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During morphogenesis, diverse cell-scale and tissue-scale processes couple to dynamically sculpt
organs. In this coupling, genetic expression patterns and biochemical signals regulate and respond
to mechanical deformations to ensure reproducible and robust changes in tissue geometry. A long-
standing approach to characterize these interactions has been the construction of expression atlases,
and these atlases have necessarily relied on fixed snapshots of embryogenesis. Addressing how
expression profiles relate to tissue dynamics, however, requires a scheme for spatiotemporal regis-
tration across different classes of data that incorporates both live samples and fixed datasets. Here,
we construct a morphodynamic atlas that unifies fixed and live datasets – from gene expression
profiles to cytoskeletal components – into a single, morphological consensus timeline. This resource
and our computational approach to global alignment facilitate hypothesis testing using quantitative
comparison of data both within and across ensembles, with resolution in both space and time to re-
late genes to tissue rearrangement, cell behaviors, and out-of-plane motion. Examination of embryo
kinematics reveals stages in which tissue flow patterns are quasi-stationary, arranged as a sequence
of ‘morphodynamic modules’. Temperature perturbations tune the duration of one such module –
during body axis elongation – according to a simple, parameter-free scaling in which the total inte-
grated tissue deformation is achieved at a temperature-dependent rate. By extending our approach
to visceral organ formation during later stages of embryogenesis, we highlight how morphodynamic
atlases can incorporate complex shapes deforming in 3D. In this context, morphodynamic modules
are reflected in some, but not all, measures of tissue motion. Our approach and the resulting at-
las opens up the ability to quantitatively test hypotheses with resolution in both space and time,
relating genes to tissue rearrangement, cell behaviors, and organ motion.

I. INTRODUCTION

There is a long history of constructing transcriptomic
and protein expression atlases to tackle outstanding ques-
tions in morphogenesis [1–7]. Existing atlases have been,
by necessity, static representations of embryo compo-
nents at a collection of specific points in time [4, 8, 9].
These bottom-up approaches have proven useful in eluci-
dating otherwise-hidden connections between disparate
components of the morphogenetic program. However,
morphogenesis consists of integrated dynamic processes,
subject to dynamic rules. Therefore, a full understand-
ing of how biological shape emerges requires a synthe-
sis of spatial and temporal information. This demands
new methods for registering independent datasets in both
space and time.

Not all proteins of interest can be visualized in the
same recording, and constructs for live imaging are of-
ten unavailable. Therefore, a morphodynamic atlas has
to combine data from different experiments, and from
fixed as well as from live samples. This poses three chal-
lenges: 1) spatial alignment to compare different features
of a given tissue region imaged in different experiments,
(2) temporal alignment to compare how features from
different experiments relate over time, and 3) timeline

construction, creating a single morphogenetic timeline
applying to all experiments. To create an efficient and
rigorous scientific resource, all of these steps need to be
automated and carried out quantitatively.

Here we provide a solution to this challenge by gen-
erating a dynamic protein expression atlas that inte-
grates datasets spanning much of Drosophila embryoge-
nesis. We demonstrate the analytical value of our atlas
by first focusing on the earliest movements of gastrula-
tion. We then generalize to visceral organ morphogen-
esis, demonstrating that our approach to spatiotempo-
ral registration of dynamic datasets applies also to more
complicated shapes deforming in 3D.

Our atlas consists of over 500 unique fixed and live em-
bryo datasets, including 18 mutant genotypes, detailed
in the Supplementary Information. All data was cap-
tured using in-toto multi-view light sheet microscopy –
enabling global analysis of dynamics [10–12]. The atlas
defines temporal coordinates based on tissue morphology
and spatial coordinates based on tissue cartography. We
generated a fully documented, MATLAB-based platform
for querying data classes of choice, including expression
profiles, tissue flows, and expression anisotropy [13]. The
atlas platform is an open-source tool specifically designed
to incorporate future data contributions.
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II. CONSTRUCTION OF A
MORPHODYNAMIC ATLAS OF EARLY

DROSOPHILA GASTRULATION

We integrate independent classes of experimental data
onto a fixed two dimensional frame of reference indexed
along a single morphological timeline. Fig 1 provides
a visual example of this approach. Both live and fixed
expression data — such as gene products involved in pat-
terning (pair-rule genes (PRG)) and cytoskeletal compo-
nents (myosin and integral junction proteins) — are vi-
sualized using an iterative cartographic approach which
makes 2D projections of the embryo’s 3D surface (Fig. 1).
By imaging the samples in toto, we can use the full em-
bryo geometry to perform spatial alignment. Our soft-
ware automatically aligns a cartographic projection of
the 3D embryo surface with the embryo body axes for
this purpose (see Methods). This method enables rapid
calculation and comparisons of tissue dynamics and ex-
pression patterns across embryos, with each dataset pro-
viding expression patterns at subcellular resolution.

A feature of this technique is the capacity to describe
the dynamic morphogenetic program in terms of under-
lying physical fields. The position of individual cells will
vary from sample to sample, so single-cell comparison
across embryos is not possible. Instead, we extract meso-
scale information by smoothing gene expression patterns,
velocity fields, and measures of anisotropy. These fields
can then be related to one another across the embryo’s
body plan, for example, allowing us to look for large-scale
correlations of patterns.

Recently, this biophysical field-theoretic approach has
led to fruitful models relating mechanical force, gene ex-
pression, and tissue geometry [14–19]. Fig. 1C highlights
a subset of the ways in which a single dataset can be
described using multiple distinct classes of spatiotempo-
ral fields. Our atlas therefore provides ready access to
spatially-aligned fields, ripe for quantitative hypothesis
testing.

While our cartographic pipeline solves the problem of
aligning different recordings in space, these recordings
also have to be aligned in time. Within a population
of embryos, morphogenesis proceeds at different rates,
due to natural variation between individuals that is ex-
acerbated by genetic factors and ambient environmental
conditions. This raises two central questions: what is
the relevant timeline for analysis of morphogenetic pro-
cesses, and how do we consolidate disparate timelines?
For centuries, the standard technique used to track de-
velopmental progress has been to define stages based on
the appearance of canonical morphological milestones.
Here, we adopt this paradigm of timing morphogenesis
using tissue geometry. However, rather than only timing
discrete stages, we upgrade the characterization of mor-
phological time into a continuous variable suitable for
quantitative analysis.

We proceed in two steps: based on pairwise compari-
son of suitable morphological features, (1) the timelines

of individual live datasets are dilated to align along a
consensus timeline, and (2) fixed samples are placed ap-
propriately in the consensus timeline.

To carry out step (1), we first select a suitable mor-
phological feature which allows us to score the similarity
of two images (see Sect. II A for a concrete example). To
align two live datasets, one could simply find the fixed de-
lay between the two which maximizes average similarity
(e.g. concluding that movie A begins 10 minutes before
movie B). However, a rigid alignment is incapable of tak-
ing into account the variable rates at which morphogen-
esis proceeds in different embryos. We instead compare
every frame of one movie to every frame of the other, cre-
ating a rectangular matrix of correlations (Fig. 2). A fast-
marching algorithm then finds the optimal path through
this matrix, matching every timepoint of movie A to its
best match in movie B while respecting temporal order,
naturally accounting for variable rates of morphogenesis
in the two samples.

A. Aligning live datasets of PRG expression

As shown in Fig. 2, the PRG Runt is expressed in
stripes along the embryonic dorsoventral axis that de-
form as the epithelium flows. By imaging a collection of
embryos expressing a llama tag for Runt [20], we extract
the continuously-deforming morphology of Runt stripes
as a landmark for morphological timing to carry out steps
(1) and (2) above. We thereby leveraged live datasets of
Runt expression to build a consensus morphology of Runt
stripe geometry. By linking the timelines for each pair
of Runt embryos using our fast marching algorithm (see
Methods), we generate a single, consensus timeline.

B. Aligning fixed datasets

As shown in Fig. 2B, we designed our atlas such that
all fixed embryos are multiply immunostained against
both Runt and a second gene product target of inter-
est. For each embryo, we extract the static geometry of
Runt stripes to correlate its position against the consen-
sus Runt stripe shapes from live datasets, thereby deter-
mining the timestamp at which the fit residual is mini-
mum. This process uses stripe geometry as a stopwatch
against which we timestamp all fixed samples in the atlas.
Any co-stained targets of interest are therefore aligned in
time based on the position of the Runt stripe.

While the capacity to align live and fixed datasets
based on a shared protein expression feature is valuable,
Runt expression data is not present in all live imaging
datasets. In order to integrate these other types of live
data, we therefore needed to extend our morphological
approach.
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C. Aligning live datasets based on tissue
deformation

Embryonic tissue deforms during morphogenesis, and
its instantaneous rate of deformation can be captured by
flow fields [17] (Fig. 3A). The degree of total deforma-
tion can serve as a benchmark for defining morphological
time, and can be reconstructed from the instantaneous
flow fields.

We developed a method to compare integrated flow
patterns, cross correlating displacements of the tissue to
one another using the same fast marching technique as
in aligning live imaging of Runt stripes. In both cases,
the morphology of the tissue marks its placement in the
morphological timeline. We fix the reference timepoint of
the integration as the time when GBE tissue flow starts
to rise significantly (see Methods). As shown in Fig. 2F-H
and the Supplementary Information, this approach leads
to aligned tissue morphology.

Note that we use total tissue deformation, and not the
instantaneous flow field, as a developmental land mark.
In many contexts, instantaneous flow fields can be rela-
tively constant in time (e.g. cells migrating with fixed
speed), making them unsuitable as timestamps.

III. CROSS-CORRELATION OF GLOBAL
TISSUE DYNAMICS REVEALS PERIODS OF

QUASI-STATIONARY FLOW PATTERNS

Expressing tissue motion as a time-dependent veloc-
ity field defined over the surface of the embryo allows us
to compare tissue motion at different times or in differ-
ent embryos. For example, we can directly compute the
difference of two velocity fields.

We measured tissue flow in all live datasets included
in the atlas using particle image velocimetry [21]. When
we analyze these tissue flows, we find discrete periods of
time in which the global pattern of tissue velocity remains
remarkably stationary (Fig. 3B). We stress that the tissue
itself is not stationary, but instead the pattern of motion
is stationary: although the cells are moving across the
embryo, the pattern generated by the flow is stationary
during certain discrete stages of development.

To make this observation quantitative, the simplest
step is to compare the dynamic velocity field to itself:
comparing the velocity field at time t to the velocity
field at a later time t′ defines the autocorrelation func-
tion of the tissue flow. The magnitude of autocorrelation
– measured using either the direction of motion or the
rotational component of the flow – is high during dis-
crete blocks of morphogenetic time, which correspond to
established developmental episodes (Fig. 3B and Supple-
mentary Information).

In particular, we see that the pattern of tissue flow
changes little throughout germ band extension (GBE).
The pattern of the autocorrelation matrix shows the
quasi-stationary nature of the tissue motion pattern,

shown in detail for a representative single embryo
in Fig. 3C. Extending this approach to investigate cross
correlations between embryos, we find remarkable simi-
larity in the pattern of tissue flow between different sam-
ples Fig. 3D. This means that tissue flows during germ
band extension are both quasi-stationary and stereo-
typed across multiple embryos.

To highlight a consequence of the high degree of
self-similarity and reproducibility, we compared the
ensemble-averaged rotational flow 〈ω(t)〉E (i.e. average
over different samples at the same time) to the time aver-
aged vortical flow, 〈ω〉T , for an ensemble of 57 wild-type
embryos. We observe very high correlation for nearly all
of GBE (Fig. 3E-E’). This type of calculation, using a
large number of samples aligned along a common time-
line to study variations in time and across samples, is a
typical use case of the dynamic atlas technology.

To validate our PIV-based approach, we tracked 6000
cells in an embryo with a cell membrane marker (CAAX-
mCherry) and derived the kinematics from single-cell tra-
jectories. As shown in the Supplementary Information,
the kinematics based on cell-trajectories differ little from
the PIV measures, and furthermore, they produce simi-
lar results in the cross-correlation between time-averaged
and ensemble-averaged flow shown in Fig. 3E’.

As a result of the quasi-stationary character of the tis-
sue flow, there is a striking resemblance between the pat-
tern of cell trajectories drawn in Fig. 3F, and the pattern
of streamlines in a purely stationary, ensemble-averaged
and time-averaged flow field. This result demonstrates
that, despite massive movement of material, the mor-
phogenetic program precisely coordinates a fixed pattern
of tissue motion during discrete periods of morphological
time.

IV. KINEMATICS OF GBE FOLLOW SIMPLE
TEMPERATURE-DEPENDENT SCALING

The rate of development is sensitive to environmental
conditions, such as temperature. If morphological tim-
ing is perturbed, will the pattern of flow change only in
its magnitude, or also in its orientation and sequence?
Notably, Drosophila embryos can tolerate variations in
temperature, allowing us to apply significant experimen-
tal perturbations.

To tune the rate of development, we measured the
pattern of flow during GBE at a series of temperatures
(17◦C, 22◦C, 27◦C, with embryos viable at all tempera-
tures). As shown in Fig. 4A, embryos cultured at 17◦C
demonstrated reduced tissue flow rate, while embryos at
27◦ progressed through GBE more rapidly. Embryos cul-
tured at 22◦ adopted an intermediate flow rate. We find
that quasi-stationary kinematics appear in each temper-
ature condition. Moreover, temperature does not affect
the spatial pattern of tissue motion encoded by the kine-
matics: the flow fields differ only in their magnitude.

We hypothesized that the effect of temperature is sim-
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ply to linearly accelerate or decelerate developmental
time, much like playing an identical video at different
speeds. This is consistent with the idea that the GBE
program encodes target tissue deformations as a mor-
phogenetic ‘checkpoint’, rather than prescribing, for ex-
ample, a fixed time duration during which cells undergo
rearrangement. The duration of tissue motions would
need to vary in inverse proportion to the overall speed,
to ensure that the final tissue deformation is conserved
across conditions, and that the paths traversed by tissue
patches are the same for all conditions.

To test this hypothesis, we integrated tissue motion
for a duration set by the relative speed of the tis-
sue flow, finding that the final pathlines are uniform
across temperatures (Fig. 4B). As shown in the Sup-
plementary Information, variations in tissue deformation
across temperature conditions is not significantly differ-
ent from variations within each condition. This leads to
a parameter-free scaling, in which the embryo achieves
the same final deformations (morphodynamic milestones)
at variable rates, and all velocity curves collapse upon
rescaling time by the maximum speed: t→ max(〈v〉) ∗ t
(Fig. 4C-D).

Does the same simple scaling govern all aspects of the
morphogenetic program, or just tissue flows? Recent
studies investigating temperature-dependent scaling have
pointed to universal scaling across a survey of develop-
mental processes [22, 23]. In contrast, other studies have
found non-uniform temperature scaling for timing of the
cell cycle and other subcellular processes, identifying di-
vergent scaling rules for different components of the mor-
phogenetic program [24, 25]. Motivated by these varia-
tions in scaling for mitosis, we investigated this question
at the tissue scale by measuring the onset of mitosis in
different domains across the embryo surface during GBE.
These ‘mitotic domains’ are highly stereotyped in both
relative timing and position [26].

To measure the rate of the ‘mitotic clock’ at each tem-
perature, we calculated the time elapsed between the
onset of division in different mitotic domains (see Sup-
plementary Information). Remarkably, we find that the
ratio of the time differences at different temperatures di-
verged significantly from the parameter-free scaling of
the tissue motion. In particular, Fig. 4E-G shows that
the relative timing of mitotic events across conditions
varied by a factor of 2.5 ± 0.1. In contrast, tissue flow
velocities varied only by a factor of 1.5 ± 0.3. The dis-
crepancy is robust across different methods of measuring
the time difference, such as choosing a different reference
time (see Supplementary Information). This result opens
further questions: why do cell cycle and tissue deforma-
tion timings scale differently, and how are these differ-
ences accommodated to produce viable embryos over a
large range of temperatures?

V. MORPHODYNAMIC ALIGNMENT OF A
SHAPE-CHANGING VISCERAL ORGAN

REVEALS SEQUENTIAL MORPHODYNAMIC
MODULES IN COVARIANT MEASURES OF

TISSUE DEFORMATION

Morphogenesis involves tissue dynamics not only on
fixed surfaces such as the ellipsoidal surface of the early
embryo, but also on more complex tissue geometries de-
forming in 3D space. At a later stage of embryogenesis,
tissues that invaginate during gastrulation and in head
involution come together to form the digestive tract [27].
During stages 15-16 of development, the midgut forms
three constrictions in a sequence that divides the or-
gan into four chambers, as shown in Fig. 5A [28–30].
This process is known to be stereotyped across embryos,
but the quantification of its dynamics has until recently
proven elusive, due to the complex shapes and inherently
3D deformations [30, 31]. Variability of the morpho-
genetic program between embryos remains largely un-
characterized [32].

During this stage of development, the tissue at the em-
bryo surface shows very little coherent motion compared
to GBE, and the autocorrelation of the tissue flow on
the ectodermal surface from Fig. 3B during this time is
nearly zero. Will characterization of the complex tissue
motion deep inside the embryo reveal morphodynamic
modules?

To test this, we here extend our spatiotemporal reg-
istration and examination of velocity correlations during
morphogenesis to the development of complex shapes in
the midgut. We use level sets approaches of the TubU-
LAR package [31, 33] to extract a surface that penetrates
∼2.5 µm within the apical surface of the endoderm, along
the surface that intersects endodermal nuclei. In contrast
to the case of germ-band extension, these surfaces are
highly dynamic, demanding additional steps for spatial
registration.

With sequences of each embryo’s midgut surface in
hand, we find the closest match between each pair of sur-
faces using iterative closest point registration (see Meth-
ods). This algorithm finds the combination of rotation
and translation that best maps two 3D surfaces onto
each other. This morphological approach allows align-
ment across embryos with different fluorescently tagged
proteins (Fig. 5B).

With spatial registration performed, we can use a
quantitative comparison of organ shape to temporally
align the process of midgut morphogenesis across em-
bryos. Performing pairwise alignment across embryos
leads to a consensus timeline of morphology shown
in Fig. 5C. For our ensemble of embryos, the rate of devel-
opment through morphological stages varied by ∼ 10%.
Fig. 5D shows cross-sections of these embryos in the lat-
eral plane during four stages of development. The match
between midgut shapes becomes less stereotyped as mor-
phogenesis proceeds, as evident in quantification of the
shape variation across our ensemble (Fig. 5D and Sup-
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plementary Information).

We then turned to whether the tissue kinematics ex-
hibit periods of quasi-stationary motion like in the early
embryo’s axis elongation. Fig. 5E shows that unlike the
earlier velocity autocorrelation maps of GBE, here the
full 3D velocity’s autocorrelation shows relatively little
structure: while dynamics vary continuously and thus
show some degree of correlation with similar timepoints,
no distinct morphodynamic modules are present. This
makes intuitive sense, as coordinate directions in the tis-
sue frame of reference rotate as the surface deforms in
3D space.

We find more structure, however, in the autocorrela-
tion of measures of tissue deformation computed in the
tissue’s frame of reference. Covariant measures of defor-
mation – which make reference to the tissue’s orientation
in 3D space – do show distinct morphodynamic mod-
ules (Fig. 5F). While the time-averaged autocorrelation
of both classes of measurements display similarly pro-
longed correlation timescales of ∼25 minutes (see Supple-
mentary Information), moving into the reference frame
of the organ to evaluate covariant measures of tissue mo-
tion highlights boundaries between modules which are
hidden in the full 3D velocity field measurement. Within
these modules, the autocorrelation forms box-like shapes
of high correlation arranged along the diagonal in Fig. 5F.

Examination of the out-of-plane deformation during
these modules shows qualitatively distinct programs, il-
lustrated for a representative embryo in Fig. 5G. During
the first module, the middle constriction forms (purple
streak bisecting the organ). In [30], this module is de-
noted as stage 15b. Subsequently, out-of-plane deforma-
tion appears at the anterior and posterior constriction
locations. This module shares ∼50% correlation with
the stage 15b, as the middle constriction continues to
deepen. In [30], this second module is denoted as stage
16a. A third module, which shares significant correlation
with 16a but not with 15b, then follows, marking the
absence of significant divergence or out-of-plane defor-
mation near the posterior constriction and a breaking of
left-right symmetry in the second chamber. Finally, con-
strictions are complete, and a new pattern of deformation
emerges during stage 17, in which the organ continues to
coil into a helical configuration. Similar modules arise
upon examination of other covariant measures of tissue
deformation (see Methods).

This analysis demonstrates that while the morpho-
genetic program is encoded in stepwise modules, not
all aspects of tissue velocity will exhibit these quasi-
stationary features. More generally, our approach offers
a systematic strategy for discovering mechanisms for en-
coding morphogenetic processes.

VI. DISCUSSION

We have constructed an open-source morphodynamic
atlas of Drosophila development – which integrates dy-
namic and static datasets capturing patterning gene ex-
pression, cytoskeletal patterning, and nuclear and mem-
brane markers – and an associated computational plat-
form for querying and interfacing with the atlas. Us-
ing automated extraction of measures of tissue geom-
etry, we align all datasets to a common morphological
timeline covering GBE and midgut morphogenesis. Our
fast-marching based timeline creation algorithm auto-
matically takes variations in developmental speed into
account. This resource provides a testbed for rapid hy-
pothesis testing and quantitative modeling. In addi-
tion, our approach to indexing by morphology and cross-
correlating data across samples is valuable as a tool for
addressing variability within and between ensembles.

Comparing in toto tissue velocities across time and
across embryos shows stereotyped modules of quasi-
stationary tissue deformation both during body axis elon-
gation and midgut morphogenesis. Temperature pertur-
bations revealed that the duration of the quasi-stationary
flow pattern during body axis elongation follows a sim-
ple, parameter-free scaling in which the same final tissue
deformation is achieved at a temperature-dependent rate.

This scaling suggests that the morphogenetic program
encodes total tissue deformation, i.e. that the duration
for which the morphogenetic modules revealed by our
correlation analyses are active is determined by the ac-
cumulated tissue deformation. Mitotic events, however,
followed a distinct scaling with temperature, raising the
question of whether the two are synchronized at a subse-
quent morphogenetic checkpoint. Such checkpoints could
occur at “pauses” between morphogenetic blocks. Dif-
ferences in scaling for different aspects of morphogenesis
have been noted before in other contexts [34].

The reproducibility of tissue flow is reminiscent of the
well-documented spatial precision of gene expression pat-
terns [35, 36]. These earlier studies showed gene expres-
sion levels to be spatially patterned with single-cell pre-
cision. Tissue kinematics are likewise strongly correlated
in a fixed, geometric (Eulerian) reference frame, despite
massive motion of the material. This result is in line with
the recent finding that the anisotropic pattern of myosin
appears to be controlled by static, non-deforming cues
during GBE tissue motion [19].
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[35] J. O. Dubuis, G. Tkačik, E. F. Wieschaus, T. Gre-
gor, and W. Bialek, Proceedings of the Na-
tional Academy of Sciences 110, 16301 (2013),
https://www.pnas.org/doi/pdf/10.1073/pnas.1315642110.
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FIG. 1. A single morphological timeline parameterizes different classes of dynamic and fixed data during
Drosophila axis elongation. (A) Confocal lightsheet imaging of hundreds of embryos generates volumetric datasets, which
we spatially register into a fixed 2D parameterization. Here we show representative snapshots of a Runt nanobody reporter
and myosin marker, sqhGFP. (B) Fixed embryos show spatial patterning, but require a method for generating timestamps.
(C-F) Registering all data to a global morphological timeline enables quantitative characterization of scalar fields – such as
transcription factor expression levels (top row), vector fields – such as gradients of expression or tissue velocities, and tensor
fields – such as measures of cytoskeletal anisotropy, or tensors computed from gradients of gene expression. Panel (E) shows
average velocity fields across five morphologically aligned sqh:GFP datasets. Panel (F) shows the tensorial myosin patterning
via the radon transform across the same sample (c.f. [17]), and the colorbar represents the norm of the deviatoric (anisotropic)
component of the myosin tensor.
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FIG. 2. Live imaging of gene expresssion datasets define a consensus morphological timeline against which we
timestamp fixed samples. (A) To build a common morphological timeline that can be used to timestamp fixed datasets,
we compare each pair of live Runt nanobody datasets to one another, creating a matrix of frame-to-frame similarity values,
through which we trace a correspondence curve (yellow). Annealing an ensemble of pairwise correlations such as this one yields
a consensus timeline for ensemble averaging. For our consensus timeline based on live Runt nanobody data, the r.m.s. time
difference between different correspondence curves was 2.1 minutes. (B) With pairwise correspondences in hand, we build a
consensus timeline and overlay different embryos to create an ensemble average. (C) Fixed samples (top) are co-stained for
Runt, allowing their comparison to the ensemble average of Runt nanobody live data. (D) We computationally extract the
shape of Runt stripes of both the fixed sample (top) and the live data (bottom), allowing (E) for a quantitative comparison
with the consensus timeline. For each fixed sample (here, we show three examples), this comparison measures the similarity
to each point in the consensus timeline, yielding both a timestamp (circles) and an estimate of uncertainty (lateral errorbars).
(F ) For live datasets without Runt stripe expression, we integrate tissue velocities measured via PIV to record displacements.
(G) Comparing tissue displacements across datasets (see Methods) leads to correspondence curves between live datasets. (H)
Comparing integrated flows from live non-Runt datasets to those of live Runt datasets unites both in the morphological timeline.
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FIG. 3. Tissue dynamics exhibit reproducible periods of quasi-stationary flow. (A) To characterize the characteristic
periods of tissue flow, we compare the instantaneous tissue flow field against the timecourse of tissue flow during morphogenesis.
(B) Comparing a single embryo’s flow against its timecourse of flow reveals blocks of quasi-stationary tissue flow during GBE and
germ band retraction, here measured by the autocorrelation in vorticity. These blocks of high autocorrelation are punctuated
by periods of low autocorrelation. (C) Zooming in on the autocorrelation at the onset of ventral furrow formation (VF) and
GBE shows high correlation following VF. (D) Measuring the correlation in flow across embryos shows high cross-correlation
in flow fields across samples. (E) The mean vorticity of each embryo during 56 minutes after GBE onset is strongly correlated
with the ensemble-averaged vorticity across embryos for each developmental timepoint. The blue curve represents the average
correlation between per-embryo and per-timepoint means across an ensemble of 57 embryos, and the blue shaded bar shows
the standard deviation of these correlations across the ensemble. (F) Tracked trajectories in a CAAXmCh embryo shows a
similar pattern of cell pathlines to the streamlines of the time-averaged and ensemble-averaged flow during GBE. (G) The
quasi-stationary and highly stereotyped nature of the flow results from the nearly-stationary positions of the vortices in the
embryo’s tissue flow. The positions of vortices are advected little compared to the motion of the tissue itself during GBE.
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FIG. 4. Kinematics of tissue flow scales with temperature without changing the pattern of deformation,
but timing of mitotic domains scales differently with temperature. (A) The pattern of tissue velocity at different
temperatures match in orientation and morphology, but differ in overall speed. Grey color represents flow vorticity. (B)
Integrating velocities to follow tissue parcels over a timescale that is set by the overall speed results in nearly identical tissue
pathlines. t = 0 corresponds to the onset of GBE tissue flow. Here, we use the maximum of the speed averaged over the
embryo surface, 〈ṽ〉, as the scaling factor, and τ is chosen to be 25 minutes at room temperature. (C) Measuring the average
velocity across the surface of the embryo over time 〈v〉 shows strong temperature dependence for embryos at 17◦ (blue), room
temperature (gray), and 27◦ (red). (D) Rescaling time by the maximum velocity 〈ṽ〉 collapses all curves. This rescaling adjusts
the velocities (rate of motion) by 1/〈ṽ〉 and stretches the time axis that parameterizes the velocities by 〈v〉. (E) The time
at which mitosis appears in different mitotic domains also shows strong temperature dependence. Here, the first 20 mitotic
event timestamps are reported in bar-and-whisker plots for five different domains at reduced and elevated temperatures. (F)
The time delay between the onset of ventral furrow formation and the onset of mitosis events shows a different scales with
temperature by a factor of 2.5± 0.1. (G) This temperature scaling ratio for mitosis is significantly different than the ratio that
rescales tissue velocities. These measurements are largely independent since the mitoses contribute little to the tissue velocity
during these stages (∗∗∗ denotes p = 0.0005).
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FIG. 5. Morphodynamic atlas of the midgut via spatiotemporal registration reveals embryo-to-embryo shape
variations and morphodynamic modules appearing in covariant measures of tissue deformation. (A) The midgut
envelops to the embryo’s yolk and folds into chambers ∼13-15 hours post fertilization. Extracting the endodermal (inner)
surface of the gut using TubULAR [31] yields collections of dynamic organ shapes. Scale bars are 100 µm. (B-C) Our
approach allows comparison across different classes of data, highlighted by plasma membrane marker and nuclear markers in
the endodermal tissue surfaces rendered using TubULAR. Scalebar is 20 microns in (B). (D) Registration of one embryo’s
midgut surface sequence to another allows pair-wise comparison and mapping of each embryo to a common morphological
timeline. The embryos in our ensemble exhibited sterotyped morphogenesis with ∼10% variation in the rate of development
through morphological time. (E) Optimal spatiotemporal alignment allows comparison of embryo shapes across the ensemble.
As morphogenesis proceeds, midguts become increasingly unique in their morphology. (F) Autocorrelation of the 3D tissue
velocity for a representative embryo shows little temporal structure, leaving a diffuse streak of correlation along the diagonal.
(G) In contrast, for measurements in the tissue frame of reference, block-like structures emerge in sequence along the diagonal,
here for the auto-correlation of the out-of-plane deformation. (H) Snapshots of the covariant out-of-plane deformation for each
morphodynamic module shows stereotyped deformation for each morphogenetic stage.
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FIG. 6. Comparing morphodynamic features across datasets generates a morphodynamic atlas. (A) Extract-
ing geometric deformations and (B) cross-correlating these features between samples defines (C) a consensus morphological
timeline. Live expression profiles define a consensus morphological timeline and temporal sequence of Runt stripe geometries.
Immunostaining against Runt in all fixed samples within the atlas defines their morphological time. Comparing tissue flow
fields in dynamic datasets without visible Runt expression similarly define correspondences which we integrate into the common
morphological timeline. Sequences of midgut shapes similarly define a 3D geometric indicator of morphological time.
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