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3Umeå University, Department of Integrative Medical Biology (IMB) and Umeå Center for Functional Brain Imaging9
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ABSTRACT11

The recognition of inner speech, which could give a ‘voice’ to patients that have no ability to speak or move, is a challenge for
brain-computer interfaces (BCIs). A shortcoming of the available datasets is that they do not combine modalities to increase the
performance of inner speech recognition. Multimodal datasets of brain data enable the fusion of neuroimaging modalities with
complimentary properties, such as the high spatial resolution of functional magnetic resonance imaging (fMRI) and the temporal
resolution of electroencephalography (EEG), and therefore are promising for decoding inner speech. This paper presents
the first publicly available bimodal dataset containing EEG and fMRI data acquired nonsimultaneously during inner-speech
production. Data were obtained from four healthy, right-handed participants during an inner-speech task with words in either a
social or numerical category. Each of the 8-word stimuli were assessed with 40 trials, resulting in 320 trials in each modality for
each participant. The aim of this work is to provide a publicly available bimodal dataset on inner speech, contributing towards
speech prostheses.

12

Background & Summary13

Although research in the field of brain-computer interfaces (BCIs) began in the 1960s, it has accelerated in recent years due to14

advances in machine learning, imaging, and other data collection modalities.1, 2. A core aim of BCI research is to assist people15

who have lost the ability to move, speak or communicate with their environment. Inner speech can be described as the inner16

voice inside our heads; this phenomenon is used when thinking in a language without any accompanying muscle movement or17

speech articulation3–6. Decoding inner speech from brain activity is a burgeoning research area and has applications for BCI18

paradigms such as speech prostheses7, 8, in clinical contexts—for example, informing models of psychiatric disorders in which19

inner speech is disturbed (e.g., schizophrenia9, 10)—and in neuroscience, by deepening our understanding of the spatiotemporal20

neural dynamics of inner speech11.21

Preliminary results have revealed that the most important parts of the brain for inner speech are the frontal gyri, including22

Broca’s area, the supplementary motor area and the precentral gyrus12, 13. Furthermore, core representations of the language23

system (phonology, lexicon, and syntax) have a clearly distinguishable spatial distribution in the neocortex14–16. This24

distribution of brain regions is remarkably similar across languages and across individuals17, regardless of why these language25

representations are accessed (i.e., for production or comprehension) or how they are accessed (i.e., visually (by reading) or26

auditorily (by listening)).27

BCI technologies use brain data acquired by invasive (e.g., electrocorticography (ECoG)18) or noninvasive modalities28

(e.g., electroencephalography (EEG)19, functional magnetic resonance imaging (fMRI)20, functional near-infrared spectroscopy29

(fNIRS)21, 22 and magnetoencephalography (MEG)23, 24) to establish an interface between humans and machines; in particular30

EEG data are the most commonly used in BCIs; and fMRI is a typical complimentary modality due to high spatial resolution.31

BCI paradigms include motor imagery25, 26 and external stimulation paradigms, such as the visual P30027. In motor imagery32

paradigms, patients imagine their movement without overtly performing the action; in the visual P300 paradigm, patients33

typically use the direction of their eye gaze to spell out words by selecting among flashing stimuli, again without additional34

overt movement, which requires substantial participant concentration28. Thus, in recent years, the research focus for BCIs used35

to enable Augmentative and Alternative Communications (AACs) has turned to inner speech.36
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Research on inner speech decoding has investigated the use of all invasive ECoG29, 30 and noninvasive methods 31–35.37

Various datasets have been acquired. Selected studies presenting EEG and fMRI are as follows: KARA ONE36 is a dataset38

of inner and outer speech recordings that combines a 62-channel EEG with facial and audio data. The dataset includes 1239

participants, and the lexicon contains 7 phonemes and 4 phonetically-similar words for binary phonological classification.40

Coretto et al. 37 provided a dataset containing a 6-channel EEG recordings of inner and outer speech recordings of 5 vowels41

and 6 words. Nguyen et al. 38 generated a dataset that contains a 64-channel EEG recordings of inner speech from 15 subjects,42

with a lexicon of 3 vowels and 5 words (note that the work also introduces new algorithms, but this is secondary for our study).43

Ferreira et al. 39 provided a fMRI dataset of inner speech recordings from 20 native Portuguese speakers that consisted of44

cardinal vowels, monosyllabic and disyllabic words, and sentences. Recently, Nieto et al. 40 published an open-source unimodal45

EEG dataset of inner-speech BCI commands in Spanish.46

The main limitation of such unimodal datasets is a much lower bound for possible recognition performance, as either47

temporal or spatial aspects of the data are not included. Unimodal datasets based on either EEG or fMRI can have drawbacks48

with regard to their temporal and spatial resolutions; specifically EEG datasets suffer from low spatial resolution but have a49

high temporal resolution, whereas fMRI datasets have a high spatial resolution that provides a deeper look into the subcortical50

structures of the brain but is limited by low temporal resolution. The relative strengths and weaknesses of these two neuroimaging51

modalities make their combination complimentary for brain analyses.52

As for the combination of different modalities, recent studies on tasks different to inner-speech decoding have shown a53

possible improvement of the neural decoding performance41–44. Perronnet et al. 41 found that haemodynamic and electrophysio-54

logical activity during motor imagery tasks was higher when combining EEG and fMRI data compared to when EEG or fMRI55

data were used alone. Lioi et al. ’s43 neurofeedback-based dataset of bimodal motor imagery was acquired with simultaneous56

EEG-fMRI recordings; the data were recorded from 30 subjects performing kinaesthetic motor-imagery tasks with the right57

hand to bring a ball to a target. In this work, the simultaneous bimodal EEG and fMRI dataset shows the potential of improving58

the quality of neurofeedback during a motor-imagery task compared to when using only one modality. Berezutskaya et al. 44
59

created a publicly-available multimodal nonsimultaneous dataset consisting of ECoG and fMRI data involving naturalistic60

simulation with a short audio-visual film; the dataset contains ECoG data from 51 subjects (5-55 years of age) and fMRI data61

from 30 participants (7-47 years of age) on the same task, enabling between-modality and subject-similarity analyses. This62

bimodal dataset shows the potential of combining different modalities to improve the study of neural mechanisms during63

language understanding and perception. The major outcomes of these studies were an improvement of the analysis when data64

from different modalities were combined. Making use of modality combination, hence, would be promising for inner-speech65

decoding as well.66

The closest related work to this study is Cooney et al. 42, which generated a bimodal dataset of EEG (64-channel) and67

fNIRS (8-channel) data by acquiring simultaneous recordings from 19 subjects during outer and inner speech. However, the68

improvement in the performance in the task of inner-speech decoding was not as significant. Specifically, fNIRS showed a low69

decoding performance, and the use of the fNIRS modality was proven not significant for the bimodal decoding. Therefore, the70

choice of this work is to focus on EEG without fNIRS.71

In terms of simultaneous vs nonsimultaneous recordings, we decided to choose nonsimultaneous recordings. Following72

the assessment procedure proposed by Scrivener45, we weighed in the following reasons: the analysis does not require73

simultaneously recorded data and it is not acceptable that the EEG data contain more artifacts when recorded with fMRI.74

Furthermore, nonsimultaneous recordings enable optimization of the task for each modality, such as fast paradigms with EEG75

and slow paradigms with fMRI, which has a slow BOLD response, therefore optimal for the bimodal acquisition of EEG and76

fMRI when comes to the inner-speech task.77

The aim of this study was to collect separately-recorded EEG and fMRI recordings from healthy participants, performing78

an inner-speech task that followed the same experimental protocol for both modalities. This study showed that combining79

separately-recorded EEG and fMRI data can facilitate the decoding of inner speech, as this approach combines both high80

temporal and spatial resolution. To the best of our knowledge, this study represents the first publicly available dataset with81

bimodal nonsimultaneous EEG and fMRI recordings of inner speech. This bimodal dataset will allow future users to investigate82

the potential advantages of using bimodal versus unimodal data for inner-speech recognition and will also contribute towards83

the BCI development in the area of speech prostheses.84

Methods85

Participants86

In order to identify participants for our study, we announced the study by distributing flyers describing the experimental87

procedure and aim of the study, at the Lulea University of Technology, following a list of predefined inclusion and exclusion88

criteria. In particular, the following inclusion criteria were followed: The current study aimed for an even gender distribution.89

In order to homogenize the sample, only right-handed people were considered in the study. To facilitate communication during90
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data collection, which is mainly carried out by a non-Swedish-speaking person, primarily English speakers were consulted.91

In the same manner, the following exclusion criteria were followed: If people have difficulty understanding or following92

the instructions given at the time of preparation or if for some reason they were feeling uncomfortable during the magnetic93

resonance imaging (MRI) or EEG examination, they were excluded from the study. All participants filled out an fMRI94

pre-screening form in order to exclude people that should not undergo the experimental procedure (e.g., due to the presence95

of metallic objects in their body, claustrophobia etc.). The study was approved by the Swedish Ethical Review Authority96

(Etikprövning myndigheden, ID:2021-06710-01) (https://etikprovningsmyndigheten.se/) in accordance with the Swedish Ethical97

Review Act (SFS 2003:460). Ten participants filled out the questionnaire and as our ethical approval allowed only for a limited98

amount of subjects, we decided to include only right-handed subjects covering both genders (at least 40% of each gender). As a99

result, five healthy right-handed subjects aged 33-51 years, participated in this study (three females and two males). Detailed100

information on the subjects in this study is shown in Table 1. None of these subjects were native English speakers.101

All subjects followed the same experimental protocol for the two modalities. The acquisition of the EEG and fMRI102

recording were performed sequentially followed the general approach of having an EEG recording followed by a fMRI103

recording with at least one hour of relaxation in between. In this study, we refer to the subjects with the following naming104

convention: sub-01, sub-02, sub-03, sub-04 and sub-05. Due to high fluctuations during the EEG recording the data from105

sub-04 were excluded from this study. All subjects provided written consent to participate in the study and to publish this106

dataset.

Table 1. Participant characteristics

Participant Self-declared sex Age Handedness Native language
sub-01 Male 33 Right Hindi
sub-02 Male 35 Right Bengali
sub-03 Female 51 Right Greek
sub-04 Female 35 Right Arabic
sub-05 Female 37 Right Hindi

107

fMRI hardware and setup108

The data were collected using a Siemens Magnetom Prisma MRI system (Siemens Healthineers, Erlangen, Germany), equipped109

with a 20-channel head coil. The visual stimuli were presented during the fMRI recording from a computer to an Ultra HD110

LCD display (NordicNeuroLab, Bergen, Norway). The screen was 88x48 cm (3,840x2,160 pixels at full resolution).111

Anatomical images were acquired using a sagittal T1-weighted 3D magnetization-prepared rapid acquisition gradient echo112

(MPRAGE) sequence with the following parameters: repetition time (TR) = 2.3 ms; echo time (TE) = 2.98 ms; inversion time113

(TI) = 900 ms; flip angle = 9°; slices = 208; matrix size = 256×256; and voxel size = 1×1×1 mm. Right after the anatomical114

scan, two field maps were obtained (A and B) with the following parameters: TR=662.0 ms, TE: A=4-92 ms, B=7.38 ms; and115

voxel size = 3x3x2 mm. Next, functional maps were obtained using double-echo gradient echo imaging BOLD sequences116

parallel to the bicommissural plane with the following parameters: TR = 2.16 s; TE = 30 ms; slices = 68; matrix size = 100×100117

and voxel size = 2×2×2 mm.118

EEG hardware and setup119

The EEG data were acquired using the BioSemi Active2 measuring system (BioSemi B.V., Amsterdam, Netherlands) with a120

16-bit resolution and a sampling rate of 512 Hz. A BioSemi EEG head cap with 64 electrodes in pre-fixed electrode positions121

and 6 external sensors was used. An appropriate cap size was selected for each participant by measuring his or her head122

circumference from nasion to inion. We also ensured that the cap was properly centred with the Cz (Vertex) at the centre of the123

head, namely, halfway between the nasion and inion and halfway between the two ears. SignaGel (Parker Laboratories BV,124

Almelo, Netherlands) was applied to each electrode to provide electrode connectivity with the subject’s head. All six external125

electrodes (EXG1-EXG6) were placed using stickers. The locations of the six electrodes were as follows:126

• EXG1: On the left mastoid behind the left ear127

• EXG2: On the right mastoid behind the right ear128

• EXG3: 1 cm to the left of the left eye (aligned to the centre of the eye)129

• EXG4: 2 cm above the left eye (aligned to the centre of the eye)130

• EXG5: 2 cm below the right eye (aligned to the centre of the eye)131
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• EXG6: 1 cm to the right of the right eye (aligned to the centre of the eye)132

EEG data were recorded with ActiView software, which was also developed by BioSemi. ActiView enables verification of133

the electrode impedance as well as the overall quality of the incoming data. The impedance of each electrode was manually134

examined at the beginning of each recording session, to ensure that it was between -20 µV and 20 µV; any electrodes not135

within this range were adjusted before recording to ensure the correct impedance, by adding/removing some gel, moving the136

participant´s hair underneath the electrode or wiggling the electrode. Lights in the room were dimmed to avoid subject´s eye137

flickering due to the high contrast between the room and the visual display.138

Experimental protocol139

The overall experimental protocol consisted of two fMRI sessions and one EEG session and was performed over a period of 3140

consecutive days. In this study, all EEG recordings were performed first, as the EEG setup can sometimes induce difficulties141

(e.g., achieving good electrode connectivity with the participant´s head). During day-01, the EEG recordings of sub-01, sub-02142

and sub-03 took place followed by the recordings of the first fMRI session. The majority of the fMRI recordings for the second143

session were performed during day-02; only the recordings of sub-05 were performed on day-03. There was always a relaxation144

period of at least one hour in between the recordings and proper time for a break to avoid participants´ fatigue. The detailed145

EEG /fMRI schedule is illustrated in Figure 1.146

Figure 1. EEG /fMRI schedule - The overall experimental protocol performed over a period of 3 consecutive days. Day-01
contains the EEG recordings as well as the recordings of the first fMRI session of sub-01, sub-02, and sub-03. Note that also
the fMRI session for sub-04 took place. Day-02 contains the fMRI recordings for session 2 of sub-01, sub-02, sub-03, and
sub-04, the fMRI recordings for session 1 of sub-05 and the EEG recordings of sub-05. Day-03 contains the fMRI recordings
for session 2 of sub-05. There was always a relaxation period of at least one hour in between the recordings and proper time for
a break to avoid participants´ fatigue.

The experimental protocol for both modalities (fMRI and EEG) was designed using E-Prime 3.046 and is illustrated in147

Figure 2. Huth et al. 16 shows that semantically selective brain areas appear to be organised in the same manner across148

individuals and provides word frequency statistics for the text corpus employed. Based on the reference study, two categories,149

social and number, with four words each were selected. The two selected categories were mapped into different brain areas150

and the selected words appear to have a high word co-occurrence frequency. The social category contained the words child,151

daughter, father, and wife. The number category contained the words four, three, ten, and six. The textual representation of152

the words was presented randomly on the screen in front of the participant. There were a total of 2,080–2,200 fMRI volumes153

collected per subject, divided into two sessions. Each volume contained 100×100×68 voxels. The EEG recordings provided a154

total of 320×64×1,024 samples per subject.155

fMRI procedure156

The fMRI recordings consisted of two sessions performed over a period of three days. At the beginning of each session, written157

instructions for the experiment were presented on the screen until the participants informed the fMRI operator through an158
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Figure 2. Experimental paradigm - The trial designs are depicted in the top part of the figure and the respected timelines for
the trials are shown at the bottom. During the fMRI inner-speech task, participants were requested to think of the presented
word as many times as possible. There were 320 trials in total, split into two sessions of 160 trials each. For the EEG
recordings, there was only one session, and the presented stimulus was imagined only once for each inner-speech task interval.
Note that the rest period for the fMRI protocol was longer than that for the EEG protocol

intercom that they are ready to proceed with the experiment. A fixation period of 2 s was followed, in which the participants159

were instructed to fixate their eyes on the centre of the screen. Then, each trial consisted of the inner-speech task (4 s)160

and a subsequent rest period (10 s). Eight different words were used for the inner-speech task, divided into 2 categories161

(social or number words), and there were 20 trials for each word in each session; thus, each session consisted of 160 trials.162

During the inner-speech task, the word stimulus was presented in white font against a black background for 4 s, and the163

participants were encouraged to repeat the given word in their minds as many times as possible (approximately 4 times) without164

any accompanying articulation or muscle movement (i.e., using their inner speech). The word stimuli were presented in a165

randomized order over the 160 trials. During the rest period, a white fixation cross was presented for 10 s, and the participants166

were allowed to relax and prepare for the next trial. The total duration of the recordings for the 320 repetitions was 74.6 min167

per participant.168

EEG procedure169

The EEG recordings consisted of one session with 40 trials per word, using the same stimuli as in the fMRI protocol, that170

was performed before the fMRI acquisition for all subjects but for sub-05 due to time constraints of the recording facility. At171

the beginning of the session, the written instructions for the experiment were presented on a screen to the subject until they172

pressed the spacebar to start the experiment. Each trial included fixation, task, and rest periods, with durations of 1 s, 2 s, and173

1 s, respectively. During the fixation period, the participant was instructed to direct their gaze to the centre of the screen, where174

a small circular fixation point was located. During the task period, the word stimulus was presented for 2 s, and the participants175

were asked to repeat the stimulus in their minds without any accompanying articulation or muscle movement (i.e., using their176

inner speech). During the rest period, the participants were allowed to relax and prepare for the next trial. The total duration of177

the recording, which contained 320 repetitions, was 21.33 min per participant. Note that the rest period for the fMRI protocol178

was longer than that for the EEG protocol because the fMRI BOLD signal typically peaks approximately 5 s after stimulus179

onset and takes approximately 14 s to recover to baseline levels47.180
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fMRI Preprocessing181

The fMRI data were preprocessed with SPM1248. First, spatial displacement maps were calculated for each session. These were182

used for motion correction of the functional data. Slice-timing correction was performed as the fMRI data were acquired in an183

interleaved order. Next, images were coregistered to the T1-weighted structural scan with a normalized mutual information cost184

function. Prior to normalization, these images were used for within-subject classification.185

To verify that neural activity related to inner speech and the two semantic categories (social and number words) was as186

expected, further processing was conducted (see “fMRI activation – group level”). The origin was manually set to the anterior187

commissure, followed by normalization to the Montreal Neurological Institute (MNI) space. Smoothing using an 8-mm188

full-width at half-maximum (FWHM) Gaussian kernel was applied. We estimated a general linear model (GLM) convolved189

with a canonical haemodynamic response function. The category regressors (social or number word) were time-locked to the190

onset of its respective inner-speech word with a duration of 4 s. The rest of the regressors had durations of 10 s. Nuisance191

variables, such as movement parameters calculated in the previous realignment step, were also included. This GLM enabled192

investigation of the activation at the subject level; subsequently, a fixed effect analysis was applied to determine activation193

at the group level. The planned comparisons included inner speech and rest (inner speech – rest) and the stimulus category194

(number word – social word; social word – number word). For all analyses, the extent cluster threshold was KE > 20 with a195

familywise error (FWE) correction of p < 0.05 at the voxel level.196

EEG preprocessing197

In the current work, we utilized EEGLAB49 to preprocess the EEG data. EEGLAB is a MATLAB toolbox for processing198

continuous and event-related EEG, MEG, and other electrophysiological data. The toolbox has features such as independent199

component analysis (ICA), time/frequency analysis, artefact rejection, event-related statistics, and several useful visualization200

modes for averaged and single-trial data.201

The raw BioSemi EEG data in .bdf format were imported to EEGLAB using reference channel 48 (Cz). A multitude of202

internal and environmental causes can generate temporal drifts, which change over time and across the electrodes. To reduce203

the impact of such variances, it is usual practice to perform a so-called baseline correction. In this study, baseline correction204

was applied using a zero-phase finite impulse response (FIR) high-pass filter at 0.1 Hz. Low-frequency and high-frequency205

signals, which are commonly caused by environmental/muscle noise in scalp EEG and are not usually the focus of analysis,206

were filtered out.207

Noise below and above a given frequency was retained using low-pass and high-pass filtering. Here, we applied zero-phase208

finite impulse response (FIR) bandpass filtering with 0.1 Hz (lower edge) and 50 Hz (higher edge) boundaries of the frequency209

bandpass, eliminating the requirement for a notch filter. Rereferencing facilitates data cleaning by providing an estimate210

of physiological noise at baseline. In this study, rereferencing was performed using the average reference to Cz, excluding211

channels 65-70 (the mastoid and ocular electrodes); averaging referencing was chosen over rereferencing from the mastoid212

electrodes to guard against introducing any signal artifacts which may have resulted from differences in placement of the213

external electrodes between participants (as per, for example, our decision to disregard the data from subject 4 (sub-04), to214

ensure overall data integrity).215

Channels were manually inspected, and bad channels were rejected and not interpolated. Time-locked epochs were extracted216

using start-stop limits fixed within the interval [0, 2 s]. ICA can be used to identify data segments strongly influenced by217

motor-related artefacts, such as eye blinking and movement of the jaw, neck, arm, or upper back, for removal. Figure 3218

illustrates two out of the 64 ICA components. In this study, we examined the topography as well as the spectrogram and219

frequency variation to decide whether a component should be retained. In examining the topographies, high activity in the220

far-frontal projections is a strong indicator of electrooculography (EOG) artifacts; in the spectra, decreasing power with a slope221

that is more shallow and spread more evenly over the frequency range is also a strong indicator of an EOG artifact: taken222

together (along with the ocular reference channels, 67-70, which serve to provide the EOG signal pattern that the independent223

components are matched against) we reliably identified artifact-related independent components to zero-out from the data, as224

part of a manual inspection and cleaning process that is often more reliable than algorithmic methods relying on peak-to-peak225

signal information, which may vary greatly between subjects.226

Finally, we extracted epochs according to the time-locking event. We performed this process manually, with the epoch limit227

[0,2 s], this interval encapsulated the main activity.228

Data Records229

The anonymized EEG and fMRI data of the four subjects are available in Brain Imaging Data Structure (BIDS) format230

(https://bids-specification.readthedocs.io/en/stable/) at the OpenNeuro repository50. The data for each subject are organized into231

three sessions: two for the fMRI modality (ses-01 and ses-02) and one for the EEG modality (ses-EEG), as shown in Figure 4.232

A total of 2,560 trials are provided in this dataset, out of which half (1,280) were with fMRI and half were with EEG. There233
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Figure 3. Components decomposed by ICA, showing eye blinks and brain activity. Top left: topography map illustrating the
projection of the independent component activity. Center: event-related potentials of the independent component and its
associated power, per epoch. Bottom: spectrum of the independent component.

are 4 directories, one for each subject (i.e., , sub-01, sub-02, sub-03, and sub-05). The data from sub-04 were deemed unfit for234

use and thus were not made available.235

fMRI. All Digital Imaging and Communications in Medicine (DICOM) files with fMRI data were converted into236

Neuroimaging Informatics Technology Initiative (NIFTI) format using MRIcroGL v1.2.0211006237

(https://www.nitrc.org/plugins/mwiki/index.php/mricrogl) and then organized into BIDS format. Regarding file organization,238

each individual subject folder contains the three sessions described above. The ses-01 folder contains three subfolders that239

include the anatomical (anat), field map (fmap), and functional (func) images. The ses-02 folder contains two subfolders,240

namely, fmap and func, as anatomical scans were not performed in session 2 for any of the subjects. Each .nifti file in the241

dataset is accompanied by the corresponding .json file. The anatomical image from session 1 of each subject consists of242

the anatomical scan with file names in the following format: sub-XX-YY -T1W, where XX denotes the subject ID and YY243

denotes the session ID. The fmap folder in each session of a subject consists of three .nifti files and their corresponding244

.json files. Two of the .nifti files are for magnitude, and one is for phase difference. The two magnitude files are named245

with the following format: sub-XX-YY -magnitudeZ, where XX denotes the subject ID, YY denotes the session ID, and Z246

takes the value 1 for T E1 = 4.92ms and 2 for T E2 = 7.38ms. The .nifti file for the phase difference image is named with the247

following format: sub-XX-ses-YY -phasediff, where XX denotes the subject ID and YY denotes the session ID. The functional248

data are made available in the func folder, where the .nifti file and its corresponding .json file have the following format:249

sub-XX-ses-YY -task-inner-bold, where XX denotes the subject ID and YY denotes the session ID. The task event file is also250

available as a .tsv file named sub-XX-ses-YY -task-inner-events, where XX denotes the subject ID and YY denotes the session251

ID in the corresponding func folders.252

EEG. The EEG data were collected in one session, and raw EEG files are available in the ses-EEG folder for each subject.253

The raw EEG data are available in .bdf format. The .bdf file was exported using EEGLAB software v2021.1, and the sampling254

rate was 512. Each event and its corresponding ID and description are presented in Table 2. The different channel data are255

provided in 72 rows (64 EEG, 8 external). Out of 8 external electrodes, only six were connected; specifically, the CMS and256

DRL electrodes were not recorded.257

The task events are provided in a .tsv file for corresponding subjects in the respective ses-EEG folders. The continuous258

recordings of the 64 EEG channels, the 6 external channels, and the labeled events were included in the saved files.259

Technical Validation260

EEG261

An event related potential (ERP) is the measured brain activity in response to a stimulus, therefore suitable for verifying the262

technical validity of the data. Although the entire dataset is available at the OpenNeuro repository50, in this work, we provide263

the ERP activity for two subjects in Figure 5, as an example. In order to represent all available genders in this study, sub-01264
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EventID Description
1 fixation
2 rest
111 child
112 daughter
113 father
114 wife
125 four
126 three
127 ten
128 six

Table 2. Event IDs and their accompanying descriptions.

(male) and sub-03 (female) were selected.265

From both plots, it can be observed that more pronounced potential deflections occur after stimulus presentation (i.e.,266

after t=0 ms); however, a small range of deflection can also be noticed within the two other periods (rest and fixation); the267

presentation of new visual stimuli to the subjects, to signal the start of each period within each trail, has resulted in these evoked268

responses (so-called fixation-onset ERPs51).269

The activity at 235 ms and 285 ms for sub-01, and at 250 ms and 320 ms for sub-03 indicate prominent brain activity270

stimulus onset. Specifically, sub-01 displayed high activity, linked to the frontal lobe, during the first 500 ms compared to271

the low activity of sub-03 in the same period. This difference might be a result of eye movements by sub-01. Interestingly,272

for sub-03, the plotted waves were close to the baseline during the fixation period, indicating low brain activity associated273

with gaze at the fixation circle. Data from both subjects followed similar pattern during the inner-speech task (0-500 ms). As274

shown in Figure 5, strong positive and negative deflections occurred during 0-500 ms, which indicate the evoked response upon275

presentation of the visual stimulus, and increased brain activity during the performance of the inner-speech task. These evoked276

responses indicate strong P300 and N400 components, which are observed in similar trials for imagined speech52 and validate277

the inner-speech data that have been recorded under our experimental protocol.278

Next, to provide a more detailed analysis of the activated brain areas, we generated topological maps (after ICA decomposi-279

tion). Figure 6 depicts the activation in response to stimuli in the two semantic categories (number or social words) for all280

subjects in topological maps. As shown in the figure, it appears that these activities were mainly dominated by frontal and281

central regions. Notably, the activity in response to all stimuli (eight words) is shown in the topological maps in Figure 7. In282

this figure, 4 ICs with high brain activity are shown for all words. For a specific IC, regions were differently activated for each283

of the eight words. The topographic projections of each word illustrate the average difference in brain activity between the284

inner-speech task of each word; the variance between these projections confirms the subject’s different activation regions, both285

between and within our semantic categories, which further validates the data.286

fMRI activation - group level287

In this study, the group level analyses were conducted to verify that the inner-speech task activated neural regions connected to288

inner speech. As expected, the inner-speech task activated language- and orthographic-related regions when compared with289

the baseline rest condition. The increased activity during inner speech (see Figure 8(a) and Table 3) is indicated by average290

BOLD activation displaying significant activation in areas directly related to language processing, including Wernicke’s area291

(Brodmann´s area (BA) 22) in the left hemisphere and Broca’s area and surrounding regions. Further activation was found in292

the left supramarginal gyrus, which (alongside the pars opercularis) has been implicated in inner speech53, and the angular293

gyrus, which is related to semantic processing54, 55. Areas of high activation also included visual processing regions, such as the294

bilateral secondary visual cortex and the right frontal eye fields, and orbitofrontal area. These regions likely relate to processing295

of visual word forms, as the word cue was presented orthographically. Not surprisingly, motor regions, including the primary296

motor cortex and premotor and supplementary motor cortices, were activated by the inner-speech task. Motor activity still297

occurs during inner-speech56, albeit at reduced activation levels compared to outer speech (spoken aloud)57. These findings298

support the reliability of the data as they indicate that the inner-speech task activated language, orthographic, and motor related299

regions.300

Comparison of the two semantic categories (social vs. number words) revealed that social words elicited more activation301

than number words in the bilateral secondary visual cortex and the right primary visual cortex (see Table 4 and Figure 8(b)).302

No areas showed significantly higher activation for number words compared to social words.303
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fMRI activation - individual subjects304

Decoding studies are often conducted within rather than between subjects due to the large extent of individual variance in305

neural anatomy and functional activity. Therefore, we provided subject-level results to enable researchers to select among306

subjects based on brain activation profiles. As seen in Figure 9, the results are consistent across subjects.307

fMRI framewise displacement308

Motion-related artifacts can compromise data quality. Frames that are contaminated with motion above a certain threshold can309

be rejected by calculating head motion artifacts through framewise displacement (FD). FD is an overall estimate of movement310

over time for each subject, which incorporates subtle in-scanner movements. We calculated the FD for each subject and session311

in Nipype, according to Power et al.58. The average FD (in mm) across frames for each subject was as follows: sub-01, session312

1=0.13 and session 2=0.14; sub-02, session 1=0.15 and session 2=0.14; sub-03, session 1=0.11 and session 2=0.1; and sub-05,313

session 1=0.2 and session 2=0.22; see Figure 10. There was rarely motion exceeding the size of one voxel (2 × 2 × 2 mm).314

The analysis also showed that all subjects had a mean FD under 0.25 mm; however, researchers may choose to omit specific315

volumes with FD values higher than 0.5 mm.316

Code Availability317

The code used to preprocess the EEG and fMRI data as well as the two stimulation protocols (one for each modality) are318

publicly available at: https://github.com/LTU-Machine-Learning/Inner_Speech_EEG_FMRI.319
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Figure 4. Example dataset structure for subject 1 (sub-01). The data are organized into three sessions: two for the fMRI
modality (ses-01 and ses-02) and one for the EEG modality (ses-EEG).
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Figure 5. Plot of event-related potentials and topographical maps of activity for subjects 1 (sub-01) and 3 (sub-03). Both plots
are created from preprocessed data by averaging over 320 trials for each subject. The 64 coloured waves correspond to the 64
EEG channels. The time axis shows the duration of a single trial and corresponds to a total duration of 4,000 ms. Notably, the
time axis starts from a negative value of t=-1,000 ms, which corresponds to the 1,000 ms fixation period at the beginning of a
trial. The times marked with arrows indicate the start of the fixation, inner-speech task, and rest periods (at -1,000 ms, 0 ms and
2,000 ms respectively.

Figure 6. Topological maps (averaged over all subjects) corresponding to stimuli from the number and social categories for
components 40, 45, 47, and 55.
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Figure 7. Topological maps (averaged over all subjects) for each stimulus in the number and social categories for components
59, 60, 61, and 64.

Figure 8. Activation map generated from fixed effects (FFX) and the general linear model (GLM) for the following: a. areas
more highly activated during the inner-speech task than the resting condition (number and social words combined) – this slice
is selected to highlight activation in Broca’s area (coordinates: -42, 20, 20), and b. areas more highly activated by social words
than number words – this slice is selected to highlight activation in the secondary visual cortex (coordinates: 14, -92, -6). An
increase in activation was found for the reverse contrast (i.e., increased activation for number words over social words).
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Table 3. Areas with increased activation during inner speech relative to baseline (the rest condition). Coordinates are in
Montreal Neurological Institute (MNI) space. BA = Brodmann’s Area, Hemi = hemisphere, KE= cluster size. The cluster
threshold was set to 20, with family-wise error (FWE)-adjusted p<0.05

Anatomical area BA Hemi (x y z) KE Peak T Value ZE
Secondary visual cortex 18 L -22, -96, -6 10470 54.5 Inf

- R 22, -98, 2 - 41.4 Inf
- R 30, -92, 2 - 38.89 Inf

Primary motor cortex 4 L -50,-12,44 1595 23.16 Inf
- L 50, -6, 42 - 16.57 Inf
- L -56, -4, 20 - 14.77 Inf

Premotor cortex/supplementary motor area 6 R 50, -6, 42 1515 20.59 Inf
6 R 50, -6, 56 - 15.37 Inf

Primary motor cortex 4 R 58, -4, 30 - 9.98 Inf
Praecuneus/superior parietal lobule 7 L -24, -58, 54 2534 15.54 Inf
Supramarginal gyrus 40 L -36, -40, 44 - 13.66 Inf
Praecuneus/superior parietal lobule 7 L -20, -68, 44 - 11.32 Inf
Anterior prefrontal cortex 10 R 28, 64, 8 476 15.43 Inf

- R 18, 64, 8 - 15.34 Inf
- L -22, 60, 2 - 14.22 Inf

Premotor cortex/supplementary motor area 6 L -6, -4, 68 965 13.87 Inf
- L -4, 2, 62 - 12.59 Inf
- R 6, -2, 70 - 9.36 Inf

Pars orbitalis 47 R 24, 18, -20 60 10.4 Inf
- R 32, 28, -18 - 6.82 6.81

Praecuneus/superior parietal lobule 7 R 30, -46, 44 1394 10.32 Inf
Angular gyrus 39 R 30, -62, 44 - 10.12 Inf

- R 28, -52, 52 - 9.8 Inf
Pars orbitalis 47 L -22, 20, -22 121 9.83 Inf

- - -18, 10, -22 - 7.5 7.48
- - -14,12,-14 - 5.72 5.72

Pars orbitalis 47 R 44, 30, -14 51 9.67 Inf
Basal ganglia - L -12, 20, 2 1044 9.39 Inf

- L -24, 6, 0 - 7.3 7.3
- L -18, 12, -4 - 7.1 7.3

Premotor cortex/supplementary motor area 6 L -48, 2, 4 107 8.02 Inf
Superior temporal gyrus 22 L -52, -40, 16 93 7.88 Inf
Inferior frontal gyrus: pars triangularis 45 L -48, 22, -2 45 7.46 7.45
Orbitofrontal area 11 R 4, 26, -12 80 6.77 6.76
Primary motor cortex 4 L -16, -26, 64 65 6.58 6.57
Ventral anterior cingulate 24 R 8, 18, 20 177 6.33 6.33
Inferior frontal gyrus: pars opercularis 44 L -42, 20, 20 93 6.31 6.3
Global pallidus - R 22, -4, 4 31 5.76 5.75
Frontal eye fields 8 R 10, 16, 34 72 5.74 5.73
Pars opercularis 44 R 50, 12, 20 32 5.57 5.56
Thalamus - L -8, -20, 8 35 5.5 5.5
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Table 4. Areas with increased activation for social words relative to number words during inner speech, i.e. the baseline.
Coordinates are in Montreal Neurological Institute (MNI) space. BA = Brodmann´s area, Hemi = hemisphere, KE = cluster
size. The cluster threshold was set to 20. The family-wise error (FWE) was adjusted to p<0.05

Anatomical area BA Hemi (x y z) KE Peak T Value ZE
Secondary visual cortex 18 L -14, -92, -6 1043 11.91 Inf

- - -20, -98, 8 - 7.37 7.36
- - -36, -90, 10 - 4.75 4.75

Primary visual cortex 17 R 12, -94, -4 321 7.85 7.83
Secondary visual cortex 18 R 26, -96, 12 - 6.08 6.08
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Figure 9. BOLD signals of each subject. a. Area more highly activated during the inner-speech task in the rest condition
(numbers and social words combined). b. Areas more highly activated by social words than number words (no areas were more
highly activated by number words than social words).
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Figure 10. The framewise displacement (FD; in mm) calculated across each subject and session is shown across each volume.
The red dashed line indicates the voxel size of the functional images (2×2×2 mm).
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