
error correction phase, the consensus sequence inference is just a majority voting at 

each position based on a group of reads belonging to the same sequence. As the 

marked reads have indicated the possible indels and some substitutions, the voting 

accuracy in each position is significantly improved. In sum, the combination of these 

two processes effectively takes advantage of the information in the carrier signal and 

the multiple sequences, allowing it to deal with complex IDSs in DNA storage.  

 

 Fig. 4. Decoding performance to consecutive insertions/deletions. a period 8, 

sequence depth 30. b period 8, sequence depth 60. c period 16, sequence depth 30. d 

period 16, sequence depth 60. 

 

Decoding performance for consecutive insertions/deletions. Previous studies have 

demonstrated that consecutive indels are frequently observed in sequenced reads, 

which may result in many abnormal reads with highly incorrect lengths 
5, 29, 30

. 

Compared with a single insertion or deletion, consecutive indels are more difficult to 

correct. For example, HEDGES can deal with consecutive deletions, but can‟t tolerate 

consecutive insertions larger than 2 
23

. We further investigate the decoding 

performance of the proposed method on consecutive indels. For simplicity, we 

assume that insertion or deletion errors in all reads occur consecutively and have the 

same length.  

Fig. 4 shows the average decoding performance with period 8 and 16 given 

sequence copies 30 and 60, respectively. As the consecutive length increases, the 

performance on period being 16 is better than that of period 8, especially for error rate 

  20%. As the error rate increases, longer consecutive length indels may destroy the 
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periodic structure of the carrier strands, which may affect its error detection capability. 

This is the main reason that carrier strands with period 16 are more robust than those 

with period 8, as the lengths of consecutive indels are far less than 16. In addition, 

increasing the sequence copies can improve the decoding performance at high error 

rates.  

In most previous works, low-quality reads are usually discarded, which for 

large-scale application may lead to non-negligible loss both in cost and time. 

However, this problem can be significantly alleviated as modulation-based error 

detection can defend against the consecutive indels. 

 

 

Fig. 5 Performance of the proposed method (red color) and Trellis BMA (blue 

color) on the real dataset. a The normalized Hamming distance at sequence copy 2,4, 

6, 8, 10. b Distribution of the maximal consecutive 0s or 1s in the carrier strands of 

the encoded DNA sequences.  

 

Decoding Performance on a Real Dataset. We compare our decoding performance 

with that of Trellis BMA
4
 on a real dataset published by the Microsoft group. In order 

to apply the proposed method on this dataset, we first construct a carrier strand for 

each DNA sequence by translating A/T to 0 and G/C to 1. Then the decoding process 

is used for the reads in each cluster.  

Fig. 5a shows the average normalized Hamming distance with different sequence 

copies. Clearly, the proposed method dramatically outperforms Trellis BMA on the 

real dataset even with very few copies. However, although the estimated error rate is 

only about 5.9%, there still exist a few uncorrected errors with sequence copies being 

10. To understand this inconsistency with the results we saw in Fig. 3, we further 

investigate the maximal consecutive 0s or 1s in the constructed carrier strands. Fig. 5b. 

shows that more than 80% of the carrier strands have consecutive 0s or 1s longer than 

6. That is, these encoded DNA sequences include many continuous GC or AT regions. 

Because of their simple patterns, such consecutive 0s or 1s may reduce the error 

detection capability of the carrier strands. This further verifies that simple patterns 

may limit the carrier strands‟ error detection capability.  
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Discussions 
In this paper, we propose a modulation-based DNA storage architecture with 

unified encoding and decoding schemes. To take a comprehensive review, Table 1 

lists the coding scheme, error correction (EC) algorithm, time complexity, reported 

maximal tolerated error rate, and logical density of the four previous works and ours. 

 

Table 1. Comparison with the state-of -the-art methods 

Method Press et. al23    Lenz et. al24       Antkowiak et. al7   Song et. al 31     This work 

Coding Scheme Hash + RS CC+LDPC RS+ RS CRC + Anchor No 

Randomization No Yes Yes Yes No 

Encoding Mode 00-A       01-T        10-G       11-C 0-A/T 1-G/C 

EC Algorithm A* + RS HMM MSA + RS GPS PSA 

Decoding complexity ( )nNc   ( )nNc  
2( )Nn  ( )nNc  ( log )Nn n   

Decoding Mode Inner-Outer Inner-Outer MSA-Inner-Outer One step Detection-Correction 

Decoding Level binary binary DNA- binary DNA DNA 

Max tolerated error 10% 18% 14.5% 10% ~40% 

Logical density 

(bit/nt) 
0.5 0.5 0.8 1.5 1 

Minimum coverage <5 20 120 100 100 

Notes: 1. “RS” means Reed-Solomon code, “CC” means convolutional code, “LDPC” means low density parity check, “CRC” 

means cyclic redundancy check, “HMM” means hidden Markov model, “MSA” means multiple sequence alignment, “GPS” 

means greedy path search, and “PSA” means posterior sequence alignment. 2. N  is the number of sequenced reads, n  is the 

length of the encoded sequence, and c  is a constant larger than 1. 

 

In terms of coding scheme, our method is simple and storage friendly: it does not 

require randomization or adding redundancy. By selecting the appropriate carrier 

strand, the encoded DNA sequences not only satisfy the constraints of GC content and 

homopolymers, but also have similar thermodynamic properties which are beneficial 

to the biochemical techniques and may help to avoid the generation of errors in some 

degree. However, other encodings have to take hash or convolution operations
23

, add 

RS/LDPC/CRC redundancy
7, 24

 and might even perform XOR randomization on the 

original binary stream before translating them into DNA sequences. In addition, some 

encoding methods, such as the fountain code
21

 and the de Brujin graph method by 

Song et.al 
31

, need a filter process to discard binary streams containing illegal 

subsequences . 

In terms of accuracy, our method can tolerate up to 40% errors, which far exceeds 

the state-of-art methods. Compared to our method, the ones in Lenz et.al 
24

,  

Antkowiak et.al 
7
, and Press et.al 

23
 correct less errors (up to 18%, 14.5%, and 10%), 

and have lower logical densities(0.5, 0.8, and 0.5). The method by Song et.al 
31

 can 

correct up to 10% errors with a relatively high logical density of 1.5. To tolerate 

higher errors, these methods would have to add more logical redundancy, which will 

further lower their logical density. However, our method can do so by increasing the 

sequence copies without sacrificing logical density (See Fig. 3 C/D). 
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In terms of strategies for error correction, the robustness of our method roots from the 

effective coordination between the powerful global error detection at read level and 

the simple error correction in reads cluster level. For each read, not only can the error 

detection mechanism distinguish the uncontaminated bases, but also help to infer their 

most probable positions. This is the key in the subsequent multiple reads voting 

process, as only these conserved bases are used to infer the consensus base in each 

position. Even if the reads have as much as 40% random errors, only a few conserved 

bases are needed for each position to infer its consensus base. That is the main reason 

why our method has such high error tolerance. However, A
*
 or HMM searching 

processes
23, 24

 actually detect and correct errors utilizing the local constraints, which 

could make incorrect decisions. As the errors increase, the inner decoder could be 

overloaded, leaving more errors for the outer decoder to correct than it can handle. 

Although MSA, used in the work by Antkowiak et. al
7
 as an inner decoder, may 

correct some errors including indels, previous works
9, 13

 have verified that RS code, 

which was used as the outer decoder,  can only tolerate at most 5% errors , limiting 

its overall capacity. The one step method by Song et. al 
31

 attempted to find the 

correct path in a de Bruijn graph which is consisted of uncontaminated DNA k-mers. 

However, the probability that a k-mer is uncontaminated will drop dramatically as the 

error rate increases. For k=18 in their work, this probability drops from 15% to 5% as 

error rate increases from 10% to 15%. Although increasing sequence coverage may 

alleviate this effect to some degree, the probability of the correct path consisted of 

tens or hundreds of k-mers will tend to be zero (0.05
303

, n =320 nt). Therefore, such 

graph searching based method may not work for error rate larger than 15%.     

In terms of time complexity, our method is the most efficient. Given N  

sequenced reads and their length n , it only needs N  times pairwise sequence 

alignment (PSA) for error detection, and the following multiple sequence voting in a 

cluster is quasi-linear to N . It has polynomial time complexity of order ( log )Nn n . 

The method by Antkowiak et. al
7
 involves multiple sequence alignment (MSA) in 

each cluster and the normal RS decoding. It too has polynomial time complexity, but 

of order 
2( )Nn . The time complexities of the other three are determined by the A*, 

hidden Markov model (HMM), and greedy path search (GPS) algorithm, respectively. 

Although various heuristic strategies can be applied, they all have an exponential time 

complexity ( )nNc ,
 
where 1c   is a constant determined by the average searching 

branches.  

At this point, the cost per bit using current DNA storage technologies is still much 

higher than those of traditional electronic and optical storage devices. Developing 

DNA storage-oriented technologies allowing more errors may provide enough room 

for further reducing the cost of synthesis and sequencing. Modulation-based DNA 

storage is characterized by storage-friendly encoding, ultra high error tolerance, and 

extreme efficiency in decoding. Therefore, it not only paves a solid foundation for 

reliable information retrieval in high error environment, but could also drive the 

development of low-cost synthetic technologies. We believe that this new storage 

architecture could facilitate the early realization of large-scale DNA storage 

application. 
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Methods 
Datasets used for experiment results. For simulation experiments, a text file “The 

Grandmother” (excerpted from “Andersen‟s Fairy Tales), is encoded into 140 DNA 

sequences of 120 bases (8 bases for index and 112 bases for data). Error rates in the 

encoded sequences range between 5% ~ 40%, where insertions, deletions, and 

substitutions are equally likely. The sequence coverage range from 5 ~ 100. All 

experimental results are obtained by repeating 1,000 times under a given error rate 

and a fixed number of sequence copies.  

The real dataset
4
  includes 269,709 reads of 10,000 uniform random DNA 

sequences of length 110 

(https://github.com/microsoft/clustered-nanopore-reads-dataset). All DNA sequences 

were synthesized by Twist Bioscience and sequenced using ONT MinION, and the 

estimated error rate in the sequenced reads is about 5.9% in total (pins=1.7%, pdel=2%, 

psub=2.2%). The noisy reads were grouped by a pseudo clustering algorithm
32

.  

Construction of the periodic carrier strands. In this paper, we investigate the 

performance of carrier strands with period     2, 4, 8, 16. To satisfy the constraints 

of GC content and maximal homopolymers, the period substrings in the carrier 

strands should satisfy the following two criterions:  

(1) The percentage of 1s (or 0s) should be 50%. 

(2) The consecutive length of 1s (or 0s) should be less than 4. 

For period 2, there are only two carrier strands: „0101…0101‟ and „1010… 1010‟, 

which constitute of substrings „01‟ and „10‟. For period 4, there are 4 carrier strands : 

„0110‟, „1001‟, „1100‟, and „0011‟, . For period 8, we enumerate all binary strings 

with length 8, and discard those with period 2 and 4. Substrings for period 16 is 

obtained in the same way.  

Error-correction for sequenced reads. The proposed error-correction process is 

illustrated in Fig. 1c, and it contains the following steps: Step 1, for each reads cluster, 

derive the observed carrier strand of the reads according to the modulation rule. Step 

2, obtain the marked read by using MAFFT to align the observed carrier strand to the 

carrier strand
11

. Step 3, deduce the consensus sequence for each cluster of marked 

reads using a simple voting strategy. In the voting process, bases that are marked as 

insertion, deletion, or substitution errors should not be considered. Finally, the 

consensus sequences can be demodulated into the binary data by reversing the 

encoding rule. 

Data availability 
All data are available in the main text or the supplementary materials. 

Code availability 
Code can be downloaded from 

https://github.com/BertZan/Modulation-based-DNA-storage 
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