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Abstract Dendritic branching and synaptic organization shape single neuron and network9

computations. How they emerge simultaneously during brain development as neurons become10

integrated into functional networks is still not mechanistically understood. Here, we propose a11

mechanistic model in which dendrite growth and the organization of synapses arise from the12

interaction of activity-independent cues from potential synaptic partners and local13

activity-dependent synaptic plasticity. Consistent with experiments, three phases of dendritic14

growth – overshoot, pruning, and stabilization – emerge naturally in the model. The model15

generates stellate-like dendritic morphologies capturing several morphological features of16

biological neurons under normal and perturbed learning rules, reflecting biological variability.17

Model-generated dendrites have approximately optimal wiring length consistent with18

experimental measurements. Besides setting up dendritic morphologies, activity-dependent19

plasticity rules organize synapses into spatial clusters according to the correlated activity they20

experience. We demonstrate that a trade-off between activity-dependent and -independent21

factors influences dendritic growth and synaptic location throughout development, suggesting22

that early developmental variability can affect mature morphology and synaptic function.23

Therefore, a single mechanistic model can capture dendritic growth and account for the synaptic24

organization of correlated inputs during development. Our work suggests concrete mechanistic25

components underlying the emergence of dendritic morphologies and synaptic formation and26

removal in function and dysfunction, and provides experimentally testable predictions for the27

role of individual components.28

29

Introduction30

The dendrites of a neuron are intricately branched structures that receive electrochemical stim-31

ulation from other neurons. The morphology of dendrites determines the location of synaptic32

contacts with other neurons and thereby constrains single-neuron computations. During devel-33
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opment, the dendrites of many neurons grow simultaneously and become integrated into neural34

circuits. Dendrite development is highly dynamic; iterated addition and retraction of branches al-35

low these dendrites to probe various potential synaptic partners before stabilizing (Cline, 2016;36

Richards et al., 2020). Many intrinsic and extrinsic factors underlie the dynamics of dendritic devel-37

opment. In any given neuron, intrinsic expression of specific genes controls many morphological38

aspects, including the orientation of the dendrite in the cortex, the general abundance of dendritic39

branching, and the timing of growth onset (Puram and Bonni, 2013). Extrinsic signaling, in con-40

trast, exerts precise control over the detailed dynamics of dendrite development via various mech-41

anisms, including activity-dependent cell-to-cell interactions andmolecular signaling (Polleux et al.,42

2016).43

While many signaling molecules affect dendrite development, the brain-derived neurotrophic44

factor (BDNF) and its immature predecessor proBDNF are particularly crucial in the central nervous45

system (Lu et al., 2005). While exposure to BDNF leads to larger dendrites with a higher density46

of synapses (McAllister et al., 1995; Tyler and Pozzo-Miller, 2001), exposure to proBDNF leads to47

smaller dendrites with fewer synapses (Koshimizu et al., 2009; Yang et al., 2014). Furthermore,48

the precise balance of BDNF and proBDNF is essential for the organization of synapses into clus-49

ters during development (Kirchner and Gjorgjieva, 2021; Winnubst et al., 2015; Kleindienst et al.,50

2011; Niculescu et al., 2018). Interestingly, synaptic activity triggers the cleaving of proBDNF into51

BDNF (Je et al., 2012), providing a mechanistic link between the molecular factors driving dendrite52

maturation and neural activity.53

Activity-dependent factors are equally important in driving dendritic growth. As the sensory pe-54

riphery is immature during early postnatal development, whenmany dendrites grow (Leighton and55

Lohmann, 2016), many developing circuits generate their own spontaneous activity. The rich spa-56

tiotemporal structure of spontaneous activity instructs the formation, removal, and change in the57

strength of synaptic inputs (Sretavan et al., 1988; Sakai, 2020) and triggers the stabilization or re-58

traction of entire dendritic branches (Riccomagno and Kolodkin, 2015; Lohmann et al., 2002). While59

blocking spontaneous activity does not result in grossly different dendritemorphology, the density60

and specificity of synaptic connections are strongly perturbed (Campbell et al., 1997; Ultanir et al.,61

2007), highlighting the instructive effect of spontaneous activity on dendritic development (Crair,62

1999).63

One influential hypothesis tying together the extrinsic signaling factors underlying dendritic de-64

velopment is the synaptotrophic hypothesis (Vaughn, 1989). According to this hypothesis, a grow-65

ing dendrite preferentially extends into regions where it is likely to find synaptic partners. Once66

a dendrite finds such a partner, a synaptic contact forms, anchors the developing dendrite, and67

serves as an outpost for further dendritic growth. Conversely, loss of synaptic input to the dendrite68

can lead to retraction unless the remaining synapses stabilize the branch (Lohmann et al., 2002;69

Niell et al., 2004; Haas et al., 2006; Cline and Haas, 2008; Riccomagno and Kolodkin, 2015; Cline,70

2016). However, elaborate dendrites with morphologically defined synapses can also emerge with-71

out any synaptic transmission (Verhage et al., 2000; Cijsouw et al., 2014), suggesting that synaptic72

activity influences dendritic growth but is not the only driving force. Despite the significant inter-73

est in the synaptotrophic hypothesis, we still lack a mechanistic understanding of how activity-74
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dependent and -independent factors combine to shape development.75

To investigate interactions between known signaling factors and to synthesize information from76

different experimental results, computationalmodels of dendrite development provide a fruitful di-77

rection to explore how different mechanisms can generate realistic dendritic morphologies (Cuntz,78

2016). Previous approaches includemodeling dendritic development with randombranching (Klie-79

mann, 1987) or as a reaction-diffusion system (Luczak, 2006), implementing activity-independent80

growth cones that sense molecular gradients (van Veen and van Pelt, 1992; Torben-Nielsen and81

De Schutter, 2014), or constructing dendrites as the solution to an optimal wiring problem (Cuntz82

et al., 2010). While these approaches can generate dendrites that accurately match the statistics of83

developing and mature biological dendrites (Koene et al., 2009; Cuntz, 2016), they provide limited84

insight into how dendritic growth interacts with synapse formation and local activity-dependent85

organization of synaptic inputs, hence obscuring the link between morphological variability and86

electrophysiological (Gouwens et al., 2020; Scala et al., 2021) or functional (Poirazi and Mel, 2001;87

Poirazi et al., 2003; Park et al., 2019; Poirazi and Papoutsi, 2020) synaptic and dendritic properties.88

Here, we propose a mechanistic computational model for cortical dendritic development for89

dendrite growth and synapse formation, stabilization and elimination based on reciprocal interac-90

tions between activity-independent growth signals and spontaneous activity. Starting from neu-91

ronal somata distributed in a flat sheet of cortex, spatially distributed potential synapses drive the92

growth of stellate-like dendrites through elongation and branching by activity-independent cues.93

Upon contact, synaptic connections form and stabilize or disappear according to a local activity-94

dependent learning rule inspired by neurotrophin interactions based on correlated patterns of95

spontaneous activity (Kirchner and Gjorgjieva, 2021). Consistent with the synaptotrophic hypoth-96

esis, the stability of a dendritic branch depends on the stability of its synaptic contacts, with the97

branch likely retracting after substantial synaptic pruning. The resulting dynamic system naturally98

leads to the emergence of three distinct phases of dendrite development: 1) an initial overshoot99

phase characterized by dendrite growth and synapse formation, 2) a pruning phase during which100

the learning rule prunes poorly synchronized synapses, and 3) a stabilization phase during which101

morphologically stable dendrites emerge from the balancing of growth and retraction. Varying102

model parameters in biologically realistic ranges produces dendrite length and synapse density103

changes consistent with experiments. Our mechanistic model generates dendrites with approx-104

imately optimal wiring length, which is a widely used criterion for evaluating dendritic morphol-105

ogy (Cuntz et al., 2010, 2012; Chklovskii et al., 2002). At the same time, the model leads to the106

activity-dependent emergence of functional synaptic organization and input selectivity. Therefore,107

our mechanistic modeling framework for the growth and stabilization of dendritic morphologies108

and the simultaneous synaptic organization according is ideally suited for making experimental109

predictions about the effect of perturbing specific model components on the resulting dendritic110

morphologies and synaptic placement.111

Results112

We built a computational model of activity-dependent dendrite growth during development based113

on synapse formation, stabilization, and elimination. We focused on basal stellate-like dendrites114
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of cortical pyramidal neurons, which primarily extend laterally within a layer of the cortex (Lark-115

man andMason, 1990) and receive numerous feedforward and recurrent inputs (Rossi et al., 2019;116

Iacaruso et al., 2017). Stellate morphologies are found in many types of neurons, especially in117

the somatosensory cortex, including interneurons and layer 4 spiny stellate cells, which are the118

main recipients of thalamic inputs and play a key role in sensory processing (Schubert et al., 2003;119

Marques-Smith et al., 2016; Scala et al., 2019). To investigate the impact of synapse formation120

on dendrite development, we modeled several neuronal somata and potential synapses in a flat121

sheet of cortex (Figure 1a). Potential synapses represent locations in the cortex where an axon122

can form a synapse with a nearby dendrite (Stepanyants and Chklovskii, 2005). The model con-123

sists of two components: An activity-independent component that directly governs branch growth124

and retraction; and an activity-dependent component that governs synaptic organization and thus125

indirectly affects branch stability. Inspired by the synaptotrophic hypothesis (Vaughn, 1989), we126

mimicked the effect of activity-independent molecular signaling by letting each potential synapse127

release diffusive signaling molecules that attract the growing dendrite (Figure 1b, Figure 1–Figure128

Supplement 1, Figure 1–Figure Supplement 2). In addition, during development and before the on-129

set of sensory experience, neural circuits generate patterned spontaneous activity (Blankenship130

and Feller, 2010; Ackman and Crair, 2014). Therefore, to model the structured spontaneous ac-131

tivity exhibited by different axons (Scholl et al., 2017; Iacaruso et al., 2017), we divided potential132

synapses randomly into different activity groups that receive inputs correlated within a group but133

uncorrelated between groups (see Methods). Each group represents either synapses from the134

same presynaptic neuron or from neurons that experience correlated presynaptic activity.135

Because of their attraction to growth-factor releasing synapses and independent of neural ac-
tivity, dendrites in our model grow outward from the soma towards the nearest potential synapse,
where they form a synapse and temporarily stabilize (Figure 1b, Figure 1–Figure Supplement 2).
We assumed that dendrites could not overlap based on experimental data (Grueber and Sagasti,
2010); therefore, dendrites in the model retract, for instance, when further growth would require
self-overlap. Once a synapse is formed, we modeled that its strength changes according to a lo-
cal, activity-dependent plasticity rule (Kirchner and Gjorgjieva, 2021) (Figure 1c). The learning rule
induces synaptic potentiation whenever presynaptic and local postsynaptic activity co-occur, and
synaptic depression whenever local postsynaptic activity occurs in the dendrite independent of
presynaptic stimulation, usually due to the activation of a neighboring synapse (see Methods and
the ‘offset’ constant below),

Δweight = post × (pre − offset). (1)
As shown previously, this rule generates synaptic distance-dependent competition, where nearby136

synapses affect each other more than distant synapses, and correlation-dependent cooperation,137

whereneighboring synchronized synapses stabilize. In contrast, neighboring desynchronized synapses138

depress (Kirchner andGjorgjieva, 2021). In ourmodel, we assumed that when a synapse depresses139

below a threshold, it decouples from the dendrite, and the corresponding branch retracts succes-140

sively to either the nearest stable synapse, branch point, or the soma (Figure 1b, Figure 1–Figure141

Supplement 2). After removal, the vacated synapse turns into a potential synapse again, attract-142
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Figure 1. A model of dendritic growth for a cortical pyramidal neuron driven by activity-independent
and -dependent mechanisms. (a) Schematic of the soma of a pyramidal neuron (orange triangle) with 12
randomly distributed potential synapses from presynaptic axons (circles) with correlated activity patterns
indicated by color. (b) Schematic of activity-independent and -dependent mechanisms. Soma and synapses
correspond to box in a. Signaling molecules diffusing from potential synapses (1) attract dendrite growth and
promote synapse formation (2) independent of firing pattern (3). Over time, poorly synchronized synapses
depress and are pruned from the dendrite (4), while well-synchronized synapses remain stable (5). After a
branch retracts, the dendrite is less sensitive to the growth field at that location (5). (c) Change in weight of
one synapse (green) following the stimulation of itself (green bolt) and of two nearby synapses (purple bolts).
Left: Schematic of the developing dendrite from b with bolts indicating synaptic activation. Right: Presynaptic
accumulator (top), postsynaptic accumulator (middle), and change in synaptic weight (bottom) as a function
of time (see Methods Kirchner and Gjorgjieva (2021) for details of the plasticity rule). Dashed line (bottom)
indicates zero change.
Figure 1–Figure supplement 1. The growth field is similar to two-dimensional heat diffusion.
Figure 1–Figure supplement 2. Detailed illustration of the dendritic growth mechanism.
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ing other growing branches. Thus, a developing dendrite in our model acquires its arborization143

through the attraction to signaling molecules released by potential synapses and the repeated144

activity-dependent formation, stabilization and removal of synapses.145

Dendrite development through balancing growth and retraction146

After specifying the rules governing the growth of individual dendritic branches, we investigated147

dendritic development on long timescales. When growing dendrites according to our proposed148

growth rule based on signaling molecules attraction and spontaneous activity-dependent synap-149

tic refinements (Figure 1), we found that dendrites form several stems, i.e. branches which start150

directly at the soma, and rapidly expand outwards (Figure 2a). After an initial phase of rapid expan-151

sion, we observed that growth rapidly attenuates, and the dendritic length stabilizes (Figure 2b).152

This stability is achieved when the dendrite’s expansion and retraction are balanced (Figure 2c). To153

investigate whether the stability in total length also corresponds to stability in dendritic morphol-154

ogy, we quantified morphological stability as the pixel-wise correlation of a dendrite with itself155

4.5 hours earlier, which is several orders of magnitude larger than the speed at which dendrites156

grow and retract in our model (see Table 1). Despite the residual amount of expansion and re-157

traction, we showed that morphological stability increases rapidly, and the dendritic morphology158

is already stable after the initial expansion phase (Figure 2d). Interestingly, such rapid stabiliza-159

tion of morphology has also been observed in the mouse visual cortex (Richards et al., 2020) and160

the Drosophila larvae (Castro et al., 2020). We next quantified the Sholl diagram, the number of161

dendritic branches at a given distance from the soma, commonly used as a measure of dendritic162

complexity (Sholl, 1953; Binley et al., 2014; Bird and Cuntz, 2019). The Sholl diagram of the stabi-163

lized dendrites generated by our model is unimodal and qualitatively matches the Sholl diagram164

of developing basal dendrites from the mouse medial prefrontal cortex (Figure 2e; data extracted165

from ref. Kroon et al., 2019, postnatal days 6-8), as well as the hippocampus (Kleindienst et al.,166

2011). In summary, by combining activity-independent and -dependent dendritic growth mecha-167

nisms, our model produces dendrites that rapidly expand and stabilize by balancing growth and168

retraction.169

Delayed activity-dependent plasticity produces a rapid increase of synapse density170

followed by pruning171

Since ourmodel couples dendritic growth to the formation and removal of synapses (Figure 3a), we172

next investigated how the number of connected synapses, which are necessary for the dendrite’s173

stabilization, changes over time. As a result of the dendrite’s rapid growth, we observed a rapid in-174

crease in the number of connected synapses (Figure 3b,c). In contrast to the dendrite’s length, we175

found that the initial rapid increase in connected synapses is followed by a brief period of an over-176

all reduction of the number of synapses before additions and removals are balanced (Figure 3c).177

This removal of established synapses resembles the postnatal removal of synapses observed in178

the mouse neocortex (Holtmaat et al., 2005). To understand how the initial overshoot and sub-179

sequent removal of synapses emerge in our model, we computed the average synaptic weight of180

all synapses that eventually stabilize or are pruned (Figure 3d). We found that the delayed onset181
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Figure 2. Balanced growth and retraction generate morphologically stable dendrites. (a) Three example
dendrites at five time points from our simulations. For clarity of presentation, connected synapses are not
displayed. (b) Total length of dendritic tree as a function of time. (c) Length of dendrite added (green) and
removed (red) as a function of time. (d) Morphological stability (correlation between the dendrite shape at
time 𝑡 and 𝑡 − 4.5 hours) as a function of time. (e) Average number of dendrite intersections as a function of
distance from the soma (the Sholl diagram). Data from basal dendrites in the developing mouse medial
prefrontal cortex superimposed, normalized to the maximum (blue; ref. (Kroon et al., 2019)). All lines
represent averages across 32 simulations with nine dendrites each. Shaded area indicates two standard
deviations.
Figure 2–video 1. Example of a simulation in which several dendrites develop in parallel.
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Figure 3. Synapse formation and removal predominate in distinct phases of dendrite development. (a)
Three examples of dendrites at the beginning (𝑡 = 9 hours) and end (𝑡 =72 hours) of the simulation. Green
circles indicate formed synapses. (b) Total number of connected synapses as a function of time. Orange arrow
highlights overshoot and subsequent pruning. (c) Added (green) and pruned synapses (red) as a function of
time. (d) Average synaptic weights of synapses that ultimately stabilize (solid black; final weight more than 0.5)
or are removed (dashed black; final weight less than 0.5) as a function of time. All lines represent averages
across 32 simulations with nine dendrites each. Shaded area indicates two standard deviations.
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Figure 4. Stable morphology is obtained through selective removal of synapses and dendritic input selectivity. (a,b) Dendritic trees
before (a, 9 hours) and after (b, 72 hours) removal of synapses (Figure 3). Connected synapses colored corresponding to activity group, which
represents activity correlations (Figure 1b). (c) Left: Schematic illustrating the difference between Euclidean and tree distance. Note that we
compute the Euclidean distance between synapses from different trees. Right: Correlation between pairs of synapses as a function of the
Euclidean distance (blue) and tree distance (red). (d) Input selectivity of dendrites (defined as the fraction of the activity group with the highest
representation) as a function of time. Dashed line indicates chance level. All lines represent averages across 32 simulations with nine dendrites
each. Shaded area indicates two standard deviations. (e) Fraction of connected synapses per activity group early (𝑡 = 9 hours) and late (𝑡 = 72

hours) in the simulation. Each dot represents one of the five activity groups on one of the nine dendrites from the 32 simulations, resulting in
5 × 9 × 32 = 1440 data points. (f) Left: Schematic of different levels of overlap (rows) between the convex hulls of two dendrites, referring to the
smallest convex sets that contain the dendrite. Right: Signal correlation (correlation between fractions of synapses from the same activity
groups) for different levels of dendritic overlap. Error bars indicate the standard error of the mean, computed from 1152 pairs of dendrites from
32 simulations.

of synapse removal (Figure 3c) is due to the slow time scale of the synaptic weight compared to182

the faster time scale of dendrite growth. Thus, the initial overshoot and subsequent removal of183

synapses observed in our model (Figure 3b) is due to the rapid formation relative to the delayed184

activity-dependent elimination of synapses.185

Activity-dependent competition between synapses produces input selectivity and186

synaptic organization187

Next, we asked if the stabilization of dendrites might be supported by the emergence of organiza-188

tion of connected synapses. First, we compared the synapses connected to dendrites at the apex189

of the overshoot phase (peak in Figure 3b) with those in the stabilization phase (Figure 4a,b). While190

dendrites at the apex do not prefer synapses from any particular input group, in the stabilization191

phase, they acquire a preference for synapses from only two or three of the activity groups (Fig-192

ure 1b). These dynamics resemble the activity-dependent synaptic competition in the developing193

visual cortex, where asynchronously activated synapses tend to depress (Winnubst et al., 2015).194

Notably, the remaining synchronized synapses in our model experience correlation-dependent195

cooperation (Kirchner and Gjorgjieva, 2021), and are therefore able to stabilize the dendrite and196

prevent the total retraction of all branches.197
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This selective potentiation of synapses according to input correlation also leads to dendritic198

selectivity for inputs. In particular, synapses on the same dendrite are likely to come from the same199

activity group (Figure 4c). This selectivity is acquired throughout the simulation, where selectivity200

starts high (a nascent dendrite is trivially selective to its first synapse; 𝑡 = 0−1 hours), drops almost201

to chance level (indiscriminate addition of synapses; 𝑡 = 9 hours), and finally approaches a value202

of 1
2
(two activity groups per dendrite remain after the pruning phase; 𝑡 = 72 hours) (Figure 4d). To203

determine which activity group stabilizes eventually, we computed selectivity for each group early204

(𝑡 = 9 hours) and late (𝑡 = 72 hours). We found that early high (low) selectivity for an activity group205

translates into even higher (lower) selectivity in the stable state (Figure 4e), predicting an outsized206

impact of early synaptic contacts on continued dendritic function. Finally, we observed that when207

dendritic trees overlap strongly, they tend to be selective to different activity groups (Figure 4f) due208

to competition for limited potential synapses of any given group. Interestingly, also in the mouse209

visual cortex, neighboring neurons often exhibit different selectivity (Ohki et al., 2005), potentially210

reflecting a lasting impact of early competition between different inputs.211

In summary, the emergence of dendrites’ selectivity for synapses from specific activity groups212

coincides with and supports the stabilization of dendritic morphologies.213

Balance of mature and immature brain-derived neurotrophic factor controls ar-214

borization of dendrites215

After establishing that our model can capture some important aspects of the dynamics of den-216

dritic development through the combination of activity-independent and activity-dependentmech-217

anisms, including local plasticity, we asked how changing properties of the plasticity rule might af-218

fect dendritic growth and synaptic organization. Developmentally, the interaction between two219

neurotrophic factors, BDNF and proBDNF (Figure 5a), has been found to play a key role in or-220

ganization of synaptic inputs into clusters (Niculescu et al., 2018). Therefore, through the previ-221

ously established link between this neurotrophin interaction and synaptic plasticity (Kirchner and222

Gjorgjieva, 2021), we investigated the influence of changing the underlying molecular interactions223

on dendritic morphology.224

As we have previously shown, the "offset" term in our plasticity rule (Equation 1) represents225

the neurotrophin balance (computed as BDNF/(BDNF+proBDNF)) released upon stimulation of a226

synapse (Kirchner and Gjorgjieva, 2021). Consequently, we found that an overabundance of BDNF227

(proBDNF) leads to potentiation (depression) of the synapse (Figure 5b), consistent with experi-228

mental data (Lu et al., 2005). Furthermore, our plasticity rule acts locally on the dendrite so that229

the strength of individual synapses is affected by interactions with other nearby synapses. Con-230

cretely, a lower (higher) density of nearby synapses tends to lead to potentiation (depression) of231

the synapse (Kirchner and Gjorgjieva, 2021).232

To better understand the interactions between the balance of neurotrophins and the density233

of synapses, we analytically derived the maximum density of synapses that can stabilize given a234

balance of neurotrophins (Figure 5c, see Methods). We found that an overabundance of BDNF235

(proBDNF) leads to a higher (lower) maximal density of synapses (Figure 5c). Indeed, when we236

simulated dendritic development with varying neurotrophin ratios, we found that the density of237
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Figure 5. Dendritic arborization is controlled by the ratio of neurotrophic factors. (a) Interactions
between molecular factors underlie a local activity-dependent plasticity rule for synaptic change (Equation 1,
(Kirchner and Gjorgjieva, 2021)). Neurotrophins (BDNF and proBDNF) bind to different neurotrophin
receptors, and a cleaving protease (MMP9) converts proBDNF to BDNF in an activity-dependent manner. (b)
Schematic illustrating the impact of different concentrations of BDNF on synaptic change. Upon stimulation
of a synapse (top), proBDNF and BDNF is released into extracellular space (middle), where proBDNF can be
cleaved into BDNF by MMP9. Depending on the neurotrophin ratio, computed as BDNF/(BDNF + proBDNF),
the synapse is stabilized (left) or depressed and hence eventually removed (right). (c) Maximally possible
stable density of synapses as a function of the initial concentration of BDNF. Stable (no pruning; green) and
unstable (pruning occurs; red) areas are indicated. (d) Three examples of dendrites with superimposed
synapses (green) with high initial BDNF concentration (49%), the baseline concentration (45%, same as
Figure 1-Figure 3) and low initial BDNF (40%). Symbols correspond to locations marked in panel c. (e-g)
Averages for density of synapses on the dendrite (e), number of connected synapses (f) and total length of
dendrite (g) as a function of time for dendrites from the three conditions shown in d. (h-i) Average number of
dendrite intersections (h) and synapses (i) as a function of distance from the soma for dendrites from the
three conditions shown in d. (j) Global selectivity as a function of time for dendrites from the three conditions
shown in d. All lines represent averages across 32 simulations with nine dendrites each.
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synapses per dendrite increases with increasing neurotrophin ratio (Figure 5d,e). Consistent with238

biological evidence (McAllister et al., 1995; Tyler and Pozzo-Miller, 2001), in our model, developing239

dendrites treatedwith BDNF tend to grow larger andhave ahigher density of synapses (Figure 5e,g).240

In contrast, over-expression of proBDNF leads to smaller dendriteswith fewer synapses (Koshimizu241

et al., 2009; Yang et al., 2014) (Figure 5f,g). Perturbing the balance between neurotrophins scales242

the Sholl diagram of dendrite intersections and synapses, but does not qualitatively affect the243

shape of the curve (Figure 5h,i).244

In our model, these changes in length and density are explained by a change in selectivity of245

synapses (Figure 5j). Concretely, an increase in BDNF erases all synaptic competition, reducing246

the selectivity to chance level, while an increase in proBDNF greatly amplifies synaptic competition247

and thus selectivity. These differences in competition determine the number of pruned synapses248

and thus the length at which the dendrite stabilizes. Thus, our model predicts that biologically-249

relevant differences in dendritic morphology may arise from different neurotrophin ratios due to250

the maximal density of synapses that stabilizes the dendrite.251

Different impacts of activity-dependent and -independent factors on dendritic de-252

velopment253

Ourmechanisticmodel enabledus to dissect the different roles of activity-dependent and -independent254

mechanisms on dendritic morphology. To this end, we varied either only activity-dependent fac-255

tors or only activity-independent factors across a set of simulations (Figure 6a). We introduced256

variability in the activity-dependent aspects of the model through the firing patterns of potential257

synapses, and in the activity-independent aspects of themodel via fluctuations in both the extrinsic258

growth signals and the intrinsic mechanisms underlying dendrite growth (see Methods, Figure 6b).259

Consistent with experiments (Scala et al., 2021), dendrites produced by our model exhibit sub-260

stantial variability inmorphology (Figure 6a), length (Figure 6c), and number of synapses (Figure 6d).261

Comparing dendrites that experienced either identical activity-dependent or -independent factors262

allowed us to compute the percentage of change in morphology attributable to each factor as a263

function of developmental time (Figure 6e,f). We found that while activity-independent factors264

tend to lead to large differences in morphology early on, activity-dependent factors affect dendrite265

morphology with a substantial delay. These differences can be explained by the delay in synaptic266

pruning relative to initial synaptic formation (Figure 3d).267

Despite substantial variability, there are predictive factors for the final length of the dendrite. In268

particular, we found a positive relationship between the number of major branches, i.e. branches269

starting from the soma, and the final length (Figure 6g). Interestingly, this is consistent with re-270

constructed dendrites from multiple regions of the mouse cortex (Figure 6–Figure Supplement 1).271

Furthermore, our model predicts that dendrites that have a high (low) total length early on will, on272

average, retain a (high) low total length throughout development (Figure 6e).273

Thus, our model suggests that while activity-independent factors affect dendritic morphology274

early on during development, activity-dependent factors dominate later. Properties like the num-275

ber of major branches or the length of dendrites during early development might be predictive of276

the dendrite’s morphology throughout the animal’s lifetime.277
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Figure 6. Morphological variability emerges from the interaction of activity-dependent and
-independent factors. (a) Example of three dendrites with identical initial conditions but different random
seeds. The colors illustrate that initial growth is governed by activity-independent factors, while later growth
is governed by activity-dependent factors. (b) Schematic illustrating how variability is introduced into model:
activity-dependent via the patterns of spontaneous activity (orange), and activity-independent via fluctuations
in both the extrinsic growth stimulating field (purple 1) and the intrinsic mechanisms underlying dendrite
growth (purple 2; see Methods). (c,d) Total length (c) and number of synapses (d) as a function of time for
dendrites with identical initial conditions but different random seeds. Each gray line corresponds to one
dendrite from one of 32 simulations. Bold line represents average. (e,f) Percentage in change of
morphological similarity (e) and similarity of connected synapses (f) as a function of time for simulations
where activity-dependent (orange) or -independent (purple) factors vary. Lines represent averages across 32
simulations with nine dendrites each. Shaded area indicates two standard deviations. (g,h) Final length as a
function of number of major branches (g) and maximal length in the first 18 hours of the simulation (h). Lines
indicate linear regression.
Figure 6–Figure supplement 1. Total tree length increases with the number of stems.
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Coupled dendrite growth and synapse formation leads to approximately optimal278

wiring279

Since space is limited in the cortex and maintaining complex morphologies is costly, it is beneficial280

for a neuron to connect to its synapses with the minimum possible dendrite length (Cuntz et al.,281

2012) (Figure 7a). In our model, dendrites are assumed to grow towards the nearest potential282

synapse. Thus, we investigated how the final length in our model compares to the optimal wiring283

length. The optimal length (𝐿) of dendrites in a plane scales with the square root of the number284

of synapses (𝑁 ) times the area over which the synapses are distributed (𝐴): 𝐿 =
√

𝑁𝐴∕𝜋 (Cuntz285

et al., 2012). In contrast, the length of a dendrite when synapses are connected randomly scales286

with the number of connected synapses times the average distance of two random points on a287

circle (Uspensky, 1937), 𝐿 = 𝑁 128
45𝜋

√

𝐴∕(2𝜋) which differs from the optimal result by a square root in288

the number of synapses. Using the convex hull that circumscribes the stabilized synapses as the289

area over which the synapses are distributed (Figure 7b), we compared the actual dendrite length290

with the optimal and the random wiring length (Figure 7c). We found that our simulated dendritic291

lengths are shorter than random wiring and longer than the theoretical optimal length.292

We next wanted to know if the deviation from optimality might quantitatively match the one293

observed in real dendrites. To investigate this question, we reanalyzed a published dataset (Cuntz294

et al., 2012) containing the total lengths and the number of branch points of 13,112 dendrites295

pooled across 74 sources. When computing the fold change between the real and the optimal296

dendritic length in the dataset, we confirmed that real dendrites tend to be consistently larger297

than the theoretical optimum (Figure 7d). Interestingly, the fold change between the length of real298

dendrites and the theoretical optimum is similar to the fold change of our simulated dendrites and299

the theoretical optimum (Figure 7e). This deviation is expected given the heterogeneous structure300

of neuronal tissue that hampers diffusion of signaling molecules (Nicholson et al., 2000; Motta301

et al., 2019), which mirrors the fluctuations in activity-independent factors in our model. There-302

fore, activity-dependent dendrite growth produces morphologies with a total length close to the303

theoretically possible minimum.304

Discussion305

Dendrite growth and the formation, stabilization and removal of synapses during early develop-306

ment depend on various factors during development, including extrinsic factors such as growth307

cues, intrinsic molecular signaling, and correlated patterns of spontaneous activity, but the nature308

of these interactions and the implications for dendritic function throughout life remain largely un-309

explored. In this study, we proposed a mechanistic model for the growth and retraction of den-310

dritic branches as well as the formation and removal of synapses on these dendrites during de-311

velopment, based on the interaction of activity-independent cues from potential synaptic partners312

and local activity-dependent synaptic plasticity. Our model can simultaneously capture two main313

aspects of dendritic growth: produce dendritic morphologies and drive synaptic organization.314
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Figure 7. Dendritic morphology approximately minimizes cable length. (a) Schematic illustrating optimal
(top) and random (bottom) wiring to connect a given set of synapses. (b) The convex hull of all synapses
connected to a dendrite with the proportionality of optimal length (bottom). (c) Total tree length as a function
of convex hull area in the optimal, simulated and random scenario. Each dot corresponds to one of 288
dendrites from 32 simulations. Lines correspond to analytic predictions for the average density across all
simulations. (d) Total tree length against the number of branch points in log scale, both for data and
theoretical optimum. Data extracted from (Cuntz et al., 2012). (e) Total tree length in the data (black, average
of n=13,112), our simulations (blue, average of 288 dendrites from 32 simulations), and the random baseline
(green, analytically computed) relative to theoretical optimum (pink, analytically computed).

Assumptions and predictions of the model315

Some of the most prominent models of dendritic growth have focused on activity-independent316

rules based on geometric or biophysical constraints (Cuntz et al., 2010, 2012). Despite their im-317

mense success in generating realistic dendritic morphologies, they leave open the question of318

the underlying biological mechanisms. Other studies have implemented global activity-dependent319

rules that require feedback signals from the soma or the axon (Ooyen et al., 1995). Our model pro-320

poses a simple and biologically plausible mechanism for the simultaneous dendritic growth and321

synaptic organization based on activity-independent cues and local activity-dependent learning322

rules, which cluster synaptic inputs according to functional preferences. Numerous experimen-323

tal studies have demonstrated the importance of such local plasticity for the emergence of local324

synaptic organization in the form of clusters as well as dendritic function (Hering and Sheng, 2001;325

Lohmann et al., 2002; Chen et al., 2013; Niculescu et al., 2018).326

Our model makes some simplifying assumptions at the expense of mechanistic insights. For in-327

stance, we model the generation of only stellate-like morphologies without the apical trunk. Many328

types of neurons are characterized by stellate morphologies, especially in the somatosensory cor-329

tex (Schubert et al., 2003; Marques-Smith et al., 2016; Scala et al., 2019). Nonethless, it would be330

interesting to investigates if our model’s mechanisms can be minimally modified to apply to the331

generation of apical dendrites. Moreover, we generate our model dendrites in a two-dimensional,332

flat sheet of cortex. We anticipate that the models can be straightforwardly extended to three333

dimensions, but with additional computational cost. Although our assumptions may be too simpli-334

fied to generate perfectly biologically realistic morphologies, the simple rules in ourmodel capture335

basic morphological features, such as the number of branches, the total length, and the Sholl anal-336

ysis, with those of biological neurons reported in the literature.337

A key advantage of our mechanistic model is the ability to predict the impact of early pertur-338

bations on mature dendritic morphology, as the model allows us to independently investigate339
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activity-independent and -dependent influences on dendrite growth and synaptic organization.340

For example, three distinct phases of synapse development – overshoot, pruning, stabilization341

– and stable dendritic trees emerge naturally from the interactions between activity-independent342

signaling and the activity-dependent synaptic plasticity, without additional assumptions. The sta-343

bilization of dendritic morphologies in our model is enabled by the emergence of input selectivity,344

which implies local organization of synapses responsive to a particular correlated input pattern345

on the dendrite. Hence, our model explains how dendritic morphology can adapt to changes in346

the activity-dependent plasticity or the input statistics during development, as observed exper-347

imentally (Cline and Haas, 2008; McAllister et al., 1995; Tyler and Pozzo-Miller, 2001). Further,348

we provide a mechanistic explanation for the emergence of approximately optimal wiring length349

in mature dendrites. Thus, our model provides a new perspective on the interaction of activity-350

independent and -dependent factors influencing dendrite growth and suggests that the formation351

and activity-dependent stabilization vs. removal of synapses might exert powerful control over the352

growth process.353

Comparison with the synaptotrophic hypothesis354

The synaptotrophic hypothesis, originally proposed three decades ago (Vaughn, 1989), has pro-355

vided a useful framework for interpreting the effect of neural activity and synapse formation on356

dendrite development. Our proposed model is inspired by the synaptotrophic hypothesis but dif-357

fers from it in a few key aspects. (1) The synaptotrophic hypothesis postulates that synaptic activity358

is necessary for dendrite development (Cline and Haas, 2008). In contrast, our model contains an359

activity-independent component that allows dendrites to grow even in the absence of synaptic360

activity. Our model is thus consistent with the finding that even in the absence of neurotrans-361

mitter secretion connected neuronal circuits with morphologically defined synapses can still be362

formed (Verhage et al., 2000) and with computational (non-mechanistic) models that produce den-363

drites with many relevant morphological properties without relying on activity (Cuntz, 2016). (2)364

The synaptotrophic hypothesis does not specify the exact molecular factors underlying the infor-365

mation exchange pre- and postsynaptically. Informed by recent experiments that identify central366

molecular candidates (Winnubst et al., 2015; Kleindienst et al., 2011; Niculescu et al., 2018; Lu367

et al., 2005), our model proposes a concrete mechanistic implementation based on neurotrophic368

factors (Kirchner and Gjorgjieva, 2021). (3) The synaptotrophic hypothesis postulates that whether369

a potential synaptic contact is appropriate can be rapidly evaluated pre- and postsynapically. In-370

spired by experiments (Lohmann et al., 2002;Niell et al., 2004), the fate of a synapse in ourmodel is371

determined only within tens ofminutes or hours after it is formed. This is due to the slow timescale372

of synaptic plasticity (Figure 3d).373

Relationship between dendritic form and function374

While previous studies focused on how dendritic morphology affects function, e.g. through nonlin-375

ear signal transformation (Poirazi and Papoutsi, 2020) or dynamic routing of signals (Payeur et al.,376

2019), we propose that dendrite form and function reciprocally shape each other during develop-377

ment. While the dendrite’s morphology constrains the pool of available potential synapses, synap-378
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tic activity determines the dendritic branch’s stability (Fig. 1). As a result, the dendritic tree self-379

organizes into an appropriate shape to support a limited number of functionally related synapses.380

These initial synaptic contacts might then serve as a scaffold around which additional, function-381

ally related synapses cluster to form the building blocks to support the powerful computations of382

mature dendrites (Kirchner and Gjorgjieva, 2022).383

Dynamics of dendritic development384

Herewe focus on the early developmental period of highly dynamic dendritic growth and retraction.385

However, dendritic morphology remains remarkably stable in later development and throughout386

adulthood (Richards et al., 2020; Castro et al., 2020; Koleske, 2013). This stability is achieved de-387

spite substantial increases in overall size of the animal (Richards et al., 2020; Castro et al., 2020)388

and ongoing functional and structural plasticity of synapses (Kleindienst et al., 2011; Winnubst389

et al., 2015; Kirchner and Gjorgjieva, 2021). While it is still unclear how exactly synaptic organiza-390

tion is established during early development and how synapses are affected by the overall increase391

in dendrite size, somatic voltage responses to synaptic activity are largely independent of dendrite392

size (Cuntz et al., 2021). It has been shown that dendrite stability plays a crucial role in enabling the393

correct function of the adult brain and is disrupted in many psychiatric disorders and neurodegen-394

erative diseases. In particular, the release of BDNF, which is connected to synaptic activity, affects395

structural consolidation of dendrites and, thus, long-term stability (Koleske, 2013). Ourmechanistic396

model allows us to perturb the balance of neurotrophic factors and investigate the effects on den-397

dritic development. For instance, our model predicts detrimental effects on dendrite stability as a398

result of extreme or non-existent input selectivity, providing insight into functional consequences399

of disrupted dendrite growth in neurodevelopmental disorders (Johnston et al., 2016).400

Interneurons and inhibitory synapses401

In addition to excitatory neurons and synapses that are the focus of this study, inhibitory interneu-402

rons and inhibitory synapses also play an important role in brain development (Naskar et al., 2019).403

Interneurons fall into genetically-distinct subtypes, which tend to target different portions of pyra-404

midal neurons (Rudy et al., 2011; Kepecs and Fishell, 2014). In particular, somatostatin-expressing405

(SST) interneurons preferentially target the dendrites of pyramidal neurons, while parvalbumin-406

expressing (PV) interneurons preferentially target the soma. Furthermore, the dendrites of in-407

hibitory neurons have a complex morphology that likely allows them to perform intricate transfor-408

mations of incoming signals (Tzilivaki et al., 2019, 2021). Investigating whether and how inhibitory409

interneurons and synapses might interact with excitatory ones during dendritic development is an410

exciting direction for future research.411

412

In summary, by proposing a mechanistic model of dendritic development which combines activity-413

independent and -dependent components, our study explains several experimental findings and414

makes predictions about the factors underlying variable dendritic morphologies and synaptic orga-415

nization. Interestingly, the stable morphologies it generates are approximately optimal in terms of416

17 of 24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2022.05.24.493217doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.24.493217
http://creativecommons.org/licenses/by-nc/4.0/


wiring length and experimental data. Finally, ourmodel provides the basis for future exploration of417

different learning rules and cell types which could differ across brain regions, species and healthy418

vs. disease states.419

Methods and Materials420

Activity-independent synaptic signals. In the synaptotrophic hypothesis, dendrite growth is di-
rected towards potential synaptic partners. In our model, we capture this aspect by introducing a
growth field of activity-independent synaptic signals, T(𝐩), over all positions 𝐩 in our sheet of cortex.
This field contains point sources at the positions of potential synapses, 𝐩𝑖, and evolves over time
according according to a diffusion equation,

T(𝐩)𝑡+1 = T(𝐩)𝑡 ∗ D + 𝜇
∑

𝑖
𝐩𝑖 + 𝜎𝐍. (2)

The growth field at time point 𝑡 + 1 is therefore given by the sum of the growth field at time 𝑡421

convolved with a diffusion filter D, a constant input of size 𝜇 from all potential synapses, which are422

currently not connected to a dendrite, as well as independent Gaussian noise, 𝐍, with standard423

deviation 𝜎. We chose a two dimensional Gaussian for the diffusion filter D, making the field T(𝐩)424

mathematically equivalent to a heat diffusion in two dimensions (Figure 1–Figure Supplement 1).425

Asynchronous dendrite growth and retraction. Dendrite development critically depends on426

resources from the soma (Ye et al., 2007). Consequently, we modeled the growth of dendrites427

to depend on scouting agents that spread outward from the soma at regular time intervals, 𝑡𝑠𝑐𝑜𝑢𝑡,428

and that traverse the dendritic tree at speed 𝑣𝑠𝑐𝑜𝑢𝑡 (Figure 1–Figure Supplement 2). These scouting429

agents resemble actin-blobs that control dendrite growth (Nithianandam and Chien, 2018). When430

a scouting agent encounters a branch point, there is a 0.5 chance for it to continue in any direction.431

This means it can go in one direction, but it can also duplicate or disappear completely. We further432

model these scouting agents to detect the growth field’s value – a scouting agent stops at a position433

on the dendrite where this field is locally maximal andmarks this location for growth. The dendrite434

will then expand at the marked positions in the direction of the gradient of the growth field, and435

the scouting agent moves to this new position. If the dendrite grows to the location of a potential436

synapse, this synapse is then realized, and its initial weight is set to 𝑤𝑖𝑛𝑖𝑡 = 1
2
. Two branches of437

the same neuron may never become adjacent; however, branches from other neurons may be438

crossed freely. If a scouting agent reaches the end of a branch without finding a local maximum of439

the growth field along its path, the scouting agent initiates the retraction of this branch. Depending440

on proximity, a branch then retracts up to the nearest stable synapse, the next branch point, or441

the soma. Because our simulations are a spatially discrete approximation of a biological flat sheet442

of cortex, we had to ensure that growth behaves appropriately in cases where the discretization443

scheme becomes relevant (Figure 1–Figure Supplement 2).444

Minimal plasticity model. When a synapse 𝑘 forms on the dendrite, its weight 𝑤𝑘 evolves ac-
cording to a previously proposedminimal plasticitymodel for interactions between synapses onde-
veloping dendrites (Kirchner and Gjorgjieva, 2021). This model can be linked to a full neurotrophin
model that interprets the parameters in terms of the neurotrophic factors BDNF, proBDNF, and
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the protease MMP9. In this model, the 𝑘-th synapse is stimulated within input event trains 𝑥𝑘

𝑥𝑘(𝑡) = ∫

∞

0

∑

𝑓
𝛿(𝑠 − 𝑠𝑓𝑘 )(𝐻(𝑡 − 𝑠) −𝐻(𝑡 − 𝑥dur − 𝑠))d𝑠 (3)

with events at times 𝑡𝑓𝑘 and where the Heaviside step function 𝐻(𝑡) is 0 when 𝑡 is less than 0 and 1

when 𝑡 is greater or equal than 0, so that events have duration 𝑥dur (50 time steps). The minimal
plasticity model consists of a synapse-specific presynaptic accumulator 𝑣𝑘,

𝜏𝑣
d𝑣𝑘
d𝑡

= −𝑣𝑘(𝑡) + 𝜙𝑥𝑘(𝑡), (4)
and a postsynaptic accumulator 𝑢𝑘 that averages over nearby synapses in a weighted and distance-
dependent manner,

𝜏𝑢
d𝑢𝑘
d𝑡

= −𝑢𝑘(𝑡) +
𝑁
∑

𝑙=1
𝑠𝑘𝑙𝑤𝑙(𝑡)𝑥𝑙(𝑡). (5)

The multiplicative factor 𝜙 is an MMP9 efficiency constant that determines how efficiently MMP9
converts proBDNF into BDNF per unit of time and the proximity variables 𝑠𝑘𝑙 between synapses 𝑘
and 𝑙 on the same dendrite are computed as 𝑠𝑘𝑙 = 𝑒

−
𝑑2𝑘𝑙
2𝜎2𝑠 , where 𝜎𝑠 determines the spatial postsynap-

tic calcium spread constant. The equation governing theweight development of𝑤𝑘 (Equation 6) is a
Hebbian equation that directly combines the pre- and postsynaptic accumulator with an additional
offset constant 𝜌,

𝜏𝑤�̇�𝑘 = 𝑢𝑘(𝑡)(𝑣𝑘(𝑡) + 𝜌), (6)
with 𝜌 = 2𝜂−1

2(1−𝜂)
and 𝜏𝑤 = 𝜏𝑊

1
2(1−𝜂)

. Here, 𝜂 is the constitutive ratio of BDNF toproBDNFand 𝜏𝑊 =3000ms445

This model is minimal in the sense that it cannot be reduced further without losing either the de-446

pendence on correlation through the link to the BTDP rule, or the dependence on distance.447

Tomodel structural plasticity, we implemented a structural plasticity rule inspired by ref. (Holt-448

maat and Svoboda, 2009) where each synapse whose efficacy falls below a fixed threshold𝑊thr is449

pruned from the dendrite.450

Simulations and parameters. For all simulations in this study, we distributed nine somata at451

regular distances in a grid formation. We used 1500 potential synapses and divided them into five452

groups of equal size, with each group receiving Poisson input with rate 𝑟𝑖𝑛. Therefore, all synapses453

in the same group are perfectly correlated, while synapses in different groups are uncorrelated.454
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Table 1. Parameters of the minimal plasticity model (Kirchner and Gjorgjieva, 2021) and the synaptotrophic
growth model.
Parameter Variable Value
Synaptic efficacy time constant 𝜏𝑊 6000 time steps
Postsynaptic accumulator time constant 𝜏𝑢 300 time steps
Presynaptic accumulator time constant 𝜏𝑣 600 time steps
Constitutive percent of BDNF of total neurotrophins 𝜂 45%
MMP9 efficiency constant 𝜙 3

50
per time step

Heterosynaptic offset 𝜌 𝜌 = 2𝜂−1
2(1−𝜂)

Minimal model synaptic efficacy time constant 𝜏𝑤 𝜏𝑤 = 𝜏𝑊
1

2(1−𝜂)

Standard deviation of calcium spread 𝜎𝑐 200µm
Turnover threshold below which a synapse is replaced 𝑊thr 0.02
Firing rate of synapses 𝑟𝑖𝑛 0.116min−1

Scout intervals and speed 𝑡𝑠𝑐𝑜𝑢𝑡, 𝑣𝑠𝑐𝑜𝑢𝑡 10min, 0.18µmmin−1
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diffuse

Figure 1–Figure supplement 1. The growth field is similar to two-dimensional heat diffusion.

By iteratively convolving the potential synapses in the growth fieldwith aGaussian filter, the growth
field reaches a steady-state that resembles a two-dimensional heat diffusion with point sources.
Over time, individual point sources disappear and reappear to mimic when the corresponding
synapses are connected or pruned from the dendrite.

638

scout agent connected synapse potential synapsedendrite
scenario 1: synapse formation scenario 2: branch retraction

scenario 3: dendrite competition

other dendrite

scenario 4: corner flipping (1) scenario 4: corner flipping (2)

Figure 1–Figure supplement 2. Four scenarios of asynchronous dendritic growth can bemod-

eled as a scout agent representing the tip of a dendrite exploring a two-dimensional grid. A
scout agent (yellow dot) has reached the location of a potential synapse (blue dot). Scenario 1: The
scout agent will extend the dendrite and form a new synapse if nothing else happens. Scenario
2: To prevent overlap, if a second branch from the same dendrite blocks the path to the poten-
tial synapse, the original branch retracts. Scenario 3: If a branch from another dendrite reaches
the potential synapse first, the original branch retracts. Scenario 4: If a new potential synapse be-
comes available adjacent to the dendrite (1) so that growth is not possible (since the branch cannot
form immediately adjacent to two other parts of the dendrite), the corner flips (2), and the synapse
forms.
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Figure 6–Figure supplement 1. Total tree length increaseswith thenumber of stems. Average
(solid black) and individual (gray circles) total tree lengths as a function of the number of stems.
𝑁 = 701. Data from the Allen Cell Types Database (2015).
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