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Abstract
The complex crosstalk between metabolism and gene regulatory networks makes it

difficult to untangle individual constituents and study their precise roles and interactions. To
address this issue, we modularized the transcriptional regulatory network (TRN) of the
Staphylococcus aureus USA300 strain by applying Independent Component Analysis (ICA) to
385 RNA sequencing samples. We then combined the modular TRN model with a metabolic
model to study the regulation of carbon and amino acid metabolism. Our analysis showed that
regulation of central carbon metabolism by CcpA and amino acid biosynthesis by CodY are
closely coordinated. In general, S. aureus increases the expression of CodY-regulated genes in
the presence of preferred carbons sources such as glucose. This transcriptional coordination
was corroborated by metabolic model simulations that also showed increased amino acid
biosynthesis in the presence of glucose. Further, we found that CodY and CcpA cooperatively
regulate the expression of ribosome hibernation promoting factor, thus linking metabolic cues
with translation. In line with this hypothesis, expression of CodY-regulated genes is tightly
correlated with expression of genes encoding ribosomal proteins. Together, we propose a
coarse-grained model where expression of S. aureus genes encoding enzymes that control
carbon flux and nitrogen flux through the system is coregulated with expression of translation
machinery to modularly control protein synthesis. While this work focuses on three key
regulators, the full TRN model we present contains 76 total independently modulated sets of
genes, each with the potential to uncover other complex regulatory structures and interactions.
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Importance
Staphylococcus aureus is a versatile pathogen with an expanding antibiotic resistance

profile. The biology underlying its clinical success emerges from an interplay of many systems
such as metabolism and gene regulatory networks. This work brings together models for these
two systems to establish fundamental principles governing the regulation of S. aureus central
metabolism and protein synthesis. Studies of these fundamental biological principles are often
confined to model organisms such as Escherichia coli. However, expanding these models to
pathogens can provide a framework from which complex and clinically important phenotypes
such as virulence and antibiotic resistance can be better understood. Additionally, the expanded
gene regulatory network model presented herein can deconvolute the biology underlying other
important phenotypes in this pathogen.

Introduction
Metabolism plays an integral role in infection and antimicrobial resistance (AMR) in the

leading human bacterial pathogen Staphylococcus aureus. Metabolic requirements specific to
infection, intracellular persistence, biofilm formation, and colonization are rapidly being
uncovered1–6. Furthermore, the central role of metabolism in AMR and persistence is also
coming into view, adding to the complexity of known AMR mechanisms7–9. The complex
metabolic circuits and responses underlying these phenomena are nevertheless difficult to
unravel. Even relatively well-understood systems such as S. aureus central carbon metabolism
can be difficult to fully map, as they are layered with multiple levels of gene regulation,
post-translational and biochemical controls, and unexpected molecular interactions 1,10–12. Some
of these complexities can be captured by genome-scale metabolic models (GEMs) that allow
rapid query of metabolic complexities through simulations of metabolic flux states, knock-out
experiments, multi-strain metabolic comparisons, and calculation of metabolic
characteristics13,14. Alternatively, coarse-grained modeling of metabolism attempts to peer
beyond the detailed complexity and discover the general principles governing the biological
systems of interest15–17. In the present work, we took guidance from a coarse-grained model
proposed in Escherichia coli coupled with  genome scale analyses of S. aureus transcriptional
regulation and metabolism to uncover a similar staphylococcal system that balances resource
allocation between carbon and nitrogen metabolism15,17.

Biological trade-offs represent an optimization frontier, where the cell must strike a
balance between its multiple objectives and their limitations15,18. Signatures of these balancing
acts can be found in transcriptomes and become apparent when their architecture is viewed at
systems level19. We previously described one such trade-off and its transcriptional imprint using
independent data sets from Gram-negative E. coli and Gram-positive S. aureus—in which a
balance was observed between genes regulated by stress-associated sigma factors and
growth-associated translation machinery20,21. Here, we expand significantly beyond those
observations to describe a trade-off between carbon and nitrogen metabolism in strains of the
globally disseminated, hypervirulent S. aureus USA300 lineage.
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We first greatly expanded on our previous model of  transcriptional regulation in USA300
strains to incorporate all publicly available RNA sequencing data from the Sequence Reads
Archive (SRA)21. Models were then generated by applying independent component analysis
(ICA), which calculates independently modulated sets of genes (iModulons) and their activities
present in the input RNA sequencing samples. iModulons represent sources of signals in the
expression data, with transcriptional regulators being the most common source. Our model
showed that the activities of two global metabolic regulators, CcpA and CodY, which play critical
roles in central carbon and nitrogen metabolism respectively, are negatively correlated against
one another. This negative correlation pointed to a condition-specific reallocation of resources
towards different metabolic subsystems. GEMs fitted with metabolomics data confirmed the
inferences made from the transcriptomic data. Furthermore, GEMs revealed specific metabolic
interfaces where coordination of metabolism by the two regulators is required for optimal
biomass production, including glutamate dehydrogenase and the folate cycle. Placing genes
from CodY and CcpA- associated iModulons onto the metabolic map demonstrated that they did
not share any metabolic reactions, but coregulated expression of a gene encoding ribosome
hibernation factor. In light of these observations, we propose a model whereby CcpA and CodY
coordinate gene expression for carbon metabolism, nitrogen metabolism and translation, thus
modularly controlling protein production at specific stages.

Results

Expanding the USA300 iModulons using RNA-sequencing data from SRA
database

Our previous work outlined 29 iModulons for USA300 strains that were generated from
108 in-house RNA-sequencing data21. To expand the previous iModulons coverage of the TRN,
we took advantage of the rapidly growing, publicly-available S. aureus RNA sequencing
samples (Figure S1). We queried the Sequence Reads Archive (SRA) for all available
USA300-specific RNA sequencing data and combined it with 64 newly generated samples. Of
the 576 sequencing samples available, 385 passed the stringent QC/QA pipeline and were
therefore incorporated into the new model (see Methods). The final set of samples contained
data from at least 7 different USA300 isolates, 4 growth phases (exponential, stationary, biofilm
and infection) and 10 base media (Figure S2).

Before applying ICA, we normalized the log-transformed Transcripts per Million
(log-TPM) data to a project specific control condition. This reduced batch-specific variation in the
data and reduced the presence of iModulons not associated with biological signals. Principal
component analysis of the log-TPM data showed that normalized samples tended to cluster with
media types and growth phases rather than by data source (Figure 1a). For example, data from
S. aureus grown to late-log phase in SCFM2 (Synthetic Cystic Fibrosis Sputum Medium 2) and
to stationary phase in Chemically Defined Medium (CDM) did not cluster together, despite being
from the same bioproject.
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Figure 1. The updated iModulons for USA300 strains. A) 385 RNA-sequencing samples from diverse growth
conditions were used to generate the expanded USA300 iModulons. The samples were normalized to project specific
control conditions to reduce signal from batch effect. B) iModulons were labeled based on significant association with
other published regulons. C) Treemap of iModulon names, size (gene content) and types in the current model after
manual curation. The size of the boxes correspond to the number of genes in the iModulon.

Application of ICA to this normalized expression data resulted in 76 independent
components, and genes with high absolute weightings within each component were assigned to
a corresponding iModulon. These enriched iModulon genes were then compared with existing
literature of predicted regulons in S. aureus. Those iModulons that had significant overlap with
other predicted regulons were named after the associated regulator (Figure 1b). Lastly, some
iModulons with no known regulators, but associated other biological processes (e.g. prophages,
translation) were manually curated. In total, we labeled 60 of the 76 iModulons with either a
regulator or a biological process (Figure 1c). The remaining uncharacterized iModulons
represent signals in the S. aureus transcriptome with currently unknown origins, thus providing a
road map to discovery of missing parts of the known TRN. In addition to the structure of each
iModulon, the activities of each of the 76 iModulons in the 385 input samples were also
calculated. The activity represents the role each iModulon (and the associated regulator, if
known) in shaping the transcriptome in the given sample. Higher iModulon activity represents
higher expression level of genes with positive weightings in the iModulon and lower expression
of genes with negatively weighted genes20.
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CcpA and CodY iModulon activities highlight balance of carbon and nitrogen
metabolism

Figure 2. Coordination of metabolic iModulons in USA300 strains. A) Explained variance of each of the
iModulons; CcpA, Translation and CodY iModulons explain the most variance in the transcriptome data. B)
Translation iModulon gene weightings shows almost all genes enriched in the iModulon are associated with
translation. C) Translation iModulon gene weightings shows almost all genes enriched in the iModulon are associated
with translation. D) Activity of CcpA and CodY iModulons across all USA300 samples. Inactivation of CodY does not
alter CcpA activity but decrease in CcpA activity leads to increase in CodY activity. This asymmetric relationship
suggests that CcpA works upstream of CodY. Abbreviations: stat- stationary; exp- exponential; RPMI- Roswell Park
Memorial Institute medium; TSB- Tryptic Soy Broth.

Cumulatively, the 70 iModulons captured ~70% of the variance in the input
transcriptomic data. The CodY-1, CcpA-1 (henceforth referred to as simply CodY and CcpA
iModulons, respectively) and Translation iModulons explained the most variation in the data
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(Figure 2a). CcpA is the catabolite repressor protein in firmicutes that represses genes involved
in alternate carbon utilization as well as other central carbon metabolic pathways such as the
Tricarboxylic acid (TCA) cycle in the presence of high concentrations of glucose. CodY, on the
other hand, globally represses the genes required for amino acid biosynthesis in response to
high branched chain amino acid (BCAA) or GTP concentrations. Lastly, the Translation
iModulon almost entirely consists of ribosomal genes (e.g. rplK, rplA etc.) and genes involved in
translation such as infA and fusA which encode translation initiation factor IF-1 and elongation
factor G respectively(Figure 2b). This iModulon has been enriched in almost all bacteria and
archaea for which iModulons have been calculated 20,22–25.

Interestingly, activities of these three iModulons were highly correlated across all
samples (Figure 2c) and formed a large cluster along with other metabolic iModulons (Figure
S3). Along with CodY, CcpA, and Translation iModulons, activities of ILVopr (iModulon
containing the operon with isoleucine, leucine, and valine biosynthesis genes), MntR, LacR and
PurR iModulons were also highly correlated. Correlation of CcpA with LacR simply
reflects the catabolite repression of lactose utilization genes by the regulator CcpA. Similarly,
ILV operon is regulated globally by CodY and locally by leucine attenuator 26. This multi-layer
regulation likely explains why this operon formed its own iModulon whose activity was closely
correlated with CodY. The MntR iModulon contains genes required for manganese uptake, and
its coordinated activity with CcpA confirms the association of manganese concentration with
glycolytic flux27.

The correlated activity of CcpA and CodY iModulons suggested that S. aureus carefully
coordinates its central carbon and nitrogen metabolism (Figure 2d). Close examination of the
activities of these two iModulons showed a biphasic relationship. In conditions with preferred
carbon sources, and therefore low CcpA iModulon activity, CodY activity generally increased.
This effect was observed when glucose was added to both a complex medium (Cation-Adjusted
Mueller Hinton Broth, or CA-MHB) and to a defined medium (Chemically Defined Medium or
CDM1). Other conditions without explicitly controlled glucose levels that showed low CcpA
activity still had concomitant high CodY activity, suggesting that this effect was not glucose
specific. In conditions with already low CodY activity however, removal of glucose (RPMI (-)
glucose; substituted with maltose) did not lead to further change in CodY activity, creating the
second phase of the trade-off plane.

On the other hand, increase in CodY iModulon activity did not necessarily lead to
decrease in CcpA activity (Figure 2d; red markers). Samples from codY interrupted strains in
several different projects showed minimal effect on CcpA iModulon activity. These samples fell
well outside of the CcpA-CodY trade-off line (Figure 2d; gray dashed lines). Similar effects can
also be observed in samples treated with sub-inhibitory concentration of mupirocin. Mupirocin
activates the stringent response in S. aureus which leads to conversion of GTP to ppgpp and
subsequent derepression of CodY regulon28. As change in CcpA activity leads to change in
CodY activity but not necessarily vice-versa, this data suggests that CcpA works ‘upstream’ of
CodY.
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Metabolic modeling confirms coupling of CcpA and CodY activities
To independently confirm the metabolic interaction between CodY and CcpA, we used a
previously published USA300 strain specific genome-scale metabolic model (GEM) 29. GEMs
are curated mathematical models of an organism's metabolic network that can be used to
simulate, study, and design the metabolic pathways using a wide range of Constraints Based
Reconstruction and Analysis  (COBRA) tools14,30.

Figure 3. Metabolic
modeling shows
coordination of CcpA and
CodY fluxes. A) Sum of
sampled fluxes through
CodY and CcpA reaction
shows increased flux
through CodY in CDMG. B)
Sampled fluxes through
several amino acid
biosynthesis pathways also
show increased flux in
CDMG. Definition of the
biosynthetic pathways is
found in Methods.  C) Flux
through GLUDy reaction
changes direction when
glucose is added. D) Amino
acids generated by
accepting amine groups
from L-glutamate.
L-glutamate is converted to
akg in the process and
regenerated by GLUDy. E)
Metabolic map of folate
cycle where CcpA and
CodY regulated
metabolism intersect. F)
Flux through reactions in
folate cycle in CDM and

CDMG.

One such method, parsimonious Flux Balance Analysis (pFBA), can be used to calculate
metabolic flux state that optimizes a phenotype while minimizing total metabolic flux in a given
condition13,31. pFBA thus represents a parsimonious use of the metabolic proteome. Here, we
used pFBA to determine the metabolic flux states that maximize S. aureus biomass production
given the measured uptake and secretion rates of various amino acids and sugars in Chemically
Defined Medium (CDM) and CDM + glucose (CDMG)10. In agreement with increased CodY
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iModulon activity in CDMG, total flux through reactions catalyzed by enzymes that are encoded
in CodY iModulon genes (“CodY reactions'' for short), increased from 3.9 mmol/gDW/hr to 5.5
mmol/gDW/hr in presence of glucose (Figure 3a).

pFBA however, gives an exact optimal solution and therefore does not account for
variations or errors in input uptake data. We addressed this issue by sampling the CDM and
CDMG specific models, which gives a distribution of feasible fluxes in each of the respective
conditions. We then mapped the condition-specific flux distributions to various amino acid
biosynthetic pathways. For simple interpretation, we excluded amino acids that serve as
intermediates for biosynthesis of other amino acids (e.g. glutamine, glutamate and serine) and
included only those amino acid for which unique biosynthetic pathways could be defined (see
Materials and Methods). Confirming pFBA analysis, 5 out of the 6 amino acid biosynthetic
pathways had increased flux in CDMG when compared to CDM (Figure 3b). The results of
these two TRN-agnostic metabolic modeling methods are in agreement with our observation
that CodY iModulon activity increases in the presence of glucose.

Transcriptional coordination of CcpA and CodY are likely due to flux coupling at
metabolic interfaces

CcpA and CodY iModulons contained 110 and 86 genes respectively. Most of these
genes are involved in central carbon and amino acid metabolism. Despite the large iModulon
sizes and close metabolic proximity of the regulated genes, the two iModulons did not share any
genes encoding metabolic enzymes. The correlation in iModulon activities however, suggested
that CcpA reactions and CodY reactions must be coordinated at a metabolic level. Using the
USA300 GEM, we looked for this coordination at the metabolite interface between CcpA and
CodY reactions, i.e., metabolites that are involved in both CcpA and CodY reactions.

We found these metabolic interfaces by systematically identifying all metabolites in
USA300 GEM that can be found in both CodY and CcpA reactions. After taking out
‘non-specific’ metabolites and cofactors (e.g., ATP, H2O, NADH, etc.), we were left with 22
metabolites at the interface (Supplementary Table 1). While some of these metabolites like
pyruvate, glutamate and oxaloacetate are expected, as they play a crucial role in both carbon
and nitrogen metabolism, other metabolites like N-Succinyl-2-L-amino-6-oxoheptanedioate
and tetrahydrofolate (THF) are less understood in the context of this trade-off. To further
understand how change in simulated flux through CcpA and CodY reactions in CDM and CDMG
altered these key metabolic interfaces, we mapped the pFBA solution fluxes from each media to
the reactions around two of these interfaces- glutamate and methylTHF.

The glutamate-alpha ketoglutarate (αkg) link is a closely studied interface in S. aureus
that connects amino acid and central carbon metabolism 5,10. The main enzyme at the interface,
glutamate dehydrogenase (GLUDy) reversibly iterconverts αkg and glutamate and is encoded
by gudB gene, a constituent of the CcpA iModulon. However, this interconversion also acts as
an amine group donor or acceptor to 3 CcpA reactions and 8 CodY reactions (Supplementary
Table 1). In glucose free CDM, pFBA solution was consistent with previous observation showing
proline is converted to αkg via glutamate and eventually fuels
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gluconeogenesis10. However, in CDMG, the flux through GLUDy changes direction and
catalyzes conversion of αkg to glutamate instead (Figure 3C). This makes up ~98% of total flux
that consumes αkg. The glutamate in turn acts as an amine group donor for biosynthesis of
various amino acids and accounts for ~80% of total flux generating αkg in CDMG (Figure 3D).
pFBA solution of this interface therefore shows that in absence of glucose, GLUDy reaction
converts glutamate to αkg to fuel gluconeogenesis but in the presence of glucose it converts
αkg to glutamate to fuel amino acid biosynthesis.

The folate cycle represents another metabolic interface of CcpA and CodY reactions.
The folate cycle is required for one carbon metabolism, nucleotide biosynthesis and amino acid
metabolism and the pathway leading up to the cycle is the target of sulfonamide class
antibiotics32. The folate cycle consisted of 2 CodY reactions - MTHFR3 and METS (methionine
synthase) - and one CcpA reaction - GCCabc (glycine cleavage complex) (Figure 3E). In CDM,
tetrahydrofolate (THF) is converted to 5,10-methylenetetrahydrofolate (mlTHF) by GCCabc
reaction which cleaves glycine in the process (Figure 3F). THF is then regenerated from mlTHF
by GHMT2r reaction which also consumes glycine and generates serine. This consumption of
glycine in folate cycle by CcpA reaction is coupled with increased transport of glycine by CodY
regulated GLYt2. However, in CDMG where CcpA iModulon activity is low, there is no flux
through the CcpA reaction, GCCabc. Instead, GHMT2r runs in ‘reverse’ to convert THF from
mlTHF consuming serine and generating glycine instead. Together, combining iModulon
structure with metabolic simulation demonstrates how S. aureus coordinates flux through CcpA
and CodY iModulon reactions at these key metabolic interfaces, despite not sharing any genes
at regulatory level.

Figure 4. Coordination of translation with metabolism. A) Gene weights in CcpA and CodY iModulons shows that
only the hpf gene is a part of  both iModulons. B) Upstream region of hpf gene with its two alternative transcription
start sites. Two CodY binding sites were detected by ChIP-exo (purple bars). The previously recognized SigB(red)
and Cody(purple) binding sites and newly proposed CcpA (orange) binding site are highlighted. C) The negative
correlation between CodY and Translation iModulon suggests coordination of metabolism and translation in S.
aureus.
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The expression of translation associated genes are responsive to CcpA and CodY
activities

While CcpA and CodY iModulons do not share any metabolic genes, hpf, which encodes
ribosomal hibernation promoting factors (HPF), is a gene found in both iModulons. HPF is a
small peptide that dimerizes 70S ribosomal subunits to form inactive 100S subunits33,34. It plays
an important role in stress response, nutrition limitation and protects ribosomal pools from
degradation35–37. Previous studies in S. aureus have shown that SigB and CodY regulate hpf
expression in response to heat and nutritional stress35. iModulon structure confirms the role of
the CodY and suggests and additional layer of control by CcpA.

ChIP-exo data from our previous work found two CodY binding sites in the regulatory
region of the hpf gene (Figure 4b)38. To confirm the role of CcpA in hpf expression, we searched
for the catabolite repressor element motif (WTGNNARCGNWWWCAW) from Bacillus subtilis in
the same region39. A matching motif was found in the region between the two CodY binding
peaks (q-val=0.00905). This architecture, with two CodY binding sites flanking the CcpA binding
site, is also found in the regulatory region of B. subtilis BCAA operon where both regulators
contribute to the expression of the operon genes40. The signal from expression data and the
presence of binding motifs suggests that CcpA regulates hpf along with previously identified
regulators CodY and SigB.

In addition to coordinated regulation of translation associated hpf gene, CodY activity
was also strongly correlated with Translation iModulon activity. In contrast, CcpA and
Translation iModulon activities showed little correlation between them (Figure S4). Similar to
CcpA and CodY activity correlation, codY knockout and stringent response activation by
mupirocin also disrupted correlation with Translation iModulon (Figure 4c). This also suggested
that the signal controlling Translation iModulon gene expression also works ‘upstream’ of CodY
as interruption of CodY had little effect on Translation iModulon activity. While the coordination
of the two iModulon activity is apparent, we were unable to further interrogate the nature of this
relationship since the signal behind the Translation iModulon is yet to be identified.

Figure 5. Proposed coarse-grained model of protein biosynthesis regulation in S. aureus. The solid
lines represent the parts of the protein synthesis pathway controlled by CcpA (purple) and CodY (green). The dashed
lines represent new proposed roles of these regulators in (A) coordinating carbon and nitrogen metabolism and (B,C)
linking metabolic gene expression with expression of translation associated proteins.
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Discussion
Based on the data presented here, we propose a coarse-grained model of transcriptional

regulation of metabolism involved in protein synthesis in S. aureus USA300 strains (Figure 5). It
is motivated by the model of proteome coordination in E. coli and extends its principles to
non-model pathogenic organism15. The coarse-grain model simplifies metabolism underlying
protein synthesis into three steps; (1) the generation of precursors from carbon source, (2)
biosynthesis of amino acids from precursors or direct transport from the medium and (3)
synthesis of peptides from amino acids via translation. The generation of precursors from
carbon sources is largely regulated by CcpA (purple arrow). CcpA represses alternate carbon
sources (including amino acids such as proline, glutamine and aspartate) in the presence of
preferred carbon (such as glucose) and regulates other key aspects of central metabolism such
as gluconeogenesis and TCA cycle that are necessary to generate various precursors1,10,42–44.
The precursors in our model are represented by the metabolites at the CcpA-CodY interface
derived from the USA300 GEM (Supplementary Table 1).These precursors are then converted
to amino acids via CodY regulated gene products (green arrow) and polymerized by ribosomes
into proteins (light blue arrow)38,44,45.

Our analysis suggests that S. aureus USA300 strains coordinate their CcpA and CodY
activity to regulate carbon and nitrogen flow through the system (dashed orange arrow).
Metabolic modeling in CDMG shows increased flux through amino acid biosynthetic reactions
when compared to CDM. The results of this TRN-agnostic metabolic model agrees with the
increased CodY activity in CDMG and other glucose containing media. Despite close
coordination of metabolic flux at different interfaces between CcpA and CodY reactions, it is still
not clear how CcpA and CodY activities are coordinated. In E. coli, Kochanowski et al. have
observed similar coordination between anabolic and catabolic fractions of metabolism46. The
authors attributed active regulation by Crp and passive changes in metabolic fluxes in response
to change in metabolite concentrations as the source of the coordination. Additionally, we also
found a feed-forward regulation whereby CcpA and CodY control the expression of the gene
encoding HPF protein, which sequesters ribosomes into inactive 100S forms, suggesting a
mechanism by which translation is coordinated with metabolic state of the cell (dashed red
arrows) 33,35.

Lastly, the activity of Translation iModulon is also closely correlated with CodY activity,
which may act as an additional layer of coordination between metabolism and translation
(dashed blue arrows). However, we have yet to identify the signal or regulator controlling the
Translation iModulon activity and therefore the source of this concomitant change in expression
along with CodY is unclear. Ribosomal RNA (rRNA) expression is regulated by ppGpp during
stringent response which can be activated by mupirocin treatment28,47. We therefore expected
mupirocin to also have effect on Translation iModulon activity, but we found that while CodY
activity increased in response to mupirocin as expected, there was minimal change in
Translation activity (Figure 4c). This suggests that stringent response, at least when induced by
mupirocin treatment, does not play a major role in expression of Translation iModulon genes.
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The analysis of the coarse-grained model of metabolic gene regulation presented here
was enabled by a computable model of TRN. iModulons enable us to query the TRN at
multiple-scales, giving insights into TRN from single gene membership level to global
coordination of regulators. By modularizing the TRN, our analysis enabled us to unravel
complex regulatory and metabolic interactions to understand regulation of central metabolism
one regulator at a time. This modularization can also be used to continually expand on the
presented model. For example, our previous works have shown that Translation iModulon
activity in E. coli and S. aureus are closely correlated with stress associated alternate sigma
factors20,21. This points to a possible entry-point for incorporation of general stress response with
metabolism and protein synthesis. Similarly, we have also found that both PyrR and PurR
activity is correlated with CodY and CcpA which may provide insights into regulation of
nucleotide biosynthesis in response to carbon or nitrogen availability. While we mainly focused
on 3 iModulons- CcpA, CodY and Translation- the current model contains 76 total iModulons,
each of them rich with information about transcriptional regulation and physiology of S. aureus.
We thus provide a conceptual framework for overall coordination of metabolism in S. aureus and
approaches to systematically expand and detail the model proposed.

Methods
Strains and Growth Conditions

The S. aureus USA300 isolate LAC or its derivative JE2 were used to collect the new
RNA sequencing data in this study. The complete description and condition for each of the
samples can be found in the model sample table. For RNA sequencing from knock samples,
isolated from the Nebraska Transposon Mutant Library were utilized48. Unless specified
otherwise, samples were grown in duplicates in 20mL of respective media until they reached the
O.D600nm of 0.5. 3 mL of culture was harvested and immediately mixed with 6 mL of Qiagen
RNA-protect Bacteria Reagent, and incubated at room temperature for 5 minutes. The
supernatant was decanted after the samples were centrifuged for 10 mins and 17,500 RPM.
The remaining cell pellets were stored in -80C until they were prepared for RNA extraction.

RNA extraction and sequencing
Total RNA was isolated from the cell pellet in the Qiagen RNeasy Mini Kit columns by

following vendor procedures. An on-column DNase treatment was performed for 30 min at room
temperature. The ribosomal RNA was removed using RiboRid protocol, as described before49.
RNA was quantified using a Nanodrop and quality assessed by running an RNA nano chip on a
bioanalyser (Agilent, CA). A Swift RNA Library Kit was used following the manufacturer’s
protocol to create sequencing libraries.

Preparing RNA sequencing data for iModulon calculation
The iModulons were calculated from publically available RNA sequencing data from SRA

and the newly collected data in this study using pymodulon python package 41. The steps used
to calculate the iModulons described here were all completed using this package. All RNA
sequencing data labeled with S. aureus taxonomic ID was downloaded and manually curated to
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obtain only the samples that were from USA300 isolates. Raw fastq files from curated samples
were downloaded, trimmed with TrimGalore and were then aligned to the USA300 TCH1516
genome ( NC_010079, NC_012417, NC_010063) using Bowtie2 50. QC/QA stats were collected
on each sample using MultiQC and samples that did not pass the QC thresholds (e.g. low read
depth, low correlation between replicates, missing metadata) were discarded51. Transcripts per
million (TPM) was calculated from the remaining high quality RNA sequencing samples. TPM
were log transformed and normalized to a control condition within the same BioProject.
Calculating iModulons from RNA sequencing data

Scipy’s implementation of FastICA was applied to log transformed and normalized TPM
data to generate independent components (ICs) and their activities52,53. Unlike other
decomposition methods, ICA requires the number of dimensions to be calculated as an input.
Therefore, various models with different dimensionality were created and the one that
maximized regulatory iModulons and minimized single gene iModulon was chosen54. The
iModulons were then automatically annotated if they overlapped significantly with a curated list
of known or predicted regulons and genomic features (e.g. prophages, SCCMec, ACME etc) in
S. aureus. Other iModulons such as ‘Translation’ or ‘Autolysin’ were manually annotated as all
genes contained within the iModulons have a single function.

Genomic scale modeling of S. aureus USA300 metabolism
USA300 specific Genome scale model (GEM) iYS854 was used for all metabolic

simulations in the paper. Exchange rate of amino acids, glucose, ammonium and acetate were
adjusted to constrain the model to CDM or CDMG specific conditions as described in detail
before29. Briefly, the uptake or secretion rate for each metabolite from Halsey et al. were
normalized by growth-rate, to get growth adjusted solute uptake rate10. The exchange rates
were then constrained to +/-15% of uptake and exchange rate to account for variance in the
data.

Once constrained the model was then used to calculate flux each media using pFBA as
implemented in the cobrapy package30,31. To get CodY iModulon specific flux, genes in the CodY
iModulon were first mapped to metabolic reactions using gene product rule (GPR). The absolute
value of fluxes from the pFBA solution for the CodY reactions were then summed to get the final
CodY iModulon flux.

To calculate valid amino acid biosynthesis pathway specific flux distribution, the solution
spaces of CDM and CDMG specific models were sampled 10,000 times using the Artificial
Centering Hit-and-Run algorithm 55. Next, the reactions in each amino acid biosynthetic pathway
was determined with the MinSpan algorithm56. Minspan calculates the set of shortest metabolic
pathways that are linearly independent of one another and span the null space of the input
model. Each independent pathway defines a mass balanced set of reactions and therefore
enables unbiased modularization of metabolism into biologically meaningful pathways. The
sampled fluxes (v) can therefore be represented as linear weightings (α) of minspan pathways
(P).

v = P * α
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The sampled fluxes were converted to pathway specific weightings (pathway fluxes)
using the minspan matrix. Pathways containing amino acid biosynthesis were manually curated
and only amino acid biosynthesis pathways that did not appear in multiple MinSpan pathways
were used for analysis as they can be easily interpreted and does not require analyzing linear
combinations of multiple pathways.

Lastly, the interface metabolites were determined by comparing all metabolites that were
involved in at least one CodY and one CcpA reaction. The common metabolites ADP, ATP, CO 2,
coenzyme A, H2O, hydrogen atom, sodium ion, NAD, NADH, NADP, NADPH, ammonium (NH4),
and phosphate were excluded from this designation.

Motif enrichment
The 150 base-pairs upstream of hpf gene (USA300HOU_RS04065) was scanned for

CcpA motif (WTGNNARCGNWWWCAW) using Find Individual Motif Occurence (FIMO) within
the MEME suite39,57.
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