1

Candidate effector proteins from the maize tar spot pathogen Phyllachora maydis

Helm and Singh, et al

2 localize to diverse plant cell compartments

3

1

- 4 Matthew Helm^{1,†,*}, Raksha Singh^{1,†}, Rachel Hiles², Namrata Jaiswal¹, Ariana Myers^{1,‡},
- 5 Anjali S. Iyer-Pascuzzi², and Stephen B. Goodwin¹
- 6
- ⁷ ¹ Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-
- 8 Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907, U.S.A.
- 9
- ² Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN

11 47907, U.S.A.

- 12
- ¹³ [‡] Present address: Axbio Inc., Santa Clara, CA 95054, U.S.A.
- 14
- [†] these authors contributed equally to this work
- 16
- 17 * Corresponding author: M. Helm; Email: <u>Matthew.Helm@usda.gov</u>
- 18
- 19 **Funding:** This work was supported by the United States Department of Agriculture,
- 20 Agriculture Research Service (USDA-ARS) research project 5020-21220-014-00D and
- an appointment to the Oak Ridge Institute for Science and Education (ORISE). This
- 22 research was also funded by the Foundation for Food and Agriculture Research New
- 23 Innovator Award and Indiana Hatch Funds (IND011293) awarded to A.I.P.

2

Helm and Singh, et al

24 ABSTRACT

Most fungal pathogens secrete effector proteins into host cells to modulate their 25 26 immune responses, thereby promoting pathogenesis and fungal growth. One such 27 fungal pathogen is the ascomycete *Phyllachora maydis*, which causes tar spot disease 28 on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 29 putatively secreted proteins of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by *P. maydis* effector 30 candidate (PmECs) proteins remain unknown and it will be important to prioritize them 31 32 for further functional characterization. To test the hypothesis that PmECs target diverse 33 subcellular compartments, cellular locations of super Yellow Fluorescent Protein (sYFP)-tagged P. maydis effector candidate proteins were identified using a Nicotiana 34 35 benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. 36 37 benthamiana, indicating the candidate effectors could be expressed in dicot leaf cells. 38 Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed most 39 of the *P. maydis* putative effectors localized to the nucleus and cytosol. One candidate 40 effector, PmEC01597, localized to multiple subcellular compartments including the 41 nucleus, nucleolus, and plasma membrane while an additional putative effector, 42 PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one 43 candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as 44 well as stroma-containing tubules (stromules). Collectively, these data suggest effector 45 candidate proteins from P. maydis target diverse cellular organelles and may thus

3

Helm and Singh, et al

46 provide valuable insights into their putative functions as well as host processes

47 potentially manipulated by this fungal pathogen.

48

49 Keywords: Phyllachora maydis, tar spot, effectors, localization, plasma membrane,

50 nucleus, nucleolus, chloroplasts

51

52

53 **INTRODUCTION**

54 Plant pathogens secrete virulence proteins known as effectors to modulate host 55 immune responses that often have a functional role in facilitating infection (Jones and Dangl, 2006; Kamoun, 2007; Wang et al., 2011; Zipfel, 2014). Secreted effectors can be 56 57 either retained in the plant extracellular space (apoplastic effectors) or translocated into host cells (cytoplasmic effectors) and can localize to diverse subcellular compartments 58 59 (Lorrain et al., 2018; Whisson et al., 2016). For example, an effector protein from the 60 oomycete Phytophthora infestans, PITG 04097, localizes to the host nucleus, and such 61 nuclear localization is required for suppression of host defense responses and pathogen 62 virulence (Zheng et al., 2014). The Pseudomonas syringae effector HopG1, which 63 targets the mitochondria, suppresses host defense responses and promotes cell death 64 in Arabidopsis (Rodriguez-Puerto et al., 2022). The Magnaporthe oryzae effector, AVR-65 Pii, is localized to the host cytosol where it suppresses host production of reactive 66 oxygen species through its inhibition of the rice NADP-malic enzyme2, thereby disrupting immunity to this fungal pathogen (Singh et al., 2016). Elucidating how crop 67 68 pathogen effectors function in host cells is critical, in part, for understanding

4

Helm and Singh, et al

pathogenicity and virulence mechanisms of fungal pathogens for which controlstrategies are currently limited.

71	Phyllachora maydis is a foliar, ascomycete fungal pathogen that causes tar spot
72	disease on maize (Zea mays subsp. mays) (Rocco da Silva et al., 2021; Ruhl et al.,
73	2016; Valle-Torres et al., 2020). Though endemic to Central and South America, P.
74	maydis was recently identified in the continental United States in 2015 and has since
75	spread to most maize production regions, indicating this fungal pathogen is capable of
76	significant global expansion (Mottaleb et al., 2019; Ruhl et al., 2016; Valle-Torres et al.,
77	2020). Notably, P. maydis has been shown to significantly reduce maize yields
78	especially under favorable environmental conditions, imposing severe financial
79	constraints to growers (Mueller et al., 2020; Valle-Torres et al., 2020). Temperate-
80	derived maize inbreds and commercial hybrids provide only partial resistance to P.
81	maydis, and no fully resistant maize cultivar has been identified (Telenko et al., 2019).
82	For these reasons, P. maydis is now considered one of the most economically important
83	foliar pathogens of maize in the U.S. (Mueller et al., 2020; Rocco da Silva et al., 2021;
84	Valle-Torres et al., 2020).

To gain initial insights into *P. maydis* virulence mechanisms, Telenko and colleagues provided its first draft genome sequence (Telenko et al., 2020). Analysis of the *P. maydis* genome revealed 462 proteins comprising the predicted secretome, of which 59 contain effector-like sequence characteristics as predicted by EffectorP (v2.0) (Telenko et al., 2020). To date, our understanding of how *P. maydis* utilizes its effector repertoire to promote virulence as well as the subcellular compartments targeted by these putative effectors remains limited even though this fungal pathogen represents a

Helm and Singh, et al

92 serious economic concern for maize growers (Helm et al., 2022; Mueller et al., 2020; 93 Valle-Torres et al., 2020). The inability to culture or genetically manipulate *P. maydis* 94 (Rocco da Silva et al., 2021; Valle-Torres et al., 2020) substantially hinders 95 investigations aimed at characterizing its effector repertoire (Helm et al., 2022). To 96 circumvent these limitations, the field of effector biology utilizes a surrogate plant 97 system to express epitope-tagged candidate effectors directly inside leaf cells using 98 Agrobacterium-mediated infiltration (agroinfiltration) (Lorrain et al., 2018). Nicotiana benthamiana is a well established and extensively used model plant for heterologous 99 100 expression of crop pathogen effectors and has been used to investigate the subcellular 101 compartments targeted by putative effector proteins produced by filamentous fungal 102 pathogens (Alfano, 2009; Figueroa et al., 2021; Lorrain et al., 2018; Ma et al., 2012; 103 Petre et al., 2017; Win et al., 2011; Dinne et al., 2021). 104 In the present study, we refined previous effector predictions performed by

105 Telenko et al. (2020) using EffectorP (v3.0) as well as additional selection criteria 106 including i) protein size less than 300 amino acids; ii) presence of a signal peptide (as 107 predicted by SignalP v6.0); and iii) lack of a transmembrane domain. We discovered 108 that among the 59 proteins originally identified by Telenko and colleagues (2020), 40 109 contain effector-like protein characteristics that fulfilled our more selective criteria. 110 Intriguingly, several of the effector candidates from *P. maydis* encode subcellular 111 targeting sequences including nuclear localization signals (NLS) and chloroplast and 112 mitochondrial transit peptides, suggesting they may be targeted to specific subcellular 113 locations. To test this hypothesis, we investigated the subcellular compartments 114 targeted by P. maydis effector candidate proteins (PmECs) using a Nicotiana

6

Helm and Singh, et al

115	benthamiana-based heterologous expression system. Laser-scanning confocal
116	microscopy of N. benthamiana epidermal cells revealed most of the P. maydis putative
117	effectors localized to the nucleus and cytosol. However, one candidate effector,
118	PmEC01597, consistently localized to multiple subcellular compartments including the
119	nucleus, nucleolus, and plasma membrane while an additional putative effector,
120	PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, the
121	candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as
122	well as stroma-containing tubules (stromules). These data indicate effector candidate
123	proteins from <i>P. maydis</i> target diverse cellular organelles and thus lay the foundation for
124	future studies to investigate their putative functions as well as host processes potentially
125	manipulated by this fungal pathogen.
126	
127	
128	MATERIALS AND METHODS
129	
130	Plant growth conditions
131	Nicotiana benthamiana seeds were sown in plastic pots containing either ProMix
132	or Berger Seed and Propagation Mix supplemented with Osmocote slow-release
133	fertilizer (14-14-14). Plants were maintained in a growth chamber with a 16:8 h
134	photoperiod (light:dark) at 24°C with light and 20°C in the dark and 60% humidity with
135	average light intensities at plant height of 120 µmols/m²/s.
136	
137	

7

138

In silico selection of candidate effectors from *P. maydis* Indiana isolate PM-01

Helm and Singh, et al

- 139 To select candidate effector proteins, we began with the effector predictions
- 140 generated previously by Telenko et al., (2020) from the predicted *P. maydis* secretome.
- 141 We extracted all 59 candidate effector protein sequences and used EffectorP (v3.0)
- 142 (Sperschneider and Dodds, 2022) (http://effectorp.csiro.au/) to further improve the
- 143 effector prediction performed by Telenko et al. (2020). We also employed SignalP (v6.0)
- 144 (Teufel et al., 2022) (<u>https://services.healthtech.dtu.dk/service.php?SignalP</u>) to predict
- the presence of signal peptide sequences. LOCALIZER (v1.0) (Sperschneider et al.,
- 146 2017) (<u>http://localizer.csiro.au/</u>) was used to predict the subcellular localizations of the
- 147 putative effectors. TMHMM (v2.0;
- 148 <u>https://services.healthtech.dtu.dk/service.php?TMHMM-2.0</u>) was used to predict
- transmembrane helices within the candidate effector proteins. NoD (Scott et al., 2011)
- 150 (http://www.compbio.dundee.ac.uk/www-nod/) was used to predict the presence of
- 151 predicted Nucleolar targeting signal (NoLS). The refined catalog of candidate effector
- 152 proteins as determined by our *in silico* pipeline (Figure 1) is shown in Table 1.
- 153
- 154 Generation of plant expression constructs

All constructs in this study were generated using a modified multisite Gateway
cloning system (Invitrogen). The AtUBQ10-NLS:mCherry, AtFLS2:mCherry, RbcSTP:mCherry, AtFIB2:mCherry, 3xHA:sYFP (free sYFP), and 3xHA:mCherry (free
mCherry) constructs have been described previously (Denne et al., 2021; Gu et al.,
2011; Helm et al., 2019; Nelson et al., 2007; Qi et al., 2012; Robin et al., 2018).

Helm and Singh, et al

A commercial gene synthesis service (Azenta Life Sciences, South Plainfield,
New Jersey) was used to synthesize the open reading frames (ORFs) of each P.
maydis effector candidate (PmEC) (without the signal peptide) with codon optimization
for plant expression. The attL1 and attL4 Gateway sequences were added to the 5' and
3' ends, respectively, of each P. maydis candidate effector to generate Gateway-
compatible DONR clones. The resulting sequences were inserted into the plasmid
vector pUC57 by the service provider. We designated the resulting constructs
pDONR(L1-L4):PmEC.
To generate the PmEC-sYFP protein fusions, the pDONR(L1-L4):PmEC
constructs were mixed with pBSDONR(L4r-L2):sYFP (Qi et al., 2012), and the
Gateway-compatible expression vector pEG100 (Earley et al., 2006), which places the
transgene under control of the 35S promoter. All plasmids were recombined by the
addition of LR Clonase II (Invitrogen) and were incubated overnight at 25°C following
the manufacturer's instructions. The resulting constructs were transformed into
Agrobacterium tumefaciens GV3101 (pMP90) by electroporation and subsequently
used for transient expression in Nicotiana benthamiana.
Agrobacterium-mediated transient protein expression in Nicotiana benthamiana
The CaMV 35S-driven constructs described above were mobilized into

179 Agrobacterium tumefaciens GV3101 (pMP90) and grown on LB medium plates

180 containing 25 µg of gentamicin sulfate and 50 µg of kanamycin per milliliter for 2 days at

181 30°C. Cultures were prepared in liquid media (10 ml) supplemented with the appropriate

182 antibiotics and were shaken overnight at 30°C at 225 rpm on an orbital shaker.

Helm and Singh, et al

183	Following overnight incubation, the cells were pelleted by either centrifuging at 3,600
184	rpm for 3 minutes or 3,000 rpm for 8 minutes at room temperature. The bacterial pellet
185	was then resuspended in either 10 mM MgCl $_2$ or induction medium (10 mM MES, pH
186	5.5, 3% sucrose), adjusted to an optical density at 600 nm (OD ₆₀₀) of 0.4 (final
187	concentration for each strain in a mixture), and incubated with either 100 or 200 μM
188	acetosyringone (Sigma-Aldrich) for 3-4 hours at room temperature with constant
189	shaking. Bacterial suspensions were mixed in equal ratios (1:1) and infiltrated into the
190	underside of 3- to 4-week-old Nicotiana benthamiana leaves with a needleless syringe.
191	Leaf samples were collected 24 hours after agroinfiltration for immunoblot analyses or
192	confocal microscopy.
193	
194	Protein extraction and immunoblot analyses
194 195	Protein extraction and immunoblot analyses <i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following
195	N. benthamiana leaf samples (0.5g) were collected at 24 hrs following
195 196	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein
195 196 197	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'-
195 196 197 198	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'- dipyridyl disulfide [DPDS] and 1% protease inhibitor cocktail) (Sigma Aldrich).
195 196 197 198 199	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'- dipyridyl disulfide [DPDS] and 1% protease inhibitor cocktail) (Sigma Aldrich). Homogenates were briefly mixed and centrifuged twice at 10,000 x g for 10 min at 4°C
195 196 197 198 199 200	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'- dipyridyl disulfide [DPDS] and 1% protease inhibitor cocktail) (Sigma Aldrich). Homogenates were briefly mixed and centrifuged twice at 10,000 x g for 10 min at 4°C to pellet cell debris. Total protein lysates were combined with 4X Laemmli Sample
195 196 197 198 199 200 201	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'- dipyridyl disulfide [DPDS] and 1% protease inhibitor cocktail) (Sigma Aldrich). Homogenates were briefly mixed and centrifuged twice at 10,000 x g for 10 min at 4°C to pellet cell debris. Total protein lysates were combined with 4X Laemmli Sample Buffer (277.8 mM Tris-HCI [pH 6.8], 4.4% LDS, 44.4% (v/v) glycerol, 0.02%
195 196 197 198 199 200 201 202	<i>N. benthamiana</i> leaf samples (0.5g) were collected at 24 hrs following agroinfiltration and flash frozen in liquid nitrogen. Tissue was homogenized with protein extraction buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 0.1% Nonidet P-40, 1% 2,2'- dipyridyl disulfide [DPDS] and 1% protease inhibitor cocktail) (Sigma Aldrich). Homogenates were briefly mixed and centrifuged twice at 10,000 x g for 10 min at 4°C to pellet cell debris. Total protein lysates were combined with 4X Laemmli Sample Buffer (277.8 mM Tris-HCI [pH 6.8], 4.4% LDS, 44.4% (v/v) glycerol, 0.02% bromophenol blue, and 10% β-mercaptoethanol), and the mixtures were boiled at 95°C

205 Total proteins were transferred to nitrocellulose membranes (GE Water and Process

Helm and Singh, et al

10

206	Technologies) at 100 V for one hour. Ponceau staining was used to confirm equal
207	loading and transfer of total protein samples. Membranes were washed with 1X Tris-
208	buffered saline (50 mM Tris-HCl, 150 mM NaCl [pH 6.8]) solution containing 0.1%
209	Tween20 (TBST) and incubated with 5% Difco skim milk for 1 hr at room temperature or
210	overnight at 4°C with gentle shaking. Proteins were subsequently detected with
211	horseradish peroxidase (HRP)-conjugated anti-GFP antibody (1:5,000) (Miltenyi Biotec)
212	for 1 hr at room temperature with gentle shaking. Following antibody incubation,
213	membranes were washed at least three times for 15 minutes in 1x TBST solution.
214	Protein bands were imaged using equal parts of Clarity Western ECL substrate
215	peroxide solution and luminol/enhancer (BioRad) solution (Thermo Scientific), with
216	incubation at room temperature for 5 minutes. Immunoblots were developed using X-ray
217	film.
010	

218

219 Confocal microscopy

Live-cell imaging of *N. benthamiana* epidermal cells was performed 24 hours 220 221 following agroinfiltration using a Zeiss LSM880 Axio Examiner upright confocal 222 microscope as described previously (Denne et al., 2021). Briefly, N. benthamiana leaf 223 sections were excised and mounted in sterile water between a slide and a coverslip 224 (adaxial surface toward the objective) and subsequently imaged using a Plan Apochromat 20x/0.8 objective, pinhole 1.0 AU. For plasmolysis, leaf sections were 225 226 prepared as described above, submerged in 0.8 M mannitol solution for 20 minutes, and 227 imaged shortly thereafter. The sYFP protein fusions were excited using a 514-nm argon 228 laser and fluorescence was detected between 517-562 nm. Fluorescence from the

11

Helm and Singh, et al

229	mCherry-tagged constructs was excited with a 561-nm helium-neon laser and detected
230	between 565-669 nm. All confocal micrographs were captured on the Zeiss LSM880
231	upright confocal microscope and processed using the Zeiss Zen Blue Lite program (Carl
232	Zeiss Microscopy, USA).
233	
234	
235	RESULTS
236	In silico selection and generation of super Yellow Fluorescent Protein (sYFP)-
237	tagged <i>P. maydis</i> effector candidate proteins (PmECs) from Indiana isolate PM-01
238	To identify promising secreted effector candidates, we leveraged effector
239	predictions previously generated by Telenko et al. (2020). These authors identified 59
240	P. maydis proteins that contain effector-like characteristics as determined by EffectorP
241	(v2.0). To further refine the previous analyses by Telenko et al. (2020), we mined
242	through the 59 P. maydis effector candidates (PmECs) and selected proteins that
243	fulfilled more selective criteria: i) size fewer than 300 amino acids; ii) presence of a
244	signal peptide (as predicted by SignalP v6.0); and iii) lack of a transmembrane domain
245	(as predicted by TMHMM v2.0). We next leveraged EffectorP (v3.0) to identify putative
246	effector proteins from this narrowed set of proteins. Among the 59 potential effectors
247	originally identified by Telenko et al. (2020), 40 contain effector-like protein
248	characteristics that fulfilled these more selective criteria (Figure 1A). The selected
249	effector candidates ranged in size from 55 to 299 amino acids (Table 1). We next
250	employed LOCALIZER (v1.0) to identify predicted nuclear localization signals (NLS),
251	chloroplast transit peptides, or mitochondrial targeting sequences. As shown in Table 1,

Helm and Singh, et al

12

252	many of the candidates are not predicted to target specific subcellular compartments.
253	However, several PmECs encode predicted nuclear localization signals including
254	PmEC01597, PmEC03792, and PmEC05617 (Table 1). Two effector candidates,
255	PmEC03153 and PmEC04573, contain predicted chloroplast transit peptides, and a
256	mitochondrial targeting sequence was identified in PmEC03493 (Table 1). Intriguingly,
257	PmEC00848 encoded both a chloroplast transit peptide and a mitochondrial-targeting
258	sequence and PmEC03706 encoded both a chloroplast transit peptide and NLS,
259	suggesting these proteins may localize to multiple subcellular compartments (Table 1).
260	To investigate the subcellular compartments targeted by the P. maydis effector
261	candidates, the predicted open reading frames (ORFs) of each of the 40 putative
262	effectors, without the predicted signal peptides, were synthesized and fused to the N
263	terminus of super Yellow Fluorescent Protein (PmEC:sYFP) (Figure 1B). The resulting
264	constructs were recombined into the plant expression binary vector pEarleyGate100
265	(pEG100) (Earley et al., 2006), which places the candidate effectors downstream of a
266	35S promoter. The resulting constructs were inserted into Agrobacterium tumefaciens
267	for subsequent Nicotiana benthamiana-based heterologous expression assays (Figure
268	1С-Е).

269

270 Candidate *P. maydis* effector-fluorescent protein fusions accumulate protein *in*271 *planta*

272 Prior to assessing the subcellular localization of the *P. maydis* effector273 fluorescent protein fusions, we tested whether these effectors accumulate protein in
274 dicot leaf cells. This was accomplished by transiently expressing each of the fusion

13

Helm and Singh, et al

275	proteins in <i>N. benthamiana</i> using Agrobacterium-mediated infiltration (agroinfiltration).
276	Immunoblot analyses revealed that, of the 40 candidate effectors screened, 37
277	accumulated at detectable levels when transiently expressed in N. benthamiana (Figure
278	2). Three putative effectors (PmEC01936, PmEC02451 and PmEC06216) consistently
279	failed to express detectable protein suggesting these fusion proteins do not accumulate
280	when transiently expressed in <i>N. benthamiana</i> leaf cells (Figure 2). Though most of the
281	fusion proteins accumulated at the expected molecular weight, several putative
282	effectors accumulated protein at lower molecular weights than predicted, suggesting
283	post-translational modifications (Figure 2). As most P. maydis effector-fluorescent
284	protein fusions accumulated protein, we conclude that <i>N. benthamiana</i> is an appropriate
285	surrogate plant system and can thus be used to investigate the subcellular localization
286	patterns of <i>P. maydis</i> effector-fluorescent protein fusions. Based on these data, we
287	discarded the effector candidates with insufficient protein expression (PmEC01936,
288	PmEC02451 and PmEC06216) and retained the remaining candidate effectors for
289	further <i>in planta</i> analyses.

290

291 The majority of *P. maydis* effector candidate-fluorescent protein fusions localize

292 to the nucleus and cytosol

Live-cell imaging of epidermal cells using laser-scanning confocal microscopy revealed that among the 37 sYFP-tagged PmECs that accumulate protein, 29 showed subcellular distribution patterns in the nucleo-cytosol and were indistinguishable from the free sYFP control (Supplemental Figure 1; Table 1). Furthermore, fluorescence signal from five sYFP-tagged derivatives, PmEC03436, PmEC03493, PmEC03706,

14

Helm and Singh, et al

298	PmEC04014, and PmEC05617, predominantly accumulated in the cytosol
299	(Supplemental Figure 2; Table 1). Interestingly, PmEC03436:sYFP signal labeled
300	punctate bodies on the cell periphery, and PmEC04014:sYFP signal was observed in
301	irregular, cytosolic aggregates (Supplemental Figure 2). In addition to localizing in the
302	cytosol, PmEC03493:sYFP accumulated in the nucleus as well as sub-nuclear
303	structures (Supplemental Figure 2). The remaining effector-fluorescent protein fusions
304	preferentially localized to specific subcellular compartments within the plant cells.
305	
306	The <i>P. maydis</i> effector candidate PmEC01597 localizes to multiple subcellular
307	compartments
308	PmEC01597 encodes a predicted nuclear localization signal (NLS) at its C
309	terminus as predicted by LOCALIZER (Sperschneider et al., 2017) (Table 1; Figure 3A)
310	and a nucleolar targeting signal (NoLS) as predicted by NoD
311	(http://www.compbio.dundee.ac.uk/www-nod/; Scott et al., 2011), suggesting this
312	effector candidate localizes to both the nucleus and nucleolus. To confirm the specific
313	localization of PmEC01597 to these subcellular compartments, we co-expressed
314	PmEC01597:sYFP with mCherry-tagged AtUBQ10-NLS or AtFIB2, Arabidopsis proteins
315	known to localize to the nucleus and nucleolus, respectively (Nelson et al., 2007; Robin
316	et al., 2018). As predicted, the PmEC01597:sYFP fluorescence signal consistently co-
317	localized with both the AtUBQ10-NLS:mCherry and AtFIB2:mCherry fluorescence
318	signals, demonstrating that PmEC01597:sYFP accumulates in the nucleus and
319	nucleolus (Figure 3C-D). Furthermore, PmEC01597:sYFP also overlapped fluorescence
320	signals (Figure 3E) with mCherry-tagged FLS2 (FLS2:mCherry), an Arabidopsis protein

15

Helm and Singh, et al

known to localize on the plasma membrane (Helm et al., 2019). Plasmolysis of *N. benthamiana* epidermal cells expressing PmEC01597:sYFP and AtFLS2:mCherry
revealed separation of the plasma membrane from the cell wall, further supporting
plasma-membrane localization of PmEC01597:sYFP (Supplemental Figure 3).
Collectively, these data demonstrate that PmEC01597 targets multiple subcellular
compartments when expressed in *N. benthamiana*.

327

328 The *P. maydis* effector candidate PmEC03792 is imported into the nucleus and 329 nucleolus

330 Fungal pathogens have been shown to express and translocate effectors that 331 preferentially accumulate protein within the host nucleus (Kemen et al., 2005; Petre et 332 al., 2015). We, therefore, investigated whether any of the *P. maydis* effector candidates specifically targeted the nucleus. Analysis of the PmEC03792 protein sequence 333 334 revealed a NLS motif at its N terminus (aa 8-30) as well as a nucleolar-targeting 335 sequence (aa 4-35), suggesting that it may localize to the nucleus as well as the 336 nucleolus (Sperschneider et al., 2017; Scott et al., 2011) (Table 1). To test our 337 hypothesis, we transiently expressed the PmEC03792:sYFP protein fusion and 338 assessed the subcellular localization pattern in *N. benthamiana* epidermal cells. Live-339 cell imaging using laser scanning confocal microscopy showed that PmEC03792 340 preferentially localized to subcellular compartments resembling the nucleus and 341 nucleolus, whereas free sYFP predominantly localized to the cytoplasm and the nucleus 342 (Figure 4). To confirm PmEC03792 is indeed localized to the nucleus and nucleolus, we 343 transiently co-expressed PmEC03792:sYFP with either mCherry-tagged AtUBQ10-NLS

16

Helm and Singh, et al

344	or AtFIB2. Consistent with our hypothesis, live-cell imaging revealed that the
345	PmEC03792:sYFP fluorescence signal co-localized with both the AtUBQ10-
346	NLS:mCherry and AtFIB2:mCherry fluorescence signals, demonstrating that
347	PmEC03792:sYFP accumulates in the nucleus and nucleolus (Figure 4).
348	
349	PmEC04573 targets the chloroplasts
350	Chloroplasts often have an essential role in coordinating an effective plant
351	immune response against pathogens and, as such, are often targeted by proteinaceous
352	effectors from filamentous fungal pathogens (Littlejohn et al., 2021). Indeed, several of
353	the P. maydis effector candidates encode predicted chloroplast transit peptide (cTP)
354	sequences (Table 1), suggesting these effector candidates may target host
355	chloroplasts. We, therefore, investigated whether any of the P. maydis effector-
356	fluorescent protein fusions localized to these subcellular compartments. Intriguingly,
357	fluorescence from the PmEC04573:sYFP-fluorescent protein fusion was consistently
358	detected in organelles resembling chloroplasts as well as the nucleo-cytosol (Figure 5A-
359	D). To test whether PmEC04573:sYFP is indeed chloroplast-localized, we co-expressed
360	PmEC04573:sYFP with RbcS-TP:mCherry, a subcellular marker for plastids (Nelson et
361	al., 2007). Consistent with our hypothesis, PmEC04573:sYFP fluorescence signal
362	overlapped with RbcS-TP:mCherry on chloroplasts as well as stromules (stroma-
363	containing tubules), confirming PmEC04573:sYFP does indeed accumulate on
364	chloroplasts (Figure 5B-C).

Interestingly, immunoblot analyses with the PmEC04573:sYFP protein fusion
 consistently revealed two distinct protein products; the larger protein product was near

Helm and Singh, et al

17

367	the predicted molecular weight while the smaller protein band coincided with free sYFP,
368	suggesting cleavage of sYFP from PmEC04573 had occurred (Figure 2; Supplemental
369	Figure 4). To exclude that the chloroplast localization observed with PmEC04573:sYFP
370	was an artifact caused by free sYFP, we coexpressed sYFP with RbcS-TP:mCherry in
371	N. benthamiana leaf cells. As predicted, sYFP fluorescence signal was not observed on
372	chloroplasts, even when the sYFP signal was saturated (Supplemental Figure 5). These
373	protein expression data, coupled with the observation that free sYFP did not localize to
374	chloroplasts, suggests that the nucleo-cytosol localization observed with
375	PmEC04573:sYFP (Figure 5D) may be attributed to processed sYFP diffusing
376	throughout the nucleoplasm and cytoplasm.
377	
378	
379	DISCUSSION
380	Recent sequencing of the Phyllachora maydis genome revealed that this fungal
381	pathogen encodes putatively secreted effector candidate proteins (Telenko et al., 2020).
382	However, our general understanding of host cell compartments targeted by the P.
383	maydis effector repertoire is limited (Helm et al., 2022). In this study, we leveraged the
384	availability of the P. maydis genome and refined previous effector predictions to
385	investigate the subcellular compartments targeted by candidate effector proteins using a
386	Nicotiana benthamiana-based heterologous expression system (Figure 1). We found
387	that 37 of the 40 putative effectors accumulated detectable protein in planta (Figure 2).
388	Among the 37 P. maydis effector-fluorescent protein fusions tested, 29 displayed a

389 nucleo-cytoplasmic distribution that was indistinguishable from the free sYFP control

Helm and Singh, et al

(Supplemental Figure 1) and five predominantly localized to the cytosol (Supplemental
Figure 2). One effector candidate, PmEC01597, localized to multiple subcellular
compartments including the nucleus, nucleolus, and plasma membrane (Figure 3), while
PmEC03792 was specifically imported into both the nucleus and nucleolus with no
observable cytoplasmic stranding (Figure 4). Another putative effector, PmEC04573,
consistently localized to chloroplasts as well as stromules (Figure 5).

396 Collectively, our data suggest that candidate effector proteins from *P. maydis* 397 localize to distinct subcellular compartments and may associate with host proteins in 398 these locations. It should be acknowledged that our approach relied on fusing a large 399 fluorophore to the C terminus of each candidate effector as well as overexpression in a 400 heterologous model plant. Furthermore, the selected putative effectors are predicted to 401 encode signal peptides and are thus likely to be secreted; however, there is no direct 402 evidence these proteins are translocated into host cells. Nevertheless, the observation 403 that some PmECs accumulated protein and were targeted to specific subcellular 404 locations within leaf cells suggests that these proteins are bona fide cytoplasmic 405 effectors. Hence, knowledge of the subcellular localization patterns of the P. maydis 406 effector repertoire will be informative in the identification of the host proteins they target 407 as well as the cellular pathways they alter. Determining whether any of the *P. maydis* 408 effector candidates have a functional role in manipulating host immune responses as 409 well as their potential host targets in maize is a focus for future investigations.

One effector candidate, PmEC01597, consistently localized to multiple
subcellular compartments including the nucleus, nucleolus, and plasma membrane
(Figure 3). Though it is unclear of the functional significance of PmEC01597 localization

	19 Helm and Singh, et al
413	to the nucleolus, effectors from fungi and oomycetes have been shown to target this
414	subcellular compartment (Lorrain et al., 2018). A candidate effector from the poplar leaf
415	rust pathogen (Melamspora larici-populina), termed MIp124478, encodes a predicted

416 nuclear localization peptide sequence, and accumulated in the nucleus and nucleolus of

417 N. benthamiana epidermal cells (Ahmed et al., 2018; Petre et al., 2015). Furthermore,

418 transgenic Arabidopsis constitutively expressing Mlp124478 displayed altered leaf

419 morphology as well as repressed defense gene expression (Ahmed et al., 2018).

420 Intriguingly, Chip-PCR analyses revealed that this candidate effector associates with the

421 TGA1a-binding DNA sequence, suggesting Mlp124478 binds the TGA1a promoter

422 region and represses expression of defense genes (Ahmed et al., 2018). Though the

423 biological significance of PmEC01597 accumulating in the nucleolus remains to be

424 investigated, we hypothesize this putative effector may interfere with host cell

425 transcriptional machinery of ribosomal RNA (rRNA) genes or processing of ribosomal

426 RNA synthesis.

427 In addition to targeting the nucleus and nucleolus, PmEC01597 consistently 428 localized on the plasma membrane when transiently expressed in N. benthamiana 429 epidermal cells (Figure 3). Proteinaceous effectors from filamentous phytopathogens 430 have indeed been shown to target the plasma membrane where they often modulate 431 host immune responses (Fabro, 2022; Lorrain et al., 2018). For example, work by 432 Gaouar and colleagues (2016) showed that a different putative effector from poplar leaf 433 rust, Mlp124202, localized on the plasma membrane when transiently expressed in N. 434 benthamiana and in stable transgenic Arabidopsis. Consistent with the subcellular 435 localization, yeast two-hybrid assays revealed that Mlp124202 associated with plasma

Helm and Singh, et al

436	membrane-localized synaptotagmin A (SYTA; At2g20990), suggesting this poplar leaf	
437	rust effector may have a functional role in modulating vesicle-mediated trafficking.	
438	Furthermore, the Phytophthora sojae-secreted effector, Avh240, preferentially	
439	accumulated on the host plasma membrane where it associated with and inhibited	
440	secretion of the soybean aspartic protease, GmAP1, thereby suppressing host immune	
441	responses (Guo et al., 2019). Murphy and colleagues (2018) showed that the	
442	Phytophthora infestans effector, Pi17316, interacts directly with VASCULAR	
443	HIGHWAY1-interacting kinase from potato (StVIK). Importantly, transgenic	
444	overexpression of StVIK in potato enhanced Phytophthora infestans virulence and	
445	colonization, demonstrating StVIK functions at least in part as a susceptibility factor	
446	(Murphy et al., 2018). We, therefore, predict PmEC01597 associates with host proteins	
447	on the plasma membrane to modulate host immune responses, similar to those of other	
448	plasma membrane-localized effectors from fungal and oomycete pathogens. Hence,	
449	future functional characterization of PmEC01597 should prioritize identifying host	
450	proteins from maize that interact with this putative effector.	
451	Numerous filamentous phytopathogens often express and translocate effectors	
452	inside host cells where they specifically localize to host nuclear compartments and	
453	manipulate host immune responses (Caillaud et al., 2012; Schornack et al., 2010; Stam	
454	et al., 2013). Here, we show one putative effector, PmEC03792, was specifically	
455	targeted to the nucleus and nucleolus (Figure 4). Consistent with the subcellular	
456	localization pattern, PmEC03792 encoded a predicted NLS motif as well as a nucleolar-	
457	targeting sequence, suggesting this putative effector may manipulate host nucleolar	
458	functions. Indeed, numerous nuclear-localized fungal and oomycete effectors have	

21

Helm and Singh, et al

459 been shown to disrupt many cellular processes by reprogramming transcriptional 460 mechanisms to suppress host immune response. For example, AVR2, an effector from 461 *Phytophthora infestans*, targets the nucleus and suppresses host immune responses 462 through its association with a brassinosteroid-responsive bHLH transcription factor 463 (Boch and Bonas, 2010; Turnbull et al., 2017). Furthermore, the Colletotrichum 464 graminicola effector, CgEP1, specifically targets the host nucleus where it binds to chromatin, indicating that CgEP1 may modulate host transcription (Vargas et al., 2016). 465 466 Moreover, the Ustilago maydis effector, See1, is localized to the host nucleus and 467 interacts with the host SGT1 protein to reactivate DNA synthesis and cell division in 468 infected leaves (Redkar et al., 2015). We, therefore, speculate nuclear-localized 469 PmEC03792 may have a functional role in manipulating host transcription by targeting 470 host proteins associated with nuclear compartments. Future functional characterization 471 of PmEC03792 should prioritize identifying host proteins targeted by this candidate 472 effector. 473 Our finding that the *P. maydis* putative effector PmEC04573 labels chloroplasts 474 suggests that this fungal pathogen may target this organelle to modulate chloroplast-475 mediated host immune responses (Figure 5). Indeed, filamentous fungal pathogens 476 have evolved intracellular effectors that localize to chloroplasts wherein they subvert 477 chloroplast-derived immune responses (Littlejohn et al., 2021). For example,

Melampsora larici-populina secretes several putative effectors, termed Chloroplast
Targeting Proteins (CTP1, CTP2, and CTP3), that accumulate in the stroma of
chloroplasts when transiently expressed in *N. benthamiana* (Petre et al., 2015; Petre et al., 2016). Importantly, CTP1, CTP2, and CTP3 encode predicted chloroplast transit

22

Helm and Singh, et al

peptides that are cleaved upon their translocation to chloroplasts, and which are
necessary and sufficient for chloroplast localization (Petre et al., 2016). The observation
that PmEC04573 also encodes a predicted chloroplast transit peptide sequence and
localizes to chloroplasts suggests the cTP sequence may be necessary for chloroplast
localization.

487 The wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) has also 488 been shown to express and translocate several effectors into host cells where they 489 subsequently traffic to chloroplasts (Figueroa et al., 2021; Littlejohn et al., 2021). For 490 example, Pst 12806 is a haustorium-specific effector that, when secreted, localizes to 491 host chloroplasts, and interacts with the photosynthesis-related protein TaISP (Xu et al., 492 2019). Importantly, the direct association between Pst 12806 and TaISP suppresses 493 chloroplast-derived immune responses and photosynthesis, thereby promoting 494 pathogen growth (Xu et al., 2019). Furthermore, two additional wheat stripe rust 495 effectors, Pst 4 and Pst 5, were recently shown to interact with TaISP and attenuate 496 chloroplast-derived immune responses (Wang et al., 2021). However, unlike Pst 12806, 497 Pst 4 and Pst 5 associate with TaISP in the cytoplasm and such interaction likely 498 prevents TaISP trafficking to the chloroplast, thereby suppressing chloroplast-derived production of reactive oxygen species (Wang et al., 2021). We, therefore, predict the 499 500 subcellular targeting of chloroplasts by *P. maydis* may be important for facilitating 501 infection. Future work should focus on identifying host proteins from maize that 502 associate with PmEC04573, and what effect such interactions have on facilitating P. 503 maydis infection.

Helm and Singh, et al

23

504	We leveraged the availability of the <i>P. maydis</i> genome generated using short-
505	read sequencing technology to select the candidate effectors investigated in our study
506	(Telenko et al., 2020). However, given the relatively low BUSCO (benchmarking sets of
507	universal single-copy orthologs) score and the high percentage of repetitive sequences
508	within the fungal genome, we speculate the current <i>P. maydis</i> genome assembly is
509	incomplete. Hence, future work should aim to generate an improved P. maydis genome
510	using both short- and long-read sequencing technologies as such an improved genome
511	will likely identify additional P. maydis effector candidates.
512	In summary, we show the majority of putative effectors from <i>P. maydis</i>
513	accumulate protein in planta, and several localize to specific plant cell compartments
514	including the nucleus, nucleolus, plasma membrane, and chloroplasts. Our data provide
515	valuable insights into the putative functions of the <i>P. maydis</i> effector candidates as well
516	as the host processes potentially manipulated by this fungal pathogen. Lastly, our
517	findings can be used to generate testable hypotheses for addressing the functional roles
518	of P. maydis effectors during pathogenicity as well as identifying their host targets in
519	maize.
520	
521	
522	ACKNOWLEDGEMENTS

523 The authors thank Darcy Telenko (Purdue University) for providing sequences of 524 the candidate effectors from *P. maydis* Indiana isolate PM-01, and Roger Innes (Indiana 525 University) for providing the AtFLS2:mCherry, AtFIB2:mCherry, 3xHA:sYFP (free 526 sYFP), and 3xHA:mCherry (free mCherry) constructs. The authors would like to thank

0	Λ
2	4

Helm and Singh, et al

527	the Purdue University Imaging Facility for access to the Zeiss LSM880 Axio Examiner
528	upright confocal microscope. We also thank Morgan Carter and Martin Darino for
529	insightful discussions and critical reading of the manuscript. The funding bodies had no
530	role in designing the experiments, collecting the data, or writing the manuscript. All
531	opinions expressed in this paper are the authors' and do not necessarily reflect the
532	policies and views of USDA, DOE, or ORAU/ORISE. USDA is an equal opportunity
533	provider and employer.
534	
535	DATA AVAILABILITY STATEMENT
536	The data that support the findings of this study are available from the
537	corresponding author upon request.
538	
539	CONFLICT OF INTEREST
539 540	CONFLICT OF INTEREST The authors declare that they have no competing interests and that the research
540	The authors declare that they have no competing interests and that the research
540 541	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be
540 541 542	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be
540 541 542 543	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest
540 541 542 543 544	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest AUTHOR CONTRIBUTIONS
540 541 542 543 544 545	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest AUTHOR CONTRIBUTIONS M.H. and R.S. conceived and designed the study. M.H., R.S., R.H., N.J., and
540 541 542 543 544 545 546	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest AUTHOR CONTRIBUTIONS M.H. and R.S. conceived and designed the study. M.H., R.S., R.H., N.J., and A.M., performed the experiments. M.H., R.S., R.H., N.J., A.S.I-P, and S.B.G. analyzed
540 541 542 543 544 545 546 547	The authors declare that they have no competing interests and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest AUTHOR CONTRIBUTIONS M.H. and R.S. conceived and designed the study. M.H., R.S., R.H., N.J., and A.M., performed the experiments. M.H., R.S., R.H., N.J., A.S.I-P, and S.B.G. analyzed the data. M.H. and R.S. drafted and wrote the manuscript. All authors edited the

25

Helm and Singh, et al

550	LITERATURE CITED
551	Ahmed, M.B., Santos, K.C.G.d., Sanchez, I.B., Petre, B., Lorrain, C., Plourde, M.B.,
552	Duplessis, S., Desgagne-Penix, I., and Germain, H. 2018. A rust fungal effector
553	binds plant DNA and modulates transcription. Sci. Rep. 8, 14718.
554	
555	Alfano, J.R. 2009. Roadmap for future research on plant pathogen effectors. Mol. Plant
556	Pathol. 10: 805-813.
557	
558	Boch, J., and Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery
559	and function. Annu. Rev. Phytopathol. 48: 419-436.
560	
561	Caillaud, M. C., Piquerez, S. J. M., Fabro, G., Steinbrenner, J., Ishaque, N., and
562	Beynon, J., Jones, J.D.G. 2012. Subcellular localization of the Hpa RxLR effector
563	repertoire identifies a tonoplast-associated protein HaRxL17 that confers
564	enhanced plant susceptibility. Plant J. 69: 252–265.
565	
566	Denne, N.L., Hiles, R.R., Kyrysyuk, O., Iyer-Pascuzzi, A.S., and Mitra, R.M. 2021.
567	Ralstonia solanacearum effectors localize to diverse organelles in Solanum
568	hosts. Phytopathology 111: 2213-2226.
569	
570	Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard,
571	C.S. 2006. Gateway-compatible vectors for plant functional genomics and
572	proteomics. Plant J. 45: 616-629.

	26 Helm and Singh, et al
573	
574	Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
575	throughput. Nucleic Acids Res. 32: 1792-1797.
576	
577	Fabro, G. 2022. Oomycete intracellular effectors: specialised weapons targeting
578	strategic plant processes. New Phytol. 233: 1074-1082.
579	
580	Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the
581	bootstrap. Evolution 39: 783–791.
582	
583	Figueroa, M., Ortiz, D., and Henningsen, E.C. 2021. Tactics of host manipulation by
584	intracellular effectors from plant pathogenic fungi. Curr. Opin. Plant Biol. 62:
585	102054.
586	
587	Gaouar, O., Morency, M.J., Letanneur, C., Seguin, A., and Germain, H. 2016. The
588	124202 candidate effector of Melampsora larici-populina interacts with
589	membranes in Nicotiana and Arabidopsis. Can. J. Plant Pathol. 38: 197-208.
590	
591	Gu, Y., and Innes, R.W. 2011. The KEEP ON GOING protein of Arabidopsis recruits the
592	ENHANCED DISEASE RESISTANCE 1 protein to trans-golgi network/early
593	endosome vesicles. Plant Physiol. 155: 1827-1838.
594	

Helm and	Singh,	et a	al
----------	--------	------	----

595	Guo, B., Wang, H., Yang, B., Jiang, W., Jing, M., Li, H., Xia, Y., Xu, Y., Hu, Q., Wang,	
596	F., Yu, F., Wang, Y., Ye, W., Dong, S., Xing, W., and Wang, Y. 2019.	
597	Phytophthora sojae effector PsAvh240 inhibits host aspartic protease secretion	
598	to promote infection. Mol Plant 12: 552-564.	
599		
600	Helm, M., Qi, M., Sarker, S., Yu, H., Whitham, S.A., and Innes, R.W. 2019. Engineering	
601	a decoy substrate in soybean to enable recognition of the Soybean mosaic virus	
602	NIa protease. Mol. Plant Microbe Interact. 32: 760-769.	
603		
604	Helm, M., Singh, R., Goodwin, S.B., Caldwell, D., and Iyer-Pascuzzi, A.S. 2022. Tar	
605	Spot of Maize: Current knowledge of genetic interactions and future research	
606	prospects to improve disease resistance. Authorea. [Preprint] Available at:	
607	https://doi.org/10.22541/au.164642664.47870546/v2	
608		
609	Jones, J., and Dangl, J. 2006. The plant immune system. Nature 444: 323-329.	
610		
611	Kamoun, S. 2007. Groovy times: filamentous pathogen effectors revealed. Curr. Opin.	
612	Plant Biol. 10: 358-365.	
613		
614	Kemen, E., Kemen, A. C., Rafiqi, M., Hempel, U., Mendgen, K., Hahn, M., and Voegele,	
615	R.T. 2005. Identification of a protein from rust fungi transferred from haustoria	
616	into infected plant cells. Mol. Plant Microbe Interact. 18: 1130-1139.	
617		

28

Helm and Singh, et al

618	Littlejohn, G.R., Breen, S., Smirnoff, N., and Grant, M. 2021. Chloroplast immunity
619	illuminated. New Phytol. 229: 3088-3107.

620

Lorrain, C., Petre, B., and Duplessis, S. 2018. Show me the way: rust effector targets in

heterologous plant systems. Curr. Opin. Microbiol. 46: 19-25.

623

- Ma, L., Lukasik, E., Gawehns, F., and Takken, F.L.W. 2012. The use of agroinfiltration
- 625 for transient expression of plant resistance and fungal effector proteins in

626 *Nicotiana benthamiana* leaves. Methods Mol. Biol. 835: 61-74.

627

Mottaleb, K.A., Loladze, A., Sonder, K., Kruseman, G., and San Vicente, F. 2019.

629 Threats of tar spot complex disease of maize in the United States of America and 630 its global consequences. Mitig. Adapt. Strateg. Glob. Chang. 24: 281–300.

- Mueller, D. S., Wise, K. A., Sisson, A. J., Allen, T. W., Bergstrom, G. C., Bissonnette, K.
- 633 M., Bradley, C.A., Byamukama, E., Chilvers, M.I., Collins, A.A., Esker, P.D.,
- Faske, T.R., Friskop, A.J., Hagan, A.K., Heiniger, R.W., Hollier, C.A., Isakeit, T.,
- Jackson-Ziems, T.A., Jardine, D.J., Kelly, H.M., Kleczewski, N.M., Koehler, A.M.,
- 636 Koenning S.R., Malvick, D.K., Mehl, H.L., Meyer, R.F., Paul, P.A., Peltier, A.J.,
- 637 Price, P.P., Robertson, A.E., Roth, G.W., Sikora, E.J., Smith, D.L., Tande, C.A.,
- Telenko, D.E.P., Tenuta, A.U., Thiessen, L.D., and Wiebold, W.J. 2020. Corn
- 639 yield loss estimates due to diseases in the United States and Ontario, Canada,
- 640 from 2016 to 2019. Plant Health Prog. 21: 238-247.

29

Helm and Singh, et al

641		
642	Murphy, F., He, Q., Armstrong, M., Giuliani, L.M., Boevink, P.C., Zhang, W., Tian, Z.,	
643	Birch, P.R.J., Gilroy, E.M. 2018. The potato MAP3K StVIK is required for the	
644	Phytophthora infestans RXLR effector Pi17316 to promote disease. Plant	
645	Physiol. 177: 398-410.	
646		
647	Nei, M., and Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University	
648	Press, New York.	
649		
650	Nelson, B.K., Cai, X., and Nebenfuhr, A. 2007. A multicolored set of in vivo organelle	
651	markers for co-localization studies in Arabidopsis and other plants. Plant J. 51:	
652	1126-1136.	
653		
654	Petre, B., Lorrain, C., Saunders, D.G.O., Win, J., Sklenar, J., Duplessis, S., and	
655	Kamoun, S. 2016. Rust fungal effectors mimic host transit peptides to translocate	
656	into chloroplasts. Cell Microbiol. 18: 453-465.	
657		
658	Petre, B., Saunders, D.G.O., Sklenar, J., Lorrain, C., Win, J., Duplessis, S., and	
659	Kamoun, S. 2015. Candidate effector proteins of the rust pathogen Melampsora	
660	larici-populina target diverse plant cell compartments. Mol. Plant Microbe	
661	Interact. 28: 689-700.	
662		

663	Petre, B., Win, J., Menke, F.L.H., and Kamoun, S. 2017. Protein-protein interaction
664	assays with effector-GFP fusions in Nicotiana benthamiana. Methods Mol. Biol.
665	1659: 85-98.
666	
667	Qi, D., DeYoung, B.J., and Innes, R.W. 2012. Structure-function analysis of the coiled-
668	coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant
669	Physiol. 158: 1819-1832.
670	
671	Redkar, A., Hoser, R., Schilling, L., Zechmann, B., Krzymowska, M., Walbot, V., and
672	Doehlemann, G. 2015. A secreted effector protein of Ustilago maydis guides maize
673	leaf cells to form tumors. Plant Cell 27: 1332–1351.
674	
675	Robin, G.P., Kleemann, J., Neumann, U., Cabre, L., Dallery, J., Lapalu, N., and
676	O'Connell, R.J. 2018. Subcellular localization screening of Colletotrichum
677	higginsianum effector candidates identifies fungal proteins targeted to plant
678	peroxisomes, golgi bodies, and microtubules. Front Plant Sci. 9: 562.
679	
680	Rocco da Silva, C., Check, J., MacCready, J. S., Alakonya, A. E., Beiriger, R. L.,
681	Bissonnette, K. M., Collins, A., Cruz, C.D., Esker, P.D., Goodwin, S.B., Malvick,
682	D., Mueller, D.S., Paul, P., Raid, R., Robertson, A.E., Roggenkamp, E., Ross,
683	T.J., Singh, R., Smith, D.L., Tenuta, A.U., Chilvers, M.I., and Telenko, D.E.P.
684	2021. Recovery plan for tar spot of corn, caused by Phyllachora maydis. Plant
685	Health Prog. 22: 596-616.

Helm and	Singh,	et al
----------	--------	-------

686					
687	Rodríguez-Puerto, C., Chakraborty, R., and Singh, R. Rocha-Loyola, P., and Rojas,				
688	C.M. 2022. The Pseudomonas syringae type III effector HopG1 triggers necrotic				
689	cell death that is attenuated by AtNHR2B. Sci. Rep. 12: 5388.				
690					
691	Ruhl, G., Romberg, M.K., Bissonnette, S., Plewa, D., Creswell, T., and Wise, K.A. 2016.				
692	First report of tar spot on corn caused by Phyllachora maydis in the United				
693	States. Plant Dis. 100: 1496.				
694					
695	Saitou, N., and Nei, M. 1987. The Neighbor-Joining Method—a new method for				
696	reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.				
697					
698	Scott, M.S., Troshin, P.V., and Barton, G.J. 2011. NoD: a Nucleolar localization				
699	sequence detector for eukaryotic and viral proteins. BMC Bioinform. 12: 317.				
700					
701	Singh, R., Dangol, S., Chen, Y., Choi, J., Cho, Y. S., Lee, J. E., Choi, M., and Jwa, N.				
702	2016. Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by				
703	inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst				
704	and host innate immunity. Mol. Cells 39: 426–438.				
705					
706	Schornack, S., Van Damme, M., Bozkurt, T. O., Cano, L. M., Smoker, M., Thines, M.,				
707	Gaulin, E., Kamoun, S., and Huitema, E. 2010. Ancient class of translocated				
708	oomycete effectors targets the host nucleus. PNAS 107: 17421–17426.				

ingh, et al

709	
710	Sperschneider, J., Catanzariti, A.M., DeBoer, K., Petre, B., Gardiner, D.M., Singh, K.B.,
711	Dodds, P.N., and Taylor, J.M. 2017. LOCALIZER: subcellular localization
712	prediction of both plant and effector proteins in the plant cell. Sci. Rep. 7: 44598.
713	
714	Sperschneider, J., and Dodds, P.N. 2022. EffectorP 3.0: Prediction of apoplastic and
715	cytoplasmic effectors in fungi and oomycetes. Mol. Plant Microbe Interact. 35:
716	146-156.
717	
718	Stam, R., Howden, A., Delgado Cerezo, M., Amaro, T., Motion, G., Pham, J., and
719	Huitema, E. 2013. Characterization of cell death inducing Phytophthora capsici
720	CRN effectors suggests diverse activities in the host nucleus. Front. Plant Sci. 4:
721	387.
722	
723	Tamura, K., Nei, M., and Kumar, S. 2004. Prospects for inferring very large phylogenies
724	by using the neighbor-joining method. PNAS 101: 11030-11035.
725	
726	Telenko, D. E. P., Chilvers, M. I., Kleczewski, N. M., Smith, D. L., Byrne, A. M., Devillez,
727	P., Diallo, T., Higgins, D., Joos, D., Kohn, K., Lauer, J., Mueller, B., Singh, M.P.,
728	Widdicombe, W.D., and Williams, L.A. 2019. How tar spot of corn impacted
729	hybrid yields during the 2018 Midwest epidemic. Crop Protection Network. doi:
730	10.31274/cpn- 20190729-002.
731	

33

Helm and Singh, et al

732	Telenko, D. E. P., Ross, T. J., Shim, S., Wang, Q., and Singh, R. 2020. Draft genome				
733	sequence resource for Phyllachora maydis—an obligate pathogen that causes				
734	tar spot of corn with recent economic impacts in the United States. Mol. Plant				
735	Microbe Interact. 33: 884-887.				
736					
737	Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gislason, M.H., Pihl, S.I.,				
738	Tsirigos, K.D., Winther, O., Brunak, S., von Heijne, G., Nielsen, H. 2022. SignalP				
739	6.0 predicts all five types of signal peptides using protein language models. Nat.				
740	Biotechnol. doi.org/10.1038/s41587-021-01156-3				
741					
742	Turnbull, D., Yang, L., Naqvi, S., Breen, S., Welsh, L., Stephens, J., Morris, J., Boevink,				
743	P.C., Hedley, P.E., Zhan, J., Birch, P.R., and Gilroy, E.M. 2017. RXLR effector				
744	AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to				
745	suppress immunity. Plant Physiol. 174: 356–369.				
746					
747	Valle-Torres, J., Ross, T. J., Plewa, D., Avellaneda, M. C., Check, J., Chilvers, M. I.,				
748	Cruz, A.P., Dalla Lana, F., Groves, C., Gongora-Cancul, C., Henriquez-Dole, L.,				
749	Jamann, T., Kleczewski, N., Lipps, S., Malvick, D., McCoy, A.G., Mueller, D.S.,				
750	Paul, P.A., Puerto, C., Schloemer, C., Raid, R.N., Roberston, A., Roggenkamp,				
751	E.M., Smith, D.L., Telenko, D.E.P., and Cruz, C.D. 2020. Tar Spot: an				
752	understudied disease threatening corn production in the Americas. Plant Dis.				
753	104: 2541-2550.				

Helm and	Singh,	et	al
----------	--------	----	----

755	Vargas, W. A., Sanz-Martín, J. M., Rech, G. E, Armijos-Jaramillo, V. D., Rivera, L. P.,				
756	Echeverria, M. M., Diaz-Minguez, J.M., Thon, M.R., and Sukno, S.A. 2016. A				
757	fungal effector with host nuclear localization and DNA-binding properties is				
758	required for maize anthracnose development. Mol. Plant Microbe Interact. 29:				
759	95.				
760					
761	Wang, Q., Han, C., Ferreira, A. O., Yu, X., Ye, W., Tripathy, S., Kale, S., Gu, B., Sheng,				
762	Y., Sui, Y., Wang, X., Zhang, Z., Cheng, B., Dong, S., Shan, W., Zheng, X., Dou,				
763	D., Tyler, B., and Wang, Y. 2011. Transcriptional programming and functional				
764	interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell				
765	23: 2064–2086.				
766					
767	Wang, X., Zhai, T., Zhang, X., Tang, C., Zhuang, R., Zhao, H., Xu, Q., Cheng, Y.,				
768	Wang, J., Duplessis, S., Kang, Z., and Wang, X. 2021. Two stripe rust effectors				
769	impair wheat resistance by suppressing import of host Fe-S protein into				
770	chloroplasts. Plant Physiol. 187: 2530-2543.				
771					
772	Whisson, S. C., Boevink, P. C., Wang, S., and Birch, P. R. J. 2016. The cell biology of				
773	late blight disease. Curr. Opin. Microbiol. 34: 127-135.				
774					
775	Win, J., Kamoun, S., and Jones, A.M.E. 2011. Purification of effector-target protein				
776	complexes via transient expression in Nicotiana benthamiana. Methods Mol. Biol.				
777	712: 181-194.				

7	7	Ω.
	1	U.

778				
779	Xu, Q., Tang, C., Wang, X., Sun, S., Zhao, J., Kang, Z., and Wang, X. 2019. An effector			
780	protein of the wheat stripe rust fungus targets chloroplasts and suppresses			
781	chloroplast function. Nat. Commun. 10: 5571.			
782				
783	Zipfel, C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35: 345-351.			
784				
785	Zheng, X., McLellan, H., Fraiture, M., Liu, X., Boevink, P. C., Gilroy, E. M., Chen, Y.,			
786	Kandel, K., Sessa, G., Birch, P.R.J., and Brunner, F. 2014. Functionally			
787	redundant RXLR effectors from Phytophthora infestans act at different steps to			
788	suppress early flg22-triggered immunity. PLoS Pathog. 10, e1004057.			
789				
790				
791				
792				
793				
794				
795				
796				
797				
798				
799				
800				

36

Helm and Singh, et al

Table 1. Phyllachora maydis effector candidates (PmEC) investigated in this 801

802 study.

Protein ID ^a	Amino acids ^b	Signal peptide ^c	Protein size (kDa) ^d	LOCALIZER prediction ^e	<i>in planta</i> localization ^f
PmEC00197	262	16-17	27.3		Nucleus and cytosol
PmEC00457	156	20-21	14.9		Nucleus and cytosol
PmEC00684	140	30-31	13.3		Nucleus and cytosol
PmEC00848	177	20-21	17.2	Chloroplast (56-78) Mitochondria (67-87)	Nucleus and cytosol
PmEC01139	201	24-25	19.3		Nucleus and cytosol
PmEC01169	55	20-21	3.9		Nucleus and cytosol
PmEC01289	109	20-21	10.2		Nucleus and cytosol
PmEC01597	211	21-22	21.9	NLS (144-176)	Nucleus, nucleolus, plasma membrane
PmEC01742	78	22-23	6.0		Nucleus and cytosol
PmEC01936	221	20-21	21.6		No accumulation
PmEC01984	121	23-24	10.7		Nucleus and cytosol
PmEC02017	130	17-18	12.1		Nucleus and cytosol
PmEC02274	86	18-19	7.1		Nucleus and cytosol
PmEC02331	222	19-20	21.8		Nucleus and cytosol
PmEC02451	150	17-18	14.2		No accumulation
PmEC02707	95	17-18	8.7		Nucleus and cytosol
PmEC02872	122	21-22	10.5		Nucleus and cytosol
PmEC02890	180	23-24	17.3		Nucleus and cytosol
PmEC02905	101	18-19	9.7		Nucleus and cytosol
PmEC03053	299	23-24	30.7		Nucleus and cytosol
PmEC03153	134	28-29	11.7	Chloroplast (17-43)	Nucleus and cytosol
PmEC03234	142	20-21	13.2	,	Nucleus and cytosol
PmEC03436	179	18-19	16.6		Cytosol
PmEC03476	68	16-17	5.4		Nucleus and cytosol
PmEC03493	212	24-25	21.7	Mitochondria (52-73)	Nucleus, sub-nuclear, cytosol
PmEC03629	95	19-20	8.4		Nucleus and cytosol
PmEC03706	219	19-20	21.2	Chloroplast (29-56) NLS (131-134)	Cytosol
PmEC03792	96	33-34	7.5	NLS (8-30)	Nucleus and nucleolus
PmEC04014	191	20-21	18.9		Cytosol and cytosolic aggregates
PmEC04128	281	15-16	30.4		Nucleus and cytosol
PmEC04129	165	18-19	16.0		Nucleus and cytosol
PmEC04322	205	16-17	20.5		Nucleus and cytosol
PmEC04573	159	18-19	15.3	Chloroplast (60-88)	Nucleus, cytosol, chloroplasts
PmEC05555	237	18-19	23.6		Nucleus and cytosol
PmEC05617	143	21-22	13.9	NLS (113-121)	Cytosol
PmEC06216	141	23-24	13.1	. ,	No accumulation
PmEC06656	193	18-19	19.2		Nucleus and cytosol
PmEC06699	138	19-20	13.0		Nucleus and cytosol
PmEC06759	207	23-24	21.3		Nucleus and cytosol
PmEC07010	197	21-22	19.1		Nucleus and cytosol

a. Data mined from Telenko et al., (2020).

b. Numbers indicate the length of amino acids including the predicted signal peptide.

c. Predicted signal peptide. Numbers indicate amino acid positions. Signal peptide predictions were performed using SignalP (v6.0).
 d. Predicted molecular weight (in kilodaltons; kDa) of the mature protein without the signal peptide.

e. Subcellular localization as predicted by LOCALIZER (v1.0). Numbers within the parentheses indicate the amino acid positions within the predicted transit peptide sequence. NLS; nuclear localization signal.

f. Subcellular localization patterns in Nicotiana benthamiana epidermal cells determined in this study.

811

812

813

814

Helm and Singh, et al

37

816 FIGURE LEGENDS

817

818	Figure 1. Schematic overview of the selection and subsequent analyses of)f
-----	--	----

819 *Phyllachora maydis* candidate effectors. A) The *P. maydis* effector candidates

investigated in this study were selected using the aforementioned selection criteria. **B**)

The predicted open reading frames (ORFs) of each of the 40 candidate effectors,

822 without their predicted signal peptides, were synthesized and fused to the N terminus of

super Yellow Fluorescent Protein (sYFP) and recombined into the plant expression

binary vector pEarleyGate100 (pEG100) using a multisite Gateway cloning strategy. C)

825 The resulting *P. maydis* effector-fluorescent protein fusion (PmEC:sYFP) constructs

826 were inserted into Agrobacterium tumefaciens for subsequent Nicotiana benthamiana-

based heterologous expression assays. **D)** Immunoblot analyses were used to assess

828 expression of the PmEC-fluorescent protein fusions. E) Laser-scanning confocal

829 microscopy was used to assess the live-cell subcellular localization patterns in *N*.

830 *benthamiana* epidermal cells. Figure created with <u>www.BioRender.com</u>.

831

832 Figure 2. Immunoblot analyses of the Phyllachora maydis candidate effector-

fluorescent fusion proteins. For panels A-G), the indicated constructs were transiently expressed in 3-week-old *Nicotiana benthamiana* using agroinfiltration. Total protein was extracted 24 hours post-agroinfiltration and immunoblotted with horseradish peroxidase (HRP)-conjugated anti-GFP antibodies. Free sYFP (3xHA:sYFP) and empty vector (e.v.) were included as controls. Ponceau staining of the RuBisCO large subunit was used as a loading control. For each protein, the theoretical protein size is indicated in

38

Helm and Singh, et al

839	parentheses (in kilodaltons; kDa). Three independent experiments were performed with
840	similar results. The results of only one experiment are shown.

841

842 Figure 3. The PmEC01597-fluorescent protein fusions accumulate within the

nucleus, nucleolus, and on the plasma membrane in *N. benthamiana*. A)

- 844 Schematic representation of the *P. maydis* PmEC01597 candidate effector including the
- nuclear localization signal (NLS). Numbers beneath the schematic illustration represent
- amino acid positions. **B)** Live-cell imaging of PmEC01597:sYFP in *N. benthamiana*
- 847 epidermal cells. Free sYFP (left panel) was included as a reference for nucleo-
- 848 cytoplasmic distribution. The scale bar shown represents 20 μM. C) Live-cell imaging of

849 PmEC01597:sYFP and AtUBQ10-NLS:mCherry in *N. benthamiana* leaf pavement cells.

- The scale bars shown represent 10 μM. **D**) PmEC01597:sYFP fusion proteins localize
- to the nucleolus in *N. benthamiana*. mCherry-tagged Arabidopsis FIB2 was included as
- a reference for nucleolus localization. The scale bars shown represent 10 µM. E)
- 853 PmEC01597:sYFP fusion proteins localize on the plasma membrane in *N*.
- 854 benthamiana. mCherry-tagged Arabidopsis FLS2 was included as a reference for
- 855 plasma membrane localization. For panels B-E), all confocal micrographs shown are of
- 856 single optical sections and white arrowheads indicate overlapping sYFP and mCherry

fluorescence signals.

858

857

859 Figure 4. The PmEC03792-fluorescent protein fusion preferentially localizes to the

860 **nucleolus and nucleus in** *N. benthamiana***.** Live-cell imaging of *N. benthamiana* leaf

pavement cells expressing A) PmEC03792:sYFP and AtFIB2:mCherry, and (B)

39

Helm and Singh, et al

862	PmEC03792:sYFP and AtUBQ10-NLS:mCherry. White arrowheads indicate
863	overlapping of sYFP and mCherry fluorescence signals. Images are single optical
864	sections. For panels A and B), protein fusions were expressed in N. benthamiana using
865	agroinfiltration and live-cell imaging was performed 24 hours following agroinfiltration.
866	
867	Figure 5. PmEC04573-fluorescent protein fusions accumulate on chloroplasts. A)
868	Live-cell imaging of <i>P. maydis</i> PmEC04573:sYFP in <i>N. benthamiana</i> epidermal cells.
869	Confocal micrographs are single optical sections. Free sYFP (left panel) was included
870	as a reference for nucleo-cytoplasmic distribution. The scale bar shown represents 50
871	μΜ. B-C) Live-cell imaging of PmEC04573:sYFP and RbcS-TP:mCherry (plastid
872	marker) in N. benthamiana leaf pavement cells. The scale bars shown represent 20 μ M
873	in panel b and 10 μ M in panel c. D) Live-cell imaging of PmEC04573:sYFP and free
874	mCherry in <i>N. benthamiana</i> leaf pavement cells. The scale bars shown represent 20
875	μM. For panels A-D), protein fusions were expressed in <i>N. benthamiana</i> using
876	agroinfiltration and live-cell imaging was performed 24 hours following agroinfiltration.
877	All confocal micrographs shown are of single optical sections and white arrowheads
878	indicate overlapping sYFP and mCherry fluorescence signals. Black arrowheads
879	indicate stromules.
880	
881	SUPPLEMENTARY FIGURE LEGENDS
882	
883	Supplemental Figure 1. sYFP-tagged <i>P. maydis</i> effector candidate proteins
884	localize to the nucleus and cytosol in N. benthamiana. The indicated constructs

40

Helm and Singh, et al

885	were transiently expressed in N. benthamiana and imaged using laser-scanning					
886	confocal microscopy 24 hours following agroinfiltration. Confocal micrographs shown					
887	are single optical sections. Free sYFP was included as a reference for nucleo-					
888	cytoplasmic distribution.					
889						
890	Supplemental Figure 2. PmEC03436, PmEC03493, PmEC03706, PmEC04014, and					
891	PmEC05617 fluorescent protein fusions predominantly accumulate in the					
892	cytoplasm in <i>N. benthamiana</i> . Live-cell imaging of PmEC05617:sYFP and					
893	PmEC03706:sYFP in <i>N. benthamiana</i> epidermal cells. The indicated constructs were					
894	transiently expressed in N. benthamiana and imaged using laser-scanning confocal					
895	microscopy 24 hours following agroinfiltration. Confocal micrographs shown are single					
896	optical sections.					
897						
898	Supplemental Figure 3. Plasmolysis of <i>N. benthamiana</i> epidermal cells					
899	expressing PmEC01597:sYFP and AtFLS2:mCherry fluorescent protein fusions					
900	reveal plasma membrane localization. A) PmEC01597:sYFP fusion proteins localize					
901	on the plasma membrane as indicated by co-localization with AtFLS2:mCherry. Images					
902	are of single optical sections. White arrowheads indicate overlapping sYFP and					
903	mCherry fluorescence signals. The scale bars shown represent 20 μ M. B) Twenty-four					
904	hours following agroinfiltration, leaf sections of N. benthamiana expressing					
905	PmEC01597:sYFP and AtFLS2:mCherry were submerged in 0.8 M mannitol for 20					
906	minutes to induce plasmolysis and live-cell imaging was performed shortly thereafter.					

41

Helm and Singh, et al

- White arrowheads indicate plasma membrane separation from the adjacent cell. Thescale bar represents 20 µM.
- 909

910 Supplemental Figure 4. Immunoblot analyses of the PmEC04573:sYFP fusion

911 **proteins.** The indicated constructs were transiently expressed in 3-week-old *N*.

912 *benthamiana* using agroinfiltration. Total protein was extracted at 24 and 48 hours post-

- 913 agroinfiltration and immunoblotted with HRP-conjugated anti-GFP antibodies. Free
- sYFP (3xHA:sYFP) and empty vector (e.v.) were included as controls. The theoretical

915 protein size (in kDa) of each construct is indicated in parentheses. Ponceau S solution

staining of RuBisCO was used as a loading control. Three independent experiments

917 were performed with similar results. The results of only one experiment are shown.

918

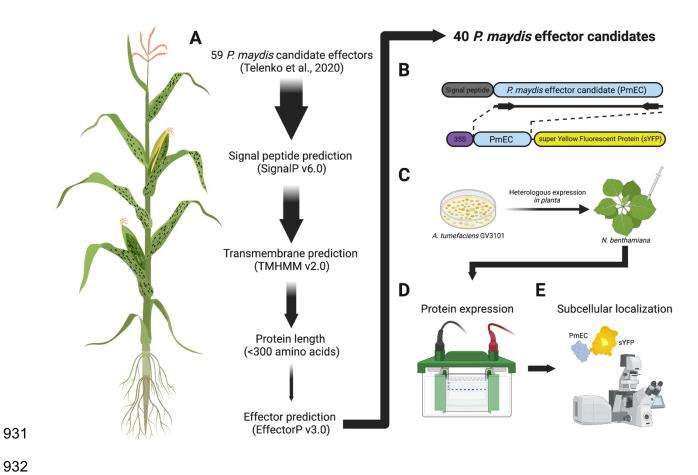
919 Supplemental Figure 5. Fluorescence signal from free sYFP is not detected in the

920 stroma of chloroplasts when transiently expressed *N. benthamiana* epidermal

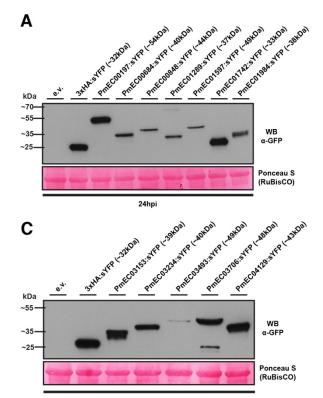
921 **cells.** Twenty-four hours following agroinfiltration, leaf sections of *N. benthamiana*

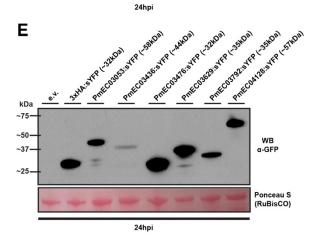
922 expressing free sYFP and RbcS-TP:mCherry (plastid marker) were excised and imaged

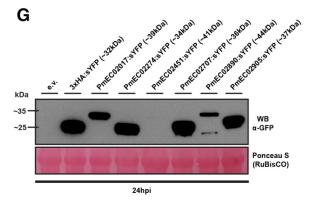
using laser-scanning confocal microscopy. Saturation of the sYFP fluorescent signals

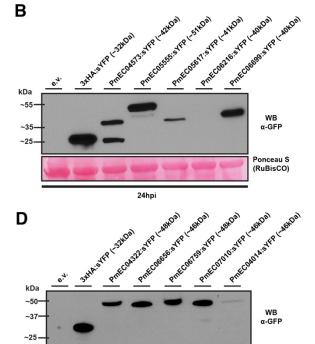

- revealed no observable protein accumulation in the stroma of chloroplasts. Confocal
- micrographs shown are single optical sections. The scale bar represents 20 μ M.
- 926

- 927
- 928
- 929

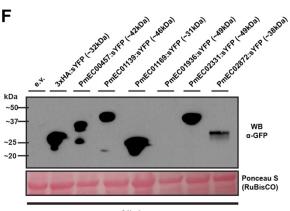

Helm and Singh, et al


Figure 1.




43

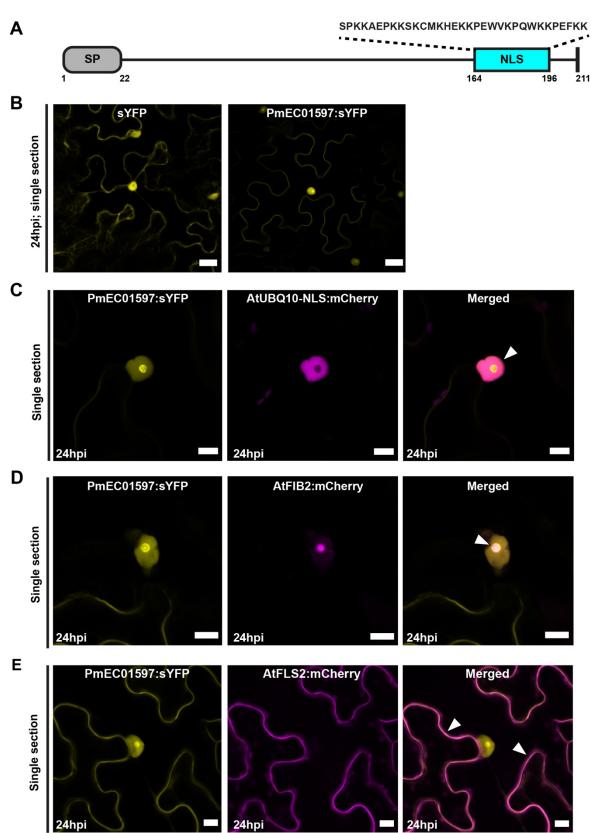
942 Figure 2.



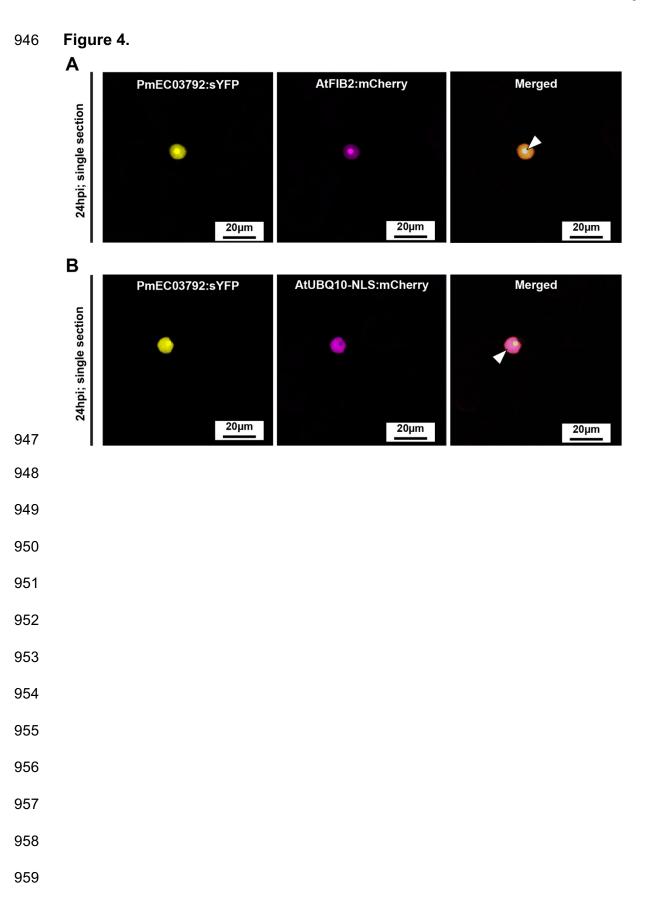
Helm and Singh, et al

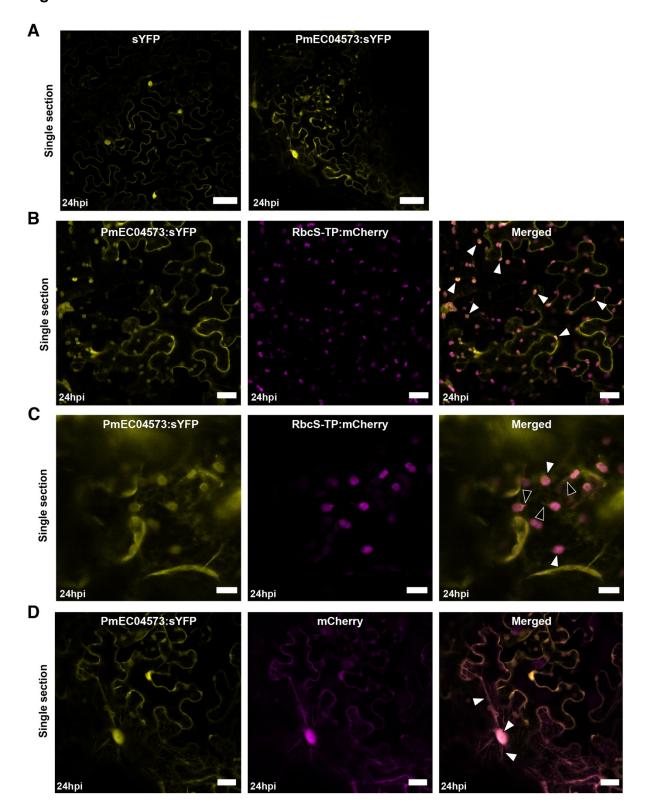
Ponceau S

(RuBisCO)

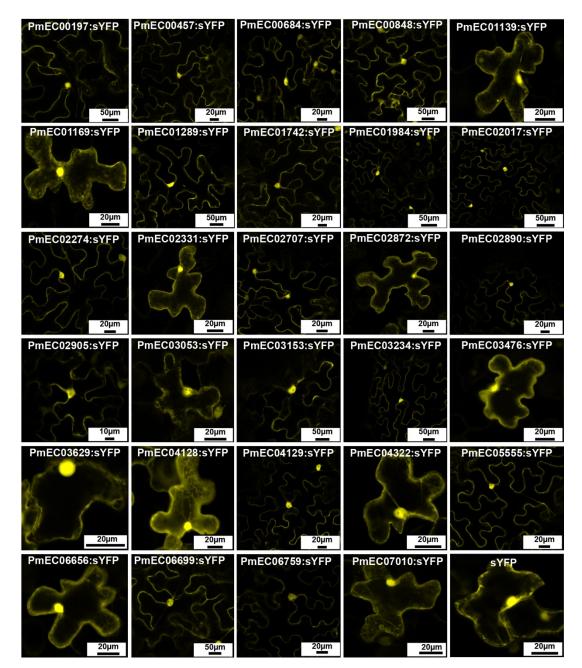


24hpi


44 Helm and Singh, et al


```
Helm and Singh, et al
```


Helm and Singh, et al

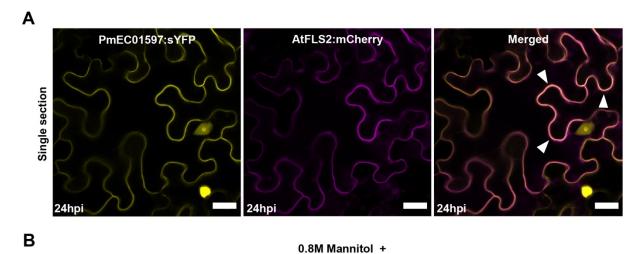

960 Figure 5.

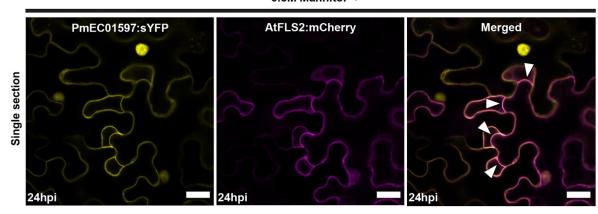
961

Helm and Singh, et al

963 Supplemental Figure 1.

48

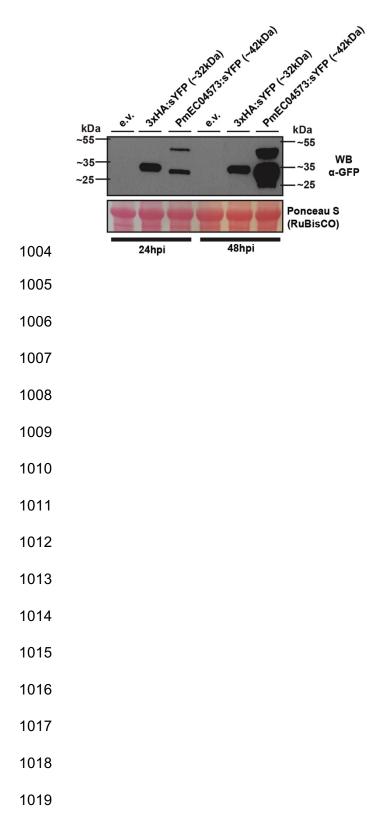

Helm and Singh, et al


970 Supplemental Figure 2.

	PmEC03436:sYFP	PmEC03493:sYFP	PmEC03706:sYFP	PmEC04014:sYFP	PmEC05617:sYFP
971	<u>20µm</u>	50µm	50µm	10µm	50µm
972					
973					
974					
975					
976					
977					
978					
979					
980					
981					
982					
983					
984					
985					
986					
987					
988					
989					
990					

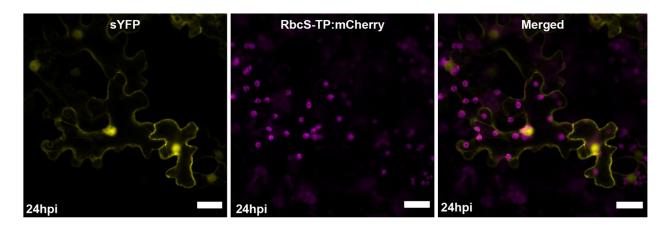
Helm and Singh, et al

991 Supplemental Figure 3.



50

Helm and Singh, et al


1003 Supplemental Figure 4.

51

Helm and Singh, et al

1020 Supplemental Figure 5.

