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In the short time since it has appeared, AlphaFold2 (AF2) has been widely adopted as a new standard in
accurate and fast protein structure prediction starting from any arbitrary sequence of amino acids. However,
AF2 maps a single sequence to a single structure, and even with recently proposed modifications that add
conformational diversity, it is arguably devoid of thermodynamics. In this working paper we demonstrate
an efficient protocol that uses the structural diversity from AF2 as a starting point to perform Artificial
Intelligence augmented enhanced molecular dynamics simulations. Specifically we use the “Reweighted Au-
toencoded Variational Bayes for Enhanced Sampling (RAVE)” method as post-processing on AF2, and thus
the protocol shown here is called AlphaFold2-RAVE. These simulations expand upon the results from AF2
ranking them as per their correct Boltzmann weights. This schema for going from sequence to Boltzmann
weighted ensemble of structures is demonstrated here for a small cold-shock protein, and will be expanded to

include many more sequences together with an easy-to-use open-source code.

While traditionally protein secondary and tertiary
structure prediction has relied on experimental tech-
niques such as cryo-EM, x-ray crystallography and NMR
studies, 2021 saw a change in the status quo with Al-
phaFold2 (AF2)!. It has surpassed the accuracy of
other prediction models and offers a seemingly robust
tool for structure prediction directly from the sequence
of constituent amino acids. AF2 relies largely on the
idea that the conservation of residues across evolutionary
protein sequences is likely to be correlated with three-
dimensional euclidean distances. Building on this idea,
AF2 generates a multiple sequence alignment (MSA)
of evolutionarily related sequences, which helps identify
residues that have co-evolved thereby facilitating struc-
ture prediction. While AF2 indeed represents a signifi-
cant change in the field of structural biology, there are a
few key limitations of AF2 that have been recently de-
scribed in the literature?#, with no clear solution to these
problems yet.

In this working paper, we first summarize these central
limitations with AF2, and then show how these can be
surmounted with the use of Artificial Intelligence (AI)
augmented Molecular Dynamics (MD) methods®. We
emphasize that this is a work in progress which will be
supplemented as we add more proteins demonstrating the
strength and generalizability of our protocol.

There are at least two central limitations to AF2 which
we address here. The first limitation is that in its original
most-cited incarnation, AF2 is a single structure predic-
tion method for any given sequence. This problem was
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partly solved with the simple realization that reducing
the size of the input MSA increases the conformational
diversity explored in AF236. This procedure however
does not provide any notion of relative probabilities of
these alternate conformations, and many of them could
in fact be physically improbable. Being able to assign
Boltzmann weights would instantly lead to ruling out un-
physical models generated by reducing the MSA length as
well as rank them as per their thermodynamic propensi-
ties. The second limitation is that AF2 fails in predicting
changes in protein structure due to missense mutations?.
Here as well one would expect that reducing the MSA
length could give glimpses into the possible alternate con-
formations for a mutated protein, but once again without
Boltzmann weights.

FIG. 1. Cold shock protein 1HZB with residue Trp8 high-
lighted in its most populated configuration.

In principle, long-enough MD simulations could di-
rectly help characterize the thermodynamics of the di-
verse conformations generated for any given protein
through reducing MSA length with AF2, thereby sur-
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FIG. 2. Ergodicity enhancement in CSP residues. To ex-
amine the improvement in sampling of sidechain configura-
tions, we compute the volume sampled in x spaces for each
residue and plot this for metadynamics performed by (i) di-
rectly biasing the sidechain dihedrals x; and x2 of the Trp8
sidechains (purple) and (ii) biasing along the information bot-
tleneck our methodology obtains (green). Both volumes are
normalized by volume sampled by unbiased trajectories of the
same length.

mounting both of the limitations above. However, MD
simulations, even with the best available supercomput-
ers, are limited in the accessible timescales, barely reach-
ing microseconds with days or weeks of simulation, while
events of interest, such as conformational changes, most
often occur at timescales ranging from microseconds
to seconds. Without observing multiple back-and-forth
transitions between possible competing conformations,
MD can not assign Boltzmann weights to them. Ob-
serving these conformational changes in MD is compu-
tationally intractable, and gathering statistically signifi-
cant data to predict energetics even more so. This has
given rise to a rich class of methods known as enhanced
sampling algorithms?, with the goal of driving sampling
to rare regions of configurational space while retaining
the ability to reweight and extract accurate statistics
in a computationally efficient manner. However, often
such enhanced sampling methods require prior mecha-
nistic knowledge of the slow conformation changes of in-
terest, also known as the reaction coordinate®.

In this work, we propose the AlphaFold2-RAVE
scheme as a first step towards solving this problem.
In this scheme we supplement AlphaFold2 with a post-
processing protocol using the machine learning method
“State Predictive Information Bottleneck (SPIB)”?.
SPIB belongs to the “Reweighted Autoencoded Varia-
tional Bayes for Enhanced Sampling (RAVE)” family of
methods'®!!. SPIB, and more generally RAVE, uses an
autoencoder-themed Al framework to learn the reaction
coordinate from limited sampling in an iterative man-
ner (see Methods) wherein every iteration of MD is bi-
ased to enhance fluctuations along the learned reaction
coordinate. The reaction coordinate is expressed as a
past-future information bottleneck, i.e. the most parsi-
monious lower dimensional manifold for embedding the

dynamics such that the future state of the system can be
predicted as accurately as possible. The states are learnt
by the decoder, but are representative of physically rele-
vant state such as, for example a protein’s conformation.
How far into the future one is aiming to predict is known
as the time lag, and is an important parameter in SPIB
(see Methods).

The use of such a time lag allows one to account
for the inherently dynamic personalities of proteins'Z.
Reweighting procedures'3 are then used to obtain Boltz-
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FIG. 3. PMFs along sidechain angles of the Trp8 residue
which exhibits six metastable states. In (a) we show calcu-
lations from 20 ns long unbiased trajectory initialized from
XRD structure. In (b) we show results of metadynamics per-
formed on sidechain angles of the Trp8 residue. In (c) we
show results from metadynamics performed using informa-
tion bottleneck obtained without a priori knowledge of Trp8
metastability. Colorbars for all 3 figures are shown with en-
ergies in units of kpT.
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mann weights for different conformations sampled during
the enhanced MD performed by enhancing fluctuations
along the information bottleneck.

In this first benchmark test, we apply our approach
on the small 66-residue cold shock protein (CSP; PDB
ID: 1HZB), shown in Figure 1. We show that without
using any a priori information regarding residues that
are known to exhibit conformational metastability, we
are able to obtain different competing conformations to-
gether with their accurate Boltzmann weights. Specif-
ically, CSP has known rotameric metastability in its
eighth residue (Trp8), exhibiting 6 metastable states in
its x1 and xo torsions as per fluorescence spectroscopy“.
To demonstrate the power of our method, we assume no
a priori knowledge of Trp8, or any other residues with
metastable rotamers, and at every stage of the algorithm,
we use all available 125 protein x torsional angles. With-
out using any preference towards the yx; and xo dihe-
drals of Trp8, our protocol not only correctly ranks the 6
metastable states along these two dihedrals, but also fur-
ther samples conformations along the other 52 residues
with sidechains with increased ergodicity, as measured
here by the fraction of dihedral configuration space ex-
plored and shown in Figure 2. Here, we see that our pro-
tocol not only samples the Trp8 residue conformations
comparably to metadynamics directly on that residue,
but also samples more extensively for all residues with
sidechains, which directed metadynamics fails to do.

Specifically, our protocol begins with the MSA modi-
fication to AF2 through which we first obtain a confor-
mationally diverse ensemble of structures, albeit without
corresponding Boltzmann weights. This gives rise to an
ensemble comprising 2560 structures. We choose a large
set of order parameters, such as all sidechain dihedral an-
gles (see Methods) to characterize this ensemble, and per-
form a preliminary spatial clustering using SPIB with a
lag time of 0. Choosing representative structures initial-
ized from different clusters, we run multiple short unbi-
ased molecular dynamics trajectories. We then use these
trajectories as inputs for SPIB once again, this time using
the past-future information bottleneck with a finite time
lag®'®. Finally, we run biased metadynamics simulations
using the information bottleneck learnt from this itera-
tion of SPIB. This final run can be used to directly iden-
tify different side chain conformations and obtain their
equilibrium free energies by appropriate reweighting.

While Figure 2 shows enhanced exploration along all
dihedrals, this is no guarantee that such sampling when
reweighted to account for the bias will give us correct
Boltzmann distributions. Next we demonstrate that in-
deed this is the case by considering Trp8. In Figure 3 we
show the potentials of mean force (PMFs) along Trp8 x
angles obtained from unbiased and biased metadynam-
ics simulations respectively. Figure 3(a) shows unbiased
sampling for 250ns initialized from the NMR structure,
where only two metastable basins are sampled. The
trajectory even fails to sample the second of the two
free energy minima. Figure 3(b) shows PMF obtained
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FIG. 4. PMFs projected along the two-dimensional informa-
tion bottleneck denoted o1 and o2 learnt from our scheme.
Projections using different methods are shown. In (a) we
show projection in this space obtained from direct use of
AF2, which does not show much diversity. In (b) we show
the distribution with reduced MSA length which now shows
some diversity, indicated with thick arrows, however without
any notion of relative thermodynamic stability. In (¢) we
show the results from AlphaFold2-RAVE, where both confor-
mational diversity and correct relative metastability can be
seen. Respective colorbars indicate free energies measured as
negative log of probabilities. The arrows indicate free energy
basins identified on the PMF's.

from metadynamics performed by biasing the sidechain
angles of the Trp8 residue. Figure 3(c) shows results
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from metadynamics performed by biasing the informa-
tion bottleneck obtained without a priori knowledge of
Trp8 metastability.

In Figure 4 we show different PMFs projected along
the two-dimensional information bottleneck (labeled o4
and o2). Figure 4(a) shows that when simply using
AF2 as is, no significant conformational diversity is ob-
tained. Figure 4(b), obtained with AF2 after reducing
MSA length, shows some conformational diversity but
the weights are not correct. Figure 4(c) obtained after
AlphaFold2-RAVE shows both richer conformational di-
versity as well as correct Boltzmann weights, which we
validate in Figure 3 for Trp8.

To conclude, in this working paper we have proposed
the AlphaFold2-RAVE protocol. This combines the
strengths of AlphaFold2 with the all-atom resolution
enhanced sampling powers of RAVE in a way that allows
us to go from sequence to an ensemble of conformations
ranked with their correct Boltzmann weights. We want
to emphasize that perhaps instead of RAVE we could
have in principle used some other enhanced sampling
protocol. We prefer RAVE and specifically its SPIB
variant due to the minimal amount of hand-tuning it
requires in terms of pre-knowledge of the reaction coor-
dinate for driving the enhanced sampling, or the number
of metastable states in the system. In a similar vein,
instead of AlphaFold2 we could have used some other
experimental'® or even computational'™'® approach
to generate an initial dictionary of possible competing
conformations. We choose AlphaFold2 because it is
easy and relatively quick to use, with higher accuracy
than other computational predictions. In this first
working paper, we demonstrated the protocol on the
small 66-residue cold shock protein and showed how we
could obtain correct thermodynamic sampling, despite
restricting ourselves to no prior information, and in fact
demonstrating higher generality. We will be comple-
menting this working paper gradually with many more
systems and also release a complete open-source code to
be hosted at github.com/tiwarylab. Individual compo-
nents of the code can already be found at github.com/
sokrypton/ColabFold and github.com/tiwarylab/
State-Predictive-Information-Bottleneck.
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METHODS
A. AlphaFold2

To generate a diverse structural ensemble, we made
a key change to the publicly available Colabfold
notebook?®. The input featurization for the AF2 algo-

rithm is in the form of two MSA clusters. Namely, the
first is used as the input to the main AF2 network, and
the second is used to initialize the pair representation
matrix, and also used as an input. We decrease the size
of both MSA clusters to (16, 32), and (8, 16) respec-
tively. As also reported in Ref. 3, we find that restrict-
ing the information in this featurization leads to revealing
structures that are significantly different from the crys-
tal structure, while providing hints to metastability. The
other computational choices and parameters are as fol-
lows. We use the model dropout feature, set number
of recycles to 1, and use 128 random seeds— since AF2
generates 5 structures per random seed, we obtain 640
structures for each set of MSA hyperparameters.

B. Metadynamics

Algorithms developed to enhance sampling can be
characterized in two ways: driving sampling by adding
“biases” in the form of energetic potentials, or by split-
ting and stratification methods that focus on simulating
multiple trajectory fragments and resampling them with
biased probabilities”. In practice, the former is found
to be preferable for enthalpic barriers, while the latter
is more effective for entropic barriers. Our scheme is in
theory agnostic to the sampling method used, as long
as it is possible to recover unbiased statistics to obtain
potentials of mean forces using the method. Here, we
choose to use an easily implementable and relatively fast
method, metadynamics?'. Metadynamics functions by
depositing Gaussian biases intermittently along the sim-
ulation so that regions of the collective variable space
that have been traversed become less probable the more
they are sampled, and the system is forced to sample
rarer regions. This results in a time dependant bias that
is recorded and can be used to generate a PMF along
the collective variables used for bias. Additionally, it
has been shown that an on-the-fly bias can be computed
independently'3 to calculate a weighted histogram along
any arbitrary collective variable. However, in practice
the choice of collective variable is difficult and essential.
Biasing irrelevant collective variables or missing crucial
slow collective variables?? could lead to no motion away
from initial metastable state, or to sampling unphysical
regions of configurational space.

C. State predictive information bottleneck

Here, we use SPIB iteratively with biased or enhanced
dynamics to learn the reaction coordinate®. SPIB is es-
sentially a past-future information bottleneck protocol
which takes time resolved trajectory data in a high di-
mensional order parameter space. It then predicts a la-
tent space of desired dimensionality and identifies states
in this space. Here we used a 2-dimensional informa-
tion bottleneck which we denote {01, o2} . The protocol
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requires an initial identification of state labels which is
then refined iteratively. The model learnt through SPIB
consists of an encoder, which transforms the high dimen-
sional input into a latent space, and a decoder, which
uses this latent space to predict state labels after a pre-
set time-lag. Ideally, the latent space identified as the
information bottleneck would correspond with our tradi-
tional understanding of reaction coordinates. This was
demonstrated to be true for a model system in 9, where
the latent space corresponds very well with the commit-
tor as defined in transition path theory. The information
bottleneck is found by optimizing a loss function that
maximizes the latent space’s ability to predict the state
of the system after a pre-set time-lag, while reducing the
input dimensionality to the given bottleneck dimension-
ality. SPIB is capable of using both a linear or a non-
linear encoder. In this work, we use a linear encoder

with a non-linear decoder. For CSP, the encoder was a
2-d linear combination of 125 order parameters arising
from the sidechain dihedral angles xs of all 66 residues.
We have found that while there are regions of state space
that have zero sampling, and we aim to push the simula-
tion into those regions, a linear encoder is far superior as
a non-linear encoder will often overfit to sampled regions
while producing unphysical results in unsampled regions.

D. Other simulation details

The protein is represented by the AMBERO03 force
field?3. The simulations are performed at 300 K with
the leap-frog integrator in GROMACS 5.1.4%*; LINCS
was used to constrain the lengths of bonds to hydro-
gen atoms?®; the step size was 2 fs. We used PLUMED
2.426-28 t0 extract collective variables.
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