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Abstract: With the latest advancements in optical bioimaging, rich structural and functional 20 
information has been generated from biological samples, which calls for capable computational 21 
tools to identify patterns and uncover relationships between optical characteristics and various 22 
biomedical conditions. Constrained by the existing knowledge of the novel signals obtained by 23 
those bioimaging techniques, precise and accurate ground truth annotations can be difficult to 24 
obtain. Here we present a weakly supervised Deep Learning framework for optical signature 25 
discovery based on inexact and incomplete supervision. The framework consists of a Multiple 26 
Instance Learning-based classifier for the identification of regions of interest in coarsely labeled 27 
images, and model interpretation techniques for optical signature discovery. We applied this 28 
framework to investigate human breast cancer-related optical signatures based on virtual 29 
histopathology enabled by simultaneous label-free autofluorescence multiharmonic 30 
microscopy (SLAM), with the goal to explore unconventional cancer-related optical signatures 31 
from normal-appearing breast tissues. The framework has achieved an average area under the 32 
curve (AUC) of 0.975 on the cancer diagnosis task. In addition to well-known cancer 33 
biomarkers, non-obvious cancer-related patterns were revealed by the framework, including 34 
NAD(P)H-rich extracellular vesicles observed in normal-appearing breast cancer tissue, which 35 
facilitate new insights into the tumor microenvironment and field cancerization. This 36 
framework can be further extended to diverse imaging modalities and optical signature 37 
discovery tasks. 38 

 39 

1. Introduction 40 

Advancements in optical bioimaging have revealed rich structural and functional information 41 
from biological samples based on intrinsic structural, molecular, and metabolic contrasts [1-4]. 42 
Without requiring tissue fixation, sectioning, and staining, label-free virtual histopathology 43 
technology fulfilled by multimodal optical bioimaging techniques enables the observation of 44 
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the unperturbed biochemical microenvironment [5, 6]. Based on the collected morphological 45 
and molecular information, unconventional cancer-related optical signatures can be revealed, 46 
which are mainly undetectable using traditional histopathological techniques. However, the 47 
rich information in multimodal optical bioimages may easily exceed the capabilities of human 48 
visual inspection. Extracting information and detecting patterns using computational tools 49 
could therefore enhance perceptions and inspire new scientific discoveries. 50 

Deep Learning (DL), which excels at extracting patterns and insights from large volume of 51 
data, has achieved substantial success in biomedical image analysis [7-9]. However, generating 52 
accurate and fine-grained manual annotations for DL model training can be time-consuming, 53 
costly, and sometimes unfeasible [10]. To alleviate the dependency on the strong supervision, 54 
numerous weakly supervised learning approaches have been proposed to exploit inexact and 55 
incomplete supervision [11-14]. Among those approaches, Multiple Instance Learning (MIL), 56 
which leverages inexact supervision, has gained popularity in computational pathology where 57 
the generation of fine-grained annotations are often costly and time-consuming [15-18]. 58 
Instead, coarse annotations (e.g., labels for the whole slides images) are available more readily. 59 
It was reported that MIL-based decision support systems have achieved clinical-grade 60 
performance for cancer diagnosis and identified cancer-related regions when being trained on 61 
large-size histology datasets without cellular-level annotations [19]. 62 

In this study, we leverage MIL for human breast cancer-related optical signature 63 
identification based on label-free virtual histopathology, where only ambiguous whole-image-64 
level annotations are available. The virtual histopathology slides were generated using 65 
simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy which enables 66 
simultaneous and efficient acquisition of two- and three-photon-excited autofluorescence (2PF 67 
and 3PF, respectively) as well as second and third harmonic generation (SHG and THG, 68 
respectively) with strict spatial and temporal co-registration (Fig. 1) [6, 20]. In addition to 69 
structural information, SLAM provides the molecular information of a sample in its native state, 70 
demonstrating its great potential for the exploration of novel molecular biomarkers at early 71 
stages of cancer, as well as for new fundamental investigations into carcinogenesis [20, 21]. 72 

 73 
Fig. 1. Description of the SLAM imaging system and a sample SLAM virtual histopathology 74 
slide image. (a) Overview of SLAM imaging system, with the schematic of SLAM microscope 75 
(upper left), detection modalities (upper right table), and the targeted intracellular and 76 
extracellular optical markers (bottom table). (b) SLAM virtual histopathology slide image 77 
collected in the tumor adjacent region of a breast tissue from a cancer human subject. 78 

 79 
Unlike many DL-based cancer diagnosis applications which focus primarily on tissue 80 

regions with well-established cancer-associated morphologies, this study aims to explore 81 
unconventional structural and functional optical signatures for which the correlations with 82 
breast cancer might not be fully investigated. In addition to primary tumors, the SLAM virtual 83 
histopathology slide images (“slides” for brevity) of tumor microenvironment (TME) and 84 
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peritumoral regions were generated to reveal potential evidence of field cancerization [22, 23]. 85 
Studies have shown various interactions between tumor and TME linked with tumor 86 
angiogenesis and peripheral immune tolerance, which may affect the growth and evolution of 87 
cancerous cells [24]. The replacement of large areas of normal cell population by cancer-primed 88 
cell population is often referred to field cancerization that may not involve clinically detectable 89 
morphological changes [25]. 90 

However, constrained by the current knowledge of the unconventional functional and 91 
structural information generated by SLAM, the annotations for the whole images can be 92 
ambiguous. Namely, tissue images from tumor surrounding regions without conventional 93 
cancer biomarkers can hardly be assigned certain labels (cancer or normal). Additionally, the 94 
cancer-related optical signatures from uncertain regions (e.g., tumor surrounding areas) may 95 
differ from those inside the well-known cancer areas (i.e., primary tumor). This leads to a 96 
unique learning task where DL models need to be trained with inexact and incomplete 97 
supervision at the same time (Fig. S1 in Supplement 1). Therefore, a DL framework that 98 
exploits weak supervision is needed for discovery of cancer-related patterns in both the primary 99 
tumor regions and tumor surrounding regions where potential optical markers for field 100 
cancerization and carcinogenesis may exist. In this study, the cancer-related patterns are 101 
defined as optical characteristics exhibited only in tissues from cancer subjects while being 102 
unobservable in tissues from normal subjects. 103 

Here, we propose Mix-and-Match Multiple Instance Learning (MM-MIL) as a weakly 104 
supervised DL framework for the discovery of human breast cancer-related optical signatures. 105 
By modifying the bagging policy in conventional MIL, MM-MIL is designed to learn from 106 
whole-image-level ambiguous annotations. Through iterative selection and learning of 107 
discriminative instances from positive and negative bags, MM-MIL could make whole-slide 108 
level cancer diagnosis, as well as inform cancer-related regions in predicted positive slides. In 109 
addition to well-established cancer biomarkers, MM-MIL revealed non-obvious cancer-related 110 
signatures that appear predominantly in tumor surrounding areas while being unobservable in 111 
breast tissues from normal subjects. Those optical signatures may inspire the discovery of new 112 
cancer markers inside and outside of the tumor microenvironment and promote research on 113 
carcinogenesis, tumor progression, and field cancerization. 114 

Table 1. Description of the SLAM virtual histopathology dataset 115 

Dataset 
Total 

subjects 

Cancer 

subjects 

SLAM 

slides 

“Cancer” 

slides 

“Uncertain” 

slides 

“Normal” 

slides 

Size 

(Mpixels) 

Training 23 17 428 59 237 132 1,077 

Validation 7 5 92 7 61 24 203 

Test 18 14 204 23 137 44 484 

Total 48 36 724 89 435 200 1,764 

2. Materials and methods 116 

2.1 SLAM virtual histopathology dataset generation 117 

SLAM virtual histopathology slides were collected from fresh human breast tissue specimens 118 
using a custom-built benchtop SLAM microscope [20], and under a protocol approved by the 119 
Institutional Review Boards at Carle Foundation Hospital and the University of Illinois at 120 
Urbana-Champaign. Tissue samples from 48 human subjects was used in this study, among 121 
which 36 subjects were diagnosed with ductal carcinoma in situ (DCIS) or invasive breast 122 
cancer (invasive ductal carcinoma, invasive lobular carcinoma, lobular carcinoma in situ, 123 
invasive papillary carcinoma) by board-certified pathologists. Normal tissue samples were 124 
collected from 12 subjects undergoing breast reduction surgery, with no reported history of 125 
cancer. Information on subject demographics can be found in Table S1 in Supplement 1. 126 
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We generated 724 SLAM slides, where each slide is a mosaic image with a median size of 127 
1500 × 1500 pixels (750 µm × 750 µm). To investigate the potential optical signatures for field 128 
cancerization, both tumor and tumor adjacent regions in cancer tissue samples were imaged. 129 
For images collected in tumor adjacent regions, the distances between the imaging site and the 130 
tumor boundary (annotated by pathologists) ranged from several millimeters to several 131 
centimeters. Slide-level annotations were generated by human experts based on pathological 132 
reports, optical characteristics in SLAM, and the corresponding hematoxylin-eosin (H&E) 133 
histological slides (Fig. S2). Slides that exhibit well-known cancer biomarkers (e.g., tumor 134 
cells, tumor-associated collagen fibers) were annotated as “Cancer”. “Uncertain” labels were 135 
assigned to slides that were from cancer subjects but do not show well-known cancer signatures 136 
(mainly outside the primary tumor). Slides from normal subjects were labeled as “Normal”. 137 
The dataset was randomly split into a training set (about 60% of slides), a validation set (about 138 
10% of slides), and a test set (about 30% of slides) using subject-level partition such that slides 139 
from one subject can only exist in one of these sets. A description of slides in each set is 140 
provided in Table 1. 141 

2.2 SLAM slide preprocessing 142 

Each channel of SLAM slides was normalized using Z-score standardization. In addition, slides 143 
were augmented by flips and rotations: horizontal flip, vertical flip, 90-degree rotation, 180-144 
degree rotation, 270-degree rotation. Slides were then cropped into tile images (“tiles” for 145 
simplicity), which share the same label as the slides. To investigate cancer-related patterns at 146 
different scales, three tile sizes were used to simulate high-, medium-, and low-magnification 147 
levels. For the high-magnification level, slides were cropped to 256 × 256-pixel tiles (128 µm 148 
× 128 µm) with no overlap between tiles. Medium- and low-magnification levels tiles were 149 
generated by tiling slides into 512 × 512-pixel images (256 µm × 256 µm), and 1024 × 1024-150 
pixel images (512 µm × 512 µm), respectively, and downscaling to 256 × 256-pixel tiles was 151 
performed using nearest-neighbor interpolation. These tiles cover a larger FOV, but have lower 152 
resolution compared to high-magnification tiles. Overlap ratios of 50% and 80% were used for 153 
medium- and low-magnification levels, respectively. The numbers of tiles at different 154 
magnification levels are reported in Table S2 in Supplement 1. 155 

 156 
Fig. 2. The Mix-and-Match bagging policy in MM-MIL. “Cancer” slides and “Uncertain” slides 157 
were randomly grouped together to form positive bags, whereas “Normal” slides were treated as 158 
negative bags. During model training, all slide-level labels were hidden, and only bag-level 159 
labels (“Positive” or “Negative”) were used. 160 

2.3 MM-MIL framework 161 

To identify and localize cancer-related patterns in coarsely labeled SLAM slides, the cancer 162 
signature discovery task was formulated a MIL problem, where SLAM tiles were treated as 163 
MIL instances. To enable the MIL model to extract cancer-related patterns from both “Cancer” 164 
and “Uncertain” slides, a custom-designed bagging policy (i.e., Mix-and-Match) was 165 
developed to ensure the explicitness of bag-level labels (Fig. 2). Instead of treating each SLAM 166 
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slide as a MIL bag, slides were mixed and grouped together to form bags in MIL. For each set 167 
(i.e., training, validation, or test set), a positive bag was defined as a group of “Cancer” slides 168 
and “Uncertain” slides. Since at least one tile in the positive bag has cancer signatures, explicit 169 
labels (“Positive”) could be assigned to the bag based on the standard assumption of MIL [26]. 170 
Considering that “Normal” slides came from normal subjects with no history of cancer, each 171 
of them can form an individual bag with a certain “Negative” label. To maximize the number 172 
of bags, every positive bag contained only one “Cancer” slide. While “Uncertain” slides were 173 
randomly distributed to all positive bags. Notably, only bag-level labels were used for model 174 
training, while slide-level labels were hidden to encourage models to look for cancer-related 175 
optical signatures in both “Cancer” and “Uncertain” slides. 176 

 177 
Fig. 3. Description of the MM-MIL framework. During model training, a DNN-based tile-level 178 
classifier is optimized through iterative selection and learning of discriminative tiles from Mix-179 
and-Match bags. Once the classifier is trained, local and global cancer predictions can be 180 
generated. Model interpretation methods are utilized to inform cancer-related patterns learned 181 
by the model. 182 

Based on the MIL bags generated by the Mix-and-Match bagging policy, DL-based models 183 
were trained to make cancer diagnosis on the bag level (i.e., global prediction) as well as on the 184 
instance level (i.e., local prediction). This was achieved by training an instance-level classifier 185 
and aggregating the instance-level predictions to generate bag-level classification results 186 
(Fig. 3). Inspired by [19, 27], the instance-level classifier (𝑓𝑖𝑛𝑠) was trained in an iterative 187 
manner using the EM algorithm. Each training epoch started with an inference step (the E-step 188 
in EM), where the model generated prediction scores (i.e., cancer probability) for all the tiles 189 
in every training bag. The training sample pool 𝑇𝑡𝑟𝑎𝑖𝑛 was then constructed by selecting the top 190 
𝐾 instances with highest prediction scores in each bag: 191 

 𝑇𝑡𝑟𝑎𝑖𝑛 = {𝑥 ∈ 𝐵𝑖 : |{𝑥′ ∈ 𝐵𝑖 : 𝑓𝑖𝑛𝑠(𝑥) < 𝑓𝑖𝑛𝑠(𝑥′)}| < 𝐾, 𝑖 = 1,2, … , 𝑁}, (1) 

where 𝑥 represents an instance, 𝐵𝑖  is the 𝑖-th bag among the total 𝑁 bags, and 𝐾  is a user-192 
defined parameter. The top 𝐾 instances shared the labels with their bags. The instance classifier 193 
was then trained on the training sample pool 𝑇𝑡𝑟𝑎𝑖𝑛 for one epoch (i.e., the M-step in EM). The 194 
training procedure of the instance-level classifier is further illustrated in Supplement 1. In this 195 
study, we use the ResNet34 as the backbone of the instance-level classifier [28]. The model 196 
was initialized using weights pretrained on ImageNet except for the first convolution layer and 197 
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the last fully connected layer, of which the input and output dimensions were customized for 198 
the task, were randomly initialized. 199 

Bag-level predictions were obtained by aggregating instance-level prediction scores. 200 
Constrained by the size of the dataset used in this study, we chose a nonparametric method 𝑓𝑏𝑎𝑔 201 
(i.e., max-pooling operation) for bag-level aggregation. That is, if at least one instance in a 202 
particular bag 𝐵𝑖  is positive (probability > 0.5), the whole bag is predicted as positive: 203 

 
𝑓𝑏𝑎𝑔(𝐵𝑖) = {

1, 𝑖𝑓 ∃𝑥𝑖𝑗 ∈ 𝐵𝑖 : 𝑓𝑖𝑛𝑠(𝑥𝑖𝑗) > 0.5;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (2) 

Compared to trainable bag aggregation methods [29, 30], the max-pooling operation is more 204 
sensitive to spurious positive instances, thus imposes higher requirements on the reliability of 205 
instance-level classifiers. 206 

2.3 Training strategy and loss function 207 

Each MM-MIL instance classifier was trained for at least 50 epochs and at most 200 epochs. 208 
Model performance was evaluated on the validation set, where the classification accuracy was 209 
recorded. Early stopping would be triggered when the validation accuracy did not increase for 210 
30 consecutive epochs. The model with highest validation accuracy was saved for final 211 
performance evaluation on the test set. The objective function of the instance-level classifier is 212 
the cross-entropy loss: 213 

 ℒ(𝑦𝑘 , �̂�𝑘) =  −𝑤1[𝑦𝑘 log(�̂�𝑘)] − 𝑤0[(1 − 𝑦𝑘) log(�̂�𝑘)], (3) 

where 𝑦𝑘, �̂�𝑘 are the bag-level ground truth and prediction score respectively, and 𝑤0, 𝑤1 are 214 
negative and positive class weights, which are set to deal with the unbalanced class frequency 215 
within the training sample pool. The optimization of model parameters was achieved by 216 
stochastic gradient descent using the Adam optimizer, with a learning rate of 1.5 × 10−4, and 217 
a weight decay of 1 × 10−5. A detailed description of hyperparameters used in the experiments 218 
can be found in Table S3 in Supplement 1. 219 

2.3 Model evaluation 220 

The global prediction generated by MM-MIL were evaluated as a binary classification task. 221 
The average performance of five MM-MIL models trained with the same configuration was 222 
reported. For each magnification level (i.e., high, medium, and low), the receiver operating 223 
characteristic (ROC) curves and the associated area under the curve (AUC) were calculated. 224 
Due to the absence of certain ground truth labels for “Uncertain” slides, two approaches were 225 
adopted to evaluate the global prediction performance. For the first approach, MM-MIL models 226 
were evaluated on the Mix-and-Match bags in the test set, each of which has a certain “Positive” 227 
or “Negative” label. In the second approach, the model performance is assessed on the test 228 
slides with certain labels (i.e., “Cancer” and “Normal”). 229 

To quantitatively evaluate the local (tile-level) predictions, known tumor areas in “Cancer” 230 
slides were annotated by human experts based on the appearance of known cancer signatures. 231 
Considering that the areas outside human-annotated tumor regions may also exhibit non-232 
obvious cancer-related patterns, commonly used evaluation metrics (e.g., Intersection over 233 
Union (IoU)) may not be suitable in this study. Instead, the coverage ratio 𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  was used 234 
to measure the coverage of the model’s cancer predictions on known tumor regions. The known 235 
tumor regions in “Cancer” slides in the test set were annotated based on the well-known cancer 236 
signatures. The coverage ratio was calculated by 𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑝𝑝/𝑚𝑇𝑃 , where 𝑚𝑇𝑃  is the 237 
number of tumor tiles, of which at least 50% of the tile area is annotated as tumor region, 238 
whereas 𝑚𝑇𝑃 is the number of predicted positive tiles among the 𝑚𝑇𝑃 tumor tiles. In addition, 239 
the positive tile ratios in each group of slides (i.e., “Cancer”, “Uncertain”, and “Normal”) were 240 
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calculated by 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒/𝑚𝑡𝑜𝑡𝑎𝑙 , where the total number of tiles and the number of 241 
positive tiles in a particular group are denoted as 𝑚𝑡𝑜𝑡𝑎𝑙, and 𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  respectively. 242 

2.4 Model interpretation 243 

To gain insights into model predictions, three model interpretation methods were leveraged for 244 
the discovery of cancer-related optical signatures. Firstly, the latent feature space of the 245 
ResNet34 model was visualized in two dimensions using t-distributed stochastic neighbor 246 
embedding (t-SNE) [31]. Tiles (converted to RGB images) corresponding to the points in the 247 
t-SNE plot were sampled and visualized for model introspection. Secondly, SLAM channels of 248 
predicted positive tiles was occluded to investigate the importance of each channel for the 249 
cancer classification task. The decrease in prediction score can be seen as an indicator of 250 
channel importance regarding to the prediction task. Lastly, saliency map techniques, 251 
Integrated Gradients (IG) [32] and SmoothGrad (SG) [33], were utilized to inform the salient 252 
structures on the pixel-level. The implementation details of model interpretation were reported 253 
in Supplement 1. 254 

2.5 Implementation details 255 

All data processing and model development were conducted on a workstation computer, 256 
equipped with an Intel Xeon W-2195 central processing unit (CPU), four Nvidia RTX 8000 257 
graphics processing units (GPUs), and 256 gigabytes of memory. The workstation operates on 258 
the Ubuntu system (version 18.04). During the model optimization, each batch (i.e., 600 tiles 259 
per batch) required 0.365 s for the inference step, and 0.694 s for the training step with four 260 
GPUs. At the prediction time, MM-MIL generates diagnoses at an average speed of 23.39 261 
slides/s in high-magnification mode, and 26.17 slides/s in low-magnification mode on 262 
2000×2000-pixel SLAM slides. The source code for MM-MIL is available in a public 263 
repository on GitHub, https://github.com/Biophotonics-COMI/MM-MIL. 264 

3. Results 265 

3.1 Global prediction evaluation 266 

The global prediction evaluation results are shown in Fig. 4(a)(b) and Table 2. MM-MIL 267 
achieved average AUCs of 0.975, 0.971, and 0.969 when evaluated on the Mix-and-Match bags 268 
under high-, medium-, and low-magnification settings respectively [Fig. 4(a)]. In addition, 269 
when evaluated on the test slides with certain labels (“Cancer” or “Normal”), an average AUC 270 
of 0.939 was achieved for the high-magnification level. While for medium- and low- 271 
magnification settings, average AUCs of 0.810 and 0.816 were achieved respectively 272 
[Fig. 4(b)]. The differences in AUCs between bag- and slide-level predictions indicate that the 273 
“Uncertain” slides in positive bags have considerable contribution to cancer prediction. For 274 
both bag-level and slide-level global prediction tasks, we observed that MM-MIL models 275 
trained on the high magnification level achieved the best performance. 276 

In addition, experiments were conducted to compare the performance of model trained with 277 
the Mix-and-Match bagging policy and conventional bagging strategies (i.e., slide-level and 278 
subject-level). For the slide-level bagging policy, each slide was treated as a MIL bag. Slides 279 
from cancer subjects were labeled as positive. While for subject-level bagging policy, slides 280 
from individual subjects were grouped into a MIL bag with labels being determined by the 281 
subject information (positive for cancer subjects, and negative for normal subjects). Due to the 282 
fact that SLAM slides from cancer subjects might came from tumor surrounding regions, where 283 
evidence of cancer may not present, the ground truth labels for slide-level and subject-level 284 
bags can be unreliable. When being tested on the same held-out test set with certain slide labels, 285 
the MIL models achieved an average AUC of 0.939, 0.808, and 0.781 with Mix-and-Match, 286 
slide-level, and subject-level bagging strategies respectively (Fig. S3). In addition, the large 287 
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variance in AUCs was observed for slide-level and subject-level bagging strategies, with the 288 
standard derivation to be 0.020, 0.211, and 0.257 for the three bagging strategies, respectively. 289 

 290 
Fig. 4. Global and local prediction evaluation results. ROC curves for MM-MIL models 291 
evaluated on the Mix-and-Match bags (a) and the slides with certain labels (b). The solid lines 292 
indicate the mean curve over five models trained under the same configuration, and the shaded 293 
regions indicate ± standard deviation. (c) Bar chart of local prediction evaluation metrics. The 294 
error bars indicate ± standard deviation. 295 

Table 2. Global and local evaluation metrics (mean ± standard deviation) for MM-MIL models trained on 296 
high-, medium-, and low-magnification levels 297 

Magnification 

level 

Global prediction evaluation Local prediction evaluation 

Bag-level 

AUC 

Slide-level 

AUC 
𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(cancer) 

𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(uncertain) 

𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(normal) 

High 0.975±0.033 0.924±0.040 0.823±0.094 0.249±0.062 0.178±0.036 0.049±0.033 

Medium 0.971±0.025 0.862±0.046 0.629±0.148 0.231±0.050 0.203±0.059 0.043±0.039 

Low 0.969±0.041  0.850±0.044  0.794±0.022 0.231±0.132 0.259±0.103 0.036±0.030 

3.2 Local prediction evaluation 298 

To evaluate the local (tile-level) predictions, cancer-related regions predicted by MM-MIL 299 
were compared with the known tumor areas with well-known cancer signatures. The resulting 300 
𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  ratio was reported in Fig. 4(c) and Table 2. For models trained on the high-301 
magnification mode, 82.3% of annotated-positive tiles were predicted as positive on average, 302 
while the models achieved average 𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  ratios of 62.9% and 79.4% for medium- and low-303 
magnification modes respectively. 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  was calculated for “Cancer”, “Uncertain”, and 304 
“Normal” slides individually. For “Normal” slides from healthy subjects, whose tissue samples 305 
were not expected to show evidence of cancer, the average 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ratios are 4.9%, 4.3%, and 306 
3.6% under the high-, medium-, and low-magnification settings, respectively. Interestingly, a 307 
good number of tile images in “Uncertain” slides were predicted as positive, with average 308 
𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  ratios to be 17.8%, 20.3%, and 25.9% for the corresponding magnification levels, 309 
indicating that “Uncertain” slides may show evidence of cancer according to the MM-MIL 310 
models. However, from the perspective of human experts, the positive tiles in “Uncertain” 311 
slides do not exhibit well-known cancer-associated patterns, thus requiring further analysis and 312 
interpretation. 313 

Overall, MM-MIL models trained on the high-magnification level achieved the highest 314 
AUC scores for the global prediction tasks, as well as highest 𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  for the local prediction 315 
tasks. In the following sections, we will focus on the high magnification level which has the 316 
most detailed local information about the tissue sample. 317 
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 318 
Fig. 5. Cancer localization predictions of SLAM slides from “Cancer” group (a)-(c), “Uncertain” 319 
group (d), and “Normal” group (e) produced by a MM-MIL model trained on the high-320 
magnification setting. The cancer regions were annotated by human experts based on well-321 
known cancer biomarkers (second row). The cancer probabilities of each tile in the slide are 322 
visualized as heatmaps in the third row. 323 

 324 
Fig. 6. t-SNE visualization of the latent feature space of a trained MM-MIL model. (a) t-SNE 325 
plot of tiles from all slides in the test set. Each dot represents a SLAM tile image. Dots are 326 
colored based on the cancer probabilities predicted by the MM-MIL model. Tiles from 327 
“Normal”, “Uncertain”, and “Cancer” slides are highlighted in (b-d) separately. (e) SLAM tiles 328 
(composite images) corresponding to the dots in the t-SNE plot were sampled and visualized in 329 
the same locations. 330 

3.3 Visualization of latent feature space for model introspection 331 

To gain insight into model predictions, the latent feature representations of tiles were visualized 332 
in two dimensions using t-SNE. Tiles with similar feature representations according to the 333 
model were grouped close to each other. Fig. 6 shows the t-SNE visualization of tiles from all 334 
test slides, and the t-SNE visualization of predicted positive tiles is shown in Fig. 7. As shown 335 
in Fig. 6(b), the majority of tiles from “Normal” slides have low cancer probability according 336 
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to MM-MIL, whereas a considerable number of tiles from “Uncertain” slides were predicted 337 
positive (cancer probability > 0.5), as shown in Fig. 6(c). Noticeably, a large proportion (around 338 
70%) of positive tiles from “Uncertain” slides formed separate clusters with positive tiles from 339 
“Cancer” slides in the latent feature space, indicating that “Uncertain” slides may exhibit 340 
cancer-related patterns that were undetected in “Cancer” slides [Fig. 6(c)(d)]. Such cancer-341 
related patterns were not observed in “Normal” slides [Fig. 6(b)], which implies that, based on 342 
SLAM microscopy, unique cancer-related patterns may be revealed from tumor-adjacent and 343 
peri-tumoral regions. 344 

 345 
Fig. 7. Visualization of the latent feature representations of predicted positive tiles (cancer 346 
probability > 0.5). (a) t-SNE plot of positive tiles predicted by MM-MIL. (b) A hexagonal 347 
heatmap showing the number of tiles in each region of the t-SNE plot. (c) Cancer-related patterns 348 
from “Cancer” and “Uncertain” SLAM slides exhibit both similarities (left part, with tiles from 349 
both “Cancer” and “Uncertain” slides) and differences (right part, with mainly tiles from 350 
“Uncertain” slides). (d) Positive SLAM tiles corresponding to the dots in the t-SNE plot were 351 
sampled and visualized in the same locations. Positive tiles in the red bounding boxes (1)-(5) 352 
came from “Cancer” and “Uncertain” slides, while positive tiles inside orange bounding boxes 353 
(6)-(10) came predominantly from “Uncertain” slides. 354 

The corresponding tile images in the t-SNE plot are visualized in Fig. 6(e), with each 355 
channel of the images (i.e., SHG, THG, 2PF, 3PF) to be visualized separately in Fig. S4 in 356 
Supplement 1. It can be observed that the normal patterns presented in negative tiles (cancer 357 
probability ≤ 0.5) include collagen (green, from second harmonic generation - SHG) and 358 
adipocytes (cyan, from three-photon fluorescence - 3PF). While in positive tiles, significant 359 
optical heterogeneity is observed, implicating the existence of various cancer-related patterns. 360 
This is further demonstrated in Fig. 7, where the latent feature space of positive tiles was 361 
visualized. The apparent discrepancy of cancer-related patterns from “Cancer” and “Uncertain” 362 
slides can also be observed in Fig. 7(c), where tiles from both “Cancer” and “Uncertain” slides 363 
appear on the left half of the t-SNE plot, while positive tiles on the right mainly are from 364 
“Uncertain” slides. As shown in Fig. 7(d), predicted positive tiles show the diversity of optical 365 
characteristics of cancer-related tiles revealed by MM-MIL. From these observations, we can 366 
infer that MM-MIL is able to identify cancer-related patterns from both “Uncertain” and 367 
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“Cancer” slides to differentiate positive bags from the negative ones during the training process. 368 
This property makes MM-MIL useful for optical signature discovery in uncertain areas, where 369 
cancer-related patterns may not exist in “Cancer” slides. 370 

 371 
Fig. 8. Cancer-related patterns informed by saliency maps and channel occlusion measurements 372 
of predicted positive tiles. The values in the channel occlusion bar charts represent the decrease 373 
in predicted cancer probability when a particular SLAM channel is occluded. Representative 374 
cancer tiles from “Cancer” slides are shown in (a-f). Representative positive tiles from 375 
“Uncertain” slides are shown in (g-l). 376 

3.4 Channel-wise pixel-level model interpretation 377 

Considering that the four detection modalities of SLAM provide distinct optical contrasts of 378 
tissue samples, learning the contribution of each SLAM channel may inspire the discovery of 379 
the cancer-related optical signatures. Here, an occlusion-based method was utilized to inform 380 
the importance of each SLAM channel for cancer prediction. In addition, saliency maps were 381 
generated, which inform the prominent structures on the pixel level. It was observed that the 382 
highly informative channels (the ones inducing significant change in prediction score after 383 
occlusion) differ among positive tiles (Fig. 8), which indicates that the importance of each 384 
channel for cancer prediction may vary within positive tiles. Among them, 2PF, THG, and SHG 385 
channels have high contribution for cancer tile predictions in “Cancer” slides [Fig. 8(a-f)]. 386 
While for the positive tiles in “Uncertain” slides, the 3PF channel has predominant contribution 387 
to the predictions [Fig. 8(g-l)]. According to the saliency maps, the cyan point-like objects in 388 
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the 3PF channel were determined as a highly informative feature for cancer prediction. Those 389 
cancer-related patterns were further discussed in the following sections. 390 

3.5 Cancer-related patterns informed by MM-MIL 391 

Based on the forementioned localization predictions and model interpretation methods, several 392 
cancer-related patterns were revealed by MM-MIL, including well-known cancer biomarkers 393 
and non-obvious cancer-related patterns. 394 

3.5.1 Well-known cancer biomarkers 395 

Dense clusters of tumor cells are visible in the positive tiles from “Cancer” slides [Fig. 7(d), 396 
rows (4) and (5)]. Those breast cancer tumor cells are reported to have high THG signal 397 
intensity (magenta colored) in SLAM images [34], which match with our findings that the THG 398 
channel has a significant contribution to cancer prediction as shown in Fig. 8(d-f).  399 

Additionally, collagen fibers (visible in SHG channel) are highlighted in positive tiles 400 
[Fig. 8(d-f)]. In breast cancer, stromal collagen fibers participate in the migration of metastatic 401 
tumor cells which may promote tumorigenesis [35]. Based on the morphology and their 402 
interactions with tumor cells, collagen fiber patterns in breast cancer can be categorized into 403 
different types of tumor-associated collagen signatures (TACS) [36, 37]. Using the saliency 404 
maps and channel occlusion results, collagen fibers that co-occur with tumor cells were 405 
determined as prominent structures for cancer diagnosis by MM-MIL [Fig. 8(d-f)]. This 406 
specific pattern matches with the characteristics of TACS-6, which is defined by the disordered 407 
alignment of collagen fibers that enables multidirectional tumor cell migration. According to 408 
pathological reports, such collagen fiber patterns appeared in SLAM images from subjects who 409 
were diagnosed with invasive ductal carcinoma. This aligns the previous observation that 410 
TACS-6 appears at the invasive stage of tumor development [37]. Constrained by the FOV of 411 
tiles at all magnification levels (i.e., 128 µm × 128 µm for high, 256 µm × 256 µm for medium, 412 
and 512 µm × 512 µm for low-magnification level), other large-scale TACS signatures (mainly 413 
defined on the millimeter scale) could not be observed in MM-MIL predictions. 414 

3.5.2 Non-obvious cancer-related patterns 415 

The non-obvious cancer-related patterns, which mainly come from “Uncertain” slides, are 416 
visualized in [Fig. 7(d), rows (6-10)]. Among those patterns, we found that the cyan point-like 417 
objects in the 3PF channel were repeatedly highlighted by saliency maps [Fig. 8(g-l)]. 418 
Occluding the 3PF channel leads to a significant drop in the prediction score. Such pattern can 419 
also be observed as clusters among positive tiles in the latent feature space (Fig. S4).  420 

Previous studies showed that these cyan dots are NAD(P)H-rich extracellular vesicles 421 
(EVs), which appear as diffraction-limited punctuated pixels in the SLAM 3PF 422 
channel [38, 39]. EVs play an important role in intercellular communication between cancer 423 
cells and the tumor microenvironment [38]. They contribute to cancer growth and metastasis 424 
with multiple functionalities, including the suppression of immune response, the recruitment of 425 
stromal cells, and the determination of organotrophic metastasis [40, 41]. The high 426 
concentration of NAD(P)H has also been reported in cancer cells, which is considered to be 427 
linked to the antioxidant defense mechanism [42] and Warburg effect [43]. In addition, EVs 428 
from breast cancer cells are reported to have significantly higher NAD(P)H concentration 429 
compared with EVs from nontumorigenic cells [39]. It is also reported that EVs outside the 430 
visible tumor area (as far as 5 cm away from the tumor boundary) show even higher NAD(P)H 431 
concentration compared to EVs within the tumor, demonstrating the far-reaching impact of EVs 432 
in carcinogenesis [44, 45]. Those reported results support the findings by MM-MIL that 433 
NAD(P)H-rich EVs (or cyan dots in the 3PF channel) are associated with breast cancer, and 434 
that such pattern can be more easily observed in peri-tumoral regions (mainly represented by 435 
“Uncertain” slides) than tumor areas (shown in the “Cancer” slides).  436 
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In addition to forementioned patterns, we also observed some suspicious cancer-related 437 
patterns that are difficult to attribute to known biological processes or mechanisms, including 438 
the FAD-rich punctuated patterns surrounding adipocytes [Fig. 8(a-c)]. Further studies are 439 
needed to verify the correlation between these unveiled optical signatures and human breast 440 
cancer. 441 

4. Discussion 442 

In this study, we developed a weakly-supervised deep learning framework (MM-MIL) for the 443 
discovery of human breast cancer-related optical signatures based on label-free virtual 444 
histopathology (SLAM microscopy) which contains rich structural and functional information 445 
in tissue samples. The task of this optical signature discovery has three main characteristics: 446 
(1) inexact supervision, (2) incomplete supervision, and (3) positive instances in labeled and 447 
unlabeled data that may come from separate inherent distributions. MM-MIL combines the 448 
inexact and incomplete supervision into one MIL task via the Mix-and-Match bagging policy, 449 
which ensures the explicitness of bag-level labels. The established framework detected cancer-450 
related patterns in both primary tumor areas and surrounding peri-tumoral regions. Based on 451 
model interpretation, a variety of human breast cancer-related patterns were revealed from 452 
SLAM virtual histopathology slides, including well-known cancer signatures as well as non-453 
obvious patterns. Among them, the presence of NAD(P)H-rich EVs support our previous 454 
suggestion that breast-cancer-associated EVs could have extensive impact on carcinogenesis, 455 
which would be associated with field cancerization [39, 46]. The optical signatures found by 456 
MM-MIL inspire new hypotheses for cancer biomarker discovery and translational clinical 457 
applications, and merit further investigation. 458 

MM-MIL is capable of learning cancer-related patterns from both labeled and unlabeled 459 
data. Instead of taking shortcuts by making positive predictions only on “Cancer” slides, MM-460 
MIL tracked cancer-related patterns in both “Cancer” and “Uncertain” slides. This can be 461 
explained by the fact that during the early stage of the training process, the selection of 462 
discriminative tiles for model weights updates is mainly stochastic. Since slide-level labels are 463 
hidden during training, it is unlikely for the model to pick tiles only from “Cancer” slides under 464 
the circumstances that “Uncertain” slides also contain cancer-related patterns. In general, the 465 
goal of MM-MIL is to reveal patterns that are not observable from “Normal” slides, regardless 466 
of the slide-level labels (i.e., “Cancer” or “Uncertain” slides). 467 

Given the uniqueness of the multi-modal images (i.e., each channel of SLAM provides 468 
distinct structural and functional information about the tissue), knowing the contribution of 469 
each channel and the salient structures is beneficial for the understanding of model behavior. 470 
Thus, two channel-wise model interpretation methods (i.e., channel occlusion and saliency 471 
maps) were leveraged. Using these techniques, several well-known cancer biomarkers as well 472 
as non-obvious cancer-related patterns were revealed in both the primary tumor areas and the 473 
surrounding peri-tumoral regions, which align with the before-mentioned assumption of 474 
potentially separate distributions of positive instances.  475 

The MM-MIL framework has some limitations. The cancer-related patterns learned by 476 
MM-MIL are constrained by the size of the FOV of the tile images. In this study, we focus on 477 
patterns at the scale of 128 µm, 256 µm, and 512 µm. To learn larger-scale patterns (e.g., large-478 
scale tumor-associated collagen signatures), larger tile FOVs would be recommended. Further 479 
improvements can be made to enable optical signatures discovery for multi-class scenarios 480 
(e.g., cancer prognosis) with enhanced capability in extracting correlations of patterns across 481 
regions and scales. In addition, further validation of our framework is needed to verify its 482 
generalizability on data from different microscopy systems. 483 

5. Conclusion 484 

The proposed weakly-supervised deep learning framework offers a practical solution to gain 485 
insights into multiplexed optical bioimages when explicit annotations are unavailable. With the 486 
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advancements in optical imaging techniques, many crucial biological questions can be 487 
answered based on the rich structural and functional information revealed from samples. It is 488 
widely believed that DL is proficient at extracting knowledge from large volume of data. 489 
Nevertheless, strong supervision is often difficult to obtain for optical signature discovery tasks. 490 
This study demonstrates the capability of the proposed framework in recognizing patterns and 491 
extracting correlations between optical features with human breast cancer based on inexact and 492 
incomplete supervision, which could be extended to various types of biological conditions and 493 
imaging modalities. 494 
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