
and Akita reported a genome-wide Pearson correlation score 0.61 which was also lower than EPCOT. EPCOT
achieved Pearson correlation and Spearman correlation higher than 0.78 in H1 and HFF cell lines. Furthermore,
we compared EPCOT with CAESAR in 1kb-resolution Micro-C contact map prediction over 500kb genomic
regions. The Micro-C contact maps were processed in the same way with 2kb-resolution Micro-C. CAESAR
utilized much more data including Hi-C contact maps and six epigenomic feature profiles, than EPCOT to
predict Micro-C contact maps, but we observed that EPCOT achieved similar performance with CAESAR by
only using DNA sequences and DNase-seq (Fig.4d), which indicated that genomic sequence with DNase-seq
are sufficient to accurately predict high-resolution Micro-C contact maps. Moreover, EPCOT also predicts
cross-cell type Micro-C (Extended Data Fig.5b,c).

In addition to comprehensive chromatin organization, EPCOT also predicted chromatin interactions specific
to proteins such as ChIA-PET contact maps. The same model architecture to predict 5kb-resolution Hi-C was
leveraged here to predict CTCF and POLR2A ChIA-PET in three cell lines. We observed that EPCOT
accurately predicted ChIA-PET in both within-cell type and cross-cell type prediction (Fig.4a and Extended
Data Fig.5d,e). The ChIA-PET contact maps were sparser than Hi-C, but EPCOT predicted the sparse salient
regions well in both CTCF and POLR2A ChIA-PET which were also consistent with the predicted binding
activities from the pre-training model.
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Fig.4: EPCOT accurately predicts high-resolution chromatin contact maps. a, EPCOT accurately predicts
chromatin contact maps and ChIA-PET. In the example region, predicted HFF Hi-C and Micro-C contact
maps, and CTCF and POLR2A ChIA-PET contact maps with the predicted CTCF binding activities are
shown on the left. The targets and CTCF tracks are shown on the right. The predicted Hi-C, Micro-C and
ChIA-PET contact maps agree with the observed contact maps, and the salient regions associate with the
CTCF binding sites. b) Cross-cell type prediction on two cell lines whose available contact maps have low
read depth. The tracks and predicted binding activities of CTCF, H3K4me3, and H3K27ac are provided. The
difference in salient regions in the two cell lines associates with the difference in H3K27ac. c, EPCOT predicts
cross-cell type Hi-C contact maps, the distance-stratified Pearson correlation in both cross-cell type and within-
cell type prediction is shown. d, EPCOT achieves comparable performance with CAESAR in 1kb-resolution
Micro-C contact map prediction, indicated by the insignificant p-values of student t-tests. Pearson correlation
is calculated for each 500kb genomic region on test chromosomes.
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Enhancer activity prediction (EAP)

EPCOT predicts active enhancers captured by STARR-seq from the candidate enhancer set on ENCODE [38]
with specific downstream models, and characterizes the effects of epigenomic features on EAP. Here we focused
on the five human cell lines whose STARR-seq profiles were available on ENCODE. STARR-seq measures
enhancer activity across whole genome [39], which allows us generate the positives (active enhancers) and
negatives (inactive enhancers) for model training. To generate the positive samples, we used a similar strategy
in the work [12] which combined matched filter scores of five histone marks and DHS to predict Drosophila
enhancer activity through a linear SVM model (we simply named this work as ‘matched-filter model’) —
if a candidate enhancer overlapped with STARR-seq and H3K27ac peaks, then we identified it as an active
enhancer in high confidence, whereas if a candidate enhancer did not overlap with STARR-seq peaks and was
not identified as an active enhancer from EnhancerAtlas [40] either, then we took it as a confident inactive
enhancer.

EPCOT accurately predicts cell-type specific enhancer activity. To compare with the matched-filter model,
we randomly selected ten times more negatives than positives in the testing data, and EPCOT achieved AUPR
scores greater than 0.85 (Extended Data Fig.7a) in all of the five cell lines, whereas the matched-filter model
reported AUPR 0.66 in the same positive and negative ratio. Furthermore, EPCOT also accurately predicts
active enhancers for unseen cell types. Here we trained EPCOT on HCT116, K562, and MCF-7 cell lines,
and tested EPCOT on HepG2 and A549 cell lines. Then we compared the performance of this cross-cell type
prediction with the performance of within-cell type prediction using all the positives and negatives in the
testing data (Fig.5a). Since the testing data were highly imbalanced (Supplementary Table 4), we focused on
the PR curves, and observed that the PR curves from cross-cell type prediction were sightly lower than those
from within-cell type prediction.

EPCOT also identifies cell-type specific sequence patterns in active enhancer regions (Extended Data Fig.8).
The sequence patterns are generated from the attribution scores of DNA sequence toward enhancer activity
by using TF-MoDISco in an investigated cell line. We observed that the generated sequence patterns matched
with TF motifs such as CREB, JUN, YY, ETS, and IRF, which related to enhancer activity and were enriched
in enhancers [41].

Similar to gene expression prediction, the enhancer activity can also be predicted by a logistic regression
(LR) model from the epigenomic features predicted by our pre-training model. However, different to gene
expression prediction, we found that TFs were more predictive than histone marks in enhancer activity pre-
diction, which was also concluded by Dogan et al. [42]. The LR models with all epigenomic features or
TFs significantly outperformed the LR model with histone marks only (Fig.5b). Furthermore, the general
impacts of epigenomic features on EAP in five cell lines are characterized by the weights in the LR model.
First, the weights for five related histone marks in the LR model agreed with those in linear SVM used in
the matched-filter model (Extended Data Fig.7b). Next, multiple epigenomic features received large positive
weights were shown to be associated with active enhancers in the literature (Fig.5c), such as BRD4, MTA3,
RAD51, H3K27ac, and H3K4me1 [43, 44, 45, 46], and some of these TFs also have motifs agreed with learned
sequence patterns, such as ATF4, ELF4, and JUNB. Additionally, some TFs which bind to promoter regions
such as PHF8, TBP, and SP1, and TFs related to repression activity such as HDAC1 received large negative
weights.

Furthermore, the importance of TFs to EAP is captured in a cell-type specific manner. We found that the
LR models separately trained for individual cell lines outperformed the LR model trained on all the five cell lines
(Extended Data Fig.7d), which indicated that the the effects of some epigenomic features to enhancer activity
can be cell-type specific. To analyze the cell-type specific relationship between TFs and enhancer activity, first
the high prediction accuracy indicates the weights in LR capture the contributions of TFs (Fig.5b,d). Although
TFs with large weights in the LR model can be different in different cell lines, we observed that some TFs such
as ELF4, BRD4, ATF4, and RBBP5, received large positive weights, and PHF8 and HDAC received negative
weights in all the three cell lines: MCF-7, A549, and K562 (Fig.5d and Extended Data Fig.7e). Furthermore,
we found that some TFs received large positive weights due to their frequent binding on active enhancer regions
(Fig.5d right panel), such as JUNB, TCF12, and JUN. Some TFs received large negative weights because of
their appearance in inactive candidate enhancer regions, such as MAFK and SP1. Majority of the cell types
only have a limited number of TF profiles, which prevents us from capturing cell-type specific relationships
between TFs and enhancer activity, but EPCOT predicts 236 TFs for these cell types and quantifies their
contributions, which help us understand cell-type specific impacts of TFs on enhancer activity.
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Fig.5: EPCOT accurately predicts enhancer activity and characterizes the effects of epigenomic features to-
wards EAP. a, The AUPR curves of within-cell type and cross-cell type EAP in two cell lines, which indicates
that EPCOT accurately predicts enhancer activity for new cell types. The cross-cell type prediction model is
trained on K562, HCT116, and MCF-7. b, The AUPR curves in EAP using L1-regularized logistic regression
(LR) with the inputs of 245 predicted epigenomic features, 236 TFs, or nine histone marks, respectively, which
indicate that TFs are more predictive than histone marks in enhancer activity prediction. c, The top 30 largest
positive negative weights for epigenomic features in the 245-epigenome LR model in all five cell lines, which
characterizes their general effects on enhancer activities. Some of these epigenomic features have motifs agreed
with learned sequence patterns from the active enhancer sequences. d, Analyzing cell-type specific relationships
between enhancer activity and TFs in A549. A549 is not a pre-training cell lines whose epigenomic feature
profiles are used in training. (Left top panel) AUROC and AUPR curves of training LR model to predict
enhancer activity. (Left bottom panel) 50 TFs with largest positive and negative weights in the LR model.
(Right panel) Number of TF ChIP-seq peaks overlapped with active and inactive enhancer regions, and TFs
with large weights in the LR model are highlighted.

General sequence representations to predict multiple modalities

The pre-training model’s encoder supervised by epigenomic features, learns sequence representations from the
input DNA sequences and chromatin accessibility data, which is then fine-tuned in each of the downstream
prediction tasks (sequence representations are updated in the fine-tuning). We have observed that individual
sequence representations yielded from the original pre-training model that are updated for each of the down-
stream tasks, perform well in the corresponding task. However, one may ask if there exists globally optimized
(general) sequence representations that can be used in all of prediction tasks? Can the pre-training model

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493129doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493129


fine-tuned in GM12878 COP task be frozen and transferred to K562 GEP task?
In order to address these important questions, we first tested if the sequence representations yielded from

the original pre-training model (EFP task) could be fixed to predict other tasks. We have observed that the
predicted epigenomic features from the pre-training model accurately predicted RNA-seq gene expression and
enhancer activity through a simple logistic regression, which indicated that sequence representations yield from
frozen pre-training model was able to perform well in these two tasks. However, we found that fine-tuning the
parameters in pre-training model’s encoder significantly outperformed fixing the parameters in Hi-C COP task
(Extended Data Fig.6a), which indicated that genomic sequences possibly contained information in addition
to epigenomic feature binding that helped Hi-C contact map prediction.

Then we tested if the original pre-training model that was fine-tuned in Hi-C COP task could learn general
sequence representations. We fine-tuned the original pre-training model in GM12878 Hi-C prediction, the
sequence representations output from this fine-tuned model were then transferred to train downstream models
to predict additional tasks. We observed that overall the globally optimized sequence representations achieved
comparable performance with individual sequence representations updated in each of prediction tasks, and
the fine-tuned pre-training model is generalizable to cell types other than GM12878 (Fig.6). Although in
some tasks such as Micro-C COP and CAGE-seq GEP, the general sequence representations achieved worse
performance, the performance did not differ too much, which was as expected since individual representations
optimized for each specific task and cell type should have the best performance. Therefore, the global sequence
representations yielded from pre-training model that is fine-tuned in GM12878 Hi-C COP task, can be used in
all of the prediction tasks and in cell types other than GM12878.
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Fig.6: Globally optimized sequence representations perform well in all prediction tasks. ‘Global’ refers to
the sequence representations yielded from the original pre-training model (EFP task) that is fine-tuned in
GM12878 Hi-C COP task and then fixed in additional prediction tasks including EFP, GEP, COP, and EAP
tasks. ‘Individual’ refers to the representations yielded from the original pre-training model that is then fine-
tuned and optimized in each of the additional prediction task. Global representations achieve comparable
performance with individual representations in EFP (a), RNA-seq GEP (b), CAGE-seq GEP (c), Micro-C
COP (d), Hi-C COP (e), and EAP (f) tasks.

Discussion

EPCOT adopts a novel pre-training/fine-tuning framework to comprehensively predict epigenome, chromatin
contact maps, transcription, and enhancer activities. Unlike previous predictive models which predict dif-
ferent modalities separately, EPCOT predicts epigenomic features in the pre-training task, and transfers the
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epigenome-related knowledge to predict other modalities in downstream tasks. In addition, EPCOT takes
both DNA sequence and chromatin accessibility data as input, which allows EPCOT to predict for new cell
types. It also makes EPCOT different from previous DNA-sequence based predictive models [1, 8, 3] that make
predictions from DNA sequence only and cannot predict for unseen cell types, and previous self-supervised
pre-training works [47] and other models [7, 9] which use supervised pre-training techniques and cannot be
generalized to new cell types either. Furthermore, EPCOT learns global sequence representations which are
generalizable among different downstream tasks. The pre-training model which is trained on epigenomic fea-
tures and then fine-tuned in GM12878 Hi-C COP task, learns global representations which can be used to
accurately predict in other tasks without further fine-tuning. More importantly, this particular fine-tuned
pre-training model can be frozen and transferred to complete all of the tasks for new cell types. Therefore,
EPCOT’s global representations are different from the sequence representations learned from previous pre-
training models [9, 47] that are updated in specific tasks. Its generalizability both across different predictive
tasks and across different cell types convinces us that the representations learned by EPCOT are real and
reflect underlying biological mechanism.

Other than superior predictive performance or comparable predictive performance with less data in different
tasks, EPCOT also showed unique methodological advantages. In the EFP task, EPCOT’s pre-training model
leverages a multi-task training framework and accumulates training loss only on available epigenomic feature
profiles, which allows EPCOT to predict most abundant TF binding profiles in a single model, in contrast
with multiple proposed cell-type specific TF binding prediction models [2, 20, 18, 19]. In the GEP task,
EPCOT accurately predicts cell-type specific gene expression, which can be generalized to new cell types. In
the RNA-seq GEP, previous works [5, 6, 48, 31] rarely investigate cross-cell type prediction, even though some
of these models [5, 6, 31] use cell-type specific histone mark profiles to predict gene expression levels. In the
CAGE-seq GEP task, multiple predictive models such as Enformer and Basenji [3, 4, 33] cannot perform cross-
cell type prediction. One particular model GraphReg investigates cross-cell type CAGE-seq prediction, but it
only performs cross-cell type prediction between GM12878 and K562. In the COP task, EPCOT accurately
predicts cell-type specific comprehensive chromatin contact maps and protein-specific chromatin interactions.
Different from the models such as DeepC [9], Orca [11], and Akita [8] that predict contact maps only from DNA
sequences, EPCOT utilizes additional cell-type specific chromatin accessibility data, which allows EPCOT to
predict cell-type specific chromatin contact maps and requires less cell-type specific data than the models
[36, 37] which need additional ChIP-seq data. In the EAP task, EPCOT integrates both TF and histone
modification information to predict active enhancers captured by STARR-seq [39], from candidate enhancers
on ENCODE [38]. By contrast, plenty of previous enhancer prediction works [12, 13, 42] mainly use histone
mark data, and hardly utilize TF binding or use a limit number of TFs to predict enhancer activity. Since
TFs can be more predictive than histone modification [42], which is also validated by EPCOT, we believe
that using additional TF binding information makes EPCOT outperform previous models. Although some
models [14, 41] predict enhancer activity from DNA sequence, their model interpretation mainly focuses on
characterizing sequence motif importance to the prediction. However, EPCOT not only captures sequence
patterns in active enhancer regions, but also characterize the contributions of specific TFs (including TFs with
unknown motifs) to EAP.

EPCOT is interpretable, which reflects biological insights and facilitate scientific discoveries. First, EP-
COT’s pre-training model learns meaningful embeddings and sequence binding patterns of epigenomic features,
which reflects their co-binding patterns. By contrast, multiple current TF binding prediction models barely
capture the dependence among TFs in the prediction, although some prediction models [49] capture the inter-
actions among TF binding motifs in model interpretation (plenty of TFs do not have known motifs). EPCOT
also generates sequence binding patterns for multiple TFs from attribution scores of DNA sequence. Some pat-
terns match motifs of other TFs, and some patterns are unknown binding patterns, which can help researchers
investigate TF binding mechanisms.

Second, EPCOT captures cell-type specific effects of epigenomic features to enhancer activity and gene
expression. We find that the predicted cell-type specific epigenomic features from the pre-training model
further accurately predict gene expression and enhancer activity through a simple logistic regression model.
Since logistic regression quantifies the contributions of epigenomic features to gene expression or enhancer
activity prediction, which is one potential utility of predicted epigenomic features, previous cell-type specific TF
prediction models [2, 18, 19] barely perform these downstream analyses. In addition, directly using epigenomic
feature profiles to characterize their effects on enhancer activity in a cell-type specific manner, is difficult since
majority of cell types only have few or no epigenomic feature profiles available on ENCODE. Although we
only investigate logistic regression model, other feature selection methods such as decision tree, can also be
leveraged and evaluate the contribution of epigenomic features.
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Currently, we leverage 236 TFs, although a small portion of all human’s 1700 TFs, which have already
yielded exciting results. When more public ChIP-seq data is available in future, the pre-training model’s
decoder is able to characterize the dependence among additional TFs. From the technical perspective, we are
able to redesign the decoder structure [50] to efficiently scale to thousands of labels (a.k.a. TF binding profiles)
without worrying the computational burden. Another direction we will follow in the future is to leverage
self-supervised pre-training techniques to replace the supervised pre-training strategy in current EPCOT.
The supervised labels (i.e., epigenomic features) used in our pre-training model may restrict the extracted
information to these predicted epigenomic features, and other useful information contained in genomic sequence
can be missed. Considering the current success of self-supervised pre-training in nature language processing
and computer vision, a self-supervised pre-training framework to extract massive cell-type specific information
across different cell types is promising in genomics.

Methods

EPCOT leverages a pre-training and fine-tuning framework (Fig.1c). In the pre-training stage, a cell-type spe-
cific pre-training model is supervised by epigenomic features, which captures the dependence among epigenomic
features and learns epigenomic feature related representations from the input genomic sequence and chromatin
accessibility data. In the fine-tuning stage, task-specific downstream models are built, and the pre-training
model is transferred and fine-tuned to complete downstream tasks. The detailed structures of the pre-training
model and downstream models are discussed in the following sections.

Pre-training model

EPCOT’s pre-training model takes the inputs of 1.6kb DNA sequence (1kb centeral sequence with 300bp flank-
ing sequences upstream and downstream) and the corresponding cell-type specific chromatin accessibility data
to predict epigenomic features. The model structure is similar to Query2Label [17], which assigns learnable
embeddings to the labels (i.e., epigenomic features) and consists of encoder and decoder parts. The encoder
contains convolutional layers and one Transformer [51]’s encoder layer, which learns a series of sequence rep-
resentations h∈Rn×d from the inputs X where n indicates the number of representations and d indicates the
dimension of the representations,

h = fencoder(X).

The decoder contains two blocks, and each decoder block consists of a self-attention module, an encoder-decoder
attention module (cross-attention module), and position-wise feed-forward networks (FFNs). To capture the
dependence among epigenomic features, learnable label embeddings L0 are first assigned to each of the labels
(i.e., epigenomic features) to be predicted, which are then updated through the two decoder blocks.

In the i-th decoder block, the updated label embeddings Li−1 from the previous (i − 1)-th decoder block
are first input to a self-attention module, where a multi-head attention learns the relationships between the
labels and updates the label embedding. In this module, the queries, keys, and values of multi-head attention
are all from the label embeddings,

L̂i = MultiHead(Li−1,Li−1,Li−1).

Next, the intermediate label embeddings L̂i output from the self-attention module with the sequence represen-
tations h output from the encoder are input to a cross-attention module, where a multi-head attention with
keys and values from the sequence representations and queries from label embeddings to select and combine
learned representations of interest and update the label embeddings

L̃i = MultiHead(L̂i, h, h).

After the two modules, an FFN is applied to the updated label embedding L̃i

Li = FFN(L̃i) = ReLU(L̃iW1 + b1)W2 + b2,

where W1 and W2 are two weight matrices, and b1 and b2 are bias vectors.
Finally, a label-specific fully connected layer is applied to the final updated label embeddings Lm∈RN×d

through m decoder blocks, where N represents the number of labels to be predicted and d indicates the
dimension of the label embedding. The predicted score of i-th epigenomic feature Si is calculated as

Si = Sigmoid(W T
i [Lm]i + bi),
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where Wi∈Rd is a weight vector corresponding to i-th label.
The pre-training model leverages a multi-task training framework, but not all of the 245 target labels

are known in the pre-training cell types (Supplementary Figure 1, if an epigenomic feature is available in at
least two pre-training cell lines, then it is taken as a predicted label). Therefore, we only calculate the cross-
entropy loss between the target labels and the predicted scores. In the model training, we first pre-train the
convolutional layers on the same target labels, and then train the entire pre-training model by using AdamW
optimizer [52] with weight decay of 1×10−6 and an initial learning rate of 5×10−4. The pre-trained encoder is
then utilized in the downstream tasks, whose parameters can either be frozen or fine-tuned in the training of
downstream models.

Task-specific downstream models

The downstream models are built on the pre-training model’s encoder, which take the inputs of sequence
representations h output from pre-training model’s encoder. Before feeding the sequence representations into
the downstream model, the features h∈Rn×d of each 1kb genomic region are pooled into a 1kb-sequence
embedding ϕ∈Rd by using the same attention pooling strategy in Enformer [3], the j-th element in the pooled
feature vector is calculated as

ϕj =

∑
i exp (hi · wj)hij∑
i exp (hi · wj)

,

where w∈Rd×d is a learnable weight matrix and i is the index of the n sequence representations. The down-
stream models have different architectures for different downstream tasks (Extended Data Fig.2).

Gene expression prediction (GEP)

In the RNA-seq GEP task, the downstream model takes the input of eleven pooled 1kb-sequence embeddings
which represent a 11kb genomic region centered at gene TSS, then we simply apply Bi-LSTM layers or convo-
lutional layers to generate a feature vector which represents the whole input genomic region (Extended Data
Fig.2a left). Finally this feature vector goes through a fully connected layer to predict the gene expression
values. Considering there are two tasks, binary gene expression classification and gene expression value regres-
sion, in the classification task, a Sigmoid function is applied to the outputs of the final fully connected layer
and a cross-entropy loss is calculated. By contrast, an MSE loss is calculated in the regression task.

In the gene expression classification task, we also apply logistic regression (LR) to the predicted epigenomic
features from the pre-training model. Here the entire pre-training model is frozen and transferred to obtain
the predicted values of epigenomic features. Then, we take the maximum predicted values in each 3kb genomic
region centered at the gene TSS, which are used to predict gene expression through a L1-regularized LR model.
The weights in LR model quantify the contributions of epigenomic features to GEP.

The downstream model that predicts 1kb-resolution CAGE-seq, takes the inputs of 250kb genomic regions
to predict CAGE-seq on the centered 200kb region (Extended Data Fig.2a right). We first apply convolutional
layers to the 1kb-sequence embeddings, which learns local relationships among 1kb genomic regions. Then
LSTM layers or Transformer’s encoder layers with the same relative positional encoding in Enformer [3] are
applied to learn long-range interactions among 1kb genomic regions and update the sequence embeddings.
Finally, the updated sequence embeddings are fed into a fully connected layer to predict CAGE-seq tracks.
A simple MSE loss is calculated between the predicted and target CAGE-seq and is optimized by AdamW
optimizer with weight decay of 10−6 and learning rate of 10−4.

Chromatin contact map prediction (COP)

The downstream model to predict 5kb-resolution Hi-C contact map takes the inputs of 1Mb genomic regions
and predicts the upper-triangle of contact matrices in the centered 960kb, which contains a trunk and a
prediction head (Extended Data Fig.2b). In the trunk, the pooled 1kb-sequence embeddings ϕ are fed into
convolutional layers to learn the local relationships among 1kb genomic regions. Since we now focus on a
5kb resolution, a max-pooling layer is applied to pool five 1kb-sequence embeddings into one 5kb-sequence
embedding. Here we use ψ∈RN×d′ to represent the whole feature matrices of the input genomic regions (a
stack of 5kb-sequence embeddings), where N indicates the number of 5kb genomic regions and d indicates the
dimension size of 5kb-sequence embedding. Next, we use three Transformer’s encoder layers or LSTM layers
to update the embeddings. After learning feature representations for each 5kb genomic region of 1D sequence,
to predict the 2D chromatin contact matrices, we transform the updated 2D feature matrices ψ̂∈RN×d′ into
3D feature maps Ξ∈RN×N×d′ . Each element Ξi,j is a vector related to the chromatin contact between genomic
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regions i and j, which is calculated as

ψ̂ = Transformerenc(ψ),

Ξi,j = (ψ̂i ◦ ψ̂j) + (ψ̂i+ψ̂j) + PErel (min(|i−j|, τ)) where i, j = 1 . . . N,

where i and j index the 5kb genomic regions, and ◦ indicates an element-wise multiplication, and PErel

represents a relative positional encoding based on the absolute distance between two genomic regions, and
τ is a threshold to make long-range interactions have the same positional encoding. Then similar to Akita
[8], we treat the feature maps Ξ as images and apply several symmetric 2D dilated convolutional layers with
skip-connection

Ξ̂ = Dilated Conv(Ξ) + Ξ,

Ξ = ReLU
(

(Ξ̂ + Ξ̂⊺)/2
)
.

Finally, we apply a fully connected layer to predict the symmetric chromatin contact matrices, and calculate an
MSE loss between the predictions and the targets. The downstream model is trained with AdamW optimizer
with weight decay of 10−6 and learning rate of 3×10−4, and we warmup the learning rate in the first training
epoch.

The downstream model to predict ChIA-PET contact maps have the same model architecture to the
downstream model which predicts Hi-C contact maps. The downstream model to predict 1kb-resolution Micro-
c contact maps also has a similar model architecture, except for a maxpooling layer that pools 1kb-sequence
embeddings into 5kb-sequence embeddings.

Enhancer activity prediction (EAP)

The downstream model to predict enhancer activity takes the inputs of 3kb genomic regions (two 1kb bins
downstream and upstream the central 1kb enhancer bin are used as flanking regions). Then the pooled sequence
embeddings of each 1kb region ϕ are fed into convolutional layers and one fully connected layer to predict the
enhancer activity score. Similar to the GEP task, enhancer activity can also be predicted by logistic regression
using the predicted values of epigenomic features on 1kb enhancer bins, and the parameters of pre-training
model are frozen.

Data availability

All the genomic data used in EPCOT is in the reference genome version hg38. DNase-seq, CAGE-seq, ChIP-seq
and STARR-seq are all downloaded from ENCODE [38]. RNA-seq gene expression level data is from REMC
database [53]. Hi-C, Micro-C, and ChIA-PET contact maps are downloaded from 4DN [54]. Generated TF
sequence binding patterns along with their motif comparison results are provided in a webpage that is available
in our GitHub repository https://github.com/liu-bioinfo-lab/EPCOT.

Code availability

Source code of EPCOT is available in a GitHub repository https://github.com/liu-bioinfo-lab/EPCOT.
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Extended Data

Extended Data Fig.1: Computational works capturing epigenome, transcriptome, chromatin organization, and
enhancer activity.
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Extended Data Fig.2: Downstream model architecture. a) The downstream models to predict RNA-seq gene
expression values and 1kb resolution CAGE-seq tracks, both take the inputs of DNA sequence and chromatin
accessibility data. The downstream model to predict RNA-seq uses 11kb genomic regions centered at TSS, and
the downstream model to predict 1kb-resolution CAGE-seq uses 250kb genomic regions to predict CAGE-seq
on the centered 200kb regions. b) The downstream model to predict 5kb-resolution Hi-C contact maps, takes
the inputs of 1000 1kb genomic regions. The 1kb-sequence embeddings from pre-training model’s encoder are
pooled and updated into 5kb-sequence embeddings which are used to learn the feature representations of the
chromatin contacts and predict the upper triangle of the contact matrices.
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Extended Data Fig.3: Performance in epigenomic feature prediction. a) The number of epigenomic feature
profiles collected from ENCODE in nine cell lines. The four cell lines with most abundant profiles are used
for pre-training. b) Cross-chromosome prediction performance in four pre-training cell lines. The scores
(mean AUROC/mean AUPR) of two baselines and EPCOT are provided, and ECPOT outperforms the two
baselines. c) Cross-chromosome and Cross-cell type prediction performance in the remaining cell lines. ECPOT
outperforms the two baselines with higher mean AUPR scores. d) AUROC and AUPR scores of 206 epigenomic
features in HepG2 cell line. The AUROC scores are generally above 0.9, and majority of epigenomic features
achieve AUPR score greater than 0.5.
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Extended Data Fig.4: Comparisons in gene expression prediction. a) Comparing performance of using logistic
regression to predict gene expression from the predicted scores of all the epigenomic features or histone marks
only in four cell lines. The PR curves are shown. b,c) Comparing EPCOT’s cross-cell type prediction per-
formance with DeepChrome and AttentiveChrome’s within-cell type prediction performance. The ROC and
PR curves of EPCOT and AttentiveChrome are shown in b, and the AUROC and AUPR scores are provided
in c. DeepChrome’s AUROC scores are directly from the paper, and the AUROC and AUPR scores of At-
tentiveChrome are calculated by using Kipoi [55]. EPCOT’s model is trained on four different cell lines: H1,
A549, GM12878, and HeLa-S3. d) Comparing EPCOT with four models proposed by GraphReg in three cell
lines: GM12878, K562, and H1-hESC. Pearson’s correlation across genomic bins associated with gene TSS are
calculated, and the scores of these four models are directly taken from GraphReg.
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Extended Data Fig.5: EPCOT predicts cross-cell type chromatin contact maps. a) An example region to show
Hi-C prediction in five cell lines. Here GM12878 and HFF performs within-cell type prediction, and the other
three cells performs cross-cell type prediction using an ensemble of models trained on GM12878 and HFF.
b)An example region to show cross-cell type prediction of 1kb-resolution Micro-C contact map. c) Within-cell
type and cross-cell type prediction performance in 1kb-resolution Micro-C contact map prediction. d) EPCOT
predicts cell-type specific CTCF ChIA-PET. The model trained on GM12878 is used to predict three cell lines.
An example region of predicted and target ChIA-PET is given, and the predicted CTCF binding activities
and CTCF tracks in each testing cell line are also provided. e) Within-cell type and cross-cell type prediction
performance for CTCF and POLR2A ChIAPET. The model trained on GM12878 is tested on itself and other
two cell lines. Pearson correlation is calculated for each test genomic region.
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Extended Data Fig.6: Fine-tuning significantly improves Hi-C contact map prediction. a) Comparing Pearson
correlation of predicted and target Hi-C in 1Mb genomic regions from the test chromosomes when the pre-
training model is fine-tuned or not. b) Comparing IMR-90 Hi-C contact maps predicted by EPCOT with or
without fine-tuning in two genomic regions. In the top genomic region, the contact matrices predicted without
fine-tuning are dissimilar to the target comparing to the prediction with fine-tuning. In the bottom genomic
region, EPCOT with fine-tuning and without fine-tuning predicts the target contact map well. EPCOT with
fine-tuning predicts salient regions better than EPCOT without fine-tuning by comparing the difference between
their predicted contact maps with the target in these two scenarios.
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Extended Data Fig.7: ECPOT accurately predicts active enhancers and characterizes the contributions of
epigenomic features. a) Enhancer activity prediction performance in a 1-to-10 ratio of positive to negative
samples. The AUPR and AUROC scores of five cell lines are shown in a table, and the AUPR curves are
also provided. b) Weights for five histone marks in the logistic regression (LR) model to predict enhancer
activity. c) Top 30 negative weights in the LR model to predict enhancer activity in five cell lines. d) The
LR model trained on individual cell line outperforms the model trained on all five cell lines, which indicates
the possibility of cell-type specific relationships between epigenomic features and enhancer activity. e) Top
50 positive and negative weights for TFs in the LR model of two cell lines, which characterizes TFs’ cell-type
specific relationship to enhancer activity.
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Extended Data Fig.8: Cell-type specific sequence patterns in active enhancer regions of three cell lines. For
each sequence pattern, the most matched TF motifs from HOCOMOCO along with q-value (lower indicates
better match) using Tomtom are provided.
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Supplementary information

DNase-seq processing

EPCOT predicts cell-type specific epigenomic features, gene expression, chromatin contact maps, and enhancer
activity with the only cell-type specific input of DNase-seq, so we use deepTools [56] to normalize DNase in all
used cell types: we download the bam files from ENCODE [38] and merge different replicates, which are then
converted into bigWig files and normalized by using deepTools [56] bamCoverage’s RPGC normalization with
the parameter binSize 1. For ChIA-PET, we take a natural logarithm of observed/expected contact values
with a pseudo-count of 1, and clip to (0,5), and smooth with a 2D Gaussian filter (sigma=1, width=5). In
the enhancer activity prediction task, all the peak profiles of STARR-seq and ChIP-seq are downloaded from
ENCODE.

Epigenomic feature prediction (EFP)

In the EFP task, we first labelled 1kb DNA sequences in a way similar to DeepSEA that if more than 100bp of
a 1kb bin was in the peak region of an epigenomic feature, then the epigenomic feature in this bin was labelled
1, and 0 otherwise. In this task, we compared EPCOT with two models that also leveraged multi-task training:
FactorNet and scFAN. FactorNet usec similar model structure to DanQ. scFAN usec similar model structure
to DeepSEA, but scFAN only usec half number of kernels in three convolutional layers compared to DeepSEA.
To be consitent with EPCOT, we only used the forward strand of DNA sequence and DNase-seq as input.
Chromosomes 2, 10, and 21 wer used for testing, and the remaining chromosomes were used for validation
and training. In the training, we only used genomic sequences which had binding activity for at least one
epigenomic feature, while in the testing, we used all the genomic sequences without genome gaps. In scFAN
training, we doubled the number of convolutional kernels to be consistent with DeepSEA, which outperformed
the original scFAN architecture in our EFP task.

To train the pre-training model that was used for the downstream tasks, we randomly split 10% input
samples for validation, and the remaining samples were all used for training.

Gene expression prediction (GEP)

In the within-cell type RNA-seq GEP task, we used the same training, validation and testing genes from
chromosomes 1-22 and X in GC-MERGE to compare EPCOT with GC-MERGE. In the cross-cell type RNA-
seq GEP task, we first collected RNA-seq and DNase-seq in eight cell types which were both available on
ENCODE, and trained EPCOT using four cell types: H1, GM12878, A549, and HeLa-S3, and tested the model
on the same test gene sets of four different cell types from chromesomes 1-22 and X with AttentiveChrome and
DeepChrome.

In the CAGE-seq GEP task, we downloaded CAGE-seq bam files from ENCODE [38] and merged different
replicates, and used the scripts ‘bam cov.py’ and ‘basenji data read.py’ provided by Basenji [4] to convert
the bam files into bigWig and process the data. Then, we first compared EPCOT with GraphReg in 5kb-
resolution CAGE-seq prediction, the same 10-fold cross-validation was utilized to obtain the prediction results
on 20 chromosomes. Due to the computational resource limitation, we split one 6Mb region into six 1Mb
regions in the training. In 1kb-resolution CAGE-seq prediction, we used a 250kb window to slide over the
whole genome with a step size of 25kb to generate input genomic regions, and used the 250kb genomic region
to predict CAGE-seq on the centered 200kb, so there was no overlap for the centered 200kb to be predicted
on. Then, we collected CAGE-seq in eleven cell types from ENCODE, and trained EPCOT on four cell types,
GM12878, K562, HUVEC, and IMR-90.

Chromatin organization prediction (COP)

For the Hi-C, Micro-C, and ChIA-PET contact maps, we downloaded their .hic files from 4DN [54] and obtained
the observed and expected contact ratios using Juicebox [35]. To predict Micro-C, we simply took a natural
logarithm of observed and expected contact ratios, and clipped to (-2,2), and smoothed with a 2D Gaussian
filter (sigma=1, width=5). For ChIA-PET, we took a natural logarithm of observed/expected contact values
with a pseudo-count of 1, and clipped to (0,5), and smoothed with a 2D Gaussian filter (sigma=1, width=5).
While in the 5kb-resolution Hi-C contact map prediction, we directly predicted the observed and expected
contact ratios without any smoothing.

In both the 5kb-resolution Hi-C COP and ChIA-PET prediction, we predicted the upper triangle of the
contact matrices in the centered 960kb of 1Mb genomic regions. The input genomic regions were generated
by using a 1Mb window to slide over the whole genome sequence with a step size of 250kb, and the regions
without genome gaps were kept. Chromosomes 3, 11, and 17 were used for testing, and chromosomes 9 and
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16 were used for validation, and the remaining chromosomes were training chromosomes. To compare with
Epiphany and DeepC, we generated the 1Mb testing regions with a step size of 50kb and predicted the upper
triangle of the contact matrices for each testing region, and simply took an average for the predicted chromatin
contact in overlapping regions. Then we can predict the distance-stratified Pearson correlation and Spearman
correlation up to 910kb.

In the Micro-C COP task, to compare with Akita, we predicted our processed Micro-C contact maps in
2kb resolution and used 1Mb genomic regions to predict the contact matrices in the centered 960kb. Here,
the same training/validation/testing split was used. In the 1kb-resolution Micro-C COP, we used a 600kb
genomic region to predict the upper triangle of contact matrix in the centered 500kb region, and the same
training/validation/testing split was used as the split in Hi-C COP task.

Enhancer activity prediction (EAP)

In the EAP task, we labelled active enhancers in a way that if more than 100bp of a 1kb bin was in the region
of candidate enhancers, STARR-seq peaks and H3K27ac peaks, then this bin is labelled as an active enhancer.
In this task, chromosomes 2, 10, and 21 were used for model testing, and the remaining chromosomes were
used for training and validation. Since the number of negatives was far more than the number of positives
(Supplementary Table 4), to train the model, we simply down-sampled the negatives by randomly choosing
ten times more negatives than positives.

Sequence pattern generation

To generate the sequence binding patterns of TFs, we first calculate the attribution scores of DNA sequence in
the pre-training model. For each TF, we first randomly selected 180 input genomic regions which are bound
by this TF and received corresponding predicted scores greater than 0.4 in the same cell line. Then a gradient-
based attribution method ‘gradient×input’ was adopted to calculate the attribution scores by multiplying
the absolute value of the gradient of predicted score with respect to the genomic sequences with the one-hot
encoded sequence. Once obtaining the attribution scores of each TF, its sequence patterns were generated by
using TF-MoDISco [26] which first identifies seqlets (high-contribution regions), then splits the seqlets into two
metaclusters, and clusters the seqlets in each metacluster, and aggregate seqlet clusters into sequence patterns.
For each TF, we simply used same setting to run TF-MoDISco (sliding window size of 20, filter out clusters
with less than 45 seqlets) except for ADNP and CHD4 whose generated sequence patterns seem longer than
others.

The cell-type specific sequence patterns in active enhancers are generated from attribution scores of 600
active enhancer sequences which receive predicted scores greater than 0.4 in each investigated cell line. Then,
TF-MoDISco is run with sliding window size of 16 and filter out clusters with less than 60 seqlets.
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Supplementary Figure 1: Cell types and epigenomic features used for the pre-training model’s training and
testing.
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TF Neighbors TF Neighbors

ATF7 ATF3,JUND,CREB1 ATF4 CEBPB
CEBPB CEBPG,ATF4 ERF ELF1
CREB1 CREM JUNB ATF3
JUND ATF7,ATF3 ZBTB7A IKZF1
ELF1 ETV5,ERF ELF4 ELF1
MAZ KLF13 KLF9 SP1
EGR1 KLF13 NR2C1 NR2F1,NR2C2,NR2F2
ESRRA NR2F1,NR2F2 NFIB NFIC
TCF12 TCF3 ZNF740 ZNF281
FOXK2 FOXA1,FOXA3 CLOCK BHLHE40
ELK1 ELF4 KLF13 MAZ
RFX5 RFX1 ETS1 ETV6
NFIC NFIB USF2 TFE3
CEBPG CEBPB ATF3 ATF7,JUNB
NR2F1 NR2C1,ESRRA,NR2F2 FOSL2 FOSL1
ATF2 ATF3 MEIS2 PBX2
BHLHE40 CLOCK FOSL1 FOSL2
NR2C2 NR2C1,NR2F2 ZNF281 ZNF740,PATZ1
NR2F2 NR2F1 FOXA3 FOXK2
CREM CREB1 ETV5 ELF1
TCF3 TCF12 TEAD1 TEAD4
RFX1 RFX5 TFE3 USF2
TCF7L2 TCF7 JUN CREB1,ATF3
FOXA1 FOXK2 TCF7 TCF7L2

Supplementary Table 1: A list of TFs and their embedding neighbors whose binding motifs are in the same
cluster [24, 25]
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TF interactions Score TF interactions Score TF interactions Score

MTA1 ←→ RCOR1 0.68 ATF3 ←→ JUND 0.974 ATF7 ←→ JUND 0.604
E2F4 ←→ GATA2 0.616 RB1 ←→ TFDP1 0.998 CTBP1 ←→ TCF7 0.841
MYC ←→ ZFP1 0.87 ATF3 ←→ JUNB 0.952 HDAC2 ←→ RCOR1 0.999
SMAD4 ←→ THRA 0.546 GABPB1 ←→ NRF1 0.875 BRCA1 ←→E2F4 0.713
GATA2 ←→ HDAC1 0.54 JUN ←→ ZHX2 0.415 FOSL1 ←→ FOSL2 0.827
EGR1 ←→ IRF5 0.913 MAFG ←→ MAFK 0.907 EHMT2 ←→ PHF21A 0.472
FOSL1 ←→ MAFG 0.44 CBX1 ←→ TBL1XR1 0.908 MAFK ←→ RFX5 0.513
ATF7 ←→ CREB1 0.595 SMAD4 ←→ TCF3 0.919 NFIB ←→ NFIC 0.697
RBBP5 ←→ SMARCA5 0.453 ZBTB7A ←→ ZBTB7B 0.453 EP300 ←→ SPI1 0.984
TCF12 ←→ TCF3 0.652 NR2C1 ←→ NR2C2 0.688 EHMT2 ←→ MTA3 0.666
CBX5 ←→ TFDP1 0.907 JUN ←→ MAFK 0.561 CHD1 ←→ SMARCE1 0.447
JUNB ←→ SP1 0.93 HCFC1 ←→ ZNF143 0.49 MYC ←→ POLR2A 0.828
SMARCC2 ←→ SMARCE1 0.999 IRF1 ←→ IRF2 0.935 CTCF ←→ SMC3 0.96
CREB1 ←→ CREM 0.797 CREB1 ←→ JUN 0.998 BRCA1 ←→ NCOR1 0.43
CEBPB ←→ CEBPG 0.912 E2F1 ←→ EED 0.915 E2F5 ←→ FOXM1 0.412
HDAC1 ←→ NCOR1 0.999 HDAC1 ←→ ZNF217 0.663 JUND ←→ TEAD4 0.453
ATF2 ←→ ATF3 0.723 KLF6 ←→ ZFP36 0.44 ATF4 ←→ CEBPB 0.976
MYC ←→ YY1 0.983 RBBP5 ←→ TCF7L2 0.602 NCOR1 ←→ NR2F2 0.844
KDM5B ←→ PHF8 0.699 NFYB ←→ SREBF1 0.668 GATA2 ←→ HMG20B 0.41
CREB1 ←→ MEF2A 0.418 CREB1 ←→ FOSL2 0.747 ATF3 ←→ ATF7 0.411
BRCA1 ←→ JUN 0.892 GATAD2A ←→ HMG20A 0.67 HDAC2 ←→ STAT5A 0.414
CHD4 ←→ KDM1A 0.959 CEBPB ←→ CREB1 0.975 RAD21 ←→ SMC3 0.999
BRD4 ←→ SMC3 0.487 MAFG ←→ NFE2L1 0.997 EP300 ←→ FOSL2 0.496
DNMT1 ←→ SUZ12 0.911 MYC ←→ TFDP1 0.94 IKZF1 ←→ MEIS2 0.427
BRCA1 ←→ RELA 0.96 BHLHE40 ←→ CLOCK 0.958 MEIS2 ←→ PBX2 0.949
CBX1 ←→ PHF8 0.535 MTA2 ←→ MTA3 0.947 ETS1 ←→ ETV6 0.545
DNMT1 ←→ MTA1 0.883 PBX2 ←→ PKNOX1 0.899 MEF2A ←→ TCF3 0.685
ATF3 ←→ FOSL2 0.614 FOSL2 ←→ SMAD3 0.512 ATF4 ←→ EP300 0.969
CTCF ←→ RAD21 0.996 GATA2 ←→ NR2F2 0.743 SMC3 ←→ STAG1 0.999
NCOR1 ←→ RBPJ 0.995 MAFF ←→ MAFK 0.91 CTCF ←→ STAG1 0.863
RBPJ ←→ SMAD3 0.448 KDM5B ←→ MYC 0.976 EED ←→ SMARCA5 0.451
DPF2 ←→ ZC3H8 0.417 BCLAF1 ←→ CHD1 0.456 RBBP5 ←→ TAF1 0.944
MXI1 ←→ SIN3B 0.724 SMAD4 ←→ TFE3 0.955 CBX5 ←→ H2AFZ 0.622
ATF3 ←→ MAFG 0.54 HDAC2 ←→ SIN3A 0.999 NFE2 ←→ ZNF24 0.419
RELA ←→ SMAD3 0.57 ATF3 ←→ JUN 0.999 ADNP ←→ CHD4 0.896
MYC ←→ RB1 0.866 ATF3 ←→ ATF4 0.981 TEAD1 ←→ TEAD4 0.955
RAD21 ←→ STAG1 0.999 ETV6 ←→ ZNF384 0.563 EHMT2 ←→ REST 0.863
MAFG ←→ NFE2 0.99 E2F4 ←→ TAF1 0.53 CREB3 ←→ NFE2 0.402
MAX ←→ SIN3A 0.97

Supplementary Table 2: 115 pairs of TFs identified by five nearest neighbors using cosine similarity, receive
confidence scores greater than 0.4 from STRING database.
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5kb-resolution Hi-C contact map prediction

Pearseon correlation Spearman correlation

Epiphany (GM12878 OE-normalized from HiC-DC+) 0.563⋆ 0.527⋆

DeepC (GM12878 unsmoothed percentile normalization) 0.36⋆ -
EPCOT w/ Transformer (GM12878 OE-normalized) 0.79⋆ 0.79⋆

DeepC (K562 unsmoothed percentile normalization) 0.28⋆ -
EPCOT w/ Transformer (K562 OE-normalized) 0.61⋆ -

EPCOT w/ Transformer (GM12878 OE-normalized) 0.741⋄ 0.711⋄

EPCOT w/ LSTM (GM12878 OE-normalized) 0.731⋄ 0.706⋄

EPCOT w/ Transformer (IMR-90 OE-normalized) 0.652⋄ 0.602⋄

EPCOT w/ LSTM (IMR-90 OE-normalized) 0.639⋄ 0.587⋄

EPCOT w/ Transformer (HFF OE-normalized) 0.721⋄ 0.683⋄

EPCOT w/ LSTM (HFF OE-normalized) 0.661⋄ 0.627⋄

EPCOT w/ Transformer (H1-hESC OE-normalized) 0.636⋄ 0.604⋄

EPCOT w/ LSTM (H1-hESC OE-normalized) 0.536⋄ 0.513⋄

EPCOT w/ Transformer (HepG2 OE-normalized) 0.596⋄ 0.535⋄

EPCOT w/ LSTM (HepG2 OE-normalized) 0.586⋄ 0.529⋄

EPCOT w/ Transformer (K562 OE-normalized) 0.543⋄ 0.494⋄

Micro-C contact map prediction

Pearson correlation Spearman correlation

Akita (H1-hESC in 2048bp resolution) - 0.61
Akita (HFF in 2048bp resolution) - 0.57
EPCOT w/ Transformer (H1-hESC in 2kb resolution) 0.82 0.79
EPCOT w/ Transformer (HFF in 2kb resolution) 0.78 0.81

⋆ Average, distance-stratified Pearson correlation/Spearman correlation.
⋄ Average Pearson correlation/Spearman correlation for each 1Mb genomic region in the test chromosomes

Supplementary Table 3: Model performance comparisons in 5kb-resolution Hi-C and 2kb-resolution Micro-C
contact map prediction. The Pearson correlation scores and Spearman correlation scores of Epiphany, DeepC,
and Akita are reported from their papers.

Positive training Negative training Positive testing Negative testing Testing positive ratio

K562 5538 432375 895 77254 0.011
MCF-7 8907 422662 1597 74575 0.021
HCT116 5302 469634 909 82584 0.011
HepG2 6133 411884 1058 72357 0.014
A549 13283 405374 2421 71383 0.033

Supplementary Table 4: Number of training and testing samples in the positive and negative sets. The testing
positive ratio indicates a baseline AUPR score.
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