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Abstract1

Cultural Transmission of Reproductive Success (CTRS) has been observed in many human populations as well as other animals. It consists
in a positive correlation of non-genetic origin between the progeny size of parents and children. This correlation can result from various
factors, such as the social influence of parents on their children, the increase of children’s survival through allocare from uncle and aunts,
or the transmission of resources. Here, we study the evolution of genomic diversity through time under CTRS. We show that CTRS has a
double impact on population genetics: (1) effective population size decreases when CTRS starts, mimicking a population contraction, and
increases back to its original value when CTRS stops; (2) coalescent trees topologies are distorted under CTRS, with higher imbalance and
higher number of polytomies. Under long-lasting CTRS, effective population size stabilises but the distortion of tree topology remains, which
yields U-shaped Site Frequency Spectra (SFS) under constant population size. We show that this CTRS’ impact yields a bias in SFS-based
demographic inference. Considering that CTRS was detected in numerous human and animal populations worldwide, one should be cautious
that inferring population past histories from genomic data can be biased by this cultural process.
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Introduction1

In recent years, numerous studies have investigated the inter-2

actions between human culture and genetics. In some cases,3

cultural changes yield genetic adaptations. This was the case4

for example for lactase persistence that likely evolved indepen-5

dently in different human populations in Eurasia and Africa,6

due to the emergence of pastoralism (Swallow 2003; Bersaglieri7

et al. 2004; Gerbault et al. 2011; Segurel et al. 2020). Nevertheless,8

cultural processes can affect human genetic evolution without9

involving natural selection (Heyer et al. 2012): (i) polygamy10

(including polyandry and polygyny), (ii) descent rules (patrilin-11

eal, matrilineal, or cognatic), and (iii) cultural transmission of12

reproductive success (CTRS).13

CTRS is a positive correlation in number of children between14

parents and children resulting from non-genetic causes. Indi-15

viduals with many siblings tend to have more children than16

average. This transmission can result from multiple non-genetic17

causes: the social influence of parents on their children (Barber18

2001; de Valk 2013; Kolk 2014), the increase of children survival19

when uncles and aunts are present (allocare) (Heyer et al. 2012;20

Lawson and Mace 2011; Murphy 2013) or the transmission of re-21

sources from parents to children. Such resources can be material22

resources (Sorokowski et al. 2013), social resources (e.g. trans-23

mission of rank or of polygyny; Heyer et al. 2012), or cultural24

resources (such as hunting skills; Mulder et al. 2009). Further- 25

more, transmission of migration propensity across generations 26

can have an effect similar to CTRS, with some lineages grow- 27

ing less than others due to their larger tendency to leave the 28

population (Gagnon and Heyer 2001; Gagnon et al. 2006). 29

In all cases, CTRS yields a decrease in effective population 30

size and genetic diversity, and an increase in the frequency of 31

severe genetic disorders (Austerlitz and Heyer 1998). While 32

these patterns can result from other evolutionary processes (e.g. 33

bottlenecks), a more specific effect of CTRS is its impact on the 34

shape of coalescent trees: CTRS yields imbalanced trees as it 35

increases the proportion of lineages corresponding to large fami- 36

lies (Sibert et al. 2002). This specific property has been used in 37

particular for inferring transmission of reproductive success on 38

Y chromosome and mitochondrial DNA (Blum et al. 2006; Heyer 39

et al. 2015). Since natural selection also implies a transmission of 40

reproductive success, it is difficult to assess whether the imbal- 41

anced trees of non-recombining uniparental markers result from 42

natural selection or CTRS. Therefore, it is important to study the 43

impact of CTRS on the nuclear genome. Recombination should 44

indeed restrict the effects of natural selection to the genomic 45

regions around selected loci (Li and Wiehe 2013). Conversely, 46

CTRS will yield an imbalance signal across the whole genome 47

because in that case reproductive success is not linked to any 48

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2022. ; https://doi.org/10.1101/2022.05.25.493366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493366
http://creativecommons.org/licenses/by/4.0/


2 Cultural transmission of reproductive success impacts population genetics - Submission

locus in particular.1

Studying the impact of CTRS on genomic diversity is partic-2

ularly relevant as it is a rather common phenomenon. Several3

demographic studies have shown a parent-children correlation4

in the number of children ranging generally between 0.1 and 0.255

(e.g., Murphy 1999; Murphy and Wang 2001; Gagnon and Heyer6

2001; Pluzhnikov et al. 2007). There has been an extensive debate7

about whether these correlations result from cultural (Potter and8

Kantner 1955; Duncan et al. 1965) or genetic (Kohler et al. 1999;9

Rodgers et al. 2001; Mills and Tropf 2015) transmission, the sec-10

ond case corresponding to natural selection. They may, in fact,11

often be caused by both genetic and cultural transmission, along12

with interactions between genetics and environment (Murphy13

2013), making the disentangling of those processes particularly14

difficult, especially as they can vary across populations and time.15

For instance, contemporary populations tend to have a stronger16

intergenerational correlation than populations that predate the17

demographic transition (Murphy 1999; Murphy and Wang 2001).18

Furthermore, this phenomenon is not limited to humans and19

has been described in various species such as hyenas (Engh20

et al. 2000), Japanese monkeys (Kawai 1958), whales (Whitehead21

1998), dolphins (Frere et al. 2010), and cheetahs (Kelly 2001).22

Another reason for studying the impact of CTRS on genomic23

diversity lies in its ability to impact summary statistics com-24

monly used to infer other processes, in particular demographic25

processes. For instance, Site Frequency Spectra (SFS), which26

might be impacted by CTRS, are widely used for demographic27

inferences, either alone (e.g. δaδi (Gutenkunst et al. 2009), Fast-28

simcoal (Excoffier et al. 2013), Stairway Plot (Liu and Fu 2020),29

ABC-DL (Mondal et al. 2019)) or jointly with other summary30

statistics (e.g., Sheehan and Song 2016; Boitard et al. 2016; Jay31

et al. 2019; Terhorst et al. 2017). These inference tools could thus32

be biased when applied to populations that have been affected33

by CTRS during part of their history. Understanding the inter-34

actions between CTRS and demographic changes is therefore35

relevant not only for inferring CTRS itself but also for improving36

demographic inferences, which is of broad interest (Beichman37

et al. 2018).38

This article pursues three objectives. First, we aim to improve39

our understanding of the impact of CTRS on nuclear genomes40

using simulations. Brandenburg et al. (2012) performed a sim-41

ulation study that investigated the impact of CTRS on small42

sequences, ignoring intragenic recombination. We study here43

its impact on large recombining sequence data, adding numer-44

ous summary statistics not previously explored in CTRS sce-45

narios. The summary statistics we assess are mainly of two46

kinds: (i) population genomic statistics, such as genetic diver-47

sity, Tajima’s D and SFS, and (ii) various tree topology indices,48

such as tree imbalance indices and number of polytomies. In49

addition, we investigate the interaction of demographic changes50

and CTRS, as we expect human populations to undergo both51

types of processes. In particular, we look into the effect of an52

expansion happening before and during CTRS, an interaction53

that has not yet been explored. Second, we investigate the im-54

pact of CTRS duration and the persistence of ancient CTRS sig-55

nals in the genome by measuring the evolution of the summary56

statistics through time (before, during, and after CTRS). Last,57

we assess whether CTRS impacts demographic inference. For58

various CTRS scenarios, we compare the true and estimated59

instantaneous growth factor and timing of expansion.60

Methods 61

Model 62

We implemented the CTRS model designed by Sibert et al. (2002)
and Brandenburg et al. (2012) using the forward-in-time simula-
tor SLiM (Haller and Messer 2019). Individuals are diploid and
monogamous, generations are non-overlapping, and the popula-
tion has a fixed number of individuals N with a 1:1 sex-ratio. At
each generation, couples are formed uniformly at random before
reproduction and never separated. One parental couple is ran-
domly drawn from the population for each newborn child. This
process is repeated until N offspring are produced. The proba-
bility pi for a given couple i of being drawn for reproduction is
given by:

pi =
γi(b)× sα

i

∑Nc
j=1 γj(b)× sα

j

,

where si is the average sibship size of the two members of couple 63

i, α the parameter controlling the intensity of CTRS and b the 64

parameter controlling the variance in reproductive success. We 65

denote Nc the number of couples (Nc = N/2). The higher α is, 66

the stronger the CTRS (α = 0 meaning no CTRS, α = 2 yield- 67

ing a very strong CTRS). γi(b) is a random gamma distributed 68

variable drawn independently for each couple i, with shape 69

parameter b and mean 1. We have here only considered two 70

cases: b → ∞ (low variance in reproductive success, resulting in 71

a Poisson-like distribution for the progeny size in the absence 72

of CTRS, as limb→∞ γ(b) = 1) or b = 1 (high variance, as γ(1) is 73

an exponential of mean 1 distribution). 74

As for the demographic parameters, we compared two sce- 75

narios of constant population sizes (200 and 5000 individuals) 76

and explored a scenario of sudden demographic expansion by a 77

five-fold factor (200 to 1000 individuals), this expansion happen- 78

ing 300 generations before present. 79

Simulations 80

Unless specified otherwise, the simulations correspond to 200 81

replicates per scenario, a population size of 1000 individuals 82

and a sample size of 30 individuals. Genomes were made of one 83

chromosome of 107 bp length, with a recombination rate and 84

mutation rate of 10−8 per bp, which are commonly used parame- 85

ters in human population modelling. We used the geometric-like 86

model (b = 1) since Austerlitz and Heyer (1998) showed it was 87

more realistic than the Poisson-like model (b = ∞) in the popu- 88

lation of Saguenay-Lac-Saint-Jean where CTRS is documented 89

from pedigrees datasets. Coalescent trees are built in two steps: 90

(1) forward-in-time simulations using out model implemented 91

in SLiM (Haller and Messer 2019) starting before the beginning 92

of CTRS, resulting in trees that did not fully coalesce when the 93

CTRS period is short, (2) a backward neutral coalescent process 94

in order to complete the trees from the first step (i.e., to reach the 95

most recent common ancestors throughout the genome). This 96

step uses the tskit package functionality called recapitation (pack- 97

age available at https://tskit.dev/tskit/docs/stable/installation.html) 98

(Kelleher et al. 2016, 2019). 99

To assess the impact of CTRS on reproduction, we measured 100

three demographic parameters : (1) the correlation between 101

progeny sizes of all individuals and their parents’ progeny sizes 102

as a function of α, the strength of CTRS; (2) the variance of 103

progeny size, and (3) the distribution of progeny sizes in the 104

population for α = 0, 1 and 2. 105

To investigate the effect of CTRS across time, we measured 106

the genomic summary statistics on batches of individuals sam- 107
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pled through time for the following scenario: 2000 generations1

of CTRS, followed by 2000 generations with no CTRS. Every 502

generations, individuals were sampled for analysis. Following3

any cultural change (starting or stopping CTRS), we sampled4

more frequently to capture rapid fluctuations of summary statis-5

tics (at generations 2, 5, 10, 15, and 20 post-change).6

Summary statistics7

To assess the effects of CTRS on the genome, we explored the8

following diversity summary statistics as a function of time us-9

ing the tskit package (Kelleher et al. 2016, 2019): (1) the number10

of trees per chromosome, which is the number of recombination11

breakpoints plus 1, (2) the number of pairwise differences among12

the sampled chromosomes, (3) the average number of pairwise13

differences per tree, (4) the number of SNPs in the chromosomes,14

(5) the average number of SNPs per tree, (6) Tajima’s D, (7) the15

unfolded Site Frequency Spectrum (SFS). For the SFS, we com-16

puted a transformed version (Lapierre et al. 2017) that consists17

in multiplying singletons by 1, doubletons by 2, n-tons by n.18

We then divided all bins by θ, which is estimated by taking the19

average of all bins so that the expected transformed SFS for the20

neutral case is a flat line with a value of 1.21

We computed the theoretical effective size Nexp according to22

the equation Nexp = 4N/(2 + s2), where s2 is the variance in23

progeny size (Wright 1938; Ewens 2016). This formula computes24

the effective size as a function of the census population size N25

and the variance in progeny size only. We compared Nexp to the26

observed effective size Nobs which was computed as following:27

Nobs = θ/(4µL), with the average number of pairwise differ-28

ences, θ̂π , as an estimator of θ, L the genome length and µ the29

mutation rate per base pair.30

We also computed various topology indices, to assess the31

effect of CTRS on the topology of coalescent trees, with the help32

of the tskit package (Kelleher et al. 2016, 2019). Balance and im-33

balance indices: (1) Ib, the Brandenburg imbalance index (Bran-34

denburg et al. 2012; Blum et al. 2006); (2) I∗s , a normalized Sackin35

imbalance index (Sackin 1972; Shao and Sokal 1990); (3) I∗cm, a36

normalized Colless imbalance index (Colless 1982), modified as37

explained below; (4) the B1 balance index (Shao and Sokal 1990);38

(5) the B2 balance index (Shao and Sokal 1990; Bienvenu et al.39

2021). Other topology indices: (1) the number of polytomies40

(nodes that have more than two direct children); (2) the number41

of interior nodes (all nodes excluding leaves and root). In order42

to compare different indices, we also used their standardized43

versions using their mean and standard deviation at generations44

preceding CTRS.45

Ib, I∗s and I∗cm measure the imbalance of trees, meaning that46

those indices take higher values for more imbalanced trees. Ib47

was computed using the script provided by Brandenburg et al.48

(2012). For one tree, Ib is the average of Ib,node computed for each49

node in the tree according to the formula:50

Ib,node =
B − ms,l
D − ms,l

, with ms,l = 2Bs,l,coal − D,

where s is the number of direct sub-nodes under the considered51

node and l the number of leaves descending from it. For each52

direct sub-node under the considered node, leaves are counted53

and the maximum value is denoted B. D is the maximum value54

that B can possibly take (i.e., in the most imbalanced configura-55

tion) and is equal to l − s + 1. Thus, B
D is the level of imbalance56

at this specific node. The correction factor ms,l enforces the ex-57

pectation of Ib to be 0.5 for a standard population without CTRS.58

This parameter is evaluated based on simulations: Bs,l,coal is the 59

average B value of 1000 simulated random Kingman’s (1982) in- 60

complete coalescent trees with l leaves that were stopped when 61

s parent nodes remained. 62

The Sackin imbalance index Is is computed by counting for 63

each leaf the number of nodes to reach the root and summing 64

up all values. The Colless imbalance index Ic is computed by 65

counting for each node (except for the root in our case) the 66

difference in number of leaves between its two children and 67

summing up all values. However, this can be done only for 68

binary trees. To handle polytomies, we designed a modified 69

version of Colless imbalance index Icm, where the two children 70

chosen for calculating the difference are those with the highest 71

and lowest number of leaves. Since Sackin and Colless indices 72

minimum and maximum values depend on the number of nodes 73

(Shao and Sokal 1990) which varies across trees when permitting 74

polytomies, we computed a corrected version of Sackin I∗s and 75

Colless I∗cm indices which divides the index of each tree by the 76

number of its interior nodes. 77

B1 and B2 are balance indices; we thus expect their value to be 78

lower when trees are imbalanced. B1 balance index is computed 79

by counting for each node the maximum path length to its leaves 80

and taking the inverse of this value before summing up all of the 81

values (one value per interior node). B2 balance index is based 82

on pk the probabilities to reach the leaf k assuming a random 83

walk starting from the root and choosing a random direction 84

at each node. B2 is equal to the Shannon entropy of the pk; a 85

uniform distribution (an entropy of 1) corresponds to a balanced 86

tree (Shao and Sokal 1990; Bienvenu et al. 2021). 87

Because of recombination, one chromosome corresponds to 88

a sequence of coalescent trees. Summary statistics can be com- 89

puted on each of them, with close trees having similar values. 90

To consider the various histories represented by each of those 91

trees, we explored not only the average summary statistics but 92

also the shape of their distributions across the genome. The 93

summary statistics were computed separately on each tree along 94

the genome using the tskit package. 95

We also assessed the effect of sample size (number of sampled 96

individuals) and of number of genomic regions on the power 97

of detecting CTRS, using a Wilcoxon test with the significance 98

threshold set to 0.01. For this, we simulated 3000 independent 99

genomic regions of 1 Mb for two populations of 1000 individuals: 100

one that went through a CTRS process of strength α = 1 during 101

20 generations before present, and one with α = 0 (no CTRS). We 102

then sampled 5, 10, 30, 60, 90 and 120 diploid individuals from 103

each of the two sets of 3000 regions and computed four sum- 104

mary statistics (Ib, number of polytomies, B1, and Tajima’s D) 105

on all of them (2 scenarios × 3000 regions × 6 sample sizes × 106

4 summary statistics computations). For each sample size, we 107

sampled 3, 4, 5,. . . , 100 regions from the two sets of 3000 simu- 108

lated regions, before using a Wilcoxon test to compare the four 109

summary statistics values between the two populations (α = 0 110

and α = 1). For each combination of sample size and number of 111

sampled replicates (6 × 98 combinations), the sampling among 112

replicates and the Wilcoxon test were repeated 1000 times, with 113

the proportion of p-values lower or equal to 0.01 equaling the 114

power of the test. 115

Assessing demography inference bias 116

To assess the bias in SFS-based demography inference, we used 117

the software δaδi (Gutenkunst et al. 2009) with a one-event model. 118

Two scenarios were studied: (1) a sudden five-fold expansion 119
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in population size that happened 280 generations before a short1

period of CTRS (20 generations); and (2) a sudden five-fold ex-2

pansion in population size that happened during CTRS, after3

the first 1200 generations of a 1500 generations period of CTRS4

(Figure 1). We chose a five-fold sudden expansion as a simple5

illustration of a demographic event, which has the advantage of6

mimicking the past Neolithic expansion in human population7

history. From 30 diploid individuals sampled 300 generations8

after the demographic event, we inferred two parameters: the9

growth factor (expected value of 5) of the population and the10

number of generations since the event (expected value of 30011

generations). The strength of CTRS was set to α = 1. We com-12

pared the quality of inference in both scenarios to equivalent13

demographic scenarios without CTRS (α = 0).14

300 gen. 300 gen.

CTRS
Nb of gen. since expansion Nb of gen. under CTRS

20 gen. 1500 gen.

Scenario 1 Scenario 2

Figure 1 The two studied scenarios for SFS computation and
δaδi inference. In both scenarios, the expansion event happens
300 generations before SFS computation and δaδi inference.
Scenario 1: 20 generations of CTRS before present. Scenario 2:
1500 generations of CTRS before present.

We inferred the parameters of 200 replicates for each of the15

four scenarios (scenario 1 and 2 with α = 0 or 1). Because δaδi op-16

timization algorithm depends on the initialization of the model17

parameters, we repeated the inference three times for each repli-18

cate with different initialization values. We set the boundaries19

for inferred growth factor at [0.01; 100] and for inferred growth20

time at [0; 5] (time is expressed in 2N generations in δaδi, N21

being the population size before the event). When the results22

were too close to the boundaries (> 99 or < 1/99 for the growth23

factor, > 4.9 or < 0.1 for the time since the event), results were24

discarded. For each replicate, the remaining results among the25

three trials were kept, and their median was considered as the26

inferred parameter for this replicate. To convert time into genera-27

tions, we multiplied the inferred time value of each replicate r by28

2N̂r; where N̂r denotes the ancestral population size estimated29

for replicate r, using a θ̂r estimate computed by δaδi.30

We removed outliers among replicates (i.e., values that are31

higher than Q3 + 1.5 × IQR and lower than Q1 − 1.5 × IQR,32

with Q3 being the third quartile, Q1 the first quartile and IQR33

the interquartile range). We then computed the mean squared34

relative error (MSRE) and relative bias.35

Results and discussion36

Impact of CTRS on reproductive patterns37

To assess the impact of CTRS on reproductive patterns, we simu-38

lated various levels of CTRS (strength of CTRS defined by α) for39

two models of variance in reproductive success (low variance40

with b = ∞ and high variance with b = 1). We computed the41

Pearson correlation coefficient between parents and children 42

CorP,C and the variance and distribution of progeny size. As 43

expected, the correlation between the progeny size of parents 44

and children, CorP,C, increases with α. However, this effect is 45

weaker for smaller population size. This is due to an increased 46

effect of stochastic processes in small populations, counteracting 47

the impact of parents on children’s progeny size (Figure 2A). 48

The correlation between CorP,C and α is also lower for high vari- 49

ance in progeny size (i.e. b = 1 model) than for low variance in 50

progeny size (i.e. b = ∞ model) (Figure 2A). The lower correla- 51

tions in the first case are due to the higher variance introduced 52

in the model. 53

Higher values of α yield more extreme progeny sizes (Figure 54

2B-C, purple compared to orange and green) and a higher vari- 55

ance (Supp. Fig. S1). This variance reaches a plateau after a few 56

generations (Supp. Fig. S1). At this plateau, the exact progeny 57

size distribution differs depending on the model: compared to 58

the b = ∞ model, the b = 1 model yields a higher proportion 59

of couples with no offspring and a lower proportion of couples 60

with medium-sized families (1 to 3 children) (Figure 2B versus 61

2C). 62

Impact of CTRS on the genome 63

Effective population size We then assessed CTRS impact on pop- 64

ulation genomic parameters. When CTRS begins, genomic di- 65

versity, measured either as the number of SNPs (Supp. Fig. S2A) 66

or as the number of pairwise differences (Fig. 3A), declines and 67

eventually reaches a plateau. This shows a decrease in effective 68

population size of 40 % for the b = ∞ model and of 75 % for the 69

for b = 1 model (for α = 1, at the plateau), demonstrating a 70

stronger effect of CTRS under the second model (Fig. 3B). 71

Because of this decrease in effective population size, the num- 72

ber of coalescent trees across the genome is lower due to fewer re- 73

combination events, and the TMRCA is smaller (Supp. Fig. S2B- 74

C). For all these parameters, the plateau is lower for α = 2, since 75

it yields lower effective population sizes than α = 1. Moreover, 76

the higher α is, the faster the plateau is reached. This happens 77

because genetic drift, which is stronger when α is high, swiftly 78

erases past diversity. As soon as CTRS stops, diversity starts to 79

increase slowly (Figure 3A), taking more time to recover than 80

it took to decrease. Indeed, as the effective population size 81

becomes larger, drift becomes weaker and the impact of past 82

events lasts longer (i.e., diversity is close to equilibrium after 83

10Ne generations). 84

This decrease in effective population size results both from 85

the increase in the variance of progeny size due to CTRS and 86

the transmission of progeny size itself, which amplifies allele 87

fixations by helping alleles carried by large lineages to spread 88

faster in the population. To assess the respective impact of these 89

two factors on effective population size, we compared Nexp (the 90

expected effective population size when taking into account the 91

variance in progeny size only), to Nobs which is impacted by 92

both components (Fig. 3B). We show that while a substantial 93

decrease in effective population size is caused by the increased 94

variance in progeny size, most of this decrease is due to the 95

transmission component (around 70 % of the decrease in the 96

b = ∞ model and 65 % of the decrease in the b = 1 model, for 97

α = 1). 98

Tajima’s D Tajima’s D follows a more complex pattern than ge- 99

netic diversity. This pattern can be decomposed into four steps 100

(Figure 4A): (1) As soon as CTRS begins, it increases rapidly 101

towards a peak in positive values then (2) it decreases toward 102
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Figure 2 Impact of CTRS on two population reproduction variables.
A. Correlation between parents and children progeny size as a function of α, for four scenarios. In brackets: correlation between CorP,C and α for each
scenario. Lines are drawn using locally weighted regression with the 95% confidence interval using the function loess of the R package ggplot2.
B. Distribution of progeny sizes for α = 0 (green), 1 (orange) and 2 (purple), population size = 1000. The b = ∞ model is used (low variance of
reproductive success).
C. Distribution of progeny sizes for α = 0 (green), 1 (orange) and 2 (purple), population size = 1000. The b = 1 model is used (low variance of
reproductive success).

a plateau in negative values, (3) when CTRS stops, it rapidly1

decreases again toward a more negative value, (4) it slowly2

recovers to pre-CTRS levels. The first peak (1) results from a3

sudden decrease in effective population size when CTRS starts,4

as explained above, yielding a demographic contraction-like5

signal with positive values of D. Once this contraction signal is6

erased (i.e., the effective population size is still lower but there7

is no “memory" of the ancient effective population size due to8

an MRCA born after the change), D reaches a negative plateau9

at equilibrium (2): the population is composed of many related10

individuals coming from large families lineages and few individ-11

uals from small families lineages, the latter yielding an excess12

of rare alleles. When CTRS stops, the decrease toward more13

negative values (3) is due to the increase in effective popula-14

tion size (expansion-like event). This negative peak is followed15

by a slow recovery (4) until the expansion signal is completely16

erased. These steps are not followed at the same pace along the17

genome: some coalescent trees will enter the equilibrium stage,18

while others retain a strong signal of the effective population19

size contraction. This transiently yields a bimodal distribution of20

D across the genome (Supp. Fig. S3B and C for α = 2, Figure S3D21

for α = 1).22

Thus, understanding the effect of CTRS on Tajima’s D re-23

quires accounting for two processes: Changes in effective pop-24

ulation size and an increased variance in relatedness among25

individuals as compared to a neutral population. Time is then26

an important factor: the relationship between α and Tajima’s D27

changes over time after the beginning of CTRS, and the impact28

of CTRS on genetic diversity and D persists long after CTRS has29

stopped. 30

The interaction between demographic events and CTRS is 31

also important, since both can happen in the same period of 32

human history. When a five-fold expansion occurs during the 33

equilibrium stage, Tajima’s D decreases as expected, but the ex- 34

tent of this decrease depends on α: the stronger α, the weaker the 35

decrease will be, showing the non-additivity of the two processes 36

regarding D (Figure 4B, generation 1200). The recovery from the 37

effect of this five-fold expansion also depends on α: when α = 1, 38

Tajima’s D recovers faster than with no CTRS (α = 0) (Figure 4B, 39

generations 1200 to 1500). This is due to the smaller population 40

effective size when α = 1, which makes that past signals are 41

quickly erased. Thus, we expect populations under CTRS to lose 42

faster the genetic signals of past demographic events. 43

Coalescent trees topology It is likely that neither diversity in- 44

dices nor Tajima’s D would be sufficient alone to infer CTRS in 45

population genetics data, since demographic events also impact 46

these statistics. Conversely, the shape of coalescent trees has 47

been shown to display a CTRS specific signal, with trees being 48

more imbalanced only when CTRS is present, irrespective of the 49

variation in total population size. Brandenburg et al.’s (2012) 50

imbalance index Ib (Figure 5A) grows rapidly when CTRS starts 51

and decreases as soon as it stops, recovering in a few dozens 52

of generations, unlike Tajima’s D (Figure 4A) that did not fully 53

recover after 2N = 2000 generations. The number of polytomies 54

follows a similar pattern across time as Ib (Supp. Fig. S4). How- 55

ever, this increased number of polytomies can stem from the 56

contraction in effective size yielded by CTRS (4-fold decrease 57
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Figure 3 Factors of effective population size decrease under CTRS.
A: Average number of pairwise differences across time for three levels of CTRS: α = 0, α = 1 and α = 2. In all cases, the b = 1 model of variance in
progeny size is used. The blue rectangle corresponds to the period when populations are under CTRS. Generations are counted from the beginning
of CTRS.
B: Expected effective population size given the observed offspring variance (Nexp) and observed effective population size measured using the
number of pairwise differences at the plateau in panel A as an estimator of θ (Nobs), for α = 0 and α = 1 and both models of variance in progeny size
(b = ∞ and b = 1). The dotted line represents the census N value, which is 1000 individuals.

when α = 1 and b = 1), as coalescent rates are higher for smaller1

population sizes, increasing the probabilities of polytomies. To2

assess this hypothesis, we compared the number of polytomies3

after 500 generations of CTRS (α = 1 and b = 1) to the number4

of polytomies after a 4-fold contraction 500 generations before5

present, without CTRS. Results show that the 4-fold contraction6

indeed yields a higher number of polytomies than the neutral7

case, but a lower number of polytomies compared to the sce-8

nario of CTRS (Supp. Fig. S5A). Thus, the increased number of9

polytomies under CTRS is not only caused by the contraction10

of effective size, but also by the transmission property of CTRS.11

The same comparison for Ib shows that none of the imbalance12

under CTRS is due to the contraction of effective size, as the13

mean imbalance after contraction is equal to that of the neutral14

case, with a higher variance due to the smaller population size15

(Supp. Fig. S5B).16

The distribution of Ib across the genome is bell-shaped and17

unimodal for all tested strengths of CTRS (α = 0, 1 and 2), with a18

shift toward high values when α increases (Supp. Fig. S6). This is19

because CTRS is not conveyed by any locus in particular, unlike20

natural selection for which we could expect in some cases a mul-21

timodal distribution due to imbalanced trees in the region under22

selection and balanced trees elsewhere in the genome. Unlike23

the distribution of Tajima’s D (Supp. Fig. S3), the distribution24

of Ib does not evolve during the process of CTRS, as shown25

when comparing the distributions after 20 and 500 generations26

of CTRS (Supp. Fig. S6). In fact, Ib is only impacted by the im-27

balance property of coalescent trees and thus only displays its 28

effects which are constant through time after the first few gen- 29

erations, contrary to Tajima’s D which is affected by imbalance 30

and by changes in effective size as well, with the latter’s effects 31

depending strongly on time. 32

CTRS detection Some indices seem to be more effective for 33

CTRS detection than others (Figure 5B). When α = 1, of all 34

tree (im)balance indices, B1 and I∗s are the most affected, with 35

a shift of 3 to 4 standard deviations, while this shift is only be- 36

tween 1 and 2 standard deviations for other (im)balance indices 37

such as Ib, Is, I∗cm and B2. The number of interior nodes and 38

the number of polytomies are affected by CTRS more than all 39

other measured indices, with a shift of 8 to 9 standard devia- 40

tions (Figure 5B). Interestingly, each of these indices seems to 41

contain specific information about tree topology, as the corre- 42

lations between their absolute values range between 0.95 and 43

-0.2, although they all are correlated to α (Supp. Fig. S7). Thus, 44

a method combining various indices (e.g., using Approximate 45

Bayesian Computation) might be able to detect CTRS from pop- 46

ulation genomic data more accurately than one using a single 47

index. Furthermore, not all indices are robust to demographic 48

events, as shown in Figure 5C: only Ib and B2 do not change 49

when an expansion happens during CTRS (vertical gray line at 50

generation 150), with a small change for I∗cm and wider changes 51

for other indices. The remaining indices are all affected by the 52

demographic event, although they still show tree imbalance of 53
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Figure 4 Tajima’s D through time under various CTRS and demographic conditions.
A-B. The blue rectangle corresponds to the period when populations are under CTRS. Generations are counted from the beginning of CTRS. In all cases,
the b = 1 model of variance in progeny size is used.
A. Tajima’s D across generations for three values of α (0, 1 and 2), with a constant population size of 1000 individuals.
B. Tajima’s D across generations for three values of α (0, 1 and 2). A five-fold expansion event happens at generation 1200 (200 individuals to 1000
individuals - gray vertical line).

samples collected after the event (except for Is, which reaches 01

soon after the event).2

As for many evolutionary processes, the power of CTRS de-3

tection also depends on the number of sampled individuals and4

loci. We assess the effect of these two parameters on our ability5

to discriminate two scenarios using a Wilcoxon rank test: one of6

20 generations of CTRS (strength α = 1) before present and one7

without CTRS (α = 0). We show that for all four studied sum-8

mary statistics, power increases with both the number of sam-9

pled individuals and the number of sampled loci (Supp. Fig. S8).10

Number of polytomies and Tajima’s D are the most effective11

indices, with the first index reaching a power above 0.95 (at12

Type I error = 0.01) for 60 genomic regions of 1 Mb and 10 sam-13

pled individuals, and the second reaching this power for 10014

genomic regions of 1 Mb and 10 sampled individuals. How-15

ever, as showed previously, both these indices are impacted16

by changes in census population size and cannot be relied on17

for CTRS inference. Ib and B2, on the contrary, are indepen-18

dent from changes in population size, but display a much lower19

power of detection compared to the two previous indices. Ib20

needs 30 individuals and 100 genomic regions of 1 Mb in order21

to reach a power of 0.95, while B2 needs 90 individuals and22

100 genomic regions of 1 Mb to reach this power of detection.23

For CTRS detection, the number of individuals seems to have24

a stronger impact on power of detection than the number of25

genomic regions, with a power above 0.9 reached with Ib for 10026

individuals and 10 independent regions of 1 Mb, compared to a27

power of 0.15 with 10 individuals and 100 independent regions28

of 1 Mb. This can be due to the need to have a minimum number 29

of sampled individuals in order to assess topological properties 30

of the population coalescent trees. As stated above, we expect 31

a combination of multiple indices using methods such as ABC 32

to be even more effective for CTRS estimation from genomic 33

data, compared to single indices. Also, using the distribution of 34

indices along the genome might bring more information about 35

past CTRS compared to the use of mere averages. 36

In conclusion, the evolution of Tajima’s D and imbalance 37

measures through time highlights two separate consequences of 38

CTRS on population genetics: (i) changes in effective population 39

size and (ii) changes in coalescent trees topology (imbalance 40

property and number of polytomies). The first process happens 41

when CTRS starts or stops, while the second one happens dur- 42

ing CTRS, lasts as long as CTRS lasts, and persists for a short 43

period once it is over. Thus, when CTRS starts, both processes 44

impact population genetics, whereas only topology changes are 45

detectable after a while, at what we call “CTRS equilibrium”. We 46

showed that both of these mechanisms affect the genomic signal 47

commonly used for population genetic inferences and the next 48

section will illustrate, based on simulations of an instantaneous 49

expansion, how demographic inference is impacted both before 50

and after CTRS equilibrium. 51

Impact of CTRS on demographic inference 52

In this section, we investigate the impact of CTRS on demo- 53

graphic inference before and after CTRS equilibrium. In the 54

first case, the genomic signal of expansion is affected by the 55
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Figure 5 Imbalance indices through time.
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distortion in trees’ topology (i.e., imbalance and higher number1

of polytomies) and by the recent change in effective population2

size, while in the second case only changes in trees topology3

remain. We explore the “Before CTRS equilibrium” scenario4

by inferring demography 20 generations after the beginning of5

CTRS, and the “At equilibrium” scenario by inferring demogra-6

phy 1500 generations after the beginning of CTRS. The five-fold7

expansion event to be inferred happens in both scenarios 3008

generations before the inference (more details in Methods).9

Before CTRS equilibrium, we measured a strong bias in the10

demography inferred by δaδi. When α = 1, the inferred growth11

factor has a median of around 3 instead of 5 (relative bias = -0.37,12

MSRE = 0.18, compared to 0 and 0.04 respectively for α = 0)13

(Figure 6C). δaδi inferences are solely based on the SFS. After 2014

generations of CTRS and without any change in census popula-15

tion size, SFS shows a marked deficit of rare alleles due to the16

contraction of effective population size caused by the initiation17

of CTRS, and an excess of common alleles due to this contrac-18

tion combined with the presence of many related individuals19

coming from large families lineages (Figure 6A). Conversely,20

in a scenario of 20 generations of CTRS following an event of21

expansion, the SFS for α = 1 is expectedly a mix between the22

expansion-only pattern (α = 0) and the CTRS pattern for α = 123

(Figure 6B). In this case, the SFS displays a smaller excess of24

rare alleles compared to the expansion-only pattern. Since the25

excess of rare alleles is the main signal of expansions, a smaller26

expansion is inferred. The contraction of effective population27

size due to the initiation of CTRS reduces the excess of rare al- 28

leles caused by the expansion event, yielding an inference of a 29

smaller growth factor. Time since the demographic event is also 30

inferred less accurately after a period of 20 generations of CTRS 31

(for α = 0: relative bias = -0.17, MSRE = 0.06; for α = 1: relative 32

bias = 0.22, MSRE = 0.21). 33

At CTRS equilibrium, for α = 1, a median growth factor of 34

around 4 is inferred instead of 5 (relative bias = -0.18, MSRE = 35

0.16, compared to -0.01 and 0.04 respectively for α = 0) (Fig- 36

ure 6G). The SFS at CTRS equilibrium with no demographic 37

event is U-shaped (Figure 6E): this stems from an excess of rare 38

alleles caused by the small families lineages and an excess of 39

common alleles resulting from the large families lineages. When 40

a demographic expansion happens at CTRS equilibrium, the SFS 41

displays a tilted U-shape, with less excess of rare alleles in com- 42

parison to the expansion-only scenario (Figure 6F). This is due 43

to the smaller effective population size during the generations 44

where CTRS occurs, which induces an accelerated loss of part of 45

the rare alleles created by the expansion event. Since rare alleles 46

are the main traces of this past expansion event, a smaller expan- 47

sion is inferred. The inferred time since the demographic event 48

when the population experienced 1500 generations of CTRS 49

is strongly biased with a median inference of 50 generations 50

since demographic event instead of 300 (α = 0: relative bias 51

= -0.15, MSRE = 0.05; α = 1: relative bias = -0.74, MSRE = 0.6) 52

(Figure 6H). 53

We thus showed that after a period of CTRS, whether short 54
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Figure 6 SFS and δaδi inference of expansion parameters at two stages of CTRS.
A and E: SFS for α = 0 and 1 with no demographic event.
B and F: SFS for α = 0 and 1 after a 5-fold expansion 300 generations ago.
C and G: inferred growth factor for α = 0 and 1, after a 5-fold expansion 300 generations ago.
D and H: inferred number of generations since expansion for α = 0 and 1, after a 5-fold expansion 300 generations ago.
A-D: Scenario “Before CTRS equilibrium” (20 generations of CTRS before present).
E-F: Scenario “At CTRS equilibrium” (1500 generations of CTRS before present).
MSRE, Relative Bias and percentage of rejected replicates displayed above each boxplot. In all cases, the b = 1 model of variance in progeny size is
used.
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(20 generations) or long (1500 generations), past growth factors1

of expansion events are underestimated with an SFS-based in-2

ference method, due to a lack of rare alleles compared to the3

neutral case scenario. Time since the expansion event can be4

largely underestimated if it happened after a long period of5

CTRS and slightly overestimated after a short period of CTRS.6

Conclusion7

Many studies evaluating CTRS strength in human populations8

rely on the computation of correlations between parents and chil-9

dren progeny size from pedigree datasets (Murphy 1999). How-10

ever, we show here that this measure cannot by itself account for11

the breath of CTRS effects on population genetics. Indeed, under12

the high variance in progeny size model (b = 1), correlations13

are lower than under the low variance model (b = ∞), while14

the impacts on population genetics are increased. Thus, a more15

precise evaluation of CTRS from pedigree data would request16

taking into account the distributions of parents and children17

progeny sizes besides the correlation values. Furthermore, the18

higher correlations under the low variance model (b = ∞) could19

explain the higher correlations observed in populations that ex-20

perienced a demographic transition (Murphy 1999; Jennings et al.21

2012; Jennings and Leslie 2013). Indeed, a main characteristic of22

this transition is a decrease in progeny size variance. Finally, we23

observe that CTRS has a stronger impact on effective size than24

the variance introduced in the model. This result is supported25

by measurements in the Saguenay-Lac-Saint-Jean population for26

similar levels of progeny size correlation (Heyer et al. 2012).27

CTRS impacts genomic diversity in two ways: (i) when CTRS28

begins or ends, populations undergo a decrease (resp. increase)29

in effective size that impacts several population genetic statistics30

such as Tajima’s D and SFS. This lower effective size stems from31

the increased variance in progeny size under CTRS and from32

the transmission component itself. We could show that the latter33

accounts for most part of the decrease in effective population34

size under CTRS. (ii) During the CTRS process and shortly after35

it stops, coalescent trees topology (i.e., tree shape properties36

that are not related to branch length) is distorted, which also37

impacts Tajima’s D and SFS. When CTRS lasts long enough,38

the effect of the change in effective size disappears while tree39

topology distortion persists, inducing lower genetic diversity40

and a U-shaped SFS. These two processes start together but have41

different dynamics, yielding a complex effect on population42

genetics through time.43

We showed that the distortion in coalescent tree topology44

affects two topological properties: (1) trees are more imbalanced,45

which can be shown with balance and imbalance indices, and46

(2) the number of polytomies increases. In theory, both of these47

effects could happen independently, as binary trees can be im-48

balanced and polytomies do not necessarily induce imbalance.49

However, under CTRS, we show that trees undergo a complex50

change of their topology, with an interplay between these two51

properties of imbalance and polytomies. These two effects yield52

a U-shaped SFS, a signature that could be created by each of the53

processes independently. Further studies could evaluate their54

relative impact and possible interaction.55

The impact of CTRS on SFS explains why the SFS-based de-56

mographic inference performed by δaδi was biased for pop-57

ulations undergoing CTRS. After a few generations of CTRS,58

growth factors of past expansion events are underestimated.59

This implies that past expansions, such as the Neolithic ones,60

might be underestimated in populations experiencing CTRS, at61

least when inferred based on SFS. After many generations under 62

CTRS, the timing of expansion is strongly underestimated as 63

well. Furthermore, due to the decrease in effective population 64

size induced by CTRS, past expansion signals were lost more 65

rapidly, as compared to scenarios without CTRS. Similarly, the 66

signal of other past events, such as bottlenecks, selection or mi- 67

gration, is expected to be erased more rapidly in the presence of 68

CTRS. We established that CTRS impacts an SFS-based inference 69

method and expect other approaches to be affected given that 70

CTRS distorts coalescent trees, which are directly or indirectly 71

at the core of any inference method. CTRS is thus one more 72

process among other that can affect demographic inference (e.g., 73

purifying and background selection (Johri et al. 2021; Pouyet et al. 74

2018), biased gene conversion (Pouyet et al. 2018), population 75

structure (Mazet et al. 2016), selection, gene conversion, and 76

biased sampling in microbial populations (Lapierre et al. 2016)). 77

To disentangle the effects of demographic events from CTRS, 78

imbalance indices that are unaffected by variation in the total 79

population size can be used. We showed that power of detection 80

of CTRS from genomic data is less impacted by the number of 81

independent regions than by the number of sequenced individ- 82

uals that should be high enough, a condition easily achieved 83

with modern datasets. However, these indices are computed 84

from coalescent trees which first need to be reconstructed from 85

genomic data (e.g. using ARGweaver (Rasmussen et al. 2014), 86

tsinfer (Kelleher et al. 2019), or relate (Speidel et al. 2019)). This 87

tree reconstruction step might not be able to infer a perfectly 88

accurate topology, yielding potential biases in the estimated 89

imbalance and balance indices. Moreover, in addition to the ex- 90

pected imprecision of reconstruction of neutral trees, these tools’ 91

behavior under CTRS remains to checked. Another possibility 92

would be to build and train deep learning networks directly on 93

raw genomic data without reconstructing coalescent trees, as 94

in Sanchez et al. (2021). This would prevent the introduction 95

of biases due to tree reconstruction, but might require a larger 96

amount of simulated data for training. 97

To conclude, one should note that the impacts of CTRS on 98

the genome studied here should happen in the case of selection 99

as well: effective population size and coalescent trees topology 100

should be affected, yielding qualitatively similar patterns in 101

Tajima’s D, SFS and other statistical indices throughout time. 102

However, due to the process of recombination, all these effects 103

would be restricted to the region linked to the locus under se- 104

lection. Conversely, CTRS impacts the whole genome because 105

it is not caused by any genetic locus in particular. CTRS would 106

thus qualitatively resemble an extreme case of multiloci selec- 107

tion, where all loci in the genome would be under selection 108

pressure. Because of this impact on the whole genome, the bias 109

produced by CTRS in demographic inference are non-trivial to 110

escape from, whereas bias caused by selection on a few locus 111

can be avoided by inferring demography from neutral regions. 112

Furthermore, CTRS and multiloci selection might be particularly 113

prone to blur each other due to their similarity, and we expect 114

the distinction between the two processes in real genomic data 115

to be a challenging issue. 116

Data availability 117

SLiM code used to generate the simulated data and python 118

code for summary statistics computing and δaδi inference can 119

be found at https://github.com/jeremyguez/CTRS. 120
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