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Abstract: There is overwhelming evidence that metabolic processes are altered in cancer cells and 
these changes are manifested in the volatile organic compound (VOC) composition of exhaled 
breath. Here, we take a novel approach of an insect olfactory neural circuit-based VOC sensor for 
cancer detection. We combined an in vivo antennae-attached insect brain with an electrophysiology 
platform and employed biological neural computation rules of antennal lobe circuitry for data 
analysis to achieve our goals. Our results demonstrate that three different human oral cancers can 
be robustly distinguished from each other and from a non-cancer oral cell line by analyzing 
individual cell culture VOC composition-evoked olfactory neural responses in the insect antennal 
lobe. By evaluating cancer vs. non-cancer VOC-evoked population neural responses, we show that 
olfactory neurons’ response-based classification of oral cancer is sensitive and reliable. Moreover, 
this brain-based cancer detection approach is very fast (detection time ~ 250 ms). We also 
demonstrate that this cancer detection technique is effective across changing chemical 
environments mimicking natural conditions. Our brain-based cancer detection system comprises a 
novel VOC sensing methodology that will spur the development of more forward engineering 
technologies for noninvasive detection of cancer.    
 
Introduction: 
Breath analysis is a noninvasive disease detection technique that aims to characterize the volatile 
chemical composition of exhaled breath, which represents the volatile chemicals present in blood 
and airways inside the body 1-5. Cancer alters cellular metabolism and these alterations are 
ultimately reflected in the volatile organic compound (VOC) composition of patients’ exhaled 
breath 1,6,7. It is well known that volatile cancer biomarkers are present in exhaled breath at a 
detectable range (parts per million to parts per trillion) 1,8. Recent studies have identified several 
putative volatile biomarkers associated with multiple cancers, including head and neck, lung, and 
breast 1,8,9. Moreover, it is presumed that cancer-induced changes in breath samples are detectable 
at early stages of the disease, and recent studies have supported the possibility of early cancer 
detection by analyzing VOCs in exhaled human breath sample 2,5,10,11.  
 Consequently, patients can potentially be screened early, noninvasively, and periodically by 
identifying unique exhaled breath volatile compositions indicative of cancer. Currently however, 
there is no gas sensing technology being used in clinical settings for cancer detection. The most 
commonly used volatile chemical sensing technology is gas chromatography-mass spectrometry 
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(GC-MS), which performs individual component-wise identification of gas mixtures 1. Although 
the GC-MS-based technique is sensitive and has been shown to identify putative cancer biomarker 
concentrations in breath samples, it is not suitable for clinical settings, being generally slow, not 
portable, and requiring pre-processing and storage of samples. Moreover, this component-wise 
classification approach is fundamentally different from biological olfactory gas sensing and poses 
challenges regarding diagnostic capabilities due to internal variations of breath samples and 
environmental factors. Another gas sensing technology, electronic nose (e-nose) devices employ 
biological principles, such as combinatorial coding approaches, to achieve one shot VOC sensing 
12-14. Although, these portable and inexpensive chemical sensors are able to process breath samples 
in real time, even after decades of development, they still lack specificity, cross-selectivity, and 
the ability to work in natural conditions 13. 

While there are limitations in engineered chemical sensors to detect volatile compounds in 
natural settings reliably, biology has solved this problem over millions of years of evolution. The 
canine nose is the most widely used biosensor and remains the state-of-the-art approach for several 
gas sensing applications including homeland security and explosive detection 15. Trained dogs are 
also efficient at detecting diseases via human breath and body odors 16-21. However, bioassays 
based solely on behavior are binary, i.e., disease vs. no disease, and cannot report on different 
types of diseases. Insects also have an extremely sensitive sense of smell, they are easier to 
maintain, and can be trained behaviorally to detect specific volatiles.  

In our work, we employ a forward engineering approach to ‘sniffing out cancer’ by 
combining a live insect brain with an electrophysiological recording platform, precision VOC 
delivery, and sophisticated data analysis tools. Unlike canine gas sensing which uses behavioral 
readouts, the olfactory neurons in the insect brain do not need to be trained to identify cancer 
biomarkers. Rather, cancer VOC-evoked neural response templates are used to calibrate the sensor. 
These VOC composition-specific neural response templates or ‘fingerprints’ can be generated for 
different types of diseases, which enable us to simultaneously distinguish between multiple 
cancers. By incorporating a live brain, this approach also harnesses the full power of a biological 
chemosensory array (antennae) and the associated neural computation (antennal lobe circuitry) for 
cancer VOC classification. 

Insect olfactory sensory systems are extremely powerful and have evolved to detect low 
concentrations of gas molecules and minute changes in the composition of gas mixtures 22-25. 
Moreover, the locust olfactory system is well studied for odor-evoked neural coding schemes 26-

47, and is accessible for electrophysiological recordings from multiple olfactory brain centers 
27,38,47,48. In the insect olfactory system, VOCs are first detected by the olfactory receptor neurons 
(ORNs) situated in the insect antennae 49. Each ORN generally responds to several VOCs based 
on their chemical identities and concentrations 50. Employing a combinatorial coding scheme, 50 
insect ORNs alone can detect a total of ~250 chemicals, which is several trillion odorants. This 
enormous encoding capacity coupled with chemical specificity and specialized neural 
computations render the insect olfactory system extremely powerful for chemical sensing. The 
ORNs transmit odor-evoked electrical impulses to the antennal lobe, where the signal is processed 
by a complex network of excitatory projection neurons (PNs) and inhibitory local neurons. 
Individual PNs have broad tuning curves and they respond to several odorants and odor mixtures 
with varying spike rates and temporal firing motifs. The odor-evoked spatiotemporal PN 
population response gives rise to odor-specific neural codes, which are presumed to determine 
odor identity, intensity, and time course 23,25,51. Our previous work has identified several functional 
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neural coding schemes that can achieve background-invariant odor recognition and novelty 
detection which is critical for robust detection in natural settings 26-29.  

We obtained in vivo extracellular neural recordings from the PNs in the locust antennal 
lobe and used the neural responses for the detection of VOC mixtures emitted from human oral 
cancer cells. We hypothesized that locust antennal lobe PNs would respond differently to the VOC 
compositions associated with different oral cancer cell lines and a non-cancer cell line. We also 
hypothesized that this approach would be fast, reliable, and sensitive to the differences in VOC 
mixtures associated with different types of oral cancers. Here, we have systematically tested these 
hypotheses and demonstrated the feasibility and robustness of this forward engineering approach 
for noninvasive cancer detection.  
 
Results: 
 
Cancer vs. non-cancer VOC compositions elicit distinct olfactory neuronal responses 
 
We began by investigating odor-evoked individual projection neuron (PN) responses in the locust 
antennal lobe. Volatile chemical mixtures emitted from different cell cultures were delivered to 
the locust antenna using an olfactometer. Three oral carcinoma cell lines (Ca9-22, HSC-3, and 
SAS) and one non-cancer cell line (HaCaT) were grown in identical cell culture medium after 
seeding each cell line at the same initial cell number 52. All four cell cultures were grown 
individually in airtight flasks for 96 hours (h) to protect the emitted VOCs from contaminants. 
Precise amounts of the cell culture VOCs were delivered to the locust antennae for 4 seconds (s), 
while in vivo extracellular neural recordings were obtained from PNs (Fig. 1a, b, see Methods). 
Cell culture VOC samples were examined at 24 h intervals by in vivo PN recordings. Additionally, 
we used two control odorants, hexanal and undecane, which have been implicated in earlier studies 
as putative cancer biomarkers 1. 

We observed VOC-evoked changes in neural spiking responses in most of the PNs 
recorded. Since PNs are broadly selective to several odor stimuli and respond to specific odorants 
or odor mixtures with distinctive temporal firing patterns 22-24,51, we targeted this neuron 
population for oral cancer classification. At the individual neuron level, the three oral cancer and 
the non-cancer VOC mixtures elicited distinct spiking responses over the odor presentation 
window. Raw voltage traces of representative extracellular neural recordings showed clear 
differentiation between the oral cancer cells, non-cancer cell, and cell culture medium. Moreover, 
we noted differences in PN spiking responses between the three oral cancer cell lines (Fig. 1c, d).  
 Next, we investigated how total spike counts (over the entire 4 s stimulus window) varied 
for each recorded neuron corresponding to different VOC exposures (Fig. 1e). To identify single 
neurons, spike-sorting of extracellular multi-channel recordings was performed following 
previously published methods 53. Then, we used a simple metric of VOC-evoked time-averaged 
and trial-averaged spike counts of individual PNs for each stimulation condition. Individual PN 
spike counts were summed over the 4 s stimulus presentation window and averaged across trials 
(n = 5 trials) to quantify these changes. Next, we compared the average spike count of each PN 
across two stimulus conditions. For example, PN spike counts corresponding to each oral cancer 
cell line were compared to the spike counts of the same set of PNs elicited by the culture medium 
VOC composition. When all recorded PNs were analyzed, several PNs showed significant changes 
in spike counts across two stimulus conditions (P < 0.05, d.f. = 4, 28, one-way ANOVA with 
Bonferroni correction). These results demonstrated that there were differences in individual PN 
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spike counts elicited by cancer vs. non-cancer vs. control VOCs. Notice that this analysis only 
compared total PN spike counts corresponding to different stimuli, but differences in temporal 
firing motifs of individual PNs as seen in Fig. 1c, d were not reflected in this analysis.  
 
Strategies to classify oral cancer VOCs employing spatiotemporal olfactory neural responses 
 
To incorporate the temporal spiking characteristics, we analyzed the spatiotemporal PN responses 
elicited by the three oral cancer cell lines, the non-cancer cell line, and the cell culture medium. 
To generate ‘spatial’ (neuronal identity) – ‘temporal’ (spiking dynamics) response vectors of the 
entire PN population, trial-averaged firing rates of each neuron were binned into 50 ms non-
overlapping time windows. Individual neuron responses were temporally aligned following 
stimulus onset. For this analysis, we combined spiking responses from all recorded PNs over 
multiple days of cell culture. This resulted in a high dimensional population neuron response, 
which was represented by an n x m matrix (Fig. 2a, n = 194 PNs; m = 80 time bins with 50 ms bin 
size over 4 s of odor presentation). Next, all recorded PN responses corresponding to each stimulus 
were concatenated to generate the population PN time-series data for the stimulus panel 
corresponding to Ca9-22, HSC-3, SAS, HaCaT, and the cell culture medium. 

To visualize these cell culture VOC-evoked spatiotemporal neural responses, we projected 
the high dimensional data onto three dimensions using a linear principal component analysis (PCA, 
Fig. 2b, see Methods). The points in the three-dimensional PCA subspace were connected in a 
temporal order to generate stimulus-specific neural response trajectories. We observed that each 
VOC profile generated a closed loop neural trajectory, which evolved in a unique direction. A long 
line of work in insect olfaction has established that the unique direction of the population PN 
trajectories are specific to odor identity and intensity 23,24,26. Our previous work demonstrated that 
larger angular distances between PN trajectories signify better separability between two odorants 
24,26. Therefore, unique neural trajectories corresponding to individual VOC mixtures indicate that 
oral cancer VOC profiles are distinct from the non-cancer cell line. Moreover, we observed 
distinctions among the neural trajectories evoked by the three oral cancer cell lines (Fig. 2b), which 
signify that differences between various oral cancers can be identified by this approach as well.  

To determine the separation between the cell line specific neural response clusters, we 
performed linear discriminant analysis (LDA) on the population PN time-series data (Fig. 2c). 
Similar to the PCA analysis, we used the population PN time-series dataset and plotted the VOC-
evoked PN responses in a three-dimensional LDA subspace. This linear dimensionality reduction 
technique maximized the neural response cluster separation between stimuli. We observed distinct 
clustering of PN responses corresponding to all five stimuli, indicating that a linear classifier in a 
three-dimensional LDA space is sufficient to classify cancer vs. non-cancer successfully based on 
their corresponding VOC profiles. 

 To get a quantitative estimate of the classification performance, we performed a leave-
one-trial-out cross validation analysis of the PN time-series data (see Methods, Fig. 2d, e). This 
analysis was performed on the high dimensional dataset (n = 194 PNs, m = 80 time bins) without 
any dimensionality reduction. First, Euclidian distances of neural response vectors at each time 
bin (50 ms duration) were compared between the testing and the training data (total 80 comparisons 
over 4 s for each test trial), generating a bin-wise classification (Fig. 2d). This bin-wise confusion 
matrix had its highest values along the diagonal, which implied a high rate of successful detection 
of all five stimuli. Next, we plotted a trial-wise confusion matrix by calculating the mode of the 
predicted responses for all 80 time bins (Fig. 2e). The trial-wise analysis was implemented to 
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assign one predicted value for each test trial. This analysis showed 100% classification for all three 
oral cancer VOC mixtures among themselves and in comparison with the non-cancer and control 
VOCs. Similar dimensionality reduction and confusion matrix analyses were performed on the 
dataset while including the two other control odorants (Fig. S1). Neural trajectories corresponding 
to the two control odorants were significantly different from all cell culture VOCs and the 
confusion matrix analysis showed high classification success for all seven VOCs tested.  

   
Classification of cancer vs. non-cancer cells in a changing chemical background 
 
We anticipated that emitted VOC compositions corresponding to each cell line would vary over 
time due to cell growth and ongoing metabolic processes in a fixed cell culture medium. We also 
hypothesized that the neuronal template-based VOC classification approach would be able to 
compensate for these variations caused by changing environments. To investigate this, the neural 
data that were previously combined were split and analyzed at four different time points: 24-, 48-
, 72- and 96-h after seeding (Fig. S2). All PNs recorded at a specific time point across multiple 
repetitions of the cell cultures were combined to generate the population PN response vector for 
that time point. For example, each cell culture was repeated 7 times, and the VOC analysis at the 
24-h time point resulted in a total of 42 PNs. All the cell cultures remained viable over 96-h from 
initiation, which was verified by manually counting healthy cells at different time points of the 
cell cultures (Fig. S3, S4). 

We began by examining VOC-evoked population PN time-series data at 24-h post seeding. 
We noticed that dimensionally reduced neural trajectories evolved in different directions for 
different VOC profiles in the PCA space (Fig. 3a). When we performed the same analysis at 48-
h, 72-h and 96-h time points, we continued to observe distinct cell line specific neural trajectories, 
which indicated that all the tested stimuli were distinguishable from each other at different time 
points of cell growth (Fig. 3a-d). This observation demonstrated that cultured cells started emitting 
VOCs specific to their identity early (~ 24-h) and remained separable over multiple days based on 
their emitted VOC profiles. Next, we analyzed the neural cluster separation between the three oral 
cancer cell lines, the non-cancer cell line, and the control medium at different time points of the 
cultures using LDA (Fig. 3e-h). Since the number of PNs recorded at each time point was low, PN 
response clusters showed some overlap in the LDA space. This was also reflected in the time bin-
wise confusion matrix classification results performed in the high-dimensional space (Fig. 3i-l). 
However, the trial-wise classification result yielded 100% classification success for each test trial 
for all the VOCs at all four time points (Fig. 3m-p). Notice that we generated VOC-specific neural 
fingerprints at each time point of the cell cultures and performed leave-one-trial-out cross 
validation between the test trials and the training templates generated at the same time point.   

These results validated our hypothesis that neural response-based classification of cancer 
VOCs is unaffected by the variations in chemical background caused by evolution of cancer cells 
in the culture medium. Considering that fluctuations due to internal and external factors is a 
problem for current breath sensing technologies, the ability to differentiate all four cell cultures 
over days is a unique feat achieved by this approach. 
 
Neural response-based classification of cancer VOCs is fast   
 
We investigated how short of a VOC exposure will result in robust cancer classification. We 
hypothesized that a neuron response-based classification approach would be fast and able to 
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classify different VOCs with a short inter-stimulus interval (~ 1 minute). Based on the fast PN 
response dynamics, we anticipated that distinction between cancer VOCs would be achieved 
within a few hundred milliseconds of stimulus exposure. To achieve fast analyses of neural signals, 
we employed a different metric of neural response, which was obtained by root mean squared 
(R.M.S.) filtering of raw neuron voltage responses (Fig. S5, see Methods). Until now, all 
classification analyses were performed after spike-sorting of multi-unit extracellular voltage 
responses obtained from each recording location. However, this approach eliminated neurons that 
did not pass the statistical test necessary to be counted as single units. These lost signals from 
unresolved neurons could potentially be important for odor discrimination, therefore, we decided 
to employ the R.M.S.-based approach which takes into account the total energy of the signal 
acquired from each location. This approach was computationally less expensive, unsupervised and 
shown to be odor specific in our earlier work 22. Using the R.M.S. filtered population PN voltages, 
we observed distinct classification of all 7 VOCs tested (Fig. S6). These classification results were 
qualitatively similar to the results obtained from spike sorted single unit data. 
 To determine the speed and efficacy of this method, we performed VOC classification 
during four different 250 ms time segments of the 4 s stimulus presentation window (Fig. 4). The 
rationale behind choosing different time windows follows from the unique odor-evoked response 
dynamics of the projection neurons. PNs generally fire strongly with high spiking rates within the 
first ~1.5 s of stimulus onset, which is known as the ‘transient state’23,28,32,51. After about 2 s of 
stimulus exposure, the population PN firing rate converges to a stable firing rate, which stays above 
baseline firing but does not change significantly over the rest of the odor presentation duration. 
This is known as the ‘steady state’ response period. It is shown in our and others’ work that odor-
evoked transient PN responses are more discriminatory22-24. Therefore, we expected the cell 
culture VOCs to display the best separation when the population PN responses are within the 
transient state. We observed that odor plumes took about 0.5 s to elicit spiking responses in PNs. 
This time corresponded to the delay between the final olfactometer valve opening and the odor 
plume hitting the antenna. Therefore, we chose the analysis time windows for transient PN 
response period as 0.5 – 0.75 s and 0.75 – 1 s and the steady state time windows as 2 – 2.25 s and 
2.25 – 2.5 s (Fig. 4). 

We performed PCA dimensionality reduction analysis to visualize population neural 
trajectories, which showed distinct trajectories at the earliest of the time windows (0.5 to 0.75 s). 
The VOC-evoked neural trajectories remained distinct during both transient and steady state time 
epochs (Fig. 4a-d). Next, we performed the quantitative high dimensional confusion matrix 
analysis using leave-one-trial-out methodology. We observed better classification during transient 
state time windows compared to the steady state time windows, evident from the higher value of 
diagonal elements in the confusion matrix shown in Fig. 4e, f in comparison to Fig. 4g, h. Trial-
wise classification also showed better predictability during transient state response periods (0.5 – 
0.75 s and 0.75 – 1 s) compared to the steady state segments (2 – 2.25 s and 2.25 – 2.5 s, Fig. 4i-
l). Finally, when we compared the pairwise R.M.S. response distances of the PN population 
elicited by all 5 VOCs, we observed the largest separation was also during the transient periods. 
These sets of results demonstrated that neural response-based cancer classification is fast and only 
requires 250 ms of neural data from stimulus onset to distinguish oral cancers from controls.  

To verify that a one-minute inter-stimulus interval is sufficient for the VOC classification 
and our results are consistent with the PN response dynamics, we employed the R.M.S.-based 
classification analysis on the baseline, transient, and steady state epochs of the population PN 
response (Fig. S7). Each analysis epoch was 1.5 s in duration and the 0.5 s delay for the odor 
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stimulus to reach the antenna was included in the pre-stimulus period. We observed no 
classification in the baseline period (-1 to 0.5 s), but VOC classification was distinct during the 
transient (0.5 to 2 s), and steady state (2 to 3.5 s) periods. Overall, VOC-evoked neural responses 
during the transient period yielded best classification results as expected from the PN response 
dynamics 24.  
   
Discussion:  
 
Current state-of-the-art gas sensing technologies (e.g., GC-MS) analyze a gas mixture to identify 
individual chemical components and their concentrations. GC-MS has shown promise as a 
diagnostic technology for a number of diseases including asthma, COPD, cystic fibrosis, diabetes, 
and cancer 11,54-60. However, there does not exist a single VOC biomarker that is indicative of a 
specific type of cancer. Instead, subtle changes in VOC compositions indicate altered metabolic 
processes corresponding to a particular cancer. Moreover, chemicals such as nitric oxide, nitrogen 
dioxide, and ethane have been observed to be key biomarkers in a number of diseases, yet are 
difficult to detect with GC-MS due to the lag in sampling-to-processing time 61. This component 
wise VOC mixture classification approach is also hindered by the variability in VOC compositions 
in exhaled breath between individuals (internal factors) as well as due to the presence of any 
background odorants (external factors) in the environment. 

While GC-MS has proven essential for volatile chemical identification, the desire for point-
of-care clinical implementation has fueled interest in developing low-cost, portable sensors 12,13. 
Electronic noses have increased in popularity owing to advancements in materials science, 
nanotechnology, and pattern recognition algorithms. These devices have demonstrated the ability 
to distinguish between the ‘breath prints’ of healthy controls and those afflicted with diseases, such 
as cystic fibrosis 62, cancer 63-65 and others 65-69. These point-of-care sensors lack GC-MS’ 
exceptional chemical sensitivity, typically only achieving detection thresholds in the parts-per-
million and parts-per-billion ranges. Although electronic noses have shown promise in some 
disease classification, sensitivity is of concern when considering clinical implementation, as 
endogenous volatile compounds are typically found on the order of parts per billion to parts per 
trillion ranges in exhaled breath 70,71. Moreover, differences in environmental volatiles between 
patient sampling can lead engineered sensors to produce false classifications and diagnoses 72. 
Therefore, a background-invariant chemical sensing system is essential for the evolution of breath-
based clinical diagnostics. 

 In biological olfaction, natural selection has forced animals to develop highly sensitive 
olfactory capabilities while preserving chemical specificity. In the olfactory sensory system, a 
target VOC mixture as a whole is encoded by a distinct neuronal response template (or a neuronal 
‘fingerprint’ of a VOC), while a different gas mixture is uniquely encoded by a different neuronal 
fingerprint. It is important to note that biology does not perform component-wise classification of 
gas mixtures, but instead achieves optimal separation between the VOC-evoked neural 
fingerprints. Through experience, biological systems assign meaning to those neuronal fingerprints 
(e.g., food vs. harmful odors). For example, the implementation of a neuronal template-based 
classification approach enables honeybees to detect minute changes in odor mixtures, such as 
differentiating between a flower with nectar vs. the same flower without nectar based on smell 
alone. We utilized these biological neural coding schemes in the brain-based cancer detection 
approach. Based on the odor-specific population neuron responses, we first constructed neuronal 
fingerprints for the target VOC mixtures (training templates, Fig. 5). While testing an unknown 
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VOC sample, we recorded the responses of the neuronal population and determined how well that 
test template matched the pre-established training templates (e.g., by measuring Euclidian 
distance). Based on the best match between the training and testing templates, we determined the 
identity of the unknown odor (Fig. 5). Note that the performance of this approach does not depend 
on neuronal identity, which will vary across experiments. This approach is based on recording 
from a large neuronal population (~40-50 PNs) and finding distinct training templates using known 
volatiles (calibration process) and then testing unknown VOCs to determine their identity using 
biological neural computational schemes.  
 
There is overwhelming evidence that cell metabolism is altered in cancer cells relative to normal 
cells as they switch from glycolysis to oxidative phosphorylation (OXPHOS) for energy 
production leading to changes in VOC compositions that are vented in exhaled breath of patients 
1,6,7,73. We have shown that the cancer cell lines in this study demonstrated functional increases in 
both glycolysis and OXPHOS relative to the non-cancer cell line 52. Such metabolic profiles are 
only now being characterized in cancer biology, and a similar coincident increase in glycolysis 
and OXPHOS has only been documented in a resistant clone of PDAC cancer stem cells (CSC) 
where suppression of the c-myc oncogene and an increase in peroxisome proliferator-activated 
receptor-gamma coactivator-1 alpha (PGC-1a) underlie both OXPHOS and glycolysis 74. These 
metabolic differences account, in part, for the variations in VOCs from these cells. We observed 
that all the cell lines were healthy throughout the time of culture, however, cell proliferation rates 
were not optimal (Fig. S4). In order to retain maximal VOC-populated headspace, the cells were 
grown in a closed flask and without changing the culture medium. HEPES buffer was added to the 
medium to maintain the optimal pH in the airtight culture. Use of one medium for all cell lines 
was essential for comparison to the medium only control but may have impacted how the various 
cell lines grew in culture.   
 
The concept of using canines as a way to detect disease began in 1989 when a dog alerted its owner 
to a suspicious mole that turned out to be cancer 75. Since then, canines have participated in a 
plethora of studies in cancer detection, including continued studies for melanoma 20, bladder and 
prostate cancer via urine 17,76-78, ovarian carcinomas from both blood and ex vivo samples 79, and 
breast and lung cancers from exhaled human breath 16,19. Canines have also been used to detect 
other types of sickness, such as hypoglycemia in patients with type I diabetes 80, identify stool 
samples containing Clostridium difficile from patients admitted to a hospital 81, and even as a 
diagnostic tool for covid-19, correctly identifying infected patients from patients’ clothing, masks, 
or breath samples 82. The successes in disease detection by canines led researchers to look into 
other animals, such as the African giant pouched rat, which has been used successfully to identify 
tuberculosis in human sputum samples 83,84. Another alternative has been to use insects. 
Researchers have successfully used the honeybee proboscis extension reflex (PER) to detect both 
covid-19 from mink throat swabs 85 and tuberculosis odor biomarkers 86. Cells lines of human 
breast and lung cancers have also been distinguished from healthy tissue by both fruit flies and 
ants 87,88.  

However, all these studies used behavioral training of animals which had a limited binary 
output and can be impacted by the animals’ innate behavioral preferences. Until now biologically 
inspired VOC detection efforts have mainly been directed towards reverse-engineering the 
biological olfactory system’s functionality and implementing those rules in e-nose devices. Some 
research groups have integrated a few live olfactory sensory receptors in engineered platforms 89, 
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but those devices still lack in chemical discriminability and long-term performance. For example, 
e-nose devices have recently incorporated live biological olfactory receptors as chemosensor’s 
14,90-94, including insect olfactory receptors 95-99. However, the integration of biological sensors into 
engineering platforms has proven challenging 13. Overall, it has become evident that it will be 
challenging to reverse-engineer highly efficient and intricate biological olfactory sensory systems 
for diagnostic means anytime soon, a skill which biology has perfected over millions of years of 
evolution. 

Here, we took a forward engineering approach by ‘hijacking’ an insect brain to detect oral 
cancers from their VOC signatures. We combined in vivo, multi-electrode, population neuronal 
recordings with a multi-channel micro-amplifier, high speed data acquisition, and biological neural 
computations to achieve noninvasive cancer detection. This approach is fundamentally different 
from current gas sensing devices and animal behavior-based disease detection as it uses a fully 
functional biological chemosensory array (antennae) and olfactory neural circuits as a gas sensor, 
and neuronal ‘fingerprints’ of cancer VOC profiles as decoding schemes. We envision this study 
as the first step in ‘sniffing out cancer by the insect brain’ research that we can employ to detect 
cancer from human breath. Here, we have performed neural recordings from the brain of live 
animals whose chemosensory array (antennae) were exposed to VOC mixtures produced by cancer 
cells in culture. This in vivo neural recording technique can be portable as shown in our previous 
work 22. In the future, we plan to employ an antennae-attached-whole-brain (without body) in a 
portable and closed chamber that prolongs brain viability. This cyborg VOC sensing device will 
be ideal for real-time analysis of breath samples while its rapid detection ability will promote high 
throughput screening of a large number of VOC samples. Our next objective will be to increase 
the neural recording capacity and extend the brain viability for several days in a closed chamber 
as we progress towards the development of a portable, one-shot, point-of-care brain-based VOC 
sensor. 
 
Methods: 
  
Electrophysiology experiments: All neural recordings were conducted on post-fifth instar locusts 
(Schistocerca americana) of either sex raised in a crowded colony. For in vivo extracellular 
recordings, locusts were immobilized on a surgical platform and antennae were stabilized. Surgery 
was conducted following a previously published method24,48. Briefly, a batik wax bowl was 
constructed to isolate the head region and subsequently filled with a room temperature, 
physiologically balanced locust saline solution. Exoskeleton and glandular tissue were removed 
until the brain was fully apparent, and the antennal lobes were desheathed following treatment 
with protease. A commercial Neuronexus 16-channel silicon probe (A2x2-tet-3mm-150-150-
121) with impedances between 200-300 kΩ was used for PN recordings. Voltage signals from PNs 
were recorded by inserting electrodes about 100 µm into the antennal lobe. A silver-chloride 
ground wire was placed in the saline bath. Voltage signals were sampled at 20 kHz and digitized 
via an Intan pre-amplifier board. The digital signals were transmitted to a recording controller and 
successively visualized and stored using the Intan graphical user interface.   
  
Odor stimulation: A commercial olfactometer (Aurora Scientific, 220A) was used for precision 
odor stimulus delivery. Purified, zero-contaminant air was used as the carrier stream. Throughout 
the entirety of the experiment, a constant 200 sccm air flow was passed to the locust antenna via a 
1/16 in. diameter PTFE tube, positioned approximately 2-3 cm from the last antennal segment. 
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During stimulus exposure, 40% (80 sccm) of the carrier stream clean air was replaced with the cell 
culture VOCs or other odorants. To eliminate any neural response due to sudden changes in airflow 
during odor delivery and removal, we kept the total volume of the airflow constant before, during, 
and after odor delivery. Stimulus duration for all experiments was 4 s. Each stimulus was repeated 
five times with an interstimulus interval of one minute. A 6” diameter funnel pulling a slight 
vacuum was placed immediately behind the locust antennae to ensure swift removal of odorants. 
The order of odor stimuli was pseudorandomized for each experiment. 
 
Cell culture: Human oral squamous cell carcinoma (OSCC) cell lines derived from the gingiva 
(Ca9-22), tongue (SAS), and a site of lymph node metastasis in tongue (HSC-3) were obtained 
from the Human Science Research Resources Bank (Osaka, Japan). The immortalized normal 
human epidermal keratinocyte cell line (HaCaT) was obtained from Cell Lines Service 
(Eppelheim, Germany). As a non-cancer control, HaCaT cells were chosen because they are a non-
transformed, immortalized, non-tumorigenic cell line and are widely used to mimic normal 
stratified squamous epithelium of the oral mucosa100,101. The cells were all seeded at a density of 
1 x 106 in T-25 flasks (NuncTM EasYFlaskTM 156340, Thermo Fischer Scientific, MA, USA) with 
airtight caps. Airtight T25 flasks were constructed prior to the start of any experiment. Inlet and 
outlet 19-gauge needles were inserted into each flask and stabilized using a low-volatile, two-part 
epoxy at least 24-h prior to cell seeding. All the cells were cultured at 37°C in 5% CO2 using 5 mL 
of Dulbecco modified Eagle medium (DMEM, Thermo Fisher Scientific, MA, USA)–high-
glucose (4500 mg of D-glucose/liter) medium with 25 mM HEPES and supplemented with 10% 
fetal bovine serum (FBS) (Biowest, France), and 1% penicillin/streptomycin (Thermo Fisher 
Scientific, MA, USA). HEPES was used for maintaining the pH values of the cell culture medium. 
Cells were allowed to grow for four consecutive days and electrophysiological data were collected 
at each 24-h timepoint post-seeding. Seven replicates of the four-day experiment were conducted. 
Flasks were maintained with a regulated temperature of 37°C and only removed while conducting 
experiments (less than 10 minutes). Five mL of the same cell culture medium was also placed in 
an identical T25 flask and kept in the same conditions as the cell cultures. Hexanal and undecane 
(1 % v/v in 5 mL mineral oil) were kept in identical T25 flasks and maintained at 37°C during 
experiments. 
 
Cell culture imaging and cell counting: Prior to each electrophysiology experiment, cell cultures 
were imaged using an optical microscope (Olympus CKX53). A total of ten images were taken at 
different pseudorandom locations throughout each flask. Cells were manually counted from every 
image (n = 1120 total images) using FIJI/ImageJ. The images from each flask taken at each 24-h 
timepoint were averaged and then converted to the total cell count in each flask. Mean and standard 
error of the mean (S.E.M.) were calculated for the total cell counts for each timepoint across seven 
replicates. One-way ANOVA with Bonferroni correction due to multiple comparisons was then 
used to determine if the cell count at each 24-h timepoint had statistically significant differences 
(P < 0.05, d.f. = 6, 16, one-way ANOVA with Bonferroni correction).  
 
Data analyses: Data was imported into MATLAB and high pass filtered using a Butterworth filter 
to remove any frequency components below 300 Hz. The data was analyzed by custom-written 
code in MATLAB.  
 
Spike sorting: For spike sorting analysis, all data was processed with Igor Pro using previously 
described methods 53. Detection thresholds for spiking events were between 2.5-3.5 standard 
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deviation (SD) of baseline fluctuations. Single PNs were identified if they passed the following 
criteria: cluster separation > 5 SD, inter-spike intervals (ISI) < 10%, and spike waveform variance 
< 10%. A total of 194 PNs were identified using spike sorting from 23 locusts. 
  
Scatter plots: The total number of spikes for each PN during the four s of odor stimulus 
presentation was computed for each trial (total 5 trials of each stimulus). The mean spike counts ± 
S.E.M. across trials for each PN were then plotted for two stimulus conditions along X- and Y-
axes (e.g., SAS spike counts vs. culture medium spike counts). One-way ANOVA with Bonferroni 
correction due to multiple comparisons was then used to determine if each neuron had statistically 
significant differences in mean spike counts to different conditions (P < 0.05, d.f. = 4, 28, one-way 
ANOVA with Bonferroni correction). Neurons with a statistically significant increase/decrease in 
spikes along the vertical axis compared to the horizontal axis were plotted in red/blue, respectively. 
Statistically nonsignificant differences were plotted in grey (Fig. 1e).  
 
R.M.S. transformation of PN voltage response: The filtered data was trimmed to the time window 
of interest. All data were passed through a 500-point continuous moving R.M.S. filter followed by 
a smoothing step via a 500-point continuous moving average filter. Stimulus-specific baseline 
values were calculated as the average voltage over all time bins for the two s prior to stimulus 
onset. Baseline responses were averaged over all trials and subsequently subtracted from the data 
to obtain the ΔR.M.S. values. These values were then binned according to the specified bin size 
and the average of each bin was computed. For each recording location, R.M.S. transformed 
voltage data of each tetrode were averaged together (Fig. 4).   
 
Dimensionality reduction analyses: We performed two methods of dimensionality reduction – 
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). In PCA, we 
binned baseline subtracted, spike sorted PN signals in 50 ms non-overlapping time bins and 
averaged over trials (n = 5, each stimulus was repeated 5 times with a 1 min inter-stimulus 
interval). The baseline response was calculated for each PN by averaging the firing rate over 2 s 
time windows immediately before stimulus presentation across trials. Recorded PNs were pooled 
across multiple experiments. For example, in Fig. 2, spike sorted and binned responses of all 
recorded PNs (194 total) over 24- to 96-h of cell culture were combined to generate a PN number 
(n=194) ´ time (t =80) matrix, where each element in the matrix corresponds to the spike count 
of one PN in one 50 ms time bin. Similar PN population time-series data matrices were generated 
for each stimulus. PCA dimensionality reduction analysis was performed on the time-series data 
involving 5 odorants (SAS, Ca9-22, and HSC-3, HaCaT, and culture medium) and directions of 
maximum variance were found (Fig. 2). The resultant high-dimensional vector in each time bin 
was projected along the eigenvectors of the covariance matrix. Only the three dimensions with the 
highest eigenvalues were considered for visualization purposes and data points in adjacent time 
bins were connected to generate low-dimensional neural trajectories. The trajectories were 
smoothed using a third order IIR Butterworth filter (Half Power Frequency = 0.15). Finally, all 
trajectories were shifted to begin at the origin to examine stimulus-specific response dynamics and 
trajectory divergence. A similar approach was used for PCA analysis in Fig 3, except recorded 
PNs were separated based on the cell culture time points (e.g., 24-, 48-, 72-, and 96-h) and PCA 
analysis was done separately for each cell culture time point. For LDA analysis, the same 
population PN time-series data matrix was used. Here, we maximized the separation between 
interclass distances while minimizing the within class distances. To visualize the data, time bins 
were plotted as unique points in this transformed LDA space and stimulus-specific VOC clusters 
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became readily apparent (Fig. 2, 3). The same PCA and LDA analyses were applied to the baseline 
subtracted R.M.S transformed population PN time-series data (Fig. 4). 
  
Classification analysis: To obtain a quantitative estimate of classification performance, we 
performed a leave-one-trial-out cross validation method. During each iteration, population PN 
time-series data from one trial was used as the test data and the remaining trials were used to train 
a linear classifier (total 5 trials for each stimulus). The linear algorithm aimed to generate a model 
based on the training data set within the original high-dimensional encoding state space to 
effectively classify testing data. By considering time bins as points in a high-dimensional space, 
we were able to calculate an average response vector for the training data corresponding to each 
stimulus. These neural templates were then used to classify individual time bins of each testing 
data set. The minimal norm distances between each point corresponding to a time bin of the testing 
data and the previously calculated average response vectors for the training data were used to 
assign class identities. The Euclidean (L2) norm was used to quantify classifier predictability in 
most cases. For results involving R.M.S.-transformed data, the Manhattan (L1) norm was selected 
as it outperformed the Euclidean norm metric in terms of classifier prediction accuracy (Fig. 4 and 
S6). Furthermore, a winner-take-all approach, was also incorporated to calculate the most likely 
predicted class for each trial. This was performed by considering the mode of all predicted time 
bins as the trial-wise class identifier. Model performance was illustrated using a confusion matrix, 
which compared the predicted responses to the true class labels. A fully diagonal matrix indicates 
100% classification accuracy.  
 
Main figure captions: 
 
Figure 1: Individual projection neurons respond differentially to the oral cancer vs. control 
VOCs. (a) Schematic of the VOC delivery and in vivo neural recording setup. Different cell lines 
(cancer and non-cancer) were cultured and placed inside airtight flasks. The culture medium was 
the same for all cell lines. Emitted VOCs from the cell cultures were sampled periodically by 
injecting a fixed amount of clean air into the closed flask using an olfactometer. The duration and 
volume of cell culture VOCs delivered to the locust antenna were controlled by the odor delivery 
setup. Extracellular neural recordings were obtained from the locust antennal lobe before, during, 
and after odor delivery. Total airflow to the antenna was kept constant throughout the experiment 
and delivered VOCs were removed quickly by an exhaust placed behind the locust antenna. 
Bottom, a raw voltage response of a neural recording is shown for a 4 s long odor pulse. (b) 
Representative images of the four cell cultures used in the study. SAS, Ca9-22, and HSC-3 are the 
oral cancer cell lines while HaCaT is the non-cancer cell line. All the images are shown at 24 h 
post-seeding. The black scale bar indicates 200 µm. (c) VOC-evoked raw neural voltage responses 
of a recording location are shown for the three oral cancer cell lines, the non-cancer cell line, the 
cell culture medium, and two control VOCs (Hexanal and Undecane). The light grey box indicates 
the 4 s stimulus presentation window. (d) Similar plots are shown as in panel c, but for a different 
recording location. This location had multiple PNs, which resulted in different spike amplitudes in 
the multiunit voltage trace (e) VOC-evoked total spike counts (over 4 s) of individual PNs are 
compared across two stimulus conditions. For each PN, the trial-averaged total spike count is 
plotted with the error bars representing S.E.M. of the trial-wise variations for two stimulus 
conditions. All comparisons were made with the cell culture medium evoked spike counts (plotted 
along the X-axis). All 194 recorded PNs are plotted in every scatter plot. Individual PNs were 
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identified after spike-sorting of the extracellular recordings. PNs that responded significantly 
higher (or lower) to the stimulus VOCs compared to the cell culture medium VOCs were plotted 
in red (or blue), respectively (P < 0.05, d.f. = 4, 28, one-way ANOVA with Bonferroni correction). 
PNs that did not show significant differences in total spike counts across two conditions were 
plotted in grey. 
 
Figure 2: Cancer vs. non-cancer VOCs are distinguished by spatiotemporal PN responses. 
(a) Schematic representation of the spatiotemporal PN response analysis. This analysis contains 
spiking responses from all recorded PNs (spatial) and their response dynamics (temporal) over the 
4 s stimulus presentation window. Top left, raster plots of all recorded PNs pooled across 
experiments are combined for each stimulus (represented by PN1 to PN194). Then the 4 s duration 
VOC-evoked spike counts are divided into 50 ms non-overlapping time bins (total 80 time bins 
for 4 s). Two different stimuli are used for illustration (Ca9-22 and HaCaT). Notice that the same 
PNs are recorded for all stimuli. Top right, a neuron number (n=194) ´ time (t =80) matrix is 
constructed, where each element in the matrix corresponds to the spike count of one neuron for a 
single time bin (denoted by xitj or yitj). Bottom right, the high dimensional population response 
time-series is dimensionally reduced using PCA and data corresponding to the first three principal 
components are kept. Bottom left, the 4 s time-series data is plotted along the three principal 
component axes. Each point is connected temporally with the next time point to generate individual 
VOC-evoked neural trajectories that take into account both temporal and spatial motifs of the 
recorded PN ensemble. Notice that the two PN trajectories corresponding to the Ca9-22 and 
HaCaT track along different manifolds in the principal component space. Angular separation 
between the two neural trajectories signifies the distinction between the two VOCs. The percentage 
of variance captured along the first three principal components is plotted along the axes. Because 
of the large number of recorded PNs and their complex response dynamics, the total variance 
captured along the first three principal components is low. Therefore, PCA-based neural 
trajectories are only used for qualitative comparisons. (b) Population PN trajectory plots are shown 
after dimensionality reduction using PCA for the three cancer cell lines (SAS, Ca9-22, and HSC-
3), the non-cancer cell line (HaCaT), and the control cell culture medium. For each stimulus, PN 
population trajectory is plotted for 0 to 4 s of VOC exposure. Numbers along the neural trajectories 
indicate time in seconds from the stimulus onset. Total number of PNs used in this analysis is n = 
194, which was computed by pooling neurons across all timepoints and replicates of the cell 
cultures. (c) Spatiotemporal PN responses (n =194) for the 4 s stimulus presentation window (50 
ms bin size, total 80 points for each odor) are visualized after dimensionality reduction using LDA 
(see Methods). LDA minimizes within-class variance and maximizes the variance between classes. 
Numbers along the axes indicate the variance captured along that dimension. Distinct clustering 
of neural responses corresponding to different VOC profiles indicates that the cell culture VOCs 
(cancer vs. non-cancer) can be segregated based on the neural response they elicit. (d) 
Classifications of VOC-evoked population PN responses without any dimensionality reduction are 
analyzed by leave-one-trial-out cross validation analysis (see Methods). These quantitative 
classification results are summarized by a confusion matrix. Each column and row correspond to 
the target stimulus and the predicted class, respectively. Here, each 50 ms time bin of the testing 
trial is classified as one of the 5 target VOCs based on the minimum Euclidian distance. The high 
values along the diagonal of the confusion matrix indicate that most of the predicted responses 
match the target labels. This result signifies that information contained within the 50 ms time bins 
of the VOC-evoked neural response is sufficient to classify oral cancer vs. non-cancer and to 
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distinguish different oral cancers from each other. (e) Similar analysis as shown in panel d except 
we classified the test trial as a whole by taking the mode of the bin-wise classification for the 4 s 
long trial (mode of total 80 time bins for each test trial). This trial-wise classification of VOC 
profiles shows flawless distinction of all 5 stimuli tested and reveals the strength of this neural 
response-based cancer detection approach.   
 
Figure 3: Neural response-based classification of oral cancer is robust in changing 
background conditions. (a) PN response trajectories corresponding to the cancer cell lines, the 
non-cancer cell line, and the cell culture medium VOC mixtures are plotted after dimensionality 
reduction by PCA (similar to Figure 2). In this analysis, neurons were pooled only across 
experiments performed at 24-h post seeding. A total of 42 PNs were recorded for different cell 
cultures at this time point. Notice that neural trajectories are distinct from each other even when 
the recorded neuron numbers are lower and the cultured cells are grown for only 24-h. (b-d) Cell 
culture VOC-evoked neural trajectory plots are shown for 48-, 72-, and 96-h time points of the cell 
cultures, respectively. At each time point, PN trajectories traversed distinct manifolds indicating 
the distinguishability between cell cultures over multiple days of growth. Note that different PNs 
(n) were recorded at different time points. (e) PN population responses cluster distinctly for 
different VOCs after dimensionality reduction by LDA at 24-h. (f-h) The same analysis as in panel 
e, used for 48-, 72-, and 96-h of cell growth. In all cases, LDA shows separability between VOC-
evoked neural response clusters. (i) Time bin-wise high dimensional confusion matrix analysis of 
PN responses by leave-one-trial-out approach at 24-h. The confusion matrix has higher values 
along the diagonal, which indicates that most of the test trial time bins are classified correctly. 
However, the confusion matrix also has non-zero off-diagonal elements, indicative of some 
misclassification. (j-l) Similar confusion matrix plots are shown for 48-, 72-, and 96-h. (m-p) 
Trial-wise confusion matrices are shown at 24-, 48-, 72-, and 96-h of cell cultures. Here, each test 
trial was classified based on the mode of the bin-wise classification results. This analysis elicits 
diagonal confusion matrices for all cases, which indicates clear distinction of oral cancer vs. non-
cancer VOC profiles based on population PN spiking responses.  
 
Figure 4: Rapid classification of oral cancer VOC profiles using neural voltage responses. (a-
d) High dimensional neuron response vector, where each row represents R.M.S. filtered PN signals 
of a recording position (n = 84) and each column represents a 50 ms time bin (total 5 time bins 
over 250 ms), was dimensionally reduced using PCA and ensemble neural response trajectories 
are plotted (see Methods). Cancer vs. non-cancer VOC-evoked neural response trajectories are 
shown for the stimulus presentation windows of 0.5 – 0.7 5 s, 0.75 – 1.0 s, 2.0 – 2.25 s, and 2.25 
– 2.5 s, respectively. Notice that population trajectories generated from R.M.S. filtered neural 
voltages are distinct within just 250 ms of odor exposures. Two 250 ms time windows are shown 
during the transient state of the PN response (0 to 1.5 s), while two other time windows are chosen 
during the steady state neural response period (2 s to the termination of the stimulus). (e-h) 
Confusion matrix analysis of the predicted vs. target responses are shown for the ensemble neural 
voltage time-series data for the same time windows as shown in panel a-d. Note that the confusion 
matrix analysis is done without any dimensionality reduction. Transient state time windows of 0.5 
– 0.75 s and 0.75 – 1.0 s show better VOC classification compared to the steady state time 
windows. (i-l) The same confusion matrices are plotted for the trial-wise classification, which 
results into near perfect classification of VOCs in 250 ms time windows during transient state. 
Steady state windows show relatively low trial-wise classification. (m) Pairwise distances between 
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ensemble R.M.S. voltages (from n = 84 PN recordings) corresponding to five different VOCs are 
plotted in light grey (total 10 pairwise distances) during the stimulus exposure (4 s). The mean of 
pairwise distances is plotted in black, which indicates that there are differences in ensemble PN 
voltage responses corresponding to different VOCs and these differences are highest during 0.5 to 
1 s of the transient response period. Note that in our setup, odorants took about 500 ms to reach 
the antenna from the opening of the final olfactometer valve (t = 0) and therefore, the earliest 
transient state time window that could be chosen was 0.5 to 0.75 s.   
 
Figure 5: Principles of neuronal response-based noninvasive cancer detection. (a) This 
approach employs VOC mixture-evoked neural response templates for distinction between cancer 
and healthy samples. During the training phase, target (e.g., breath samples of oral cancer patients) 
and control (e.g., healthy human breath samples) VOC mixtures will be exposed to the locust 
antenna and in vivo neural recordings will be obtained from multiple projection neurons in the 
antennal lobe, simultaneously. The entire in vivo electrophysiological setup will be placed inside 
a closed Faraday chamber with inlet and outlet port for VOC delivery and removal. Trained VOC-
evoked population neural responses will be used to construct optimally separated heathy vs. cancer 
clusters in the neural space as illustrated in our analysis. Our results indicate that ~40 recorded 
PNs is sufficient for classification of multiple oral cancer cell lines from healthy controls. Notice 
that the training/calibration will be performed for each brain-based sensor, where the separation 
between target VOCs will be maximized by optimal placement of the microelectrode array in the 
antennal lobe. (b) During testing phase, unknown VOC samples (e.g., breath sample of an early-
stage oral cancer patient) will be presented to the antennae and neural responses will be obtained 
from the same set of neurons. In our study, we have used the minimum Euclidian distance between 
the unknown sample and the healthy vs. oral cancer neural clusters as the classification metric. 
However, other distance metrics can be used to classify unknown VOCs. Since the PN responses 
reach near baseline within 2 s of odor onset and we have demonstrated that reliable classification 
can be performed for one minute inter stimulus interval, this technique can work as a high 
throughput cancer screening device. 
 
Supplementary figure captions: 
 
Figure S1: PN population response-based classification of the entire stimulus panel. (a) 
Ensemble neural trajectories over the 4 s stimulus presentation window are shown for all 7 stimuli 
after PCA dimensionality reduction. Volatiles from putative cancer biomarkers (Hexanal and 
Undecane 1% v/v diluted in mineral oil) elicited PN responses that traced different manifolds than 
those from the cell lines and control media. Numbers along trajectories indicate time in seconds 
from the stimulus onset. Total number of PNs used in this analysis is n = 194. (b) Population PN 
responses corresponding to each stimulus plotted in 3-dimensional LDA space also showed 
separability between response clusters. (c) Quantitative classification was performed using a leave-
one-trial-out cross-validation methodology to train and test a linear classifier in the high-
dimensional feature space. The time bin-wise confusion matrix shows highest values along 
diagonal for all cases which indicates successful classification of all 7 stimuli using PN time-series 
data. (d) Trial-wise confusion matrix is plotted for all stimuli. 
 
Figure S2: Representative images of cell cultures over days. Images are shown for a replicate 
of the cell culture used for electrophysiological recordings. All four cell lines are shown over four 
days. Healthy cells were observed at all four time points (24-, 48-, 72-, and 96-h). 
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Figure S3: Depiction of the cell counting procedure. (a) Schematic of a T25 cell culture flask. 
Prior to conducting electrophysiology experiments, the flask for each cell line was imaged 10 times 
pseudo-randomly. Example imaging locations shown by yellow rectangles. (b) Image from the 
flask prior to counting is shown. Black scale bar indicates 200 μm. (c) An image from a different 
location within the same flask is shown. (d, e) The same images from (b, c) are shown post 
counting with all live cells marked by a blue dot using FIJI/ImageJ. The mean of the 10 images 
were taken to determine the total cell count of each flask.  
 
Figure S4: Cell growth curves of all four cell lines. Initially, cells were seeded at 1 x 106 cells 
per flask at 0 h. Cells were counted from each flask at 24-hour intervals after seeding (24-, 48-, 
72-, and 96-h). At each time point, the total cell count of each flask was averaged over seven 
replicates. Error bars are S.E.M from the seven replicates. No significant difference in cell counts 
were observed between 24-h and 48-, 72-, or 96-h (P < 0.05, d.f. = 6, 16, one-way ANOVA with 
Bonferroni correction). 
 
Figure S5: Root-mean squared (R.M.S) transformation largely preserved stimulus-specific 
spiking dynamics. (a) Representative recordings from an individual electrode are shown for all 
stimuli after high-pass filtering. The gray box delineates the 4 s stimulus presentation period. (b) 
R.M.S. transformed data traces of panel a recording (see Methods) reflect the spiking rate-based 
response dynamics, while reducing computational overhead. The gray box delineates the same 4 s 
stimulus presentation period as in panel a.  
  
Figure S6: Using R.M.S transformed population PN voltage responses to classify the stimulus 
panel. Similar plots as shown in Figure S1, but here, we have used R.M.S transformed PN 
voltages to generate, (a) VOC evoked ensemble neural trajectories after PCA; (b) PN response 
clusters after LDA; (c) Bin-wise confusion matrix in high dimensional space; and (d) Trial-wise 
confusion matrix corresponding to all 7 stimuli. Spike-based and R.M.S-filtered PN time-series 
data both yielded excellent classification for all VOCs tested.  
 
Figure S7: Cancer VOC classification during transient vs. steady state response periods of 
PN response. Time bin-wise confusion matrix analysis results shown for three 1.5 s duration time 
periods- (a) 1 s prior to 0.5 s after final olfactometer valve opening (pre-stimulus period). b) 0.5 
to 2 s after final olfactometer valve opening (transient state), and (c) 2 to 3.5 s after final 
olfactometer valve opening (steady state). The pre-stimulus time period shows no stimulus-
specific classification as expected because VOCs had not yet reached the antenna at this time. The 
transient state period (0.5 to 2 s) shows the best bin-wise classification of all 5 VOCs. The steady 
state period (2 to 3.5 s) also shows high classification success, but the diagonal values are relatively 
lower compared to the transient state period. (d-f) Trial-wise confusion matrices are shown for the 
same time windows as in panel a. (g) A population-based peri-stimulus time histogram (PSTH) 
plots the change in R.M.S. transformed values of all recording positions (n = 84) as a function of 
time. Time labels along the X-axis are relative to the stimulus onset time. A significant change in 
R.M.S. values is seen approximately 500 ms after the final valve was opened (i.e., stimulus onset). 
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Main Figures: 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Figures: 
 
Figure S1:  
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Figure S2:  
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Figure S3: 
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Figure S4:  
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Figure S5:  
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Figure S6: 
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Figure S7:  
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