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Clustering algorithms such as k-means and agglomerative hierarchical clustering (HCA) 

may provide a unique opportunity to analyze time-series kinematic data. Here we present an 
approach for determining number of clusters and which clustering algorithm to use on time-

series lumbar and pelvis kinematic data. Cluster evaluation measures such as silhouette 

coefficient, elbow method, Dunn Index, and gap statistic were used to evaluate the quality 
of decision making. The result show that multiple clustering evaluation methods should be 

used to determine the ideal number of clusters and algorithm suitable for clustering time-

series data for each dataset being analyzed. 
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Introduction 

 

Traditional statistical methods comparing 

movement kinematics in biomechanics 

involve calculating discrete variables like 

peak joint positions or ranges of motion and 

comparing between pre-defined groups based 

on age, sex, pathology, or condition. 

However, this method generalizes that the 

movement patterns of individuals within a 

group are similar and inherently different 

from those of the group being compared to, 

which might not be the case. A similar 

approach is commonly used when studying 

lumbopelvic or trunk kinematics where peak 

joint positions and ranges of motion of the 

spine are compared to predetermined groups 

(i.e., low back pain vs. no low back pain; old 

vs. young) during trunk flexion-extension 

movements (Paquet et al. 1994; Wong and 

Lee 2004; Pries et al. 2015; Laird et al. 2019). 

Past research has found that individuals with 

low back pain have reduced lumbar spine and 

pelvis range of motion during trunk flexion 

(Paquet et al. 1994; Wong and Lee 2004; 

Laird et al. 2019) and older adults (50-75 

years) have reduced lumbar spine range of 

flexion and greater pelvis range of flexion 

during trunk flexion when compared to 

younger adults (Pries et al. 2015).  

 

 Analyzing the entire time-series data 

instead or in-addition to discrete variables 

may be useful for lumbopelvic kinematics 

and to answer other biomechanical questions. 

Time-series analysis using machine learning 

techniques such as clustering offers a 

convenient method to distinguish movement 

patterns within a group of individuals. 

Clustering aims to take an unlabeled set of 

data and organize them into homogenous 

groups (Warren Liao 2005). Clustering may 

help separate lumbar spine and pelvis 

kinematics into multiple distinct movement 

patterns, which may help researchers identify 

different lumbar spine and pelvis movement 

patterns within a heterogenous group of 

healthy young and old adults and individuals 

with low back pain. We use lumbar and 

pelvic kinematics here to show the 

applicability of clustering analysis in 

biomechanics in healthy adults. 

 

 Clustering approaches have been used 

previously in biomechanics research to 

segment kinematic and kinetic data (Sawacha 
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et al. 2010; Bennetts et al. 2013; Ackermans 

et al. 2019; Sawacha et al. 2020). However, 

these studies focus on specific events and 

discrete variables extracted from a time-

series instead of the entire time-series 

(Sawacha et al. 2010; Bennetts et al. 2013; 

Ackermans et al. 2019). While other studies 

with a focus on time-series have used 

clustering algorithms using standard or 

squared Euclidean as the distance metric 

(Phinyomark et al. 2015; Sawacha et al. 

2020) to measure the similarity or 

dissimilarity among data points (Singh et al. 

2013). Euclidean distance is a correlation-

based distance metric that calculates the root 

of square difference between the coordinates 

of a pair of data points (Singh et al. 2013; 

Aghabozorgi et al. 2015). Along with 

requiring the two time-series being compared 

to be the same length, which is often not 

common in joint kinematics, Euclidean 

distance is also sensitive to small shifts or 

delays in time (Kate 2016). Thus, even 

though Euclidean distance is simple and 

efficient, it may not be the most appropriate 

for calculating the similarity in joint 

kinematics data. Euclidean distance is 

generally performed on time-series data that 

has been transformed using Fourier 

transforms, wavelets, or Piecewise Aggregate 

Approximation (Aghabozorgi et al. 2015). 

Within raw time-series data where temporal 

drift is common, shape-based distance 

metrics may be useful because the time of 

occurrence is not important when calculating 

the distance between time-series. In these 

situations, elastic methods such dynamic time 

warping (DTW) are used rather than 

Euclidean distance (Kate 2016; Lee 2019). 

For example, DTW has been previously used 

in speech recognition to match words even 

when timing and pronunciation varies from 

person to person, and also to analyze the 

similarity of gait patterns (Berndt and 

Clifford 1994; Adistambha et al. 2008; Lee 

2019).  

 

 As the amount of data in 

biomechanics and the interest in machine 

learning increases, we need to determine best 

practices to ensure accurate analysis and 

reproducibility (Halilaj et al. 2018). There are 

many different clustering techniques to 

choose from. K-means and agglomerative 

hierarchical clustering (HCA) are commonly 

preferred for time-series data analysis 

(Sawacha et al. 2010; Bennetts et al. 2013; 

Ackermans et al. 2019). Each algorithm has 

its strengths and weaknesses, which makes it 

difficult to choose the most optimal one for a 

given situation. For example, k-means is 

computationally faster than HCA and can 

handle many variables, but the number of 

clusters need to be predefined, and the results 

are dependent on the initial centroid 

definition (Dhanachandra 2015; 

Aghabozorgi et al. 2015). On the other hand, 

HCA does not require any predefined number 

of clusters, but this method is more 

computationally expensive (Bouguettaya et 

al. 2015). To select the most optimal 

algorithm for a dataset, different clustering 

approaches might need to be compared. 

Therefore, the purpose of this study was to 

compare clustering performance of the k-

means and HCA algorithms for classifying 

lumbar and pelvis kinematics during trunk 

flexion and extension task. 

 

Methods 

 

Participants 

 

Eighty-four healthy adults completed this 

study (Table 1). Participants were split up 

into two age groups: young (18-40 years) and 

middle–age (41-65 years) adults, including 

both male and female participants. Healthy 

adults were free from any medical 
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condition/injury that would interfere with 

participation, had not completed a major 

competitive event one week before the data 

collection, and completed a pre-participation 

health status, a medical history questionnaire, 

and a short-form International Physical 

Activity Questionnaire to assess eligibility.  

 

Table 1: Participant Characteristics. 

     

Data Collection and Analysis 

 

 Informed consent was obtained prior 

to data collection, as approved by the 

university institutional review board. This 

was a secondary analysis from a larger 

research project with the focus on the 

kinematics of the trunk and pelvis captured in 

the sagittal plane during 3 trials using a 

reflective marker-based motion capture 

system (Sampling frequency: 120 Hz; 

Vicon® Motion System Ltd, Oxford, UK). 

The marker setup has been described in detail 

previously (Li et al. 2017; Kakar et al. 2018). 

In brief, the reflective markers were placed 

on the jugular notch, xiphoid process, spinal 

process of the C7, T2, T4, T6 and T8, spinal 

process of the T10 and T12, right and left 

transverse processes of T11, spinal process of 

the L2 and L4, right and left transverse 

processes of L3, and ASIS and PSIS on the 

right and left (Figure 1). The lumbar was 

constructed using the spinal process of the L2 

and L4, and right and left transverse process 

of L3. The pelvis was constructed with 

CODA model (Bell et al 1989). The 

segmental angles of the lumbar spine and 

pelvis were calculated relative to the global 

coordinate system. The following x-y-z 

Cardan rotation sequence was used: 

extension (+)/flexion [or pelvic posterior 

(+)/anterior tilt]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Marker placement on the trunk 

and pelvis. 

 

 Participants began each trial in 

neutral standing position, moved into their 

maximal trunk flexion range (max flexion), 

and then returned to neutral/ starting position 

(neutral). Participants continued the motion 

into maximal trunk extension 

(hyperextension) before returning back to 

neutral to end the trial. The entire movement 

task was performed as one fluid motion. 

Lumbar and pelvis kinematics were 

calculated using Visual 3DTM software (V.5; 

C-Motion Inc., Maryland, USA).  

  Young Adults (n = 50) Middle-age Adults (n = 34) 

Age (years) 
(age range; mean±SD) 18-40; 26.84±6.77 41-65; 52.23±6.89 

Mass (Kg) 67.17±13.4 70.27±11.22 

Height (m) 1.69±0.08 m 1.68±0.07 m 
Physical activity duration 

(hours/ week) 6.2±3.3 8.1±8.7 

Males n = 14 n = 17 
Females n = 36 n = 17 
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Clustering Analysis 

 

K-means Clustering 

 

Using k-means clustering via a custom 

MATLAB code (GitHub), we investigated 

the implementation of grouping lumbar spine 

and pelvis kinematics of young and middle-

aged adults during a trunk flexion/extension 

task. K-means is a partitioning clustering 

algorithm (k = number of clusters/ groups), 

first proposed in 1967 (MacQueen 1967). K-

means aims to minimize the total distance 

between all objects in a cluster from their 

cluster center (Warren Liao 2005; 

Aghabozorgi et al. 2015). A cluster is 

represented by its centroid, which is a mean 

of the time-series within a cluster (Rai and 

Singh 2010). K-means starts by first 

determining the number of clusters and 

centroids (Warren Liao 2005; Aghabozorgi et 

al. 2015; Phinyomark et al. 2018; Halilaj et 

al. 2018). Each object is then assigned to the 

cluster with the closest centroid, which 

minimizes the overall within-cluster 

dispersion (Abbas 2008; Rai and Singh 

2010). DTW was the distance metric used to 

assign each time-series to the closest 

centroid. The previous centroids are then 

replaced by the newly formed clusters and the 

algorithm repeats this process until no objects 

change clusters (Warren Liao 2005). 

Execution of k-means is described in figure 

2. 

 

Hierarchical Clustering (HCA) 

 

HCA is a “bottom-up” approach that 

considers each time-series as an individual 

cluster, and then gradually combines the 

clusters until all time-series are grouped in 

one cluster (Aghabozorgi et al. 2015). The 

equation below is for HCA: 

 

𝑑(𝑟, 𝑠) =  √
2𝑛𝑟𝑛𝑠

(𝑛𝑟+𝑛𝑠)
 𝐷𝑇𝑊(𝑋𝑟 , 𝑋𝑠)             (1)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow diagram of k-means 

clustering procedure. 

 

Where, DTW (Xr, Xs) is the DTW distance 

between Xr and Xs, which are the centroids of 

clusters r and s and nr and ns are the number 

of elements in clusters r and s.(Equation 1). 

HCA starts off by calculating the distance 

between every time-series of all participants 

using DTW. Second, individual clusters are 

combined into binary clusters using the Ward 

linkage method (Ward Jr 1963). The aim of 

Ward linkage is to minimize the total within-

cluster variance by merging clusters that lead 

to a minimum increase in total within-cluster 

variance post-merger (Warren Liao 2005; 

Charrad et al. 2014). Lastly, newly formed 

Start 

Determine number of clusters (k) 

Set initial cluster centroids 

randomly 

Calculate distance between all time-

series cluster centroids using dynamic 

time warping 

 

Assign time-series to nearest 

cluster by distance 

 

Set new clusters as 

cluster centroids 
Has convergence 

occurred? 

 

No Yes 
End 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493131doi: bioRxiv preprint 

https://github.com/smhiggins11/Machine_Learning
https://doi.org/10.1101/2022.05.23.493131


clusters are grouped into larger clusters until 

the dendrogram is formed (Phinyomark et al. 

2015). The method for calculating HCA is 

represented in figure 3. 

 
 

 

 

 

 

 

 

 

 

 

Figure 3: Flow diagram of HCA 

procedure. 

 

Distance Measures 

 

Dynamic Time Warping (DTW) 

 

DTW is a shape-based distance metric that 

measures the similarity between two time-

series, which may vary in speed 

(Aghabozorgi et al. 2015). DTW starts out 

with two time-series (Q and C) (Equation 2). 

Then the distance is computed by first finding 

the best alignment between them by creating 

a n-by-m matrix whose (ith, jth) element is 

equal to (qi – cj)
2 which represents the cost to 

align the point qi of the time-series Q with the 

point cj of time-series C (Kate 2016). An 

alignment between the two time-series is 

represented by a warping path, W = w1, w2, 

…, wk, …, wK, in the matrix (Kate 2016). The 

best alignment is the path that minimizes the 

total cost of aligning its points, which is 

termed as the DTW distance (Kate 2016).  

 

𝐷𝑇𝑊 (𝑄, 𝐶) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑊 = 𝑤1 , … 𝑤𝑘 , … 𝑤𝐾
√∑ (𝑞𝑖 − 𝑐𝑗 )

2𝑘
𝑘=1,𝑤𝑘=(𝑖,𝑗)   (2) 

 

The warping path was found using dynamic 

programming algorithm (Berndt and Clifford 

1994; Keogh et al. 2004).  

 
𝛾(𝑖, 𝑗) = 𝑑(𝑞𝑖, 𝑐𝑗) + min{𝛾(𝑖 − 1, 𝑗 − 1), 𝛾(𝑖 −
1, 𝑗), 𝛾(𝑖, 𝑗 − 1)}         (3) 

 

Where d(i,j) is the distance found in the 

current cell, and γ(i,j) is the cumulative 

distance of d(i,j) and the minimum 

cumulative distance from the three adjacent 

cells (Keogh et al. 2004) (Equation 3).  

 

Clustering Evaluation 

 

Four independent evaluation measures were 

used to compare k-means and HCA 

performance using two methods. For the first 

method, clustering evaluation measures were 

used to determine the optimal number of 

clusters used for both kinematic datasets and 

for both clustering methods (Rousseeuw 

1987; Tibshirani et al. 2001; Kryszczuk and 

Hurley 2010; Zhou et al. 2017; Syakur et al. 

2018; Yuan and Yang 2019). The optimal 

number of clusters were determined by 

calculating each evaluation measure for 

different number of clusters (k = 2-10) 

(Saputra et al. 2020). For each fixed value of 

k, k-means was ran 30 times and each 

evaluation measure was calculated (Wang et 

al. 2017). The criteria for determining the 

number of clusters for each evaluation 

Input each time-series as its own 

cluster. (N = number of clusters) 

 

Calculate distance between all 

time-series using dynamic time 

warping 

Combine two closest cluster 

using Ward linkage method 

N = 1 

Update the distance matrix N-1 

Yes 

No 

End 

Start 
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measures is described below. For the second 

method, each evaluation measure was used to 

compare the quality of the clusters between 

k-means and HCA (Xu et al. 2006). 

 

Silhouette Coefficient 

 

Silhouette coefficient was first developed in 

1987 as a graphical aid to help interpret and 

validate clustering analyses (Rousseeuw 

1987). Silhouette coefficient measures how 

similar a time-series is to the time-series 

within its own cluster compared to the time-

series in other clusters (Sawacha et al. 2010). 

To calculate silhouette coefficient, the 

average distance of each time-series to all the 

other time-series within the same cluster was 

calculated (a). Then, the average distance of 

each time-series to all the other time-series in 

the nearest cluster by distance was calculated 

(b). DTW was used as the distance metric 

(Berndt and Clifford 1994; Kate 2016). The 

values of a and b for each time-series were 

used to calculate the silhouette coefficient 

using the equation below: 

 

𝑆 =
𝑏−𝑎

max(𝑎,𝑏)
                                                           (4) 

 

 Silhouette coefficient ranges from -1 

to +1, and -1 indicates that the time-series 

was assigned to the wrong time-series, 0 

indicates that the time-series could be 

assigned to either cluster, and +1 indicates 

that the time-series was assigned to the 

correct cluster. The silhouette coefficients for 

each time-series were averaged to get an 

overall silhouette score. The number of 

clusters (k) that produced the greatest 

silhouette score indicated a higher quality 

result and was chosen as the k for further 

analysis (Xu et al. 2006; Jun and Lee 2010; 

Zhou et al. 2017; Navarro and Moreno-Ger 

2018; Yuan and Yang 2019; Sebastian et al. 

2020). When comparing the silhouette scores 

between the two clustering methods, the 

greatest silhouette score indicated the 

clustering method that produced the highest 

quality clusters. 

 

Elbow Method 

 

The elbow method was another clustering 

evaluation technique used to determine the 

optimal number of clusters on a set of data. 

For each number of clusters (k), the total sum 

of square error was calculated and then 

plotted. One drawback of this method is that 

when the k value increases, the total sum of 

square error value will reach near 0, which 

will not determine if a cluster is good or bad 

based on the measurement alone (Saputra et 

al. 2020). With this drawback in mind, this 

method suggests that the best value of k is 

when the total sum of square error value 

reduces significantly, or the “elbow” of the 

graph (Syakur et al. 2018). When comparing 

the elbow method results between k-means 

and HCA, the lowest total sum of square error 

indicated the clustering method that produced 

the highest quality clusters. 

 

Gap Statistic 

 

Gap statistic is a clustering evaluation 

technique developed in 2001 to provide a 

statistical procedure to determine the optimal 

number of clusters (Tibshirani et al. 2001). 

To calculate the gap statistic, the data is 

clustered into k clusters. Let dii’ be the 

distance between time-series i and each 

centroid i’. DTW was used as the distance 

measure. In equation 5, Dr is the sum of the 

distances for all the time-series in cluster r 

(Cr).   

 

𝐷𝑟 = ∑ 𝑑𝑖𝑖′𝑖,𝑖′𝜖𝐶𝑟
                                      (5) 

 

𝑊𝑘 =  ∑
1

2𝑛𝑟
𝐷𝑟

𝑘
𝑟=1                                  (6) 
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In equation 6, Wk is the pooled within-cluster 

sum of squares for each cluster, where Dr is 

the sum of the distances for all time-series in 

cluster r and nr are the number of elements in 

cluster r. Next, the log(Wk) was compared 

with its expectation under a null reference 

distribution of the data. This is defined as 𝐸𝑛
∗ , 

which is the expectation under a sample of 

size n from the reference data. The estimated 

number of clusters (k) was the value 

maximizing Gapn(k) (Equation 7). 

 

𝐺𝑎𝑝𝑛(𝑘) =  𝐸𝑛
∗{log(𝑊𝑘)} − log (𝑊𝑘)    (7) 

 

Dunn Index 

 

Dunn index is a clustering evaluation 

algorithm developed in 1974 (Dunn 1974). 

Dunn index is defined by equation 8 where 

the min is the minimum distance between any 

two time-series that fit in different clusters, 

and max is the maximum distance between 

two time-series in the same cluster (Dunn 

1973). δ(Ci,Cj) is the inter-cluster distance 

between cluster Ci and Cj. ∆(Ck) is the intra-

cluster distance within cluster Ck (Equation 

8). The higher Dunn index value indicates the 

optimal number of clusters for a given data 

set and the optimal clustering solution when 

comparing different clustering algorithms 

(Kryszczuk and Hurley 2010). 

  

𝐷𝑢𝑛𝑛 =  
𝑚𝑖𝑛𝑐𝑘∈𝐶𝛿(𝐶𝑖,𝐶𝑗)

𝑚𝑎𝑥𝑐𝑘∈𝐶∆(𝐶𝑘)
                               (8)                      

 

Results 

 

Cluster evaluation results for k-means and 

HCA are represented in figure 4. Based on the 

criteria for each evaluation measure, the 

optimal number of clusters for each 

clustering algorithm and dataset were 

determined (Table 2). Since the optimal 

number of clusters changed with the choice 

of the evaluation measure, a list of the top 3 

choices for the number of clusters were made 

for each of the four evaluation measures 

(Table 2). Based on majority ranking (Sikdar 

et al. 2020), there was a clear preference of 4 

clusters for the lumbar kinematics using HCA 

and 2 clusters for the pelvis kinematics using 

HCA and k-means. The evaluation results for 

lumbar kinematics using k-means were less 

consistent. Therefore, to compare HCA 

results with k-means, we selected 4 for k-

means as well, since it was also amongst the 

top choices. The number of participants 

within each cluster are represented in table 3.  

 

Using the number of clusters determined 

above, all four clustering evaluation 

measures were compared between k-means 

and HCA for both datasets to determine 

which clustering algorithm produced the best 

clustering results. For the lumbar kinematics 

HCA produced a greater silhouette 

coefficient (HCA: 0.292; k-means: 0.258) 

and lower total within sum of squares for the 

elbow method (HCA: 24,587; k-means: 

27,852) than k-means, but k-means produced 

better clustering results based on the results 

of the Dunn Index (HCA: 0.085; k-means: 

0.101) and gap statistic (HCA: 0.254; k-

means: 0.846). HCA was chosen as the most 

optimal clustering algorithm for the lumbar 

kinematic data because HCA was more 

consistent when considering the majority 

ranking results. For the pelvis kinematics, k-

means was chosen as the most optimal 

clustering method because k-means produced 

better clustering results when examining the 

evaluation results from silhouette coefficient 

(HCA: 0.414; k-means: 0.433), elbow 

method (HCA: 25,359; k-means: 25,038), 

and gap statistic (HCA: 0.307; k-means: 

0.638), but for the Dunn Index (HCA: 0.055; 

k-means: 0.055), k-means and HCA 

produced the same value. 
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Figure 4: Cluster evaluation results for k-means and HCA. 
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Table 2. Top three choices for optimal number of clusters and their validation measure 

scores (k; score) for each clustering algorithm and each validation measure. Values are in 

order of their ranking with the first value being the choice of k that produces the optimal 

value of the validation measure. Bolded* cells represent the optimal number of clusters (k) 

selected for that clustering algorithm and dataset. 

  
K-means HCA 

Segment Lumbar Pelvis Lumbar Pelvis 

Clusters 1 2 3 4 1 2 1 2 3 4 1 2 

Participants (n) 26 5 20 33 41 43 32 21 11 20 47 37 

Young-Adult Males 5 0 4 5 7 7 3 5 2 4 8 6 

Young-Adult Females 15 3 8 10 16 20 12 9 3 12 23 13 

Middle-Age Adult Males 3 1 7 6 6 11 11 5 0 1 11 6 

Middle-Age Adult Females 3 1 1 12 12 5 6 2 6 3 5 12 

Table 3: Breakdown of the number of participants and number of young adult and middle 

age adult males and females within each cluster for each clustering algorithm and dataset.  

 

 

 

 

 Validation 
Measures 

Silhouette 
Coefficient 

Elbow Method Gap Statistic Dunn Index 

K-means 

Lumbar 

2; 0.321 6; 23,355 10; 1.07 10; 0.129 

3; 0.258 7; 22,975 9; 0.982 4*; 0.101 

4*; 0.258 8; 22,401 7; 0.964 8; 0.100 

Pelvis 

2*; 0.433 2*; 25,038 8; 1.107 10; 0.091 

3; 0.386 3; 23,627 6; 1.033 8; 0.082 

4; 0.356 4; 20,899 7; 0.988 9; 0.082 

HCA 

Lumbar 

5; 0.296 4*; 24,587 1; 0.366 10; 0.141 

3; 0.293 5; 23,485 3; 0.255 9; 0.138 

4*; 0.292 6; 22,556 4*; 0.254 8; 0.137 

Pelvis 

2*; 0.414 2*; 25,359 2*; 0.307 10; 0.149 

3; 0.409 3; 23,808 7; 0.296 9; 0.118 

4; 0.356 4; 20,216 8; 0.282 8; 0.118 
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Figure 5: K-means and HCA clustering results for lumbar kinematics during trunk 

flexion/extension task.
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Figure 6: K-means and HCA clustering results for pelvis kinematics during trunk 

flexion/extension task.  
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Figure 7: Ward minimum variance linkage dendrogram for the HCA cluster analysis of the 

lumbar (top) and pelvis (bottom) kinematics during trunk flexion/extension task. For 

lumbar dendrogram, four groups are highlighted for cluster 1 (blue), cluster 2 (red), 

cluster 3 (yellow), and cluster 4 (purple). For pelvis dendrogram, two groups are 

highlighted for cluster 1 (blue) and cluster 2 (red). Participant numbers are indicated in the 

x axis. Participant numbers are indicated in the x axis.                                                                                                        
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Discussion 

 

This study aimed to compare clustering 

performance of k-means and HCA clustering 

algorithms for time-series kinematic data 

using lumbar and pelvis segmental 

kinematics during lumbar flexion and 

extension motion. The current study was 

performed to showcase that machine learning 

and statistical approaches such as clustering 

algorithms may be better suited to categorize 

and compare population groups based on 

time-series analysis of the joint kinematics 

instead of solely relying on comparing 

discrete kinematic variables between 

predetermined groups.  

 

 The clusters were able to identify time 

series with differences in the degree and 

timing of peak lumbar and pelvis flexion and 

extension and was not restricted by 

categorization of participants based on age 

group and sex demographics. Based on the 

amount of motion, cluster #2 from HCA, was 

characterized by the smallest degree of 

lumbar flexion and extension, and included 

more young adults (n = 14) than middle-age 

adults (n = 7) and a similar amount of females 

(n = 11) and males (n = 10) , while cluster #3, 

included individuals with the greatest degree 

of lumbar flexion, constituted a similar 

amount of young (n = 5) and middle-age 

adults (n = 6), and more females (n = 9) than 

males (n = 2). For the pelvis kinematics 

clusters from k-means, there are more young 

adults (n = 23) and less middle-age adults (n 

= 18), and more females (n = 28) than males 

(n = 13) in the cluster with the greatest 

anterior pelvic tilt (cluster 1) and more young 

adults (n = 27) and less middle-age adults (n 

= 16) and more females (n = 25) than males 

(n = 18) in the cluster with the least anterior 

pelvic tilt (cluster 2). 

 

 Past research has reported that older 

adults (51-75 years old) have reduced lumbar 

spine flexion range and greater pelvis anterior 

tilt during trunk flexion when compared to 

younger adults (Pries et al. 2015). Results of 

the current study show that reduced lumbar 

flexion may not be entirely age related. Since 

both young and middle-age adults were 

represented within each cluster, it cannot be 

assumed that an individual will have greater/ 

reduced lumbar flexion and extension based 

on age, but rather an individual characteristic.  

 

 Populations with low back pain and 

spinal fusions for idiopathic scoliosis have 

also been characterized as having reduced 

lumbar range of motion and lumbopelvic 

rhythm (Paquet et al. 1994; Wong and Lee 

2004; Wilk et al. 2006; Laird et al. 2019). 

Utilizing clustering results of normative 

lumbar and pelvis kinematics may help us 

better understand movement adaptations and 

variations in individuals with low back pain 

and spinal fusions for idiopathic scoliosis. By 

comparing an individual’s performance to 

normative movement groups (clusters here), 

identifying where the phase lags and 

hypermobility’s are may help physicians and 

physical therapist develop personalized 

rehabilitation strategies to treat these 

individuals.  

 

 From a methodological perspective, 

the results of this study show that when 

selection of the most optimal algorithm or the 

number of clusters for each clustering 

algorithm, multiple evaluation measures can 

be used. Since each evaluation measure 

produced different results within the same 

algorithm and dataset, it is not sufficient to 

rely on a single evaluation measure and 

compare results across algorithms. Paired 

with evaluation measures, a rank-based 

approach, was critical in determining the 

number of clusters (Sikdar et al. 2020) in the 
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current study. This approach determined that 

the optimal number of clusters as 4 for 

lumbar kinematics and 2 clusters for pelvis 

kinematics, which also matches with the 

common approach of physiological 

classification of the participants into young- 

and middle -aged males and females. 

 

 Overall, there are many things to 

consider when using clustering algorithms. 

First, each clustering algorithm takes a 

different approach. K-means clusters data by 

grouping all the data within the centroid that 

is closest by distance (DTW or Euclidean). 

HCA clusters data by merging the two closest 

data points together in a hierarchical fashion 

until all the data is merged into one cluster. 

Second, there are different distance measures 

(example, DTW or Euclidean) that can be 

used. Euclidean distance is generally used as 

the distance metric for most clustering 

algorithms, but it may not be appropriate for 

calculating the distance between two time-

series. Along with requiring the two time-

series to be the same length, Euclidean 

distance is also sensitive to even small shifts 

or delays in time (Kate 2016). DTW was used 

in this study because this distance metric was 

developed to overcome the limitations of 

Euclidean distance metric (Kate 2016; Lee 

2019). Third, there are different clustering 

evaluation methods to choose from. This 

study used silhouette coefficient, elbow 

method, Gap Statistic, and Dunn Index to 

evaluate clustering results, but other 

clustering evaluation metrics such as Calinski 

Harabaz Index, Davies Bouldin Index can be 

used (Calinski and Harabasz 1974; Davies 

and Bouldin 1979).  

 

 There are several limitations present 

in this study. First, there are many clustering 

algorithms and validation measures 

available, but only 2 commonly used 

algorithms were compared through 4 

different outcome measures. Although, the 

evaluation process presented in this study can 

be generalized to other clustering methods 

and validation measures. Second, we only 

tested young and middle-age adults. Further 

research on this topic should be conducted on 

older adults (age > 65), and populations with 

musculoskeletal pathologies directly 

effecting low-back, such as mechanical low 

back pain. Third, we only showcased one 

use-case of the clustering approach for time-

series analysis through trunk 

flexion/extension task, while these methods 

can be applied to other time-series data, both 

kinematics and kinetics, and during various 

movement tasks. Lastly, the number of 

individuals in the two different age and sex 

groups were not the same. The current study 

was not aimed at comparing groups directly, 

but rather categorizing individuals based on 

their movement performance. To 

simultaneously compare group differences, a 

more even distribution of the participants in 

each group may be useful.  

 

 In conclusion, this study proposed 

categorizing time-series data such as 

segmental/ joint kinematics (lumbar spine 

and pelvis kinematics in this study), to 

compare movement differences through 

different clustering algorithms, k-means, and 

HCA. Additionally, evaluation measures are 

important for the decision-making process of 

selection of optimal number of clusters, and 

multiple evaluation measures should be used 

simultaneously rather than relying on one, 

since results can vary based on the length, and 

other characteristics of a time-series. Rank-

based approach was found to be useful when 

comparing results of different evaluation 

measures, and for eventual selection of 

optimal clusters based on scores and 

frequency.  
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