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Highlights

SBML to bond graphs: from conversion to composition

Niloofar Shahidi, Michael Pan, Kenneth Tran, Edmund J Crampin†, David P

Nickerson

• A framework to convert suitable SBML models of biochemical networks

into bond graphs is developed.

• The framework is applied here to two interconnecting models of metabolism

pathways.

• We automatically integrate the generated bond graph modules.

• We qualitatively illustrate the functionality of the composed model.
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Abstract

The Systems Biology Markup Language (SBML) is a popular software-

independent XML-based format for describing models of biological phenomena.

The BioModels Database is the largest online repository of SBML models.

Several tools and platforms are available to support the reuse and composition

of SBML models. However, these tools do not explicitly assess whether models

are physically plausibile or thermodynamically consistent. This often leads to

ill-posed models that are physically impossible, impeding the development of

realistic complex models in biology. Here, we present a framework that can

automatically convert SBML models into bond graphs, which imposes energy

conservation laws on these models. The new bond graph models are easily

mergeable, resulting in physically plausible coupled models. We illustrate this

by automatically converting and coupling a model of pyruvate distribution to a

model of the pentose phosphate pathway.

Keywords: SBML, BioModels, bond graphs, automatic conversion, automatic

composition, glycolysis, pentose phosphate pathway
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1. Introduction

Complex biological systems incorporate nested layers of components and inter-

actions which are mostly believed to be naturally organised hierarchically [1, 2, 3].

Accordingly, to model such complex systems, we need to reuse models in a hier-

archical fashion [4]. Hierarchical modelling is the composition of existing smaller

models, modules, where each module can be tested and operated individually.

This approach facilitates large-scale model composition by reducing possibilities

for human error. In recent years, the Physiome (www.physiomeproject.org)

and Virtual Physiological Human (VPH) (www.vph-institute.org) projects

have taken initial steps to construct more realistic models to describe systems in

the body using modular and hierarchical model development [5, 6].

Biosimulation models are accessible on public repositories such as the Phys-

iome Model Repository (PMR) [7] and BioModels [8], which store models in

XML-based formats such as CellML [9] and SBML [10, 11]. However, the avail-

able models often violate the laws of physics and thermodynamics, which must

be obeyed for any model to be physically realistic. It is clear that combining

physically impossible models leads to unrealistic composed models which cannot

be used in real-world applications with any level of confidence. Here, we use a

framework through which suitable SBML models of biochemical networks can

be converted into a modular and physically consistent format to support model

composition.

Just like in the natural world, energy is conserved in biophysical processes,

regardless of whether they are chemical, mechanical or electrical [12]. Using the

principle of energy conservation in the models ensures that all the individual

models remain thermodynamically and physically consistent [13, 14]. The Bond

Graph (BG) paradigm is an energy and physics-based modelling framework that

supports modular and hierarchical modelling.
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Bond graphs were invented by Henry Paynter and were primarily meant

to be used in mechanical systems [15]. Bond graphs intrinsically follow the

energy conservation laws and generate dynamic models based on the laws of

physics and thermodynamics. The application of bond graphs was extended

to the chemical domain by Borutzky et al. [16] and later by Cellier [17], and

to biophysical systems by Oster et al. [18, 19]. More recently, Gawthrop and

Crampin developed the application of bond graphs in modelling biochemical and

electro-chemical systems [14, 20]. In this paper, we use bond graphs to generate

thermodynamically consistent versions of existing biochemical SBML models.

Semantic annotations add a layer of standard biological knowledge as meta-

data to models to avoid misleading or incorrect naming by modellers. Annotating

the models makes them reusable, either solely or in combination with other

models [6]. In computational models of biology, modellers are encouraged to

label the mathematical content of their models with semantic annotations in-

stead of choosing arbitrary names. This complies with the FAIR data principles

(Findable, Accessible, Interoperable, and Reusable) which leads to unambiguous

merging of common entities in model composition [21, 22].

Tools and software have been developed for SBML model composition such

as the SBML Hierarchical Model Composition (SHMC) package. The SHMC

package enables hierarchical modelling of SBML models and supports appending,

deleting, replacing, and modifying models’ elements including species, units, and

rate laws. However, to ensure compliance with the laws of physics, the model

composition process requires changes in equations at points where common

species have been detected across the modules [23]. In the SHMC package, such

changes in equations are not applied automatically and difficult to write manually.

To address this issue, we employed our previously developed framework using

bond graphs to compose CellML models and modified it for use with SBML
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models [24].

In this paper, we focus on composing SBML models that represent biochemical

networks. Here, we present an illustrative example in which, using our developed

tool, we have automatically converted two SBML models of cellular respiration

metabolism into bond graphs: a model of glycolysis and pyruvate metabolism,

and a model of the pentose phosphate pathway (PPP) and the tricarboxylic acid

(TCA) cycle. Henceforth, we refer to the former as the pyruvate distribution

model and the latter as the PPP model. We have integrated these models into

one composite model using our previously developed method in [24].

In this paper, we explain how biochemical reactions are generally expressed

in bond graphs (Section 2.1) and how different types of biochemical reactions

are converted into bond graphs (Section 2.2). We introduce the overall workflow

of our developed model conversion framework to produce bond graph equivalents

of SBML models in Section 2.3. To demonstrate the application of our method,

we utilised our framework to automatically convert two exemplar SBML models

into bond graphs (Section 2.4). Next, we verify and compare the behaviours of

the original and bond graph models individually and integratively in Section 3.

Finally, remarks of our framework, shortcomings, and the future developments

are outlined in Section 4.

2. Materials and Methods

In this section, we give a brief introduction to general bond graph modelling of

biochemical reactions and how existing formulations of rate laws can be expressed

in bond graphs. Based on this, we introduce the workflow of our framework

which integrates the bond graph conversion methods of biochemical reactions

and automatically implements the required modifications. Our framework is

applicable to single SBML models or multiple SBML models in composition.
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We demonstrate this by converting two SBML models in single mode and in

composition.

2.1. Biochemical reactions in bond graphs

Here, we explain the fundamental bond graph elements in modelling bio-

chemical reactions and elucidate the equations for single and linked reactions

with an example.

Bond graphs are a domain-independent modelling approach that explicitly

describes the bidirectional flow of energy between the bond graph elements.

Bond graph elements consist of two categories: components and junctions. In

biochemistry, the primary components are species, reactions, stoichiometries,

sources of flow and potential. Junctions define the conservation laws of the

system. At a 0 : u junction, all the chemical potentials are equal and all the

molar flows sum to zero. At a 1 : v junction, all the molar flows are equal and all

the chemical potentials sum to zero. Energy is the product of potential (u) and

flow (v) over time: E =
∫
uv dt, travelling bidirectionally between components

and junctions through bonds (shown by ⇀). For further details regarding the

application of bond graphs in modelling biochemical systems, we refer the reader

to the works by Gawthrop & Crampin [25, 26].

Biochemical processes can be represented in bond graphs using the elements

described in Table 1.

Kx is the species constant and corresponds to the kinetic free energy of a species

to participate in reactions and is defined as Kx = 1
VcXref

e
uref
x

RT where Vc is the

volume of the compartment, Xref is the reference concentration (normally 1 mol),

and uref
x is the standard free energy formation of the species x [27]. Chemostats

(CS) are species with fixed concentrations that are considered as sources of

potential in bond graphs [20, 28]. Similarly, when there is a constant flow of a

species entering the system, we represent it with a source of flow (Sf ) in bond

5
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Table 1. Bond graph elements for modelling biochemical processes.

nature definition constitutive relation

Ce component species ux = RT ln Kx.X

CS component chemostat (source of chemical
potential)

uxs = RT ln Kxs .Xs

Sf component source of flow v = f

TF : N component stoichiometry: stoichiometric
coefficient

Re component reaction v = r(eu1/(RT ) − eu2/(RT ))

0 : u junction common chemical potential

1 : v junction common molar flow

u: chemical potential, v: molar flow, R: ideal gas constant, T : temperature, X: molar
concentration, Kx: species constant, Xs: chemostat molar concentration, Kxs : chemostat
constant, f : constant inward flow, r: reaction rate constant.

graphs. This process is typically called synthesis in SBML models. The complete

disappearance of a species or physical entity is usually called degradation in

SBML models. We modelled the process by adding an auxiliary Ce component

as the product of degradation with a 1000 times smaller Kx compared to its

undegraded reactant. This is because degradation is formulated similar to an

irreversible reaction where the product is not specified. We will further discuss

the representation of irreversible reactions in bond graphs in Section 2.2.2.

The Boltzmann’s formula is the constitutive relation for the species and

chemostats, and the constitutive relation for reactions is the Marcelin–de Donder

equation. By substituting the chemical potentials in the Marcelin–de Donder

equation with the Boltzmann’s formula for the reaction X1 ⇌ X2, we have:

v = r(K1X1 −K2X2) (1)

which can also be formulated in mass action kinetics:

v = k+X1 − k−X2. (2)

where k+ and k− are the forward and reverse kinetic rate constants in reversible
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mass action kinetics. Constitutive equations for reactions in bond graphs are

defined using the Marcelin–de Donder equation, requiring the species constants

and reaction rate constants (bond graph parameters) to be separately defined.

A simple example of two reactions in bond graphs is illustrated in the upper

panel in Fig 1. Note that the species B is present in both reactions. The lower

panel in Fig 1 demonstrates the composition of Reactions I and II and how the

conservation equation changes at the merging point in bond graphs.

Fig 1. Two exemplar reactions and their composition in bond graphs. Reactions I
and II represent two separate reactions in which the species B is common. In composition, the
common species (B) is merged and the conservation equation at its corresponding ‘0 : u’
junction alters to account for the imposed changes in structure. The conservation equation at
the ‘0 : u’ junction connected to the species B is vB = v1 in Reaction I and in Reaction II is
vB = −σv2 and in the composed reaction it changes to vB = v1 − σv2.

The reaction rates for Reactions I and II are:
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v1 = r1(KAXA −KBXBKCXC) (3a)

v2 = r2(K
σ
BX

σ
B −KDXD) (3b)

where r1 and r2 are the reaction rate constants for Reactions I and II, respectively,

KA, KB, KC , KD are the species constants for A, B, C, D, and XA, XB, XC ,

XD are the concentrations of A, B, C, D. σ is the stoichiometric coefficient for B

in Reaction II. By having the reaction rates, the conservation laws at the ‘0 : u’

junctions connected to the species in Reaction I would be as:

vA = −v1, (4a)

vB = v1, (4b)

vC = v1, (4c)

and at the ‘1 : v’ junction would be:

uA = uB + uC . (5)

The conservation laws at the ‘0 : u’ junctions connected to the species in Reaction

II would be as:

vB = −σv2, (6a)

vD = v2. (6b)

The molar flow rates for the species in the case of composing Reaction I and

Reaction II would be defined as:

8
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vA = −v1, (7a)

vB = v1 − σv2, (7b)

vC = v1, (7c)

vD = v2. (7d)

The conservation law at a junction changes if a bond is connected or removed.

Here, at the ‘0 : u’ junction connected to B in the lower panel of Fig 1, the

conservation law demands all the molar flows sum to zero, hence, the attachment

of another bond changes the molar flow equation for B (compare Eqs 4b and 6b

with Eq 7b).

Utilising the bond graph elements in the following section, we illustrate the

procedure of converting existing biochemical reactions into bond graphs.

2.2. Bond graph conversion

This section combines the bond graph principles described in Section 2.1 with

the extracted data from SBML models to create their bond graph equivalent

structures.

Biochemical reactions are constrained by the laws of thermodynamics and

can only advance in the direction of decreasing the chemical potential [14]. In

general, irreversible reactions are not thermodynamically plausible. Thus, all

bond graph models of biochemistry represent reversible reactions. In the next

section, we show how reversible and irreversible reactions are described in a

reversible fashion in bond graphs.

Briefly, the parameters are estimated by solving equations based on the

equilibrium constants (concentration of all products over concentration of all

substrates at equilibrium) [29]. The methodology solves for the species parame-
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ters prior to finding the reaction parameters. These constraints can be achieved

by relating the bond graph parameters to equilibrium constants. This results in

a linear matrix equation relating the log-transformed parameters in the general

form of:

Ln[Ke] = M Ln[K] (8)

where Ke represents the equilibrium constants, M represents the stoichiometric

matrix, and K represents the unknown species constants. A function in our

framework solves this matrix equation and finds the solution with the least

square error for the species constants. When bond graph models are composed

together, we combine all constraints into a single matrix equation to deal with

potential inconsistencies between models. Eq 9 shows the form of the matrix

equation in model composition.

Ln



Ke1

Ke2

...

Ken


= M Ln



K1

K2

...

Kn


(9)

whereKe1, ...,Ken represent the equilibrium constants for nmodels andK1, ...,Kn

represent the unknown species constants for n models.

Once the species constants have been determined, the reaction rate constants

are calculated. If the kinetic constants of a model are properly annotated and

distinguishable, the reaction rate constants can be calculated directly from the

linear matrix; otherwise, they will be achieved by fitting the simulation data

to the bond graph equations for reactions. We describe these methods in more

detail below.
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2.2.1. Reversible reactions

Reversible reactions inherently comply with the bond graph constraints.

If a reaction is described using the Marcelin–de Donder kinetics, bond graph

parameters can be directly derived. Bond graph parameters need to be estimated

in any other case. Here, we discuss how our framework converts the reversible

mass action and Michaelis-Menten kinetics into bond graphs.

• Reversible mass action:

Fig 2.A demonstrates how a reversible mass action reaction is represented

in bond graph scheme. Eq 10 describes an exemplar reversible reaction

using the mass action kinetics where k+ and k− are the forward and

reverse kinetic rate constants, {XSi
| i ∈ {1, 2}} are the concentrations of

substrates,
{
XPj | j ∈ {1, 2}

}
are the concentrations of products, and α

and β represent the stoichiometric coefficients.

v = k+XS1

αXS2 − k−XP1

βXP2 (10)

When the bond graph structure of the reactions is determined, we need to

find the bond graph parameters. We might face two cases where k+ and

k− are properly annotated and distinguishable, or otherwise. In the former

case, the bond graph parameters (reaction rate constants and species

constants) are best estimated by log-transforming and solving a system of

equations for k+ and k− (Eqs 11a and 11b).

km
+ = rm

∏
i

Kαi

Si
, (11a)

km
− = rm

∏
j

K
βj

Pj
, (11b)

where m is the number of reactions [30].
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Fig 2. Bond graph representation of reversible reactions. (A) Reversible mass action.
α and β represent the stoichiometric coefficients which are modelled with a transformer in
bond graphs; (B) Reversible Michaelis-Menten.

In cases where k+ and k− are not annotated, they are not recognisable and

we need to use the simulation data. To estimate the bond graph parameters

from the simulation data, the amount for the flux and concentrations at

two separate times are extracted (here we have selected initial and final

points denoted by 0 and ∞, respectively) and inserted in the equations

Eqs 12a, 12b. By dividing the equations at the two points, the ratio

between the species constants of the product(s) and substrate(s) will be

achieved (Eq 13). γ is the value gained from dividing the amounts for

the initial and final flux values (Eq 12c). Eq 13 provides a constraint on

selecting values for the species constants.

v0 =
∏
i

(KSi
X0

Si
)αi −

∏
j

(KPj
X0

Pj
)βj (12a)

v∞ =
∏
i

(KSiX
∞
Si
)αi −

∏
j

(KPj , X
∞
Pj
)βj (12b)
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γ =
v∞

v0
(12c)

∏
j K

βj

Pj∏
i K

αi

Si

=
γ
∏

i(X
0
Si
)αi −

∏
i(X

∞
Si
)αi

γ
∏

j(X
0
Pj
)βj −

∏
j(X

∞
Pj
)βj

(13)

An example of applying both approaches to a system of two interconnected

reactions is given in Appendix A. By taking logarithms on each side of the

constraint (Eq 13), the relationship between the bond graph parameters

can be expressed linearly. By applying this method to all the extracted

constraints from a model’s reactions, we generate a linear matrix of con-

straints. Once solved, the estimated values of the species constants can be

used to calculate the reaction rate constants. We achieved this by fitting

the simulation data to the Marcelin–de Donder reaction kinetics.

• Reversible Michaelis-Menten:

In the reversible Michaelis-Menten kinetics a substrate binds with an

enzyme to form a complex. The complex then goes through a second

reaction to form a product [31]. To convert a reversible Michaelis-Menten

reaction into bond graphs, an enzyme catalysed reaction scheme was taken.

Fig 2.B illustrates the bond graph equivalent and representation of an

exemplar reversible Michaelis-Menten kinetics. The reaction rate law for

the reversible Michaelis-Menten can be formulated as Eq 14 ([31, 32]):

v =
v+maxXS/Km,S − v−maxXP /Km,P

1 +XS/Km,S +XP /Km,P
(14)

where:

v+max = k+2 E0, (15a)

v−max = k−1 E0, (15b)

13
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Km,S = (k−1 + k+2 )/k
+
1 , (15c)

Km,P = (k−1 + k+2 )/k
−
2 , (15d)

E0 = XE +XES . (15e)

XE and XES are the concentrations of E and ES, respectively, and E0 is the

total concentration of the E and ES. By replacing the Marcelin–de Donder

parameters in Eq 14 we reach a formula with bond graph parameters [20]:

v =

r1r2E0KEKS

(r1+r2)
XS − r1r2E0KEKP

(r1+r2)
XP

1 + ( r1KEKS

KES(r1+r2)
)XS + ( r2KEKP

KES(r1+r2)
)XP

. (16)

Since normally the equation constants in SBML models are not annotated,

we cannot directly extract the original Michaelis-Menten constants. As

an alternative, we have access to the simulation data (reaction rates and

concentrations) and we can fit the data (XS, XP, and v ) to Eq 16. This

will give us the values for four constants where:

constant1 =
r1r2E0KEKS

(r1 + r2)
, (17a)

constant2 =
r1r2E0KEKP

(r1 + r2)
, (17b)

constant3 =
r1KEKS

KES(r1 + r2)
, (17c)

constant4 =
r2KEKP

KES(r1 + r2)
. (17d)

Dividing Eq 17a and Eq 17b gives the ratio between the species constants

of reactant and product (KS and KP) and dividing Eq 17c and Eq 17d

reveals the correlation between the species constants and the reaction rates

(r1 and r2). The log-transformation of these two relationships will be
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added to the linear matrix of constraints. Once the matrix is solved and

the amounts for KS, KP, r1 and r2 are calculated, our framework finds

KE and KES by setting E0 = 1 (see Appendix B).

An example of converting an SBML model containing two interacting re-

versible reactions (mass action and Michaelis-Menten) to bond graphs is de-

posited on GitHub: Reversible mass action and Michaelis-Menten.

2.2.2. Irreversible reactions

Our framework specifically covers the conversion of two types of irreversible re-

actions: Irreversible mass action and irreversible Michaelis-Menten. As discussed

in Section 2.2.1, any other irreversible format will be treated as an irreversible

mass action. Fig 3 demonstrates the bond graph representation of irreversible

mass action and Michaelis-Menten kinetics.

Fig 3. Bond graph representation of two irreversible reactions. (A) Irreversible mass
action. α and β represent the stoichiometric coefficients which are modelled with a transformer
in bond graphs; (B) Irreversible Michaelis-Menten. CS : Xaux is an auxiliary species added to
the right side of irreversible reactions in case of thermodynamically inconsistent biochemical
loops. Here, the auxiliary species have small Ks relative to the reactants’.
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To approximate irreversibility, the bond graph structures in Fig 3 include

auxiliary species (with relatively small Ks) at the product(s) side of the irre-

versible reactions. This approach assumes that all irreversible reactions are

supplied by an energy from the auxiliary species. Physiologically, adding such

an auxiliary species to an irreversible reaction plays the role of missing energy

sources which essentially push the reaction forward and hamper it in reverse

direction. Hence if the energy providers stop working, the energetically linked

reactions will be terminated. Examples of such associated sources of energy

would be ATP-ADP-Pi [33, 34, 35], and NADH-NAD [36].

The function of auxiliary species is to avoid miscalculations in the case of

thermodynamically inconsistent biochemical loops. In this way, the auxiliary

species’ constants handle the additional constraint of representing the irreversible

reactions with reversible ones (selecting small values for Ks at the right side of

the reaction). In the following section, we will further explain the selection of

Ks in irreversible reactions.

• Irreversible mass action:

An irreversible reaction expressed in mass action kinetics is convertible

into bond graphs in the same way as its reversible version, except that we

assume that the forward flux is far greater than the reverse flux (Eq 18).

∏
i

(KSi
XSi

)αi >>
∏
j

(KPj
XPj

)βj (18)

Considering the whole range of concentrations across the simulations, the

constraint in Eq 18 can yield:

∏
j K

βj

Pj∏
i K

αi

Si

= 0.001×
∏

i(minXSi)
αi∏

j(maxXPj )
βj
. (19)
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where min and max represent the minimum and maximum concentrations

that a species reaches across the time course of the simulation data. We

added the 0.001 coefficient to confine the reverse flux by limiting the K

values of the products to replicate the irreversibility of reactions.

Eq 19 satisfies the law of reversibility of reactions in bond graphs while

maintains the pseudo-irreversibility of the original reactions by limiting

the reverse flux. While this method applies to any irreversible reaction de-

scribed in mass action kinetics, it fails to thoroughly capture the behaviour

of such reactions if they associate with thermodynamically inconsistent

loops. The estimation of bond graph parameters from the kinetic parame-

ters becomes more inaccurate if the species have multiple roles in different

reactions, i.e., not all the constraints can be satisfied. To best satisfy the

constraints in such networks, our framework provides an option of adding

an auxiliary species (CS : Xaux) to the products side of each irreversible

reaction (Fig 3.A). Consequently, Eq 19 would no longer interfere with the

constraints on the selection of Ks for the products. This auxiliary species

acts as a confiner on its own by following the same assumption applied in

Eq 19 but without putting any extra constraints on the products (Eq 20).

Kaux in Eq 20 corresponds to the auxiliary species’ constant.

Kaux = 0.001×
∏

i(minXSi)
αi∏

j(maxXPj )
βj

(20)

The rest of the process is similar to the reversible reactions in which Ks

are estimated by generating and solving a linear matrix and will be used

to approximate the reaction rate constants during the data fitting.

• Irreversible Michaelis-Menten:

To convert an irreversible Michaelis-Menten reaction into bond graphs,
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the same configuration was used as in the reversible Michaelis-Menten.

Fig 3.B shows an exemplar irreversible Michaelis-Menten reaction. Note

that here, reaction 2 is irreversible. Hence, as discussed, the constraint

in Eq 19 must be applied. Again, in case of the irreversible Michaelis-

Menten reaction being present in a thermodynamically inconsistent loop,

an auxiliary species (CS : Xaux) with Kaux gained from Eq 20 will be

added to the right side of the reaction.

To calculate the equivalent bond graph parameters we applied the technique

introduced in [37]. Briefly, a complex enzymatic reaction in Marcelin–de

Donder kinetics can be converted into the irreversible Michaelis-Menten

kinetics using some assumptions. These assumptions along with estimating

the irreversible Michaelis-Menten parameters from the simulation data

provide the grounds to estimate the equivalent bond graph parameters.

Eq 21 shows the irreversible Michaelis-Menten kinetic law where v is the

reaction rate, XS is the substrate concentration, Vm is the highest molar

flow rate in the reaction, and Km is the substrate concentration where the

reaction rate is half its highest value.

v =
Vm ×XS

Km +XS
(21)

The bond graph form with Marcelin-de Donder parameters in Fig 3.B will

give:

Km =
(r1 + r2)KES

r1KSKE
, (22a)

Vm = E0r2KES . (22b)

where E0 is the total concentration of the enzyme and enzyme complex:
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E0 = XE +XES . Finding bond graph parameters from the irreversible

Michaelis-Menten rate law in Appendix C elucidates the detailed procedure.

By having Km and Vm as constants and applying Eq 19 to implement

irreversible reactions, a solution with the least square error can be achieved

for the unknown bond graph parameters (r1, r2, KS , KP , KES , KE , E0).

To more comprehensively demonstrate the features of our implementation,

we created an SBML model of four reactions, including reversible and irreversible

mass action kinetics and reversible and irreversible Michaelis-Menten kinetics.

The automatically converted model in bond graphs is deposited on Github:

Reversible/Irreversible Mass action and Michaelis-Menten.

In the next section we explain our workflow in dealing with single or multiple

SBML models.

2.3. The workflow

This section describes the methodology for converting SBML models into

bond graph approximations. If we intend to compose the converted models later,

we need to estimate the bond graph parameters for the whole composed system.

Both cases are discussed in this section.

In brief, the bond graph parameters of a system are approximated from the

simulation data during the time course where the entities reach their steady-state

behaviours. We collected this data by running the models in SBMLsimulator [38,

39] (www.ra.cs.uni-tuebingen.de/software/SBMLsimulator) and saving the

simulations as csv files. The bonds between the bond graph components are

defined by the reactant(s)-reaction-product(s) relationships within the SBML

models. These information along with the models’ metadata were read using two

Python libraries: libSBML [40] and simpleSBML [41]. Because SBML modelling

packages and programs do not include the bond graph structure, we have used

a bond graph library in Python (BondGraphTools [27]) to construct our bond
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graph models. To automatically convert an SBML model into bond graphs using

our framework, the original model must meet the following criteria:

1. The reactions must be described in terms of one of the following rate

laws: Marcelin-de Donder kinetics (using thermodynamic parameters), re-

versible/irreversible mass action kinetics, or reversible/irreversible Michaelis-

Menten kinetics;

2. The model must not contain modifiers. A modifier is a molecule that

locally influences the conformation of a component [42]. Modifiers can rep-

resent various structures, compounds, and states such as ligands, covalent

bondings, and mutations.

3. The model only contains constant parameters;

4. Some SBML models incorporate “events”, which are discontinuous changes

in models triggered by certain conditions or at certain times [43]. Since

these events are not a part of physical or biological systems, we do not

include them in our conversion framework.

If a reaction is formulated with a more complex rate law that does not fit in

any of the mentioned categories in 1, as a final attempt, our framework tries

to approximate it with reversible/irreversible mass action kinetics. However,

this may or may not provide an accurate approximation of the original model.

To estimate the number of SBML models compatible with our approach, we

considered the first 200 SBML models on BioModels (out of over 2000 available)

and 35 of them complied with the mentioned criteria. Therefore, we expect that

hundreds of convertible models exist on the Biomodels database (with more than

2000 curated and non-curated models).

Fig 4 illustrates our workflow to create bond graph equivalents of single

SBML models of biochemical pathways. The whole workflow can be described

in eight major steps as follows:
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1. The simulation data are collected by running an SBML model under the

model’s initial conditions and saving the results in csv format.

2. We have designed the framework to extract and modify the concentration

units to µmol if required. This could be set to any unit, but we selected

µmol as it seems to be the most commonly used unit in modelling metabolic

pathways on BioModels. The user can skip this step if a single SBML

model is the target of the conversion. The user can also insert a scaling

factor multiplied by all the concentrations (the default value is 1.0). As

discussed later in Section 3.3, the scaling factor is valuable for model

integration where the concentrations need to be made consistent between

models.

3. In this step, the reaction types (reversibility/irreversibility) and rate laws

are inferred from the model’s metadata. Our framework extracts and cate-

gorises the reactions’ data by identifying their Systems Biology Ontology

(SBO) terms [44].

4. The bond graph parameters (species and reaction rate constants) are

calculated in this step. The reaction specific constraints are inferred from

the simulation data to calculate the species constants (Section 2.2.1 &

Section 2.2.2).

5. This step checks the consistency of semantic annotations within an SBML

model. A function in our framework looks for the existence of duplicate

annotations of species within the SBML model. If two or more species are

annotated identically in one compartment, our function assumes they refer

to the same entity and merges them.

6. The bond graph structure of the model (without assigning numerical

parameter values) is generated from the stoichiometry of the SBML model.

We call these symbolic models.

7. BondGraphTools generates the ODE equations based on the bond graph
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graphical structure from step 6.

8. In our workflow, the calculated bond graph parameters in step 4 parame-

terise the generated ODE equations in step 7.

Fig 4. Workflow to generate the equivalent bond graph model of an SBML model.
The workflow comprises of eight main steps where the first four steps are involved in
estimating the bond graph parameters, and the final three steps generate the bond graph
graphical structure and ODE equations. The blue box shows the same procedure performed
during model composition and will create a module for each model.
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In the case of model composition, the steps in the blue box in Fig 4 remain

in place and create a module per SBML model. Each module will have two

sets of outputs: 1) An equivalent symbolic bond graph model and 2) the

classified constraints and the (unified) simulation data. Fig 5 demonstrates the

simultaneous creation of a composed symbolic bond graph model of two modules

and the estimation of bond graph parameters. To deal with potential model

inconsistencies, when dealing with more than one SBML model, the constraints

for all the models must be considered to calculate the bond graph parameters

(step 5). Thus, we require that the estimation of bond graph parameters and

the creation of bond graph symbolic structure take place out of the modules to

include all the information from all the modules. Similar to the final procedure

in Fig 4, the species and reaction rate constants are used to parameterise the

composed symbolic bond graph model. It is worth mentioning that in cases

where the initial condition of the same species is different among the models,

our function gives the user the option of choosing any arbitrary amount.

2.4. SBML models

In this section, we introduce the two SBML models (pyruvate distribution

and PPP) that we selected for automatic conversion into bond graphs using the

framework described in Section 2.3. We selected these two models because, first,

they meet the criteria mentioned in Section 2 and second, they have common

species, which is required later for composing the models. Here, we review the

function and components of each model.

2.4.1. First model: pyruvate distribution

The first selected model is BIOMD0000000017 from the BioModels repository.

It describes lumped glycolysis plus branches around pyruvate metabolism in

lactic acid bacteria, developed by Hoefnagel et al. [45]. Glycolysis occurs in

23

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.25.493355doi: bioRxiv preprint 

https://www.ebi.ac.uk/biomodels/BIOMD0000000017
https://doi.org/10.1101/2022.05.25.493355
http://creativecommons.org/licenses/by-nc/4.0/


Fig 5. Modular model composition of bond graph equivalents of SBML models.
The workflow is drawn for two modules but is extendable to any number of modules. The
bond graph parameters and symbolic model are determined by including all the constraints of
the selected SBML models.

the cytosol where glucose oxidises to pyruvate [46]. Pyruvate undergoes several

processes and produces acetyl CoA through one of them. Fig 6 illustrates the

network and the involving biochemical species in the pyruvate distribution model.

Purple species represent the ones which are common with the second model

(PPP). Table 2 gives the definition for the abbreviations used in Fig 6.

The reactions in the pyruvate distribution model are all modelled irreversibly

in BIOMD0000000017, but the rate laws are neither mass action nor Michaelis-

Menten. Nevertheless, our framework managed to approximate them as bond

graphs using the irreversible mass action kinetics (method explained in Sec-

tion 2.2.2).

24

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.25.493355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493355
http://creativecommons.org/licenses/by-nc/4.0/


Fig 6. Pyruvate distribution model: Lumped glycolysis and branches around
pyruvate metabolism. The species in purple are common between the pyruvate distribution
(first) model and PPP (second) model. (out) and (in) refer to extracellular and intracellular
concentrations, respectively. Reactions 12 and 13 in the dashed box are common between
multiple steps. (Online version in colour.)

2.4.2. Second model: PPP

The second selected model is MODEL1004070000 from BioModels. It describes

the pentose phosphate pathway and TCA cycle in the lactating rat mammary

gland, developed by Haut et al. [47]. Physiologically, the pentose phosphate

pathway is parallel to glycolysis, and they share some reactions. In the PPP

model, acetyl CoA enters the TCA cycle [46]. The TCA cycle is a respiratory
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Table 2. Abbreviations in the first model: pyruvate distribution.

Abbreviation Definition

Ac Acetate

AcCoA Acetyl CoA

AcLac Acetolactate

AcO Acetaldehyde

AcP Acetyl phosphate

ADP Adenosine diphosphate

ATP Adenosine triphosphate

CoA Coenzyme A

EtOH Ethanol

NAD Nicotinamide adenine dinucleotide

NADH Reduced nicotinamide adenine dinucleotide

O2 Oxygen

Pi Phosphate

process that occurs in the cytosol and generates citric acid. The TCA cycle in

the current model is represented crudely and hence, all the compounds with six

molecules of carbon are collectively referred to as C6 comps (including citric

acid). Fig 7 demonstrates the network of the PPP model and its species. The

species in purple are shared with the pyruvate distribution (first) model. Table 3

gives the definition for the abbreviations used in Fig 7.

Reactions in the PPP model are a combination of 19 reversible and 11

irreversible reactions, and all the reactions are defined in mass action kinetics.

Thus, using the methods described in Sections 2.2.1 & 2.2.2, the equivalent bond

graph model was created and parameterised.

3. Results

We used our developed framework to automatically convert two exemplar

SBML models into bond graphs. We verified the simulations by comparing

them with the original models to validate our equivalent bond graph models. To

compare the simulation results, the normalised root mean square error (NRMSE)
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Fig 7. PPP model: pentose phosphate pathway and lumped TCA cycle. The
species in purple are shared between the pyruvate distribution (first) model and PPP (second)
model. C6 comps (in red) corresponds to all the compounds in the pathway with 6 carbon
molecules (referred to as the target entity), including citric acid. (out) & (in) refer to
extracellular and intracellular concentrations, respectively. (Online version in colour)

was computed as in Eq 23, where x̃i corresponds to the simulation points of

the bond graph approximation, and xi corresponds to the original SBML model.

The normalisation was performed relative to the maximum and minimum data

difference from the SBML model in each simulation.
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Table 3. Abbreviations in the second model: PPP.

Abbreviation Definition

AcCoA Acetyl CoA

Gl.Hex glucose-hexokinase

Gl 6P glucose 6-phosphate

Hex inh hexokinase (inhibited)

NADP nicotinamide-adenine dinucleotide phosphate

NADPH Reduced nicotinamide adenine dinucleotide phosphate

6P GLac 6-Phosphogluconolactone

6P G 6-Phosphogluconate

Co2 carbon dioxide (labelled ‘A-D’)

Ribulose 5P ribulose 5-phosphate

Ribose 5P ribose 5-phosphate

xylulose 5P xylulose 5-phosphate

Sedo 7P sedoheptulose 7-phosphate

GlycerAld 3P glyceraldehyde 3-phosphate

Eryth 4P Erythrose 4-phosphate

Fruc 6P fructose 6-phosphate

Fruc 1, 6diP fructose 1,6-diphosphate

DihydAc 3P dihydroxyacetone 3-phosphate

CIT0C All the C4 compounds

CIT1C All the C5 compounds

C6 comps All the C6 compounds

NRMSE =

√∑n
i=1

(x̃i−xi)2

n

xmax − xmin
(23)

3.1. Pyruvate distribution model approximation in bond graphs

The responses of six exemplar species in the pathway are demonstrated in

Fig 8. Four of these species are common in the two selected SBML models

(Glucose, Lactate, AcCoA, and pyruvate). Glucose, Lactate, Ac, EtOH, Acetoin

(out), Butanediol, O2, and PO4 are chemostats in this model. The NRMSE is

computed for each comparison in percentage.

As noted earlier, an exact conversion from SBML to a bond graph was not

possible due to the approximation of the irreversible reactions with reversible re-

actions. Nonetheless, the generated bond graph model exhibits similar behaviour
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Fig 8. Comparison between the pyruvate distribution SBML model and its bond
graph (BG) approximation. The simulations are given for six exemplar species in the
pathway. NRMSE is calculated for each comparison in percentage.

to the original SBML model. Note that none of the rate laws in this model

were described using the reversible/irreversible mass action or Michaelis-Menten.

In such cases our function tries to approximate the reactions in bond graphs

by assuming that they follow the mass action kinetics. This approximation

resulted in a feasible bond graph approximation of the SBML model despite

the most noticeable difference of 12.7% NRMSE in pyruvate reaching its final

state. However, we note that these differences may increase when the models
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are simulated under different conditions.

3.2. PPP model approximation in bond graphs

Fig 9 demonstrates the comparison between the behaviour of the PPP SBML

model and its equivalent bond graph approximation.

Fig 9. Comparison between the PPP SBML model and its bond graph (BG)
approximation. The simulations are given for six exemplar species in the pathway. NRMSE
is calculated for each comparison in percentage.

The equivalent bond graph model replicated the transient performance of

the original SBML model. As in the first model, an identical performance was
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not achieved because some kinetic parameters in the original model were not

thermodynamically consistent. The approximation of irreversible reactions with

reversible ones also led to some minor inconsistencies. Here, the bond graph

conversion of the PPP model showed an error of 3.8% and 3.6% NRMSE in

replicating the behaviour of lactate and pyruvate, respectively.

3.3. Model composition

In this section we demonstrate the application of our automated bond graph

model composition methodology to our generated models. The composed model

will be thermodynamically consistent and easily reused due to the intrinsic

features of bond graphs (Section 1). The automatic composition and merging

has become possible through finding identical semantic annotations among

models. Liebermeister et al. had previously developed a tool (SemanticSBML)

to automatically merge SBML models by matching their annotations [48]. The

same idea has been used in our work but instead of matching the original SBML

models, we applied this method to the devised bond graph models. Although

we merge bond graph modules, the result of the model composition is a single

(flattened) bond graph model. We have performed the composition using the

approach introduced in [24] with some improvements and added features:

1. SBML support: Since the framework was initially developed for CellML

models, we slightly modified it to load and extract information from SBML

models;

2. Processed data: To help couple models together, we added the units

unification and scaling modules to the framework to help with model

composition as discussed in Section 2.3, step 2 of the workflow. After unit

unification, the user can select a scaling index for any of the models. The

scaling index will be multiplied to the concentrations of the selected model.
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This normalises the amounts where there is a significant difference between

the range of amounts in the selected models;

3. Species constants inconsistencies: There are cases where the same

species within multiple bond graph models have been granted different

values for their species constants (depending on the simulations and pa-

rameters extracted from each reference model). This causes inconsistencies

during model composition since only one value can be assigned to a merged

species. The method introduced in [24] dealt with this by asking the user

to choose between the values or enter a new value. Here, we improved the

model composition framework by inclusively considering all the constraints

from the reference SBML models (as discussed in Section 2.3). In this way,

only one value is assigned to each species constant and the need for the

user decision is lifted;

4. Removable components: Users can select desired component(s) to be

removed from models. This feature is useful in the case of unidentified

duplicates, which can arise due to improper annotation or appearances of

the same process in different models.

Here, the pyruvate distribution model corresponds to lactic acid bacteria

and the PPP model corresponds to lactating rat mammary glands. As a result,

the range of concentrations in the pyruvate distribution model is approximately

1000 times higher than in the PPP model. Thus, we decided to input a scaling

index of 0.001 for the former model. Considering the different origins of the

constitutive models, having the concentrations in the same range induces more

realistic behaviours in the composed model. While merging these two models

may not precisely represent an existing biological system, it will result in a

physically plausible model that provides the groundwork for the development of

more realistic models in the future.

32

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.25.493355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493355
http://creativecommons.org/licenses/by-nc/4.0/


The Glucose (out) → Pyruvate reaction in the pyruvate distribution model

lumps together several steps from Glucose (out) to Pyruvate in the PPP model

(Fig 10). Therefore, we decided to remove the abstracted step (in the pyruvate

distribution model) from the final composed model. Our framework deals

with common reactions (here, Pyruvate → AcCoA and Pyruvate → Lactate)

automatically. It uses the information on the reactant(s) and product(s) of each

reaction and if they are identical, our framework considers the reactions being

duplicates. Thereafter, it keeps one of the reactions and removes the rest.

Fig 10. Pyruvate distribution and PPP models with the species in common. Four
common species are present in both models: Glucose (out), Pyruvate, AcCoA, and Lactate
and the two common reactions are: Pyruvate → AcCoA and Pyruvate → Lactate.
Subsidiary processes are shown in parentheses for clarity. The manual removal of the
Glucose (out) → Pyruvate abstract step from the pyruvate distribution model is specified by
a red cross. (Online version in colour)
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The PPP and glycolysis are fueled by glucose [49, 50]. To verify the be-

haviour of the final composed model, we simulated our bond graph “pyruvate

distribution+PPP” model for different extracellular concentrations of glucose

and monitored how the concentrations of pyruvate and C6 compounds were

correlated to this change. Pyruvate is present in both models and C6 compounds

are a group of target products (including citric acid) in the PPP model. Fig 11

illustrates the behaviour of pyruvate and C6 compounds under the condition of

changing the extracellular concentration of glucose in 6 steps from 25 µM to 500

µM. Fig 11 shows that the higher the concentration of extracellular glucose, the

higher the concentration of pyruvate and C6 compounds, implying the role of

glucose in initiating and functionality of the composed pathway. The glucose-

pyruvate relationship was also studied by Zhu et al. in [51], where altering

the glucose levels directly affected the pyruvate concentration. Papagianni et

al. [52] also showed that the formation rate of citric acid increases with increasing

glucose levels.

Fig 11. Effect of different levels of the extracellular concentration of glucose on
pyruvate and C6 compounds. Legends show the extracellular glucose concentration in 6
steps (25-500 µM). (A) Pyruvate behaviour. The initial concentration of the other common
species were as: pyruvate=0.059 µM, AcCoA=0.1 µM, and lactate=100 µM (fixed); (B) C6
compounds behaviour. (Online version in colour.)
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4. Discussion and conclusion

In this paper, we introduced a new methodology for converting SBML models

to bond graphs. This was achievable because the reference models contain

annotations for biochemical species and rate laws. The bond graph parameters

were calculated from the simulations to approximate the behaviour of the original

models. The resulting bond graph models could be automatically composited.

We applied this method to convert and merge two SBML models: pyruvate

distribution and the pentose phosphate pathway (PPP). Bond graph equivalents

of other exemplar SBML models – generated using our function – can be found

on GitHub: other SBML to BG conversions.

Our tool is fundamentally different from the SHMC package and semanticS-

BML. The SHMC package and semanticSBML combine models while retaining

their original modelling scheme, which in most cases represents physically im-

possible models. Also, changes in equations in model compositions must be

managed by the user, which is an error-prone and time-consuming task. Our tool

avoids these issues by converting the models into bond graphs and merging them

on an energy-conserving platform. This automates the SBML→BG conversion

which by incorporating annotations, also automates model composition. SBML

models that meet the criteria must be fully annotated with added SBO terms

for rate law recognition.

It is worth mentioning that the reversible Michaelis-Menten kinetics can be

implemented in bond graphs using a single Re component with the constitutive

equation of the form Eq 16. However, since the constitutive equation of the

existing Re component in BondGraphTools is described by the Marcelin–de

Donder equation, we decided to use the configuration introduced in [20] as a

formulation for the enzyme-catalysed reactions.

In bond graph model composition, there are cases where a species is charac-
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terised differently in the selected models. The decision to choose either of the

types depends on the application. For example, lactate had a fixed concentration

in the pyruvate distribution model. So it was modelled as a chemostat (CS) in

bond graphs, while in the PPP model, lactate had variable concentration and was

modelled as a normal biochemical entity (Ce). We selected a fixed concentration

for lactate while merging the two models, but the users will have both options.

In general, three situations might occur during model composition where the

user’s decision is required: 1) different initial concentrations of the same species,

2) different definitions of the same species, and 3) adding auxiliary species to

irreversible reactions. A modeller’s domain specific knowledge is required to re-

solve the first two issues. However, the final case could potentially be automated

using genome-scale metabolic models (GSMMs). GSMMs are comprehensive

stoichiometric networks of metabolic reactions and biochemical data, which help

to comprehend the metabolism and physiology of the organisms [53, 54]. These

can be employed as scaffolds to automatically detect and locate the missing

energy sources and avoiding the need for auxiliary species.

In this paper, we merged models from two different organisms to demonstrate

our tool’s capability in generating physically plausible composed models agnostic

to any specific underlying biology. Here, we aimed to find SBML models on

BioModels to first comply with the four criteria (Section 2) and second, be in

the same organisms and third, have common entities to be merged. There were

limited choices to fulfil all these benchmarks on a group of about 2000 (curated

and non-curated) models on BioModels. Although biologically impossible, we

selected the pyruvate distribution of lactic acid bacteria to be merged with

the PPP in lactating rat mammary glands to illustrate the possibility of such

combinations (useful in examining hypotheses in hybridisation) in an energy-

based framework.
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In biology, the PPP, glycolysis and the TCA cycle have some more points

of connection, namely ADP, ATP, NAD(P), and NAD(P)H. Since NAD and

NADH only exist in the first model (pyruvate distribution) and are replaced by

NADP and NADPH in the second model (PPP), merging them was not feasible.

Moreover, ADP and ATP are not included in the PPP model, which led to

some missing connections among the models. While the full reaction network of

the pathways in this paper are well known, it is common that a scientist will

model a biological system without full knowledge of the chemical reactions. To

allow for bond graphs to be generated even in the absence of this knowledge, we

decided use general auxiliary species rather than to ask the modeller to include

the correct side species themselves. However, as mentioned earlier, GSMMs

could be used to help automate this process. This will significantly assist other

modellers in reusing pre-existing models in a more physically plausible manner

and broader applications.

In this paper, we stored the simulation data for each model as a csv file

before commencing the conversion process. This can be facilitated in future

through the automatic generation and storage of simulations by running the

SBML models directly in Python. Also, since we need the species in each model

to reach their final concentrations, the running time must be set accordingly.

In this paper, we set the running times manually, but in future, automatic

recognition of steady-state concentrations can significantly reduce the manual

preparation of prerequisites. We also expect that fitting parameters to a wider

range of simulation data would allow the generated bond graph models to better

match the biology.

Our tool introduces the foundation for making the SBML models thermody-

namically consistent and more easily reusable. The present paper is a starting

point to facilitate the selection, conversion, and composition of SBML models in
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an energy-based environment. In future, further investigations can be done to

enhance our tool to support the conversion of other standard rate laws found

in SBML models such as Hill equation [55], convenience [56], and lin-log kinet-

ics [57] into bond graphs. Similarly, further investigations can be performed to

explore the composition of bond graph models from non-SBML sources such as

rule-based models [58, 59]. Beyond the SBML models, we also see this is a first

step toward making the large number of models that already exist available for

maximal reuseability building on the thermodynamic framework that Edmund J

Crampin established.

Appendix A. Matrix equation example

Consider the following two reactions with the kinetic constants k+1 , k
−
1 , k

+
2 ,

and k−2 .

3A + B
k1

+

−−−⇀↽−−−
k1

−
C + 2D

k2
+

−−−⇀↽−−−
k2

−
E (A.1)

where:

k
+
1 = r1KA

3
KB , (A.2a)

k
−
1 = r1KCKD

2
, (A.2b)

k
+
2 = r2KCKD

2
, (A.2c)

k
−
2 = r2KE . (A.2d)

Taking logarithms from each equation gives a matrix of linear relationships:

Ln


k+
1

k−
1

k+
2

k−
2

 =


1 0 3 1 0 0 0

1 0 0 0 1 2 0

0 1 0 0 1 2 0

0 2 0 0 0 0 1

Ln



r1

r2

KA

KB

KC

KD

KE


(A.3)
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In cases where k+ and k− are not properly annotated and hence not specifi-

cally detectable, each reaction will provide us with only one constraint (instead

of two for k+ and k−). As discussed in Section 2.2.1, we will have access to the

ratios of Ks between the reactants and products of each reaction. Here, σ1 and

σ2 are the constant ratios for each reaction (gained from the simulation data):

σ1 =
KCKD

2

KA
3KB

, (A.4a)

σ2 =
KE

KCKD
2
. (A.4b)

The linear equation matrix for Eqs A.4a and A.4b will be as follows:

Ln

σ1

σ2

 =

0 0 −3 −1 1 2 0

0 0 0 0 −1 −2 1

Ln



r1

r2

KA

KB

KC

KD

KE


(A.5)

In such cases, the reaction rates (r1 and r2) will be determined by curve

fitting methods once the equation matrix is solved.

Appendix B. Reversible Michaelis-Menten

The ratios between the four extracted constants from the reversible Michaelis-

Menten formula give the relationships between KP , KS , r1, and r2:

constant2

constant1
=

KP

KS

, (B.1a)

constant4

constant3
=

r2KP

r1KS

. (B.1b)

When the matrix of constraints is solved and the values for KP , KS , r1, and

r2 are estimated, the remaining parameters (KE and KES) can be calculated.
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KE

KES

=
constant3(r1 + r2)

r1KS

(B.2)

E0KE =
constant1(r1 + r2)

r1r2KS

(B.3)

By selecting any arbitrary value for E0 and substituting Eq B.3 in Eq B.2, we

can calculate KE and KES from the known values. Here, we selected E0 = 1.

KE =
constant1(r1 + r2)

r1r2KS

(B.4)

KES =
constant1

constant3 r2
(B.5)

Appendix C. Irreversible Michaelis-Menten

Here, we demonstrate the Marcelin-de Donder equations for Fig 3.B can

be reduced to the irreversible Michaelis-Menten configuration with simplifying

kinetic assumptions [60]. We initially illustrate the calculations without the

participation of CS : Xaux and later how a slight change will include the auxiliary

species in the equations. The fluxes of the substrate and product (vS and vP )

reads:

vS = r1(KSXSKEXE − KESXES), (C.1a)

vP = r2(KESXES − KPXPKEXE). (C.1b)

The kinetic equations for the fluxes of E and ES are given in Eqs C.2a and

C.2b which conclude a constant amount of the enzymes in Eq C.2e.

vE = vP − vS , (C.2a)

vES = vS − vP , (C.2b)

vES = −vE , (C.2c)

vES + vE =
d(XE + XES)

dt
= 0, (C.2d)
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XE + XES = E0. (C.2e)

Assuming that the concentration of E and ES will be constant at steady

state, by substituting vE = 0 and vES = 0 in Eqs C.2a and C.2b, we have:

vS = vP . (C.3)

According to the definition of an irreversible Michaelis-Menten, Re : r2 only

proceeds in forward direction. This implies that in its reversible mass action

configuration, the forward flux must be much greater than the reverse flux. We

implement this assumption by selecting KP ≃ 0 and Substituting Eqs C.1a and

C.1b in Eq C.3:

r1KSKEXSXE − r1KESXES = r2KESXES . (C.4)

Replacing Eq C.2e in Eq C.4 will read:

r1KSKEXS(E0 − XES) = (r1 + r2)KESXES , (C.5a)

r1KSKEXSE0 = ((r1 + r2)KES + r1KSKEXS)XES , (C.5b)

XES =
r1KSKEXSE0

(r1 + r2)KES + r1KSKEXS

. (C.5c)

Since vP = r2KESXES (due to the pseudo-irreversibility of Re : r2), substi-

tuting Eq C.5c will give:

vP =
E0r2KESXS

(r1+r2)KES
r1KSKE

+ XS

. (C.6)

Eq C.6 is the irreversible Michaelis-Menten rate law in Eq 21 where Km =

(r1 + r2)KES/(r1KSKE) and Vm = E0r2KES .

To estimate the parameters of the irreversible Michaelis-Menten kinetics in

bond graphs we need to make an initial guess to limit the solutions. Here, we

initialised E0 = 1 which led to the following constraint:
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E0 = 1 → Vm = r2KES (C.7)

By calculating r2 and KES from the linearised matrix of constraints and sub-

stituting the values in the Km formula, we obtain a relationship between r1

and KE as in Eq C.8. We can select any arbitrary value for either r1 or KE

and calculate the other parameter from Eq C.8. Here, we selected r1 = 1 and

calculated KE , accordingly (Eq C.9).

KE =
KES

KmKS

+
r2KES

r1KmKS

(C.8)

KE =
KES + Vm

KmKS

(C.9)
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