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Abstract 
Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. 

However, comprehensive single-cell based characterization covering this coordination is lacking. Here, 

we captured transcriptional states of single cells over space and time during skin wound closure, 

revealing choreographed gene expression profiles. We identified shared and prominent space-time 

patterns of cellular and gene expression enrichment: which we call multicellular ‘movements’ and which 

spanned multiple cell types.  We validated some of the discovered space-time movements using large 

volume imaging of cleared wounds and demonstrated the value of this analysis to predict gene products 

made by macrophages or fibroblasts, which activated gene programs in the opposite cell type. Finally, 

using two different tumor models, we tested the hypothesis that tumors are like ‘wounds that never heal’ 

finding conserved wound healing movements in the tumor space, wherein some movements were 

preferentially used in one tumor versus another. 
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Introduction 
Metazoans rely on intricate networks of cell-cell crosstalk for the maintenance of tissue homeostasis 

and during repair and regenerative processes following perturbations such as damage1–3. Given the 

diversity of cell types within a tissue and all possible ligand-receptor pairings and their signaling dynamics, 

a formalized method for interrogating crosstalk over space and time in the tissue remains a daunting 

task4. Even a minimal two-actor system can exhibit robustness and return to a stable state following 

perturbation5. This same adaptation to perturbation can be seen when increasing the number of cellular 

actors and thus the number of possible ‘edges’ (i.e. cell-cell crosstalk axes), such as the combination of 

stellate cells, hepatocytes, endothelial cells, and Kupffer cells in a liver-specific niche6. Identification of 

these cell-cell crosstalk mechanisms and effects on gene expression across a multitude of cells at once 

requires the ability to measure expression patterns within single cells isolated from the tissue, during the 

process. 

To that end, the advent of single-cell technologies has allowed profiling of cells on the transcriptional 

level at resolutions previously unattainable, generating rich datasets identifying highly-resolved cell 

subsets and subtle variations in gene expression and activation states7–9. A number of computational 

approaches have sought to infer cell-cell communication via paired ligand-receptor expression10,11 or 

ligand and downstream target gene expression12. These inferences can be further strengthened by 

applying spatial and temporal context to single cell transcriptomics. Spatially resolved single cell datasets, 

such as those generated along the length of the intestinal villus, have revealed groupings of genes with 

similar spatiotemporal profiles, shedding light on the spatial segregation of cell functions, the dynamics 

of cell migration, and cell-cell crosstalk that enforced zonation13,14. Similarly, describing gene expression 

in terms of spatiotemporal patterns revealed signaling pathways and co-regulation of genes in the liver15 

and in peri-islet acinar cells in the pancreas16. Concordantly, we were motivated to describe the healing 

skin wound in terms of spatiotemporal multicellular patterns and gene expression programs. Skin wound 

healing naturally displays well-defined spatial and temporal dimensions following the advancing edge of 

the wound17. This process has canonically been segmented into several major phases starting with an 

initial inflammatory response followed by repair/growth and a resolution phase18,19. Interspersed within 

these phases are coordinated changes in gene expression patterns in diverse cellular players from 

monocyte/macrophages, neutrophils, fibroblasts, endothelial cells, keratinocytes and beyond3,20. Diverse 

crosstalk mechanisms between these cell types have been identified for regulating the proper duration 

of and transition between phases3,20–23 and disruption of these mechanisms often results in delayed or 

aberrant healing, demonstrating the highly interdependent structure of the wound healing cellular 

network. For example, depletion of macrophages at different stages of wound healing results in delayed 

healing with different phenotypes, again reinforcing the idea that cellular choreography is essential with 
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distinct functional roles during each phase24,25. Charting the progression of gene expression in single 

cells over space and time in the wound in a holistic manner would likely yield information on the 

coordinated behaviors of myriad cell types in an unbiased manner, leading to identification of new 

mechanisms of cellular crosstalk (i.e. identification of new edges in our network) and how they drive 

transitions between different phases of healing. 

 Additionally, the plasticity of cell types such as macrophages26 and fibroblasts27,28 and the ever-

changing milieu of cell signaling factors result in these cells occupying a continuum of expression states, 

suggesting that clustering approaches may be insufficient to capture the transitions between states. For 

example, the M1/M2 ‘binning’ of macrophages based on a handful of canonical marker genes (e.g. Arg1, 

Il6, Vegfa, and Mrc1) may represent too reductive a model, as wound healing macrophages express 

combinations of canonical M1/M2 genes all across the timescale of wound healing29. Therefore, a method 

for reframing cellular heterogeneity using overlays of gene programs (collections of co-expressed genes) 

in the healing wound may better capture the biology underlying the progression of cellular transcriptional 

heterogeneity. 

As such, the healing skin wound represents an ideal testbed for layering spatial and temporal 

dimensions onto single cell transcriptomics to identify grouped gene program progression across immune 

and non-immune cell types and thus infer the presence of a coordinated series of cell-cell interactions. 

An additional important rational for studying space-time progression of multicellular networks relates to 

chronic disease, in which healthy resolution is never achieved. Previous observations—largely at the 

level of tissue morphology—have suggested that tumors are ‘wounds that never heal’, namely that they 

co-opt wound healing but do not progress from inflammatory or resolution phases and fail to conclude30–

32. This idea motivated us to develop a framework based on conserved gene programs to identify whether 

crosstalk elements of the wound healing cellular network are ‘borrowed’ by growing tumors and whether 

they do so similarly across tumor models. The heterogeneity of a given cell type in different contexts may 

represent a convolution of conserved differentiation, functional, and tissue-specific expression patterns, 

as seen in resident immune cells scattered across all tissues33,34. Describing the common biology 

between two single cell datasets may again require going beyond clustering based approaches which 

may obscure the identification of overlaid gene programs in a continuum of cell states35. 

Using skin wound healing as a well-defined spatial phenomenon in tissue homeostasis and repair, we 

mapped changes in cell identity that co-occurred in similar space-time patterns, within the CD45+ immune 

and CD45- non-immune compartment during the wound healing process. Layered on top of cell type 

identity, we also identified spatiotemporally orchestrated gene programs – or factors – that can be 

grouped based on their unique space-time profile. Because we found these factors on the basis of their 

shared space-time patterns across multiple cell types, we refer to these shared factors as multicellular 
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‘movements’. Informed by spatiotemporal profiles of gene program expression, we focused on a handful 

of fibroblast-macrophage interactions over the time-course of wound closure, which we then verified 

using orthogonal approaches such as in vitro experiments and whole mount cleared tissue imaging. We 

studied these groupings, which allowed us to predict cell-cell crosstalk and validate a handful of pathways 

that had effects on target gene expression in paired cell types. Finally, we derived a framework for how 

to identify movements across tissue contexts, predicting the conservation of correlated immune and non-

immune gene program pairs and validating their variable presence within solid tumor models. 
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Results 
Separate waves of immune cell infiltration during wound closure 

To establish the compositional changes of immune cells during skin repair, full thickness circular 

wounds of 4 mm diameter were made on the back of mice (Figure 1A). We then sampled the wounds 

from day 0 to day 14 as they healed (Figure S1A). Sampling of CD45+ immune cells – collected within a 

4 mm radius of the wound center – during and post wound closure via mass cytometry using a 40-marker 

panel identified waves of major myeloid and lymphoid populations (Figures 1B and S1B). At our 

sampling resolution, we found three waves, dominated by the infiltration/presence of distinct immune 

cells (Figure 1C). Early: Up to one day post wounding, wounds were characterized by an influx of Ly6Chi 

inflammatory monocytes (infl. Monocytes 1-3) and mature Ly6Ghi neutrophils (Figure 1D). Other immune 

cell subsets were mostly depleted during these first 24 hours post skin wounding. Starting on day 3, 

Ly6G- c-Kit+ F4/80+ CD24+ immature pre-neutrophils were found in the wound bed (Figures 1D and 
S1C), which phenotypically match a recently described proliferative neutrophil precursor in the bone 

marrow36. Mid: Days 3 to 10 marked the peak emergence of three myeloid cells populations that had 

increasing levels of MHCII expression and concordant decrease of Ly6C levels (Figure 1D), as seen in 

maturing blood-derived monocytes extravasating into inflamed skin and gut37–39.  Based on Ly6C, MHCII, 

CD64, F4/80, and CD11c expression we annotated them as Ly6Cint monocytes (Ly6Cint MHCIImid CD64mid 

F4/80low CD11clow), macrophages (Ly6Clow MHCII+ CD64+ F4/80+ CD11cmid), and monocyte-derived 

dendritic cells (DCs) (Ly6C- MHCII+ CD64- F4/80- CD11c+) (Figure S1B). This highlights a coordinated 

wave of myeloid cell emergence in the wound bed, with inflammatory monocytes and neutrophils 

predominantly inhabiting the wound in the first day, transitioning to macrophage and monocyte-derived 

DC populations with increasing MHCII expression. Late: In addition to the most mature macrophages, 

MHCII-expressing dendritic cells also arrive on day 14 when the wound is closed (Figure 1D). A further 

nuance of the late phase is the accumulation of some cell populations that were immediately lost upon 

wounding, many to the levels well beyond the unwounded state. These include Macrophage_3 

populations as well as T cell populations, such as CD4+, CD8+, γδ, and dermal γδ T cells40 (Figures 1D 
and S1D). All these T cell populations reach pre-wound levels, except CD4+ T cells, which rebounded to 

a higher level than pre-wound. That cluster is composed of Foxp3+ regulatory T cells, γδ T cell receptor 

(TCR)+ T cells and conventional CD4+ T cells (Figure S1D). Among those, the γδTCR- CD4+ Foxp3- T 

cells rebound the earliest and to the highest level (Figure S1E). 

To globally describe the dynamic changes in immune cell composition during skin repair, we applied 

‘phenotypic earth mover’s distance’ (PhEMD) analysis to our dataset41. This dimensionality reduction 

revealed that day 1 post-wounding samples are very dissimilar to the unwounded state (Figure 1E). Day 

3 and day 5 samples displayed higher similarity to the unwounded state, with day 7 and day 10 post-
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wounding samples showing the most similar immune cell composition to unwounded state. The 

timepoints day 10 and day 14 mark the time of wound closure (Figure S1A), suggesting that upon 

epithelial skin repair, the skin-resident immune cell composition reaches pre-wounding homeostasis. 

However, day 14 and day 21 samples ‘overshoot’ this state and arrive at a distant state from all other 

samples (Figure 1E). This difference is driven by a decrease in neutrophils and monocyte-macrophage 

cells, and a corresponding increase in the lymphocyte population (Figure 1F). These findings were 

recapitulated in a second experimental run, where identical cell subpopulations and dynamics were 

observed (Figures S1F-S1H). 

In summary, the immune cell population infiltrating the skin wound displays a dynamic turnover, wherein 

it temporarily reaches the pre-wound composition but eventually assumes a ‘new homeostasis’ of skin-

resident immune cell population that is lymphocyte-rich. To gain a more comprehensive understanding 

on these state changes, we developed a spatial single cell transcriptional analysis of skin wound repair 

encompassing immune and non-immune cells and, for the present, focused upon the first 14 days which 

encompassed the majority of resolution. 

 

Transcriptional space-time analysis of single cells unveils unique cell patterns during skin repair 

Involvement of both immune and non-immune cells are crucial for skin repair42–44. To understand how 

gene expression programs in the different phases of skin repair are linked amongst cell types and across 

the radial dimensions of a wound, wounds were physically and radially partitioned using successively 

large punches: wound center (2 mm center diameter), wound edge (2-4 mm diameter), wound proximal 

(4-6 mm diameter), and wound distal (6-8 mm diameter). These different areas were sampled during 

different phases of wound repair: inflammatory (D1), transition (D3), return-to-unwounded (D7), and 

‘overshoot/new homeostasis’ (D14) (Figures 1E and 2A). Given the original wound diameter of 4 mm, 

we thus captured two distinct areas within the wound bed plus two distinct areas in skin beyond the 

wound and into uninjured tissue. Upon digestion of the individual rings of tissue, CD45+ immune and 

CD45- non-immune cells were sorted separately, barcoded using MULTI-seq45 based on their collected 

timepoint and area, and then their transcriptional state assessed by using the 10x Genomics single-cell 

RNA sequencing (scRNAseq) platform (Figure 2A). This provided us with a space-time scRNAseq 

dataset that covers the major extent of the skin repair process. 

First, we focused on the CD45+ immune cells. Graph-based clustering and differential gene expression 

analysis of 10,492 cells revealed heterogenous monocyte and macrophage subpopulations, four 

neutrophil subpopulations, mast cells, dendritic cells, B cells, two T cell, and one Natural Killer (NK) cell 

cluster (Figure S2A and S2B). After re-clustering the monocyte-macrophage (from here on referred to 
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as Mono_Mac) populations as the largest representative of CD45+ immune cells, we identified three 

MHCIIhi and eight MHCIIlo subpopulations (Figures 2B and S2C). 

We noted that MHCIIhi cells expressed markers associated with monocyte-derived dendritic cells 

(moDCs), such as Cd209a46 and the transcription factor Nr4a347 (Figure S2C and S2D). Additionally, 

both MHCIIlo and MHCIhi Mono_Macs emerged together and early during wound healing (Figure 2C, 

Day1). On these bases, we considered them separately, reclustering them prior to further analysis 

(Figures 2D and S2E, respectively). 

The MHCIIlo Mono_Mac subset consisted of two subsets expressing high levels of Ly6c2, which we 

annotated as Mono_1 and Mono_2 (Figure S2C). Those, together with Mono_Mac_3 also were identified 

by upregulation of the transcription factor Klf2, which regulates pro-inflammatory cues in monocytes48 

and at least one of the chemokines Cxcl3, Ccl2, Ccl6, Ccl7, and Ccl24. Finally, Mono_Mac_4, 

Mono_Mac_5, and Mono_Mac_6 shared Ms4a7 and Apoe expression, two markers associated with 

microglia and brain-border macrophages49,50. Using pseudotime analysis51, we anchored a trajectory on 

Mono_1 and Mono_2 populations, representing cells most similar to Ly6Chi blood-circulating monocytes 

(Figure S2C), which then proposed a linked transcriptional progression through all clusters successively, 

eventually ending at Mono_Mac_6, putatively the most differentiated Mono_Mac cluster (Figures 2E and 
2F). Consistent with this interpretation, Mono_Mac MHCIIlo cells from different timepoints map along the 

calculated pseudotime (Figure 2G) with the exception that cells collected on day 14 were split between 

early and late pseudotime, highlighting again the new homeostasis in wounded skin that was also found 

in the CyTOF data (Figure 1E). Leveraging this trajectory, we also found trends of gene expression 

characteristic of known myeloid cell states: early expression of inflammatory genes Ifit1, Ly6c2, and 

Plac852, mid-point expression of Slpi and Mmp12, with Mmp12 being linked to antagonizing further 

monocyte recruitment53, and late expression of genes Mrc1, Retnla, and C1qc associated with tissue-

resident macrophages (Figure S2F).  

When applying the same analysis to MHCIIhi Mono_Macs, anchored on the Mono_MHCII subset, we 

again found that different clusters show distinct positions within pseudotime (Figures S2G), with 

Mono_Mac_MHCII cells emerging at the intermediate to late stage, representing a transition state to 

Mono_Mac_MHCII_Mgl2 cells, which emerge very late in pseudotime (Figure S2H-I).  
To search for patterns of space-time distribution of myeloid states, we created tile plots in which each 

tile shows the prevalence of a cell population—defined from the clustering, above—relative to the 

unwounded state, both over time (x dimension) and across the wound diameter (y dimension) (Figure 
2H). These could be created using cell-type frequencies (Figure 2I) or relative to pseudotime (Figure 
S2J). The latter demonstrates the finding that MHCIIlo cell populations most prevalent early in pseudotime 

were overrepresented on day 1 across the whole wound, and modestly again at day 14 specifically at the 
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wound center (Figure S2J). Applying such an analysis to the MHCIIhi grouping shows that early 

pseudotime MHCIIhi Mono_Macs appear most predominantly at the center of the wound (Figure S2K, 

see D01_2mm), highlighting their different space-time trajectory within the healing skin wound and likely 

different origin compared to MHCIIlo Mono_Macs.  

When we ordered the tile plots in order of cell type appearance, we discovered greater spatial 

complexity in how specific immune populations (Figure S2L-N), exemplified by the Mono_Macs (Figure 
2I), emerge through wound healing phases. Thus, three subpopulations of these were characterized as 

‘Early’ (i.e. peak at day 1)—represented by Mono_2, Mono_Mac_1 and Mono_Mac_2 and varied from 6 

mm to 2 mm in the peak location of the amplified population. Three others had middle-originating waves 

(centered on D3 or D7): denoted as ‘Intermediates’ and represented by Mono_Mac_3, Mono_Mac_4, 

Mono_Mac_5, respectively. Each of these again had specific space-time patterns of recruitment, with 

Mono_Mac_2 exhibiting an ‘Intermediate Interior (Int-In)’ and Mono_Mac_4 a ‘Late Interior (Late-In)’ 

pattern. Three others had ‘Late Exterior (Late-Ex)’ distributions, namely Mono_Mac_6, 

Mono_Mac_MHCII, and Mono_Mac_MHCII_Mgl2 and these were noted as ‘return’ populations, namely 

that the frequency for much of the repair process was lower than in the unwounded state. A few others, 

notably the earliest progenitor Mono_1, as well Mono_MHCII, did not fit into those patterns (Figure S2L-
M).  

Our spatial scRNAseq dataset also captured the space-time accumulation of additional immune cells 

beyond monocytes and macrophages (Figure S2N). Using PhEMD analysis, the samples when viewed 

across these additional populations occupied an arc-like trajectory in reduced dimensions (Figure 2J), 

on the face similarly to that seen in bulk analysis in Figure 1. In this analysis, late wound outside areas 

(D07_6mm, D07_8mm, D14_6mm, D14_8mm) are more similar to each other than to the unwounded 

state, again supporting the previous observation that the immune composition reaches a new state after 

skin repair, dissimilar to pre-injury (Figures 1E and 2J).  

 

Large volume imaging visualizes spatial distribution of Mono_Mac subsets in wounded skin 

We aimed to validate and extend our findings for the Mono_Mac compartments in a setting of intact 

tissue architecture that did not rely on microdissection. We thus utilized large volume tissue imaging of 

wounded skin to probe for the location of individual cell states relative to the wounded area (Figure 3A). 

The clearing-enhanced 3D (Ce3D)54 protocol allowed detection of immune and non-immune cells within 

wounded skin, highlighting their relative position to the wound edge as marked by integrin alpha-6 

(ITGA6) staining of the re-established epithelial basement membrane (Figure S3A and Movie S1, white). 

Of note, ITGA6 staining also highlighted vasculature structures in non-wounded skin, hair follicles, fascia, 

and severed nerve bundles lying outside of the closing wound (Figure S3B and Movie S2, white). 
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We focused on two gene products—Arg1 and CD206/Mrc1 that, though often grouped together as a 

combined signature of ‘M2’ macrophages in vitro55, show clear cell subset (Figure 3B) and space-time 

distinct (Figure 3C) patterns in wound healing, further confirming results from tumors56 that they are not 

obligately part of the same gene network. By scRNAseq data, ‘early’ inflammatory Mono_Mac 

subpopulations Mono_Mac_1, Mono_Mac_2, and Mono_Mac_3 express notably high levels of Arg1 

(Figures 3B and S3C). We validated this via cleared wound images using an Arg1 reporter mouse57, 

finding CD11b+ Arg1-tdTomato+ myeloid cells were predominantly found at the center of wounds and only 

at early but not late timepoints after wounding (Figure 3D, 3F, S3D and S3E; Movies S3 and S4), 

consistent with the space-time tile plot (Figure 3C). Confirming previous data58, we also detected CD11b- 

Arg1-tdTomato+ hair follicles in unwounded skin (Figure S3E). Conversely, Mrc1 gene expression was 

highest in the Mono_Mac_6 subpopulation and predominated in exterior wound regions late in the 

response (Figures 3B, 3C and S3F). Ce3D-cleared large volume imaging using antibodies against the 

Mrc1-encoded protein CD206 confirmed the absence of CD11b+ CD206+ cells in the center of the wound 

on day 3 post-wounding and their increased presence on the exterior non-wounded skin area (Figures 
3E and 3G, S3G, and S3H; Movies S1 and S2). Together, these data demonstrate the unique spatial 

and temporal dynamics of two different Mono_Mac subsets during wound repair, found using this 

analysis. 

 

Unique space-time patterns of fibroblast subpopulations have matching Mono_Mac patterns 

Taking the previously identified patterns of Mono_Macs as an exemplar, we sought to use space-time 

mapping to determine whether other cell types have subsets with matched patterns. Unsupervised 

clustering of 6944 CD45- cells identified 19 different clusters, which could broadly be separated into 

endothelial cells, fibroblasts, melanocytes, muscle cells, keratinocytes, and hair follicle-associated 

dermal sheath papilla cells (Figure 4A and S4). Similar to immune populations, many cell types such as 

fibroblasts (Figures 4B-4C), keratinocytes (Figures S4B-S4F), and other skin-resident cells (Figures 
S4G-S4O) displayed distinct space-time distributions. For our major analysis, to seek associated cell 

states, we primarily focused on fibroblasts as their interaction with macrophages is well-documented59. 

Here, we identified 5 separate fibroblast clusters by distinct gene expression (Figures 4B and S4P) and 

numbered them in accordance with their accumulation in time (Figure 4C).  

The Fibro_1 cluster exhibited high expression of inflammatory mediators, such as the chemokine Cxcl5 

and the TNF⍺-induced opsonin Ptx3 (Figure S4P). Jaccard similarity analysis of differentially expressed 

genes (DEGs) between Fibro_1 and a recent pan-fibroblast atlas60 revealed that the Fibro_1 cluster 

shared the most DEGs with the Cxcl5+ and Adamdec1+ clusters (Figure S4Q) found previously in settings 

of acute tissue injury or colitis60. Fibro_1 also expressed genes attributed to inflammatory cancer-
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associated fibroblasts (iCAFs) and antigen-presenting CAFs (apCAFs)61,62 (Figure S4R). Their 

emergence on day 1 post-wounding, across the wound diameter, representing more than 50% of all 

wound fibroblasts at that moment (Figure 4C) may be consistent with a general categorization of this 

program as being ‘acute inflammatory’.  

The Fibro_2 cluster remained the steadiest in both space and time (Figures 4C) and Jaccard similarity 

analysis of DEGs with the pan-fibroblast atlas60 revealed high similarity to the ‘universal’ Col15a1+ 

fibroblast cluster (Figure S4Q).59 

Cells belonging to the Fibro_3 and Fibro_4 clusters were predominantly found in inner diameter regions, 

where they make up about half of all fibroblasts present on Day 4 and 7, respectively (Figure 4C). DEGs 

from both populations were often associated with the extracellular matrix (ECM), such as Tnfaip6 and 

Timp1 63,64 in Fibro_3 (Figure S4P) and Col7a1, Col11a1, Postn, as well as Lrrc15, in Fibro_464 (Figure 
S4P). Gene expression similarity analysis revealed Fibro_4 as being most similar to those named Lrrc15+ 

in the pan-fibroblast atlas60 (Figure S4Q), which are possibly associated with immune exclusion in 

pancreatic cancer65. Both subpopulations also expressed Cthrc1 (Figure S4P), which was recently 

described in collagen-producing lung fibroblasts66, further highlighting their phenotype as collagen-

depositing cells during skin repair. 

Finally, the Fibro_5 cluster represented a fibroblast subpopulation that constitutes 23.5% of all 

fibroblasts in unwounded skin but takes until day 7 and day 14 post-wounding to recover to this baseline 

level (Figure 4C). These expressed Pi16 and Dcn (Figure S4A), markers associated with adventitial 

fibroblasts in the lung66 and dominated the fibroblast population outside of the wounded area in the 6 and 

8 mm space, making up 55-77% of all fibroblast cells there (Figure 4C). Again, this highlights the effect 

of local wound repair on neighboring unwounded skin areas, where cell compositions are affected, 

despite the tissue not being subject to direct physical injury. 

With the cell states of two key populations (fibroblasts and Mono_Macs) mapped across wound healing 

space-time (Figures 2 and 4), we began to study whether any of these co-occurred in space and time 

during the skin wound healing process, asking if this could reveal groups of heterotypic cell types 

putatively engaged in orchestrated and multicellular communication. We performed a Space-Time 

Correlation Analysis (STCA) by correlating the frequency of the fibroblast and Mono_Mac subpopulations 

across the tile plot (Figure 4D, see Methods for further details). This uncovered four co-occurring 

Mono_Mac/fibroblast pairs with very high degrees of space-time correlation, namely: Fibro_1 and 

Mono_Mac_1, Fibro_3 and Mono_Mac_3, Fibro_4 and Mono_Mac_4, Fibro_5 and 

Mono_Mac_MHCII_Mgl2 (Figure 4E). To visualize this in another way, we plotted cell percentages for 

each of these subpopulations over all samples and found high cross-correlations throughout the wound 

healing process (Figure 4F), with the Fibro_1 and Mono_Mac_1 pair coinciding as an ‘Early’ Wound 
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Healing Cell Movement 1 (henceforth, WH-CM1), Fibro_3 and Mono_Mac_3 representing the ‘Int-In’ 

pattern (WH-CM2), Fibro_4 and Mono_Mac_4 representing the ‘Late-In’ pattern (WH-CM3), and Fibro_5 

and Mono_Mac_MHCII_Mgl2 representing the ‘Late-Ex’ pattern (WH-CM4) (Figures 2I and 4C). 

A larger STCA analysis, comparing all identified CD45- non-immune and CD45+ immune cell 

subpopulations in our spatiotemporal scRNAseq dataset, demonstrated a 5th block of correlation 

(Figures S4S and S4T). This block, whose space-time distribution suggests it be called ‘Edge’ cell 

movement (WH-CM5) (Figure S4S), is only represented by endothelial cells, DCs, and NK cells. The 

distinct meanings for some of these additional cell types will await further in-depth analysis as, in this 

study, we next sought to dive yet deeper into the gene expression programs that might link two candidate 

cell types and underlie the pattern of their co-development.  

 

Gene program analysis identifies movements of gene expression across diverse cell types and predicts 

functional cell-cell interactions between macrophage and fibroblasts 

In order to move beyond cluster-based analysis, which identifies the most significantly differentially 

expressed genes between clusters and not necessarily co-expressed genes, we adopted Non-negative 

matrix factorization (NMF).  This analysis seeks to decompose a cell by gene matrix into the product of 

two smaller matrices with non-negative components 35,67–70 and can reveal layers of heterogeneity beyond 

clustering, especially in a population of cells without clearly demarcated subpopulations35,6935,67,69–71. 

Here, collections of genes with similar expression patterns across the cell type contribute to a ‘factor’ with 

their gene weight denoting the strength of its contribution to that factor. Each cell is also then assigned a 

value for each factor (e.g. feature plots in Figures 5A and 5B). We henceforth use the terms ‘factor’ and 

‘gene program’ interchangeably. In our study, these factors can be then visualized and studied based on 

mean factor levels per cell at each space-time coordinate (tile plots in Figures 5A and 5B).  

For our study, we applied a variation of NMF analysis, termed non-smooth NMF (nsNMF)71 to our 

fibroblast and macrophage subset because of its sparser output during factorization as compared to the 

base NMF algorithm72,73. We also applied a cophenetic metric to identify the optimal number of factors 

for the most stable result as in Figure S5C74. This resulted in 24 factors for all Mono_Mac populations 

and 17 factors for the fibroblasts, each with a largely unique and specific collection of top-contributing 

genes (Figures S5A and S5B). We note that some genes are shared strongly between factors. For 

example, MHCII associated genes (e.g. H2-Aa, H2-Ab1) are shared between Mono_Mac factor-4 and 

factor-7 (Figure S5A), however such strong overlaps remain rare in our decompositions. In addition, top 

contributing genes to certain factors are also shared with DEGs that define clusters for example Postn is 

a DEG defining Fibro_4 cluster (Figure S4P) contributing to WH-CM4, and is also a weighted gene within 

fibroblast factor-10 (Figure S5B).  
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Similar to the STCA above with cell subpopulation fractions, we asked if the space time distribution of 

certain factors in the Mono_Mac population were correlated with factors in the fibroblast population. Thus, 

we constructed a correlation matrix between the profiles (similar approach to Figure 4E) for Fibroblast 

and Mono_Mac factors and identified pairs of strongly correlated factors.  We focused on three sets of 

correlated factors, henceforth gene movements (GM), that center on D1, 3 and 7 of wound healing. These 

three, WH-GM-1 through 3, respectively exhibit space-time patterns broadly similar to WH-CM1 (‘Early’), 

WH-CM2 (‘Int-In’) and WH-CM-3 (‘Late-In)’ patterns described above (Figure 5C and tile plots in 
Figures 5A and SB). 

Based on the space-time coincidence of these factors, we explored the hypothesis that such 

correlations could reveal cell-cell signaling between fibroblasts and Mono_Macs that drive the emergence 

of reciprocal gene programs over the time course of wound closure (Figure 5D). We began by examining 

fibroblast/Mono_Mac movements WH-GM-1 through 3 using CellChatDB10 to help identify putative 

ligands that are products of genes contributing to a ‘sender’ factor. We then experimentally queried if the 

set of top contributing genes of the correlated ‘target’ factor, in the opposite cell type, might be 

upregulated by the ligand of interest in the target cell type using a series of in vitro experiments. We 

explored three such relationships between macrophages and fibroblasts below: 

 

WH-GM-1/Early-In:  The Oncostatin M (OSM) pathway was predicted by CellChat to be most prevalent 

at D1 (Figure S5D) with Osm being a major contributing gene to Mono_Mac factor-23 (Figure S5A). 

That, in turn was defined to be in a space-time gene movement with fibroblast factor-1 (Figure 5C). We 

then used RT-qRT-PCR to test how in vitro stimulation with OSM would affect gene expression in primary 

skin fibroblasts (PSFs), finding that genes shown in Figure S5B that make up fibroblast factor-1 

(Serpinb2, Serpine1, Il33, Bnip, Gfpt2, Acsl4 among others) were significantly upregulated by OSM 

treatment (Figure 5E). Importantly, top contributing genes to other factors (e.g. Acta2, Cygb, Postn) 

(Figure S5B) were not similarly upregulated (Figure 5E). 

WH-GM-2/Int-In: We noted the emergence of fibroblast factor-8 (e.g. Acta2, Nt5dc2, Tpm2, Tcim) 

(Figure S5B) within fibroblasts in the wound area on D3 (Int-In pattern) (Figure 5A). Previous literature 

demonstrated that Granulin (PRGN) stimulation could upregulate one of these genes, Acta2, in 

fibroblasts75. When we added GRN to fibroblasts, we found that upregulation of Acta2 occurred and also 

coincided with upregulation of other top-contributing genes within the identified fibroblast factor-8 (e.g. 

Tpm2, Nt5dc2 and Tcim) (Figure 5F). Because Grn does not specifically contribute to a single factor in 

the Mono_Mac population, it is still unknown how this fibroblast factor-8 is restricted to inner wound on 

D3; we offer some hypotheses in the discussion below.  
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WH-GM-3/Late-In: CellChat predicted the Periostin (POSTN) pathway for D3/7 could signal from 

fibroblasts to macrophages (Figure S5D and S5E) with predicted signaling from Fibro_3/4 to 

Mono_Mac_3/4, specifically through interaction with Integrins alpha-V and beta-3 (Itgav, Itgb3)76. Postn 

was a top contributing gene to fibroblast factor-10 (Figure S5B), which correlated well in space-time with 

Mono_Mac factor-22 to make up WH-GM-3 (Figure 5C). Among the strongest gene contributors to 

Mono_Mac factor-22 were Gpnmb, Atp6v0d2, Fabp5, Cd63, Trem2, and Lipa (Figure S5A). Using an in 

vitro stimulation of BMDMs, we confirmed that collagen-bound recombinant POSTN induced expression 

of top contributing members of Mono_Mac factor-22 but not those from other factors (e.g. factor 14 and 

2: C1qa and Ier2 respectively) (Figure 5G).  

Similar to STCA analysis in Figure S4T, we correlated the space-time profiles of macrophage factors 

against the space-time frequencies of the other immune (Figure S5F) and non-immune (Figure S5G) 

types. In addition to the already described macrophage-fibroblast pairings, we found extended 

associations to other cell type frequencies, including association of Mono_Mac factor-4/5 to endothelial 

cell_3 frequency, Mono_Mac factor-7 to keratinocyte_4 frequency and Mono_Mac factor-14/22 to 

vascular smooth muscle 1 (vSM_1) frequency (Figure S5G). Finally, we extended the NMF approach to 

all cell types, identifying 114 gene programs scattered across our broad cell type definitions (top 

contributing genes and weights found in Supplementary Table 1); analysis of their correlated space-time 

profiles revealed ‘blocks’ of shared space-time patterns including but also extending beyond the Early, 

Edge, Int-In, Late-In, and Late-Ex patterns described above (Figures S5H and S5I and Movie S5).  

Investigation of the extensive collection of other correlated gene programs across cell types will await 

confirmation and investigation in a separate and larger study. Rather than defining more of these 

individually, we sought to understand whether the coincident macrophage-fibroblast patterns identified in 

wound healing might be conserved and detected in other settings, notably in tumors. 

 
Identification of conserved gene programs between wound healing and cancer 

The paradigm of the tumor as a ‘wound that never heals’ has been put forth by several integrative 

studies30,31 and we sought to determine whether the tumor microenvironment, specifically the Mono_Mac 

compartment, could be described by factors identified in the wound healing process. We hypothesized 

that NMF analysis could reveal conserved gene programs between the wound healing and tumor tissue 

contexts. 

We first generated an integrated scRNA-Seq dataset from two different mouse tumor models—B16F10 

mouse melanoma and MC38 mouse colorectal—by sorting infiltrating immune cells 14 days after tumor 

injection (Figure 6A). We then examined the Mono_Mac subset similarly to our wound healing dataset, 

resulting in a 3,859 cell object (Figure S6A) and applied our ns-NMF workflow, identifying 25 factors 
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(Figures S6B and S6C) We then sought to quantify the degree of factor similarity between the two 

contexts. Because the vast majority of genes contribute negligibly to a given factor, we decided against 

correlation metrices on the entire set of genes, to avoid overestimating similarities due to the heavy 

skewedness towards low values. Instead, we prioritized that a conserved pair of factors exhibits 

significant overlap in the top contributing genes; therefore, we applied a Jaccard distance metric based 

on the top 20 genes by weight or J20 distance. Using this metric, the vast majority of pairings displayed 

little to no overlap in their top 20 contributing genes, but a few rose prominently from the background 

(Figure 6B). 

We generated scatterplots of gene weights to more closely examine shared gene contributions between 

pairs of WH and Tumor factors (examples in Figures 6C-6F). While the majority of factor pairings 

resembled Figure 6F with little to no overlap in gene contributions, we did identify nine strong pairings 

(J20>0.25) (Figure 6C-6E and Figures S6D-S6I). Gene Ontology (GO) analysis on the shared genes in 

the upper right quadrant revealed unique cellular processes associated with each pairing which could, at 

least partially, reflect the functional output of those gene programs (full list of GO terms in Supplementary 

Table 2). We focus on three of these pairings below: 

’Early ISG’ Program: Of the stronger pairings, one, the WH M_M-13-to-Tumor M_M-16 factors was 

highly characterized by a collection of well-described Interferon stimulated genes77 (ISG) (Figure 6C). 

GO analysis of the top shared genes yielded the term ‘Type I interferon signaling pathway’. In the wound, 

this WH M/M factor-13 followed an ‘Early’ WH-GM1 spacetime profile (Figure S5H and S5I).  
’Edge MHCII program: Another factor pairing, (WH M_M-4-to-Tumor M_M-13; Figure 6D), involved 

genes associated with antigen presentation through MHCII. In this case, there were highly correlated 

expression levels of H2-Ab1, H2-Eb1 and other genes associated with antigen presentation (e.g. Cd74). 

In this case, there were substantial additional differential genes expressed in the wound healing versus 

tumor factors, and these may represent context-specific genes that co-express only in those specific 

setting. GO analysis of the top shared genes indicated antigen processing and presentation via MHCII. 

WH M_M factor-4 followed an ‘Edge’ WH-GM5 space time profile which seemed to follow the closure of 

the wound (Figure S5H and S5I). 
‘Late Triglyercide’: The WH M_M factor-22 to tumor M_M factor-6 pairing, was marked by genes 

including Gpnmb, Fabp5, Syngr1, Cd63, Trem2, and Lipa among others (Figure 6E).  Several of these 

genes are associated with lipid trafficking, including Trem2, Fabp5, and Lipa. GO analysis revealed an 

enrichment for ‘Triglyceride Sequestration’ suggesting a functional output associated with intracellular 

vesicle trafficking and exocytosis. This particular factor also followed the space time pattern we termed 

‘Late-In’ or WH-GM3 (Figure S5H and S5I).  
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Finally, given these few but significant similarities, we sought to determine whether such programs are 

used equivalently in the two model tumor systems. The MC38 dataset displayed significant enrichment 

of factors including tumor factors 11 and 13 which had strong (J20>0.25) correspondence to a WH factor.  

Meanwhile, B16F10 tumors were uniquely marked by a separate and very strong enrichment of factor-6, 

corresponding to WH factor-22 (Figure 6G).  Other conserved factors such as tumor factor-16 (‘Early 

ISG’) displayed less dramatic enrichment in either model (<2 fold). Together this suggests that while 

tumors may indeed borrow factors from wound healing, individual tumors may do so uniquely. 

 

Application of Movements: Conservation of Mono_Mac factors predicts increased Periostin and 

decreased Selectin-P+ vessel density in B16F10 vs. MC38 tumor models 

We finally sought to study the conserved gene programs spatially and confirm the differential usage of 

wound healing factors in different tumor models. To this end, we used our M_M factor similarity 

/translation matrix (Figure 6B) and our wound healing movement identification, to make and then test 

predictions about the state of the tumor microenvironment in either tumor model. As observed in Figure 
6G, the ‘Late Triglyceride’ pairing (M_M tumor factor-6 corresponding to M_M WH factor-22 Figure 6E) 

was more highly expressed in B16F10. We used the observation that the latter factor was paired in a 

space-time movement with fibroblast factor-10 in our wound healing dataset (Figure 5C), to form the 

prediction that one of the members of fibroblast factor-10, POSTN, would be more prevalent in B16F10 

vs. MC38 model (Figure 7A). Immunofluorescence staining of both tumors identified indeed profoundly 

larger density of POSTN fibers within B16F10 tumors as compared to MC38 (Figures 7B and 7C). In 

addition, a considerably larger fraction of CD11b+ cells were in close contact with POSTN fibers in the 

B16F10 model vs. MC38 (Figures 7D, 7E, and S7A). 

Conversely, the shared ‘Edge MHCII’ factor (tumor M_M factor-13 corresponding to WH M_M factor-4 

Figure 6D) was more dominant in MC38 (Figure 6G). Going back to the space-time correlations in 

Figure S5H, WH M_M factor-4, as an ‘Edge’ pattern WH-GM5, grouped with WH endothelial factor-8, 

which comprised genes including Selp, Vwf, Sele and Ackr1. Following a similar line of inference as 

before with POSTN signaling to macrophages, we predicted a higher density of Selectin-P+ vasculature 

in MC38 vs. B16F10 tumors (Figure 7F).  

Using 3D imaging of cleared thick tumor sections (250 µm) (Figures 7G, S7B), we found a markedly 

increased density of Selectin-P+ vasculature in the MC38 tumor relative to B16F10 tumor (Figure 7H), 

consistent with our prediction in Figure 7F. Interestingly, analysis also revealed clear physical proximity 

of MHCII+ cells (cyan points) with Selectin-P+ vasculature (green surfaces) vs Selectin-P- vasculature 

(red surfaces) in both tumor models (Figures 7I, 7J, and S7C), with dense accumulations of MHCII+ cells 

ringing Selectin-P+ vessels. We also note this preference for Selectin-P vessels was not found in MHCII- 
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cells (Figure 7J, and S7C). These lines of evidence provide examples of how the conceptual framework 

of conserved gene programs and multicellular movements can inform hypothesis generation spanning 

tissue contexts.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.05.25.493500doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 
Recent advances in technology have allowed single cell transcriptional profiling of diverse tissues, 

leading to the identification of a plethora of cell types and subtypes in physiological and pathological 

tissue contexts. How those cell types are spatially and temporally organized within the tissue will help us 

understand the underlying dynamic nature of tissue homeostasis and pathology. Here, we established a 

high-dimensional spatiotemporal framework to study pairing of cell types during a physiologically complex 

process-namely during wound repair. In this setting, the concept that spatiotemporal correlation may 

indicated paired biology drove the identification of groups of cell types that together form larger cellular 

movements, wherein their emergence and/or disappearance is correlated and partially conserved in both 

skin repair and tumor growth. 

Prior to our study several fibroblast-macrophage interactions have been described in health and 

disease, such as fibrosis and cancer23. The use of space time correlation analysis (STCA) takes this 

systematically one step further and identified four distinct fibroblast-macrophage cellular pairings during 

wound repair (Figure 4F), each characterized by a distinct space-time pattern during the repair process. 

The earliest pattern consisted of inflammatory Fibro_1, expressing the neutrophil-attracting chemokine 

Cxcl578 and the early inflammatory gene Ptx379. Accordingly, this ‘Early’ pattern was accompanied by 

neutrophils and monocytes (Figure S4T) whose accumulation in early wounds had been previously 

identified3 but not tied to this fibroblast population nor the co-appearance of an endothelial cell population 

(endothelial cell 2), highlighting the involvement of non-immune cells in early wound repair. In later 

stages, the ‘Late-Ex’ pattern of Fibro_5 and Mono_Mac_MHCII_Mgl2 cells was accompanied by several 

other cell subtypes, such as mast cells, MHCIIhi Mono_Macs, T cells, and keratinocyte subsets. Together, 

this provides an example of a multicellular pattern composed of a diverse range of cell identities, akin to 

the recent finding of interacting stellate cells, hepatocytes, endothelial cells, and liver-infiltrating 

monocytes together coordinating a local niche for monocyte-to-macrophage differentiation6. These 

observations highlight the importance of considering cell function and differentiation in the context of their 

subtissular location and surrounding cell environment. 

By combining NMF-based decomposition with spatiotemporal data, we moved beyond conventional 

cell subset identification, and identified co-occurring gene programs that provide candidates for reciprocal 

regulation between cell types. We present this approach as a framework for identifying cell-cell 

communication pathways and their downstream effects on gene expression and as a means to identify 

pathways to target in order to advance transitions in biological systems. In our conceptual framework, 

factors or gene programs represent a functional module activated in a cell type due to response to 

external stimuli which in turn may be derived from factors activated in other cell types. In this way our 

work frames wound healing as coordinated, interlinked gene programs (‘movements’) across diverse cell 
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types. In particular, we put forth a model of reciprocally acting fibroblast and macrophage gene programs, 

whereby emergence of gene programs in one cell type ratchets the phenotype of another cell type, in 

turn driving a new program’s emergence (Figure 5D). One example we highlight is Oncostatin M, 

previously known to induce Serpine1 and Il33 upregulation80,81. Using NMF analysis combined with 

spatiotemporal correlations across cell types, we identified a host of other previously undescribed genes 

(e.g. Glul, Mt2, Acsl4) in fibroblasts upregulated by Oncostatin M.  

Using gene program analysis, we were also able to predict the suite of genes induced by progranulin 

(PRGN) treatment on fibroblasts, going from the known genes (Acta2) to the unknown (Tpm2, Tcim, 

Nt5dc2)75,82. In our dataset, Mono_Macs are the primary cell type expressing Grn, but given that granulin 

is expressed throughout the Mono_Mac population and does not contribute to any identified factor 

specifically, it remains unclear how its effects are restricted to the Int-In D3 pattern. Possibly the presence 

of another signal—perhaps a protease that cleaves progranulin into individual active peptides 83—

licenses granulin’s effects on fibroblasts or earlier signals before day 3 prime fibroblasts to respond to 

granulin signaling. 83 

Similarly, our movement identification suggested periostin, which emerges later in wound healing in 

fibroblasts, as a candidate to induce the genes defined in factor-22 in Mono_Macs. This factor includes 

Gpnmb, Lipa, and Trem2. Previous reports have mainly described the ability of periostin to promote 

adhesion and migration of macrophages in tumor settings84,85. Given the therapeutic implications of 

Trem2 expression in tumor associated macrophages, the identification of a possible molecular etiology 

is of significant interest for tumor immunology86–88. Notably, we observe from tissue staining that periostin 

is found in fibrillar structures in the tumor, consistent with its description as a matricellular protein89. 

Although we verified a handful of cell-cell interactions here, our dataset highlights a multitude of 

movements and other gene program pairings, serving as a potential resource to other investigators 

seeking to infer cell-cell crosstalk mechanisms. Finally, although we focused on verification of fibroblast-

macrophage interactions, we generalized our computational approach to all other identified cell types, 

immune and non-immune. Doing so allowed us to identify the major groupings of spatiotemporally 

correlated gene programs in cell types as disparate as neutrophils, endothelial cells, and keratinocytes, 

with each grouping displaying a unique space-time pattern (Figures S5H, S5I, and Movie S5). Similarly, 

to the ‘hubs’ of gene programs described in Pelka et al. these groupings of gene programs could 

represent spatially co-localized, functional units of cell organization in tissue69. Additionally, such 

groupings could underlie the findings that tumor microenvironments tend to adopt defined compositional 

‘Archetypes’90, wherein each archetype might draw upon these groups of gene programs differentially. 

Keeping in mind the caveat of mismatch between mRNA and protein levels, the gene programs identified 

here, and their shared spatiotemporal profiles, will inform future studies to identify which correlations are 
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indicative of true causation through cell-cell crosstalk91; indeed combination with curated databases such 

as NicheNet’s weighted networks between ligand and target genes could allow for tracing back the 

signaling events that activate a given gene program12. 

Moving beyond skin wound healing, we posit that gene program analysis can serve as a powerful tool 

as we move towards integrative studies across tissue types and disease models. For example, NMF 

analysis was recently employed to identify shared gene programs associated with cell cycle, EMT, and 

senescence across many cancer cell lines35. We identified paired gene programs in the Mono_Mac 

populations from two tumor models and our wound healing dataset. We also note that factor pairings are 

not perfect, with some genes showing little contribution in one setting versus major contribution in 

another. We theorize this could indicate either a purely coincidental co-expression in one setting or an 

additional layer of epigenetic regulation. High dropout rates of certain genes in one dataset versus 

another due to differential sequencing depth could also be a cause. We also note the presence of many 

factors without a good counterpart. These factors could represent artifacts introduced in the processing 

pipeline such as a collection of housekeeping genes moving together in cells with lower UMI counts or 

could be representative of truly tissue specific programs. This methodology can only be strengthened by 

application to ever more diverse datasets to extract gene programs with representation across contexts. 

For example, during fibrosis whereby excessive ECM deposition begins to adversely affect organ 

function92, many of the same cell-cell interactions that drive regeneration become dysregulated, e.g. 

persisting inappropriately23,93–95. Thus, identifying the space-time profiles of conserved gene programs 

and between fibroses, wound healing, and tumorigenesis could identify where the dynamics of 

pathologies begin to diverge in state space from normal31. 

As a proof of concept for this approach, we demonstrate that testable hypotheses can be generated 

from our correlative studies by proceeding in a two-step fashion, first translating tumor Mono/Mac factors 

to wound healing Mono/Mac factors (Figure 6B), then using identified multicellular movements to 

translate WH M/M factors to correlated WH factors in other cell types (Figure S5H). This analysis allowed 

us to predict increased periostin signaling to macrophages in B16F10 versus MC38 tumors and 

conversely, an enrichment for P-selectin-expressing endothelial cells (endo factor-8) in MC38 versus 

B16F10 tumor. The close association of MHCIIHi macrophages with CD31+ vasculature has been reported 

previously96 but not specifically Selectin-P+ vasculature. Of interest, the endothelial factor-8 genes 

including Selp, Sele, and Ackr1 also define a tumor associated high endothelial venule (TA-HEV) network 

found to be correlated with patient response to checkpoint blockade immunotherapy97. Given the relative 

unresponsiveness of the B16-F10 melanoma model versus the MC38 model90, we posit that the 

difference in density of endothelial cells expressing endo factor-8 results in functional differences in the 

state of the immune compartment. We anticipate these translation tables can be generalized to other 
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tumor models and tissue pathologies such as fibrosis, which will allow to identify thus far unappreciated 

cell-cell interactions in those settings.  

 

Limitations of study: 
Our scRNAseq study identified several immune and non-immune cells and their dynamic change during 

the skin repair process. However, we noticed no capturing of adipocytes, neurons, or glial cells. 

Presumably the combination of our enrichment method of cells via fluorescent-activated cell sorting and 

the subsequent scRNAseq pipeline using the 10x Genomics platform led to loss of these and potentially 

other unidentified cell types. This precludes analysis of their potential involvement the presented cell 

patterns and gene factor networks. Previous studies have highlighted the importance of adipocytes in 

skin repair42, as well as the role of macrophage-neuron crosstalk skin homeostasis98. 

The skin is colonized by a microbiome that breaches skin barrier upon injury. Members of the 

microbiome are sensed by local immune cells, initiating local immune responses. In carcinomas 

originating in barrier tissue, especially along the gastrointestinal tract (mouth, throat, esophageal, gastric, 

colon, rectal), skin when ulcerating, and lung, similar local immune responses can unfold upon barrier-

breaching. But in an otherwise sterile environment during tumorigenesis, pathogen sensing would be less 

likely to influence cell-cell communication. Thus, commonalities discovered here using subcutaneous 

tumor models and skin wounding are conserved in both absence and presence of pathogen detection. 

This also raises the question of how other sources of internal organ damage, such as chemicals, influence 

crosstalk between immune and non-immune cells and how conserved these layers of communication are 

in both mice and humans. 
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FIGURE LEGENDS 
 
Figure 1. Separate waves of immune cell infiltration during wound closure 
(A) Experimental layout of immune cell profiling during skin wound repair. Full thickness circular dorsal 
skin wounds of 4 mm diameter were caused in mice. Wound and surrounding tissue was collected using 
an 8 mm diameter punch biopsy. A single cell suspension was generated prior to barcoding, staining, 
and analysis on a mass cytometer. 
(B) UMAP projection of immune cells detected during skin wound repair based on a 40-marker panel. 
(C) UMAP projection of all immune cells from (B) in gray and cells highlighted in red by timepoint of 
wound sampling. 
(D) Line plots of all immune cell clusters identified in (B) plotted as percentage of all CD45+ immune cells 
per timepoint of wound sampling (left y-axis). Dotted line represents wound diameter (right y-axis). Dots 
represent mean values of n=3 mice per timepoint. Error bars represent ±SD. 
(E) Phenotypic earth mover’s distance (PhEMD) diffusion map embedding of all samples collected during 
wound closure. Each dot represents the wound-resident immune cell composition of one mouse. Dots 
are color-coded by day and n=3 mice were collected per timepoint. UW, unwounded. DC, diffusion 
coefficient. 
(F) Horizontal stacked bar chart of major immune cell populations plotted as percentage of all CD45+ 
cells during skin wound repair. DCs, dendritic cells. pDCs, plasmacytoid dendritic cells. MCs, mast cells. 
 
Figure 2. Transcriptional space-time analysis of single cells unveils unique patterns of 
monocyte/macrophage populations during skin repair 
(A) Experimental layout of transcriptional space-time analysis in wounded skin, including radial 
partitioning of wound area into four zones, generation of single cell suspension at four time points, sorting 
of CD45+ and CD45- cells, barcoding, cell capture by droplet-based device, sequencing, and downstream 
analysis. 
(B) UMAP plot of monocyte/macrophage subset from CD45+ object. Dotted line separates eight MHCIIlo 
and three MHCIIhi monocyte/macrophage clusters. 
(C) UMAP projection of all monocyte/macrophage cells from (B) in gray and cells highlighted in red by 
timepoint of wound sampling. 
(D) UMAP of MHCIIlo monocyte/macrophage subset with eight distinct clusters. 
(E) Pseudotime trajectory using Monocle 3 on MHCIIlo monocyte/macrophage subset starting at cluster 
Mono_1, progressing through all cell clusters and ending at cluster Mono_Mac_6. 
(F) Violin plot split by the MHCIIlo monocyte/macrophage subpopulations and plotted according to their 
distribution in pseudotime. 
(G) Violin plot of all MHCIIlo monocyte/macrophage cells split by day post-wounding and plotted according 
to their presence in pseudotime. D00 represents unwounded skin. 
(H) Outline of Space-Time tile plot. The 4x4 grid depicts relative abundance of a cell cluster across radial 
wound area (y-axis) and time post wounding (x-axis). Each tile is one space-timepoint. Number in tile is 
the percentage of a subpopulation among all Mono_Mac cells at specific space-timepoint. Color indicates 
relative change compared to unwounded (UW) state. Red indicates increase in subpopulation, blue 
indicates decrease in subpopulation compared to UW, white indicates no change. Exemplary data is 
depicted. 
(I) Space-time tile plots representing Mono_Mac subpopulations. 
(J) Phenotypic earth mover’s distance (PhEMD) diffusion map embedding of all space-timepoints. Each 
dot represents all CD45+ immune cells captured by scRNAseq within that space-timepoint. Dots are color-
coded by day and width of band corresponds to area sampled. DC, diffusion coefficient. 
 
Figure 3. Large volume imaging visualizes spatial distribution of Mono_Mac subsets in whole 
wounds during skin repair 
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(A) Workflow for large volume imaging. Wounds are collected by skin excision, processed for staining, 
and then cleared using the Ce3D protocol. A rectangular cuboid covering the wound and surrounding 
unwounded skin tissue is acquired on a scanning confocal microscope. Acquired images are stitched 
together and processed for image analysis using Imaris. 
(B) ViolinPlot of (left) Arg1 and (right) Mrc1 natural log-normalized mRNA expression level within all 
Mono_Mac subpopulations. 
(C) Space-time tile plot of (left) Arg1 and (right) Mrc1 mRNA expression (normalized to depth) within all 
Mono_Mac cells. Tiles are color-coded relative to unwounded (UW) state. Red, high. Blue, low. 
(D) Top-down view of processed image from Arg1-tdTomato reporter mouse on (top) day 3 and (bottom) 
day 7 post-wounding. Colored dots indicate cell location of Arg1- CD11b+ Mono_Mac (green), Arg1+ 
CD11b- non-myeloid cells (red), and Arg1+ CD11b+ Mono_Mac_3 (yellow). Dotted line represents original 
4 mm wound diameter. Images on the right show only Arg1+ CD11b+ Mono_Mac_3 cells (yellow). Bar, 
500 µm. One of two representative images is shown for each day. 
(E) Top-down view of processed image from wild-type C57BL/6 mouse on (top) day 3 and (bottom) day 
7 post-wounding. Colored dots indicate cell location of CD206- CD11b+ Mono_Macs (green), CD206+ 
CD11b- non-myeloid cells (red), and CD206+ CD11b+ Mono_Mac_6 (yellow). Dotted line represents 
original 4 mm wound diameter. Images on the right show only CD206+ CD11b+ Mono_Mac_6 cells 
(yellow). Bar, 500 µm. One of two representative images is shown for each day. 
(F) Quantification of CD11b+ Arg1+ cells in (D) relative to distance from the center of the wound. 
(G) Quantification of CD11b+ CD206+ cells in (E) relative to distance from the center of the wound. 
 
Figure 4. Fibroblast subpopulations have specific patterns in common with particular Mono_Mac 
subpopulations 
(A) UMAP plot of CD45- non-immune cells found during skin repair. Endo, endothelial cells. KT, 
keratinocytes. vSM, vascular smooth muscle. 
(B) UMAP plot of the fibroblast subset found during skin repair. 
(C) Left: Line plots of fibroblast subpopulations identified in the scRNAseq dataset during skin repair. 
Percentage of each subpopulation within all fibroblasts is plotted by day post-wounding. Right: Space-
time tile plot representing the fibroblast subpopulations. Each tile is one space-timepoint. Number in tile 
is percentage of subpopulation among all fibroblasts at specific space-timepoint. Color indicates relative 
change compared to unwounded (UW) state. Red indicates increase in subpopulation, blue indicates 
decrease in subpopulation compared to UW. 
(D) Outline of Space-Time Correlation Analysis (STCA). 
(E) Pearson correlation matrix output of STCA comparing all fibroblast and Mono_Mac subpopulations. 
+++p-value < 0.05, ++p-value < 0.005, +++p-value < 0.0005. 
(F) Pearson correlation xy-plots of select fibroblast-Mono_Mac subpopulation pairs displaying high 
correlation in occurrence in space-time during wound skin repair. WH-CM, wound healing cell movement. 
 
Figure 5. Gene program analysis identifies modules of gene expression across diverse cell types 
and predicts cell-cell interactions between macrophages and fibroblasts 
(A and B) Schematic showing strategy for NMF based decomposition of the (A) fibroblast and (B) 
monocyte/macrophage populations. The top 1000 or 1250 most variable genes expressed in fibroblasts 
and monocyte/macrophages, respectively, within at least 2% of cells were used as the starting point for 
analysis. NMF decomposition of the fibroblast and Monocyte_Macrophage populations yielded 17 and 
24 factors respectively, using cophenetic score to select the factor number (see Figure S5C). Shown are 
three example FeaturePlots for factor ‘expression’ and Tile Plots describing the average expression level 
of the factor as a function of space-time. 
(C) Space-time correlation matrix for average factor expression profiles. Correlation was calculated using 
Pearson correlation and significance adjusted for multiple comparisons using Benjamini-Hochberg 
procedure. + (alpha <0.05), ++ (alpha <0.005). 
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(D) Cartoon schematic of hypothetical fibroblast-macrophage crosstalk and progression over the 
timespan of wound healing. Three putative interactions that we investigate in vitro are labeled. WH-GM, 
wound healing gene movement. OSM, oncostatin M. PRGN, progranulin. POSTN, periostin. Early-In, 
early interior. Int-In, intermediate interior. Late-In, late interior. 
(E) Primary mouse skin fibroblasts were treated with recombinant oncostatin M (OSM) at 20 ng/mL for 
24 h before RNA extraction. Expression values of selected gene targets were assayed using RT-qPCR 
and normalized to 18s levels. Error bars denote standard error of the mean from technical triplicates. 
Data is representative of two independent experiments. Factor with the largest contribution from each 
gene target denoted. Heatmap displays the normalized gene weight contribution to all 17 identified 
fibroblast factors for the gene being probed. 
(F) Conditioned 1% serum media from bone marrow-derived macrophages (BMDMs) isolated from 
granulin-knockout (GRNKO) mice was collected and added to primary murine skin fibroblasts (PSFs) with 
or without 1 ug/mL of recombinant Progranulin (PRGN). Following 24 h, cells were harvested for RT-
qPCR for selected gene targets. Expression values of selected gene targets were assayed using RT-
qPCR and normalized to 18s levels. Error bars denote standard error of the mean from technical 
triplicates. Data is representative of two independent experiments. Factor with the largest contribution 
from each gene target denoted Heatmap displays the normalized gene weight contribution to all 17 
identified fibroblast factors for the gene being probed. CM, conditioned media. 
(G) BMDM’s were plated on collagen IV-coated dishes with or without addition of 5 ug/mL recombinant 
POSTN in 1% serum media. Following 24 h, cells were harvested for RNA extraction. Expression values 
of selected gene targets were assayed using RT-qPCR and normalized to 18s levels. Error bars denote 
standard error of the mean from technical triplicates. Data is representative of two independent 
experiments. Factor with the largest contribution from each gene target denoted. Heatmap displays the 
normalized gene weight contribution to all 24 identified M_M factors for the gene being probed. 
 
Figure 6. Identification of conserved gene programs in Mono_Mac between wound healing and 
cancer 
(A) Strategy for generation of a multi-tumor model Mono_Mac scRNA-Seq dataset. B16F10 and MC38 
tumors were harvested, sorted for CD45+ cells and used for scRNA-Seq. Following integration, 
Mono_Mac populations were selected for NMF decomposition, starting with 3859 cells and the top 1250 
variable genes expressed in at least 2% of cells. This resulted in 25 factors of interest based on the 
cophenetic metric (seen in Figure S6C) 
(B) Heatmap showing the Jaccard20 distance (defined in Materials & Methods) between all 25 M_M 
tumor and 24 M_M WH factors based on top contributing gene weights. 
(C-F) Scatter plots for selected tumor/WH factor pairs for (C) Tumor factor-16 vs WH factor-13, (D) 
Tumor factor-13 vs WH factor-4, (E) Tumor factor-6 vs WH factor-22, and (F) Tumor factor-13 and WH 
factor-22 with the gene weight contributions plotted as calculated from the basis matrix in the NMF 
output (see Figure S5A for WH factors and S6B for tumor factors). Slope represents x=y line and dotted 
lines represent the weight for the 20th highest gene contribution in either factor. The Jaccard20 index is 
shown and thus reflects the frequency of points in quadrant I over quadrants I,II and IV. For pairings in 
C-E, top shared genes in the upper right quadrant were put through Enrichr to find overrepresented 
cellular processes with the top result by p-value listed. Full Enrichr output can be found in the extended 
data (Supplementary Table 2).  
(G) Volcano plot showing differential expression of factors between MC38 and B16F10 Mono.Mac. 
datasets for the 25 identified factors. Y-axis denotes log10 of unadjusted p-value. Labelled points have 
adjusted p-value < 0.05 (Bonferroni correction) and absolute log2 fold-change greater than 0.5. Colored 
points have absolute log2 fold change greater than 0.5. 
 
Figure 7. Conservation of Mono_Mac factors predicts increased Periostin and decreased 
Selectin-P+ vessel density in B16F10 vs MC38 tumor models 
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(A) Schematic for hypothesis generation in the tumor setting. Translation of the tumor M_M factor-6 to 
the WH M_M factor-22 allows prediction that the same stimuli (Periostin from WH Fibro factor-10) might 
underlie tumor M_M factor-6 and thus be more prevalent in the B16F10 vs. MC38 tumor model. 
(B) Representative immunofluorescent images of 10 µm fresh frozen sections of D14 B16F10 and 
MC38 tumors stained for DAPI (blue), POSTN (green), and CD11b (red). Scale bar = 100 µm. 
Representative of two experimental replicates. 
(C) Barchart denoting fraction area of POSTN+ surfaces as a fraction of total imaged tissue area. One-
sided Wilcoxon rank-sum test used. Each point represents a scanned area from 3 separate tumors.  
(D) Insets from denoted regions of interest in Figure 7B. Arrows denote CD11b+ cells in close contact 
with POSTN+ surfaces (B16F10) or not (MC38). Scale bar = 25 µm. 
(E) Histograms showing distribution of distance of CD11b+ cells to nearest POSTN surface. 
Representative of 3 independent replicates (3 tumors). Bin-width = 2 µm. Kolmogorov-Smirnov test 
used to test against null hypothesis that samples were drawn from the same distribution 
(F) Schematic for hypothesis generation in the tumor setting. Translation of the tumor M_M factor-13 to 
the WH M_M factor-4 allows prediction that the same association between WH M_M factor-4 with 
endothelial WH factor-8 might be found in the tumor setting and that endothelial factor-8 might be more 
prevalent in MC38 vs. B16F10 tumor model 
(G) Processed 3D images of cleared 250 µm thick tumor slices from a (left) B16F10 and (right) MC38 
tumor. Generated surfaces based on Selectin-P+ staining (green) and CD31+/Selectin-P- signal (red). 
Dots (cyan) denote MHCII+ cells.  
(H) Bar chart showing comparison of the cumulative Selectin-P+ surfaces volume normalized to total 
imaged tissue volume between MC38 and B16F10. One-sided Wilcoxon rank sum test used. 
(I) Zoomed in and rotated insets from MC38 tumor in Figure 7G exemplifying (1) dense accumulation of 
MHCII+ cells proximal to Selectin-P+ vessels and (2) sparse MHCII+ cell accumulation proximal to 
Selectin-P-. 
(J) Histograms indicating the distances of MHCII+ spots and MHCII- spots to the nearest Selectin-P+ or 
Selectin-P- surface in the MC38 model. Dashed line indicates the median. Histograms representative of 
4 independent replicates (4 separate tumors). P-value calculated via Kolmogorov-Smirnov test. 
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