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While AlphaFold2 is rapidly being adopted as a new standard in protein structure predictions, it is limited to
single structure prediction. This can be insufficient for the inherently dynamic world of biomolecules. Even
with recent modifications towards conformational diversity, AlphaFold2 is devoid of providing thermodynam-
ically ranked conformations. AlphaFold2-RAVE is an efficient protocol using the structural outputs from
AlphaFold2 as initializations for AI augmented molecular dynamics. These simulations result in Boltzmann
ranked ensembles, which we demonstrate on different proteins.

While protein structure prediction has traditionally
relied on different experimental techniques, 2021 saw a
change in the status quo with AlphaFold21 . It has sur-
passed the accuracy of other models2 ,3 and offers a seem-
ingly robust tool for structure prediction directly from
amino acid sequences, relying largely on the idea that
conservation of residues across evolutionary protein se-
quences is correlated with three-dimensional Euclidean
distances. Building on this, AlphaFold2 generates multi-
ple sequence alignments (MSA) of evolutionarily related
sequences, hence identifying residues that co-evolve to
facilitate structure prediction.

While AlphaFold2 indeed represents phenomenal leaps
forward for structural biology, it has some key limita-
tions4–6 with no clear solution so far. The first is that in
its original incarnation, AlphaFold2 is a single structure
prediction method. Biology is often not about a sin-
gle structure, but about the ensemble of inter-converting
structures7 . This problem was first addressed by sim-
ply reducing the size of the input MSA in AlphaFold2,
and effectively increasing the conformational diversity ex-
plored5 ,8 . However, this does not provide any notion of
relative probabilities of these conformations, even as it in-
troduces several thermodynamically unstable or improb-
able structures. A second limitation is that AlphaFold2
fails in predicting changes in protein structure due to
missense mutations4 . Being able to assign Boltzmann
weights would instantly rule out unphysical models gen-
erated by MSA length reduction, simulataneously rank-
ing them by thermodynamic propensity, thereby address-
ing both limitations.

In this communication, we solve these limitations us-
ing Artificial Intelligence (AI) augmented all-atom res-
olution Molecular Dynamics (MD) methods9 . In prin-
ciple, long unbiased MD simulations, with no AI or Al-
phaFold2 assistance, should directly characterize the con-
formational diversity and thermodynamics of all proteins.
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However, MD simulations are limited in timescales, mak-
ing sampling diverse protein conformations with statisti-
cal fidelity impossible10 . We propose a protocol wherein
starting from a given sequence, we obtain an ensem-
ble of Boltzmann-weighted structures, i.e. structures
with their thermodynamic stabilities. We combine Al-
phaFold2 in post-processing with the AI-augmented MD
method “Reweighted Autoencoded Variational Bayes for
Enhanced Sampling (RAVE)”9 , calling the final proto-
col AlphaFold2-RAVE. RAVE is one of many enhanced
MD methods that surmount the timescale limitation; in
Methods we provide an overview, the advantages it pro-
vides over other enhanced MD methods, and other tech-
nical details.

We present illustrative results using AlphaFold2-
RAVE on proteins with unique challenges: the 1HZB
CSP11 for side-chain orientation predictions, ubiquitin
binding protein UBA2 for disorder effects of missense
mutations4 ,12–14 , and SSTR2 GPCR for conformational
diversity predictions15 . For each, we show that Al-
phaFold2 fails, even with the reduced MSA trick from
Ref. (5 ). AlphaFold2-RAVE does a perfect job in re-
producing benchmarks for CSP known from experiments
and specialized simulations, while providing results that
correlate with both experimental results and biological
roles for UBA2 and GPCR.

Our central idea is to first use reduced-MSA Al-
phaFold2 to generate many possible conformations as
the initialization for RAVE, which uses an autoencoder-
inspired framework to learn relevant slow degrees of free-
dom, also called reaction coordinates (RC), by iterating
between rounds of MD and autoencoder based analysis,
wherein every MD iteration is biased to enhance fluctu-
ations along the new RC. The RC itself is expressed as
a “State Predictive Information Bottleneck (SPIB)”16 ,
i.e. the least information needed about a protein’s cur-
rent attributes to predict its future state after a speci-
fied time. This allows one to account for the inherently
dynamic personalities of proteins17 , as well as obtain a
Boltzmann-weighted ensemble of conformations.

Fig. 1 shows results for the 66-residue CSP
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FIG. 1: a) AlphaFold2-RAVE schematic with representative UBA2 L355A structures from AlphaFold2,
reduced-MSA AlphaFold2, and partially disordered structure predicted by AlphaFold2-RAVE. b) CSP 1HZB
structure with Trp8 in purple, c) Results using AlphaFold2-RAVE on CSP. Potentials of Mean Force (PMFs)
projected along the two-dimensional SPIB σ1 and σ2 learnt from our scheme. Projections using different methods
shown. Left: Distribution from reduced MSA showing some diversity compared with AlphaFold2, however without
thermodynamic reliability. Right: Results from AlphaFold2-RAVE, showing both conformational diversity and
thermodynamics.

(PDB:1HZB). CSP has known rotameric metastability in
its eighth residue Trp8 (Fig. 1b), exhibiting 6 states in its
χ1 and χ2 torsions through fluorescence spectroscopy11 .
To demonstrate the power of AlphaFold2-RAVE, we as-
sume no prior knowledge of any such special residues.
Fig. 1c show probability distributions of conformations
obtained from AlphaFold2 with reduced MSA length and
with AlphaFold2-RAVE respectively, projected in the
space of SPIB coordinates. The enhancement in qual-
ity of sampling is unequivocally evident. Further anal-
yses are provided in SI establishing that the enhanced
sampling here conforms to the Boltzmann distribution,
and that our protocol is also more general than focused
sampling.

Fig. 2c shows PMFs from AlphaFold2-RAVE for both
WT and L355A UBA2. AlphaFold2 was recently shown
to be unable to capture the changes in native state sta-
bility of a partially helical disordered structure caused
by the missense mutation L355A4 . For the WT we find
that the folded-unfolded state energy difference is −0.3
kcal/mol, while for the mutant the same difference is 1.2
kcal/mol. This shows that the mutation does indeed in-
crease its disordered nature. In Fig. 1 we show repre-
sentative structures obtained from all three stages of our
protocol, demonstrating our significantly enhanced sam-
pling of quasi-helical disordered structures.

The final system we study is the medically rele-
vant19 G-protein-coupled receptor (GPCR), for which
AlphaFold2 is unable to capture conformational diver-

sity14 . Specifically, we explore conformational shifts in
the somatostatin receptor SSTR2. Once again, we find

FIG. 2: a) SSTR2 structures highlighting helix
movement in TM6, TM7, TM5 via AlphaFold2-RAVE
enhanced sampling, agreeing with experiments18 and
biological function. Low energy structures are in colour,
overlaid on native structure (grey). b) SSTR2 PMF
using AlphaFold2-RAVE, showing multiple potential
states. c) UBA2 PMFs along total Q-value for
WT(purple), L355A(green). The wild type shows a
visibly higher barrier and L355A has a wider, stabler
disordered region.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.05.25.493365doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493365
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

that AlphaFold2-RAVE detects several local changes in
sidechain positions, and also larger scale helical motions.
This corresponds well with known evidence of GPCR
structural diversity18 . In Fig. 2a, we show examples
of the large scale helical shifts we are able to observe.
Fig. 2b shows the PMF projected on the SPIB.

To conclude, we propose the AlphaFold2-RAVE
method, combining strengths of AlphaFold2 with all-
atom resolution enhanced sampling powers of RAVE9 .
This provides us with an ensemble of diverse confor-
mations ranked with their correct Boltzmann weights.
While any sampling protocol could in principle be im-
plemented here, we prefer RAVE (specifically the SPIB
variant) due to minimal hand-tuning and prior knowledge
required regarding metastable states and latent spaces
to drive sampling. Similarly, instead of AlphaFold2 we
could use other experimental20 or computational2 ,3 ap-
proaches to generate initial dictionaries of possible con-
formations. We choose AlphaFold2 for its simplicity, ac-
curacy and relative ease. Here, we apply AlphaFold2-
RAVE to three systems of biological relevance, demon-
strating its usefulness in obtaining conformational diver-
sity.
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Individual components of the code
are available at github.com/sokrypton/
ColabFold and github.com/tiwarylab/
State-Predictive-Information-Bottleneck.
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METHODS

A. AlphaFold2

To generate a diverse structural ensemble, we made
a key change to the publicly available Colabfold note-
book22 . The input featurization for the AlphaFold2 al-
gorithm is in the form of two MSA clusters. The first
is used as the input to the main AlphaFold2 network,
and the second is used to initialize a pair representation
matrix, which is the input for a second channel in the
AlphaFold2 network. We decrease the size of both MSA
clusters to (16, 32) and (8, 16), to obtain local confor-
mational changes in CSP and SSTR2. For UBA2, to get
more global changes, we further decrease MSA length
to (4, 8) and (2, 4). As also reported in Ref. (5 ), we
find that restricting the information in this featurization
leads to revealing structures that are significantly dif-
ferent from the crystal structure, while providing hints
to metastability. The other computational choices and
parameters are as follows. We use the model dropout
feature, set number of recycles to 1, and use 128 random
seeds– since AlphaFold2 generates 5 structures per ran-
dom seed, we obtain 640 structures for each set of MSA
hyperparameters.
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B. Metadynamics

Algorithms developed to enhance sampling can be
characterized in two ways: driving sampling by adding
“biases” in the form of energetic potentials, or by split-
ting and stratification methods that focus on simulating
multiple trajectory fragments and resampling them with
biased probabilities23 . In practice, the former is found
to be preferable for enthalpic barriers, while the latter
is more effective for entropic barriers. Our scheme is in
theory agnostic to the sampling method used, as long
as it is possible to recover unbiased statistics to obtain
potentials of mean forces using the method. Here, we
choose to use an easily implementable and relatively fast
method, metadynamics24 . Metadynamics functions by
depositing Gaussian biases intermittently along the sim-
ulation so that regions of the collective variable space
that have been traversed become less probable the more
they are sampled, and the system is forced to sample
rarer regions. This results in a time dependant bias that
is recorded and can be used to generate a PMF along
the collective variables used for bias. Additionally, it has
been shown that an on-the-fly bias can be computed in-
dependently25 to calculate a weighted histogram along
any arbitrary collective variable. However, while essen-
tial, in practice the choice of collective variable is difficult.
Biasing irrelevant collective variables or missing crucial
slow collective variables26 could result in observing no
significant motion away from initial metastable state, or
to sampling unphysical regions of configurational space.

C. State predictive information bottleneck

Here, we use SPIB iteratively with biased or enhanced
dynamics to learn the reaction coordinate16 . SPIB is
essentially a past-future information bottleneck protocol
which takes time resolved trajectory data in a high di-
mensional order parameter space. It then predicts a la-
tent space of desired dimensionality and identifies states
in this space. Here we used a 2-dimensional informa-
tion bottleneck which we denote {σ1, σ2} . The protocol
requires an initial identification of state labels which is
then refined iteratively. The model learnt through SPIB
consists of an encoder, which transforms the high dimen-
sional input into a latent space, and a decoder, which
uses this latent space to predict state labels after a pre-
set time-lag. Ideally, the latent space identified as the
information bottleneck would correspond with our tradi-
tional understanding of reaction coordinates. This was
demonstrated to be true for a model system in Ref. (16 ),
where the latent space corresponds very well with the
committor as defined in transition path theory. The in-
formation bottleneck is found by optimizing a loss func-
tion that maximizes the latent space’s ability to predict
the state of the system after a pre-set time-lag, while re-
ducing the input dimensionality to the given bottleneck
dimensionality. SPIB is capable of using both a linear

or a non-linear encoder. In this work, we use a linear
encoder with a non-linear decoder. For CSP, the encoder
was a 2-d linear combination of 125 order parameters
arising from the sidechain dihedral angles χ-s of all 66
residues. We have found that while there are regions of
state space that have zero sampling that we may aim to
push the simulation into, a linear encoder is far supe-
rior as a non-linear encoder will often overfit to sampled
regions while producing unphysical results in unsampled
regions.

D. Other simulation details

The protein is represented by the AMBER03 force
field27 . The simulations are performed at 300 K with
the leap-frog integrator in GROMACS 5.1.428 ; LINCS
was used to constrain the lengths of bonds to hydrogen
atoms29 ; the step size was 2 fs. We used PLUMED 2.430

to extract collective variables.

E. Collective variable choices

An important feature of our protocol, both in its versa-
tility and adaptability, is the choice of input order param-
eters or collective variables in the clustering and SPIB
learning stages. On one hand, SPIB’s ability to handle a
large number of inputs lends itself to highly exploratory
work, the careful choice of CVs also lends itself to our
ability to study extremely different scientific questions.
In our work, we present three unique classes of protein
structural changes, and our choice of CVs is key.
For CSP, we opt for the most generalized choice of col-

lective variables to study rotameric states: all sidechain
dihedral angles. For the 66-residue peptide, this results
in 125 dihedral angles.
Similarly, for UBA2 to retain maximum information

while exploring partially disordered states, we opt for
the per residue Q value31 and inter-helical angles as our
input collective variables, defined for a given structure as
follows:

Q(θI) =
1

N

N∑
{i,j}

1

1 + expβ[rij − λroij ]
,

where θI is the Ith residue, rij is the distance be-
tween atoms i and j for the specified structure, and roij is
the distance in the reference (native-like) structure. The
atom pairs i, j are chosen so that i belongs to the residue
I, and roij < 4.5Å, i.e. all pairs of atoms that are geomet-
rically in “contact” in the reference structure. We choose
the single structure Alphafold2 outputs as our reference
both wild-type and mutant. The parameters β and λ
were taken from Ref. (31 ). For a notion of inter-helical
angles, we use the α-carbons of residues {R9, F15, I21}
and {A23, K29, A35}.
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PHE92 GLN102 ASP122 GLN126

PHE127 ARG184 SER192 THR194

ILE195 ASN196 TRP197 GLY199

TYR205 PHE208 ILE209 THR212

PHE272 PHE275 ASN276 PRO286

LYS291 PHE294 TYR302

TABLE I: Residues used to compute pairwise distances
as inputs for RAVE.

Our approach for SSTR2 is more targeted, as we
specifically aim to sample conformations that change lig-
and binding affinities, so as to facilitate drug discovery.
SSTR2 has a recently resolved experimental structure,
and like most other GPCRs, the residues involved in lig-
and binding are known32 . We begin by narrowing our
CVs to this set of residues, tabulated in Table 1, then se-
lecting all residue pairs that are (1) within 4.5Å of each
other and (2) do not belong to the same transmembrane
helix or connecting loop. We use the Cα distances be-
tween these residues as our initial OPs. One key differ-
ence in protocol is that to select initial structures for un-
biased sampling, we use regular space clustering33 , which
results in a more diverse and less redundant initial guess,
as AlphaFold2 tends to overamplify the probability of
native-like or inactive structures.
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