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Seeing social: A neural signature for conscious perception of social 1 
interactions 2 

 3 
Rekha S. Varrier and Emily S. Finn 4 

Abstract (249/250 words) 5 

Percepts of ambiguous information are subjective and depend on observers’ traits and mental 6 

states. Social information is some of the most ambiguous content we encounter in our daily lives, 7 

yet in experimental contexts, percepts of social interactions—i.e., whether an interaction is present 8 

and if so, the nature of that interaction—are often dichotomized as correct or incorrect based on 9 

experimenter-assigned labels. Here, we investigated the behavioral and neural correlates of 10 

conscious social perception using a large dataset in which neurotypical individuals viewed 11 

animations of geometric shapes during fMRI and indicated whether they perceived a social 12 

interaction or random motion. Critically, rather than experimenter-assigned labels, we used 13 

observers’ own reports of “Social” or “Non-social” to classify percepts and characterize brain 14 

activity, including leveraging a particularly ambiguous animation perceived as “Social” by some 15 

observers but “Non-social” by others to control for visual input. Observers were biased toward 16 

perceiving information as social (versus non-social), and activity across much of the brain was 17 

higher during animations ultimately perceived as social. Using “Unsure” reports, we identified 18 

several regions that responded parametrically to perceived socialness. Neural responses to social 19 

versus nonsocial content diverged early both in time and in the cortical hierarchy. Lastly, 20 

individuals with higher internalizing trait scores showed both a higher response bias towards social 21 

and an inverse relationship with activity in default-mode and limbic regions while scanning for 22 

social information. Findings underscore the subjective nature of social perception and the 23 

importance of using observer reports to study percepts of social interactions. 24 
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Significance Statement (113/120 words) 25 

Simple animations involving two or more geometric shapes have been used as a gold standard to 26 

understand social cognition and impairments thereof. Yet experimenter-assigned labels of what is 27 

social versus non-social are frequently used as a ground truth, despite the fact that percepts of such 28 

ambiguous social stimuli are highly subjective. Here, we used behavioral and fMRI data from a 29 

large sample of neurotypical individuals to show that participants’ responses reveal subtle 30 

behavioral biases, help us study neural responses to social content more precisely, and covary with 31 

internalizing trait scores. Our findings underscore the subjective nature of social perception and 32 

the importance of considering observer reports in studying its behavioral and neural dynamics. 33 

 34 

Introduction: 650/650 words 35 

A remarkable feature of human perception is how  quickly and automatically we identify social 36 

information in the environment. This is exemplified by pareidolia, the phenomenon of seeing 37 

illusory faces in everyday objects  (Liu et al., 2014; Palmer & Clifford, 2020); our sensitivity to 38 

body language and gaze directed at us (e.g., Mona Lisa effect; Todorović, 2006) and our tendency 39 

to overhear salient social cues in otherwise unattended information streams (e.g.,  cocktail party 40 

effect; Wood & Cowan, 1995).  41 

In the brain, regions along the superior temporal sulcus (STS) have been classically associated 42 

with social cognition: the more posterior regions (pSTS) are involved in animacy perception (Lee 43 

et al., 2014; Sugiura et al., 2014) while the more anterior regions are involved in higher-level 44 

processes like mentalizing, language and gaze detection  (Carlin et al., 2011; Deen et al., 2015). 45 

The recently proposed third visual stream (Pitcher & Ungerleider, 2021) posits a specialized 46 

pathway for processing social information that emphasizes the role of biological motion. This 47 
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 3 

pathway proceeds from the primary visual cortex (V1) directly to the motion-processing region 48 

(V5/MT) followed by the pSTS and other STS subregions. 49 

The association between motion and social perception is best exemplified by our tendency to 50 

spontaneously attribute social intentions to moving stimuli even when they consist of only simple 51 

geometric shapes (Bassili, 1976; Heider & Simmel, 1944; Scholl & Tremoulet, 2000). Whether 52 

such animations are seen as social depends largely on the movement patterns of the agents (Castelli 53 

et al., 2000; Gao et al., 2009). This phenomenon appears to transcend age (Gordon & Roemmele, 54 

2014; Rochat et al., 1997) and culture (Barrett et al., 2005), although interestingly, is not found in 55 

monkeys (Schafroth et al., 2021). Individuals with certain neurological or psychiatric conditions—56 

most notably autism—are less likely to perceive social interactions in these animations (Abell et 57 

al., 2000; Fong et al., 2017; Klin, 2000; Langdon et al., 2020) and show commensurately lower 58 

activity in typical social processing regions of the brain (Castelli, 2002; Herrington et al., 2007; 59 

Kana et al., 2009, 2015). 60 

However, socio-perceptual variability is not limited to clinical populations. Neurotypical 61 

individuals also vary in if and how they perceive social interactions – even when animations are 62 

handcrafted by experimenters to be clearly social or non-social (Li et al., 2020; Nguyen et al., 63 

2019; Rasmussen & Jiang, 2019). In neurotypicals, social perception covaries with traits like 64 

loneliness, anxiety, psychopathy, and autism-like phenotypes (Desai et al., 2019; Epley et al., 65 

2008; Gardner et al., 2005; Kanai et al., 2012; Lessard & Juvonen, 2018; Powers et al., 2014; 66 

Sacco et al., 2016). Thus, using participants’ own percepts and individual trait scores will likely 67 

help us understand social perception better than experimenter-assigned labels. Here, we relied on 68 

participants’ responses rather than a “ground truth”. Further, because visual features are often not 69 

well controlled between handcrafted stimuli intended to be seen as social non-social, when 70 
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possible, we also leveraged stimuli with similar or identical visual properties that nevertheless give 71 

rise to variable percepts across individuals. 72 

In this study, we used a large dataset (n = 1049 healthy young adults) from the Human 73 

Connectome Project (Barch et al., 2013; Van Essen et al., 2013) to investigate the behavioral and 74 

neural correlates of conscious social perception. We found that compared to negative reports 75 

(“Non-social”), positive identifications (“Social”) were more frequent, faster and associated with 76 

less uncertainty, indicating a bias toward perceiving information as social. Occipital, temporal and 77 

prefrontal brain regions showed higher activity to “Social” information even when controlling for 78 

visual properties of animations. Some regions showed intermediate activity levels to “Unsure” 79 

reports, suggesting a parametric response to perceived socialness. Differences in activity between 80 

“Social” and “Non-social” percepts emerged early in time and in the cortical hierarchy. Both 81 

percepts and brain activity while viewing animations also correlated with internalizing traits. 82 

Overall, results paint a nuanced and individualized picture of social perception, suggesting that 83 

socialness is “in the eye of the beholder”. 84 

 85 

Materials and Methods 86 

We primarily used data from the Social Cognition task of the Human Connectome Project 87 

(henceforth referred to as the “HCP study” or “HCP dataset”). The dataset is openly accessible, 88 

and consists of a large sample of neurotypical individuals, enabling us to study both the dominant 89 

and non-dominant percepts for specific animations. The social task was one of seven cognitive 90 

tasks that were run as part of the HCP task battery (Barch et al., 2013). In this task, participants 91 

watched ten 20s animations, of which five each were considered generally social and generally 92 

non-social (experimenter-assigned labels of Mental and Random, respectively). At the end of each 93 
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animation, participants indicated whether they perceived a social interaction by pressing buttons 94 

(“Social”, “Non-social”, “Unsure”). To distinguish experimenter-assigned labels from observer 95 

responses, in this paper we use the terms Mental and Random for the former, and “Social”, 96 

“Unsure” and “Non-social” for the latter. In the HCP dataset, participants also completed trait-97 

level questionnaires, which enable the study of inter-individual differences. Here, we focused on 98 

internalizing symptoms, which include anxiety, loneliness, and social withdrawal (details below 99 

in section Correlation between traits, behavior, and neural activity).  100 

As participants had to wait until the end of each 20s-long animation to make a response, 101 

the behavioral data in the HCP does not reveal when the perceptual decisions were made, and any 102 

differences in decision time are likely to influence the trajectory of brain activity. Hence, we 103 

additionally performed an online study on 100 neurotypical individuals (henceforth referred to as 104 

the “online RT experiment”) to gain insight into when in the course of the animation-watching 105 

decisions might have been made, and how this varied across particular animations and individuals.      106 

Participants 107 

This study used the Social Cognition Task dataset publicly available in the online HCP repository 108 

(https://db.humanconnectome.org/; for each participant, fMRI data sub-folders: 109 

tfMRI_SOCIAL_RL and tfMRI_SOCIAL_LR; behavioral: *TAB.txt). Demographic information 110 

and trait scores used to study inter-individual differences were from the restricted category. We 111 

obtained complete fMRI data from 1049 individuals for the HCP Social Cognition task (ages 22-112 

37; 562 female and 486 male).  113 

For the online RT experiment that we conducted in July 2021, we recruited 100 neurotypical 114 

individuals (ages 18-48, mean = 23.2, SE = 0.64). from the United States and United Kingdom via 115 

the online platform Prolific (www.prolific.co , Palan & Schitter, 2018). Prior to the experiment, 116 
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 6 

all participants read and acknowledged the virtual consent forms in accordance with the 117 

Institutional Review Board of Dartmouth College, Hanover, New Hampshire, USA.  118 

Stimuli 119 

Stimuli in the HCP study were ten 20-second-long animations chosen from previous studies 120 

(Castelli et al., 2000; Wheatley et al., 2007). Longer animations had been snipped to 20s by the 121 

HCP researchers (Barch et al., 2013). The animations were presented in two runs with five 122 

animations each (run duration 3min 27s) interleaved with fixation blocks of 15s without jitter. The 123 

order of presentation was maintained across all participants (see Table 1). The number of Mental 124 

(M) and Random (R) animations were balanced within and between runs (run 1: 2M,3R; sequence 125 

M-R-R-M-R; run 2: 3M, 2R; sequence M-M-R-M-R. For a list of the animations as provided by 126 

the HCP and their properties, see Table 1. Note that in this paper, we drop the suffixes in the 127 

filenames (“-A” and “-B”) for convenience. 128 

Each animation consisted of two or more shapes in motion (“agents”) with or without 129 

stationary elements (“props”). Seven of them (3M, 4R) had a large red and a smaller blue triangle 130 

as agents, and the remaining three (FISHING, RANDOM MECH, and SCARING) were more 131 

diverse in the number, color, and form of agents and props. 132 

For the online RT experiment, we presented the same animations used in the HCP study 133 

and in the same presentation sequence, with a self-timed break after the fifth stimulus in lieu of 134 

the break between the two runs in the HCP study. In the practice phase, we randomly showed 135 

either a generally social or non-social animation (that was not one of the 10 animations used in the 136 

main task) to each participant. For a social practice example, we used MOCKING-B from the HCP 137 

repository, and for a non-social practice example, we created a two-agent animation comparable 138 

in appearance to MOCKING-B using a custom app Psyanim (the latter available here: 139 
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https://github.com/rvarrier/HCP_socialtask_analysis/tree/main/stimuli – link will be made public 140 

on publication. In the meantime, please get in touch with us for the file). 141 

The differences in physical properties that we noted above amongst the HCP animations 142 

could have influenced both behavior and brain activity. Hence, we factored these into our data 143 

analyses steps either by comparing the brain activity for “Social” and “Non-social” responses 144 

within the same animation (i.e., same visual input) or by regressing out physical properties like the 145 

optic flow and mean brightness before comparing individual pairs of animations in the analysis 146 

comparing timecourses (explained in the sub-section fMRI Timecourse Analysis under fMRI data 147 

analysis). 148 

 The presence of these visual differences also motivated our decision to perform the online 149 

RT experiment to estimate decision times and consequently the selection of a pair of animations 150 

with similar decision times (details in the fMRI data analysis section). Lastly, to address the 151 

physical differences between specific animations, we also included animation as a grouping 152 

variable (“random effect”) in certain behavioral and fMRI data analyses when pooling data from 153 

multiple animations.  154 

 155 
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      156 

 157 

Experimental design 158 

In the HCP study, participants were given the following instructions about the task: “You will now 159 

watch short clips and decide if the shapes are having a mental interaction or not. For a mental 160 

interaction, press the button under your index finger. If you are not sure, press the button under 161 

your middle finger. For a random interaction, press the button under your ring finger. After each 162 

clip, there will be a response slide. Please respond while that slide is on the screen.” They had 163 

three seconds to respond. In our online RT experiment, participants were given similar 164 

instructions, but were asked to respond twice to each animation: once during the animation as soon 165 

as they made a decision (left/right arrows for “Social”/ “Non-social”) and a second time at the end 166 

of each animation within 3 seconds (left/right/down arrows for “Social”/”Non-social”/”Unsure” 167 

similar to the HCP study).  168 
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Data acquisition and pre-processing 169 

The fMRI data was acquired using a 3T Skyra scanner with 2mm isotropic voxels and a TR of 170 

0.72s (see Barch et al, 2013 for more acquisition details). Each run comprised 274 scan volumes, 171 

and there were two runs per participant. We used minimally preprocessed voxel-wise fMRI data 172 

(Glasser et al., 2013), parcellated this into 268 parcels spanning the whole brain as per Shen atlas 173 

(Shen et al., 2013) and discarded the first five scan volumes (TRs) within each run to reduce initial 174 

artifacts. Next, to make BOLD response magnitudes comparable across participants, we z-scored 175 

parcel-wise timecourses in each run. Further, since our analyses were to be performed at the trial-176 

level, we split the run time series into trial-wise timecourses of 40s each – i.e., 20s animations (28 177 

TRs) flanked by 10s fixation periods (14 TRs) on either side (except for the first animation within 178 

each run which included only 6 pre-stimulus TRs). Data preprocessed in this manner was used for 179 

all fMRI analyses except one (the timecourse analysis, explained later) which required comparing 180 

two individual animations: COAXING and BILLIARD. Here, the z-normalization was done at the 181 

individual trial-level, to remove differences in mean activity that were due to the order of 182 

presentation (since order was not randomized between participants). In both cases, we lastly 183 

baseline-corrected each trial timecourse by subtracting the signal magnitude at the trial onset (i.e., 184 

from the TR immediately before stimulus onset). 185 

In the online RT experiment, we excluded trials in which either of the two responses (“during” 186 

phase and “after” phase) were missing or where the two responses differed; the latter was done to 187 

ensure that the response time we see in the “during” phase correspond to the percepts reported in 188 

the end (to match the HCP task). Lastly, as a quality check, participants with fewer than 8 out of 189 

10 good-quality (i.e., congruent) responses were also excluded, giving us 90 participants. 190 
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Behavioral data analysis 191 

We performed four analyses to measure whether there is a general bias toward social percepts, or 192 

in other words, a shift towards “Social” responses. For these analyses, we included only 193 

participants who responded to all 10 animations and in whom the response times (RT) were not 194 

unrealistically small (i.e., RTs < 100ms were excluded), giving an n=823 for these analyses.  Our 195 

dependent variables were: 196 

(1) Percentages of “Social” and “Non-social” responses within participants; compared using a 197 

paired t-test 198 

(2) Decision criterion, the signal detection theory metric quantified as 199 

!(#($%&	()&*),#(-)./*	).)(0	()&*))
1

 (Stanislaw & Todorov, 1999), where Hit rate and False 200 

alarm rate were computed for each participant as fractions of “Social” responses for 201 

animations labelled by the experimenters as Mental and Random, respectively.  202 

(3) Response time (RT) differences between “Social” vs. “Non-social” trials. We compared 203 

the RTs both using a non-parametric paired (Wilcoxon signed-rank) test and a more 204 

controlled linear mixed effects (LME) analyses to further account for the differences 205 

between individual animations. The LME model (LMEM) was of the form: 𝑙𝑜𝑔(𝑅𝑇) 	=206 

	𝑓(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒; 	𝑟𝑎𝑛𝑑𝑜𝑚	𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠:	𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡, 𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛). The factor response was 207 

categorical with two levels: “Non-social” (coded as the base level) and “Social”, and 208 

analysis was performed using the Python package pymer4 (Jolly, 2018). We used the 209 

logarithm of the RT in seconds to bring the residuals of the LMEM closer to a normal 210 

distribution (which is an assumption for LMEMs). 211 

(4) Percentage of “Unsure” responses for the two animation labels (Mental, Random). These 212 

were compared using a logistic regression model: 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =213 
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𝑓(𝑠𝑡𝑖𝑚𝐿𝑎𝑏𝑒𝑙; 	𝑟𝑎𝑛𝑑𝑜𝑚	𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡, 𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛) where the factor 214 

stimLabel was categorical [Mental, Random], and the dependent variable uncertainty had 215 

a value of  “1” for “Unsure” response trials and “0” otherwise. Keeping Random (0) as the 216 

baseline in the analysis, positive/ negative regression coefficients for stimLabel would 217 

indicate a lower/ higher uncertainty in categorizing Random trials. 218 

fMRI data analysis 219 

GLM-based regression: Our primary approach to fMRI data analysis was a general linear model 220 

(GLM) based on animation onset and offset. We computed the regression coefficients for each 221 

animation separately for the majority of analyses. For each animation, we fitted each parcel’s 222 

activity timecourse to a “slope” regressor (line steadily increasing from 0 to 1 from baseline to the 223 

duration of an animation, i.e., 20s, and padded by zeros before and after) that was convolved by 224 

the Glover HRF (Glover, 1999). (Preliminary analyses had indicated that a steadily increasing 225 

slope regressor captured more variance in the BOLD data than a traditional boxcar regressor.) This 226 

renders one slope regression coefficient (β) per parcel, participant, and trial (animation). We also 227 

performed a separate GLM analysis across all animations (details in the section below). For this 228 

analysis, we used a run-level regressor and estimated coefficients for each parcel, participant, and 229 

run. Similar to the slope regressors used at the trial level, regressor values increased (decreased) 230 

steadily during an animation labelled “Social” (“Non-social”) and were 0 at all other timepoints 231 

(including “Unsure” responses) – thus, the run-level regression coefficient here summarizes a 232 

contrast between “Social” and “Non-social”. For each participant, we then averaged these 233 

coefficients across the two runs. 234 

 235 
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“Social” vs. “Non-social”: To identify brain regions showing a consistent and generalizable 236 

difference between “Social” and “Non-social” responses, we compared the regression coefficients 237 

between “Social” and “Non-social” percepts in three analyses: (1) controlled for visual input, (2) 238 

controlled for decision times and (3) across all animations (Table 2). For analyses with individual 239 

animations, we included all participants who gave a valid response to the animation(s) in that 240 

analysis, resulting in slightly different numbers of participants in each analysis. Each analysis is 241 

described in detail below: 242 

(1) Controlled for visual input: We selected the most ambiguous animation, namely RANDOM 243 

MECH, since it has the relatively most balanced “Social” and “Non-social” response groups. 244 

We excluded participants who gave an “Unsure” response to this stimulus (leaving n=777) 245 

and then split regression coefficients based on observer responses (“Social”: n=107, “Non-246 

social”: n=670, see Figure 1a), and compared them with two-sample t-tests assuming unequal 247 

variances. 248 

(2) Control for decision time (COAXING vs. BILLIARD):  We chose two animations which 249 

were most comparable in terms of the time taken to arrive at a decision about whether an 250 

animation was “Social” or “Non-social”. This was based on the data we obtained from the 251 

online RT experiment, where the decision time to report “Social” to COAXING (median = 252 

3.45s, SEM = 0.27s) and “Non-social” to BILLIARD (median = 3.7s, SEM = 0.25s) were the 253 

closest and did not significantly differ (see Figure 2c and the results sub-section on decision 254 

time for more). Hence, we compared regression coefficients for each of these two animations 255 

within participants using a paired t-test. Note that we excluded participants who gave an 256 

uncertain or non-dominant response for one or both animations (i.e., who responded to 257 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

COAXING as “Non-social” or “Unsure” or BILLIARDS as “Social” or “Unsure”), giving us 258 

n = 870 for this analysis. 259 

(3) Across all animations (ALL): We also performed a more general comparison between 260 

individuals’ responsiveness to “Social” vs. “Non-social” by identifying brain regions that 261 

show a mean run-level regression coefficient that is different from 0 (for details on how the 262 

run-wise regressor was estimated, see sub-section GLM-based regression above). To 263 

minimize biases due to missed responses, we only selected participants who had given all 10 264 

responses and had complete fMRI data from both runs (n=814) using a one-sample t-test 265 

compared to 0. 266 

 267 

Lastly, we identified brain regions that were significant in all three of the above comparisons 268 

and showed changes in the same direction (either “Social” > “Non-social” in all three comparisons 269 

or vice versa) at the FDR-corrected threshold (q < .05). We henceforth refer to this procedure as 270 

the “intersection analysis” and the resultant parcels as “social processing regions”. 271 
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 272 

 273 

“Social” vs. “Unsure” vs. “Non-social”:  We also leveraged the “Unsure” responses to identify      274 

brain regions that responded parametrically to level of perceived socialness. We predicted that the 275 

neural response in such regions during animations ultimately marked “Unsure” would be 276 

intermediate to that of “Social” and “Non-social” responses. But note that intermediate does not 277 

necessarily mean halfway, and hence we performed conjunction analyses – i.e., we identified brain 278 

regions showing “Social” > “Unsure” and “Unsure” > “Non-social” (or vice-versa) and took the 279 

intersection of these. We performed this analysis across all the animations using an LMEM of the 280 

form: beta	 = 	f(response, RI:	participant)	which was performed separately for “Social” vs. 281 

“Unsure” (LMEM 1) and “Unsure” vs. “Non-social” (LMEM 2). In each LMEM, response was a 282 

categorical variable that has the values “Social” and “Unsure” in LMEM 1 (baseline “Unsure”), 283 

and “Unsure” and “Non-social” in LMEM 2 (baseline “Non-social”). Thus, a positive LMEM 284 

estimate for response would indicate a higher neural response corresponding to a higher perceived 285 
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socialness. From this, we identified parcels which showed the same directionality for LMEM 1 286 

and 2 at the multiple comparison-corrected threshold, and which were also in the set of social 287 

processing regions in the GLM analysis above. 288 

fMRI Timecourse analysis: To identify the brain regions where the earliest differences in brain 289 

activity between “Social” and “Non-social” percepts emerged, we performed paired t-tests (within 290 

participant) for each timepoint (TR) between BOLD responses corresponding to a pair of “Social” 291 

and “Non-social” animations (COAXING and BILLIARD, respectively) in which decisions of 292 

whether the animation was social or non-social were likely made at comparable times while 293 

watching them as explained previously in the analysis sub-section “Social” vs. “Non-social”. To 294 

ensure that the differences between BOLD activity between COAXING and BILLIARD are not 295 

due to differences in basic visual input between the two animations, we performed these 296 

comparisons on the residual timecourses obtained after regressing out two low-level visual 297 

features, total optic flow and mean brightness. We first estimated these two features for each 298 

animation frame using the “pliers” package (McNamara et al., 2017), then down-sampled the 299 

resulting timecourses to match the temporal resolution of the fMRI data (i.e., the TR), z-300 

transformed them and convolved them with an HRF. We then performed a linear regression on 301 

each participant’s trial timecourse (including 14TRs flanking the stimulus duration on either end 302 

like with the slope regressors described earlier) to regress out the changes in BOLD activity related 303 

to these features. We then used the resultant residual timecourses for COAXING and BILLIARD 304 

for the timecourse analysis. We compared these at each timepoint (TR) and for each parcel using 305 

paired t-tests (within participant). For each parcel, we thus identified the earliest timepoint at which 306 

BOLD activity begins to diverge. As additional consistency checks, we (1) only performed this 307 

analysis in the social processing regions that consistently differentiated between “Social” and 308 
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“Non-social” in the GLM analyses, and (2) selected a TR t as the divergence point only if the 309 

difference between “Social” vs. “Non-social” at t+1 was also significantly different in the same 310 

direction. 311 

 Note that this analysis does not factor in the hemodynamic lag. This is because although 312 

the HRF peaks a few seconds after an event (in our case, the animation onset), the neural responses 313 

to stimulus presentation should have begun instantly (Friston et al., 1994), so here we investigated 314 

where these earliest changes could be observed. Further, in using the median decision times from 315 

the online RT experiment for COAXING and BILLIARD as the expected decision time for the 316 

HCP dataset, we did not factor in the motor response delay (i.e., time taken after a decision has 317 

been made to press a button) in the online RT experiment. Hence it is possible that some of the 318 

pre-decisional processes closer to the decision time may have in fact been post-decisional. While 319 

we cannot exclude this possibility, this was unlikely since motor responses on arriving at a decision 320 

are typically quicker than the TR used in the HCP task (0.72s).  321 

We also did not multiple comparison-correct across timepoints in this analysis since the 322 

primary goal was to identify the earliest differences in activity, and to infer this correctly, false 323 

negatives are less preferred to false positives. Further, in identifying the earliest timepoints, we 324 

only selected a region if the subsequent timepoint was also significant (p< .05 uncorrected), 325 

limiting the odds of a false positive further by 95%.  326 

 We also did not perform this analysis within the same animation (RANDOM MECH) and 327 

across all animations like in the GLM analysis (sub-section “Social” vs. “Non-social”) because 328 

of the heterogeneity in decision times both between reported percepts for the same animation and 329 

across animations (see Figure 2c). This means that the neural processes at each time point could 330 

have also been vastly different between “Social” and “Non-social” animations, thus making the 331 
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comparison of timecourses less precise both within the same animation (RANDOM MECH) and 332 

across all animations.  333 

Correlations between traits, behavior, and neural activity 334 

Past work has shown that individuals high on internalizing traits such as loneliness and anxiety 335 

tend to form illusory social connections by anthropomorphizing inanimate objects (Epley et al., 336 

2008; Powers et al., 2014) and show smaller grey matter volumes in a brain region typically 337 

associated with social processing, the pSTS (Kanai et al., 2012). Here, we probed whether 338 

internalizing traits affect behavior and/or brain activity associated with social perception using the 339 

internalizing T-score provided by the HCP (Barch et al., 2013). This score is based on participants’ 340 

responses to the internalizing dimension questions which is part of the Achenbach Adult Self-341 

Report questionnaire (ASR; Achenbach et al., 2017). Internalizing symptoms refer to symptoms 342 

like anxiety, depression, and withdrawal, and are typically contrasted with externalizing behaviors 343 

such as rule-breaking and aggression. The ASR was designed to assess behavioral, emotional, and 344 

social functioning across a wide spectrum of the population, so it is sensitive to individual 345 

differences (i.e., produces a range of scores) even in healthy/subclinical populations. We used the 346 

averaged T-scored participant-level internalizing score (labelled “ASR_Intn_T” in the HCP 347 

dataset; M = 48.72, STD =10.75, range = 30-97) for this analysis; see Figure 6a-c for the full 348 

distribution).  349 

To assess whether internalizing score relates to a behavioral bias toward “Social” percepts, 350 

we correlated participants’ internalizing scores with the following behavioral variables using 351 

Spearman (rank) correlation: (1) the difference between % of “Social” and % of “Non-social” 352 

responses (calculated as percentages to control for missing data) and (2) the number of “Unsure” 353 

responses for Mental and Random trials, respectively. We also compared the internalizing scores 354 
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between “Non-social” and “Social” or “Unsure” responders to the most ambiguous animation, 355 

RANDOM MECH. We tested the specificity of these correlations by additionally performing 356 

correlations with externalizing scores and comparing the two using the CorrelationStats package 357 

(https://github.com/psinger/CorrelationStats). To quantify if and where internalizing traits relate 358 

to brain activity while scanning animations for social information, for each parcel, we performed 359 

an LME analysis where the dependent variable was the slope regression coefficient, the fixed 360 

factor was internalizing score and the random factor was animation. This yields brain regions that 361 

respond proportionately to internalizing score in that individual across animations and parcels. 362 

Code availability 363 

All the code for analyzing data from both the HCP and online RT experiment, as well as the 364 

anonymized data from the online RT experiment, will be made available upon publication here: 365 

https://github.com/rvarrier/HCP_socialtask_analysis. In the meantime, please get in touch with 366 

the authors for these. 367 

 368 

Results 369 

In this study, we used behavior, fMRI data, and individual trait scores from the Human 370 

Connectome Project (HCP) social cognition task to characterize the behavioral and neural 371 

processes underlying conscious perception of social interactions. We started by evaluating the 372 

behavioral data for any response bias: are people more inclined to declare something “Social” (as 373 

opposed to “Non-social”)? We next identified brain regions that robustly differentiated between 374 

“Social” and “Non-social” percepts even when controlled for decision times and sensory 375 

information, including a subset of regions that showed a parametric response pattern to degrees of 376 

perceived socialness. Next, we used a timepoint-by-timepoint analysis to identify where and when 377 
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brain activity begins to diverge between “Social" and “Non-social” percepts. Lastly, we studied 378 

the relationship between internalizing behavior scores, tendency toward social percepts, and brain 379 

activity while scanning for social information. 380 

Some animations are more ambiguous than others 381 

First, we examined the degree to which participants’ percepts of “Social” versus “Non-social” 382 

information agreed with one another as well as the intended stimulus category. In the HCP social 383 

cognition task, participants passively watched ten 20-s animations of geometric shapes (Heider-384 

Simmel-like; Castelli et al., 2000), see Materials and Methods sub-section Stimuli for a detailed 385 

description of the animations) and then made a behavioral response — “Social”, “Non-social” or 386 

“Unsure”—to indicate whether they perceived a social interaction in the animation. Five 387 

animations were intended to evoke social interactions (experimenter-assigned Mental) and five 388 

were not (experimenter-assigned Random). Although on average participants’ percepts aligned 389 

with experimenter labels, the degree to which animations were perceived as “Social” and “Non-390 

social” varied considerably. This was true in both the HCP behavioral data and the secondary 391 

online dataset (online RT experiment) we collected to study the time taken for individuals to arrive 392 

at decisions while watching each animation (Figure 1a and 2a). While animations like DRIFTING 393 

and BILLIARD were seen almost unanimously as “Non-social”, animations like RANDOM 394 

MECH and FISHING had a higher percentage of the non-dominant percept as well as “Unsure” 395 

responses. This underscores the need to use participants’ own percepts to categorize what is or is 396 

not “Social” rather than experimenter-assigned labels. Further, in our analyses, we leverage this 397 

ambiguity by comparing neural activity corresponding to “Social” and “Non-social” responses 398 

within the most variably perceived animation (RANDOM MECH), thereby isolating activity 399 

associated with a conscious social percept while controlling for visual input. 400 
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Responses are biased toward “Social” 401 

Next, we used behaviorally reported percepts to determine whether there was a response bias 402 

towards “Social”. We hypothesized that evolutionarily, there may be a bias towards perceiving 403 

information as social, since the cost of a false positive (e.g., mistakenly thinking someone is trying 404 

to engage you in a social interaction) is lesser than that of a false negative (e.g., missing out on 405 

social cues that are important for group dynamics, reproduction, and survival). We predicted that 406 

this bias would manifest as a higher “Social” response rate, shorter response times for “Social” 407 

percepts, and more “Unsure” responses to animations labeled Random by experimenters (because 408 

of a reluctance to declare something entirely non-social). Our findings are described below: 409 

(1) 'Social' responses are more frequent: On comparing the frequency of percepts for each 410 

participant (limited to trials where participants were sure of their response—i.e., excluding 411 

“Unsure” trials), we observed that the percentage of “Social” responses was subtly but 412 

significantly higher (M = 52.89%, SE = 0.29%) than “Non-social” responses (M = 47.11%, SE = 413 

0.29%; paired t-test, p < 10-21; Figure 1b). 414 

(2) The response criterion further shows a bias towards "Social": Next, we computed 415 

criterion (c), a metric from signal detection theory that quantifies response biases. If the mean 416 

criterion 𝑐̅ is significantly different from zero, this suggests a bias in responses towards “Social” 417 

(𝑐̅ < 0) or “Non-social” (𝑐̅	> 0). We found that criterion was significantly negative (M =  418 

–0.047, SE = 0.006; Wilcoxon test p < 10-17; Figure 1c), further confirming the response bias 419 

towards “Social”. In this computation, we used the experimenter-assigned labels to show that 420 

although the experimenters aimed to create a balanced set of five Mental and five Random 421 

animations, actual observer reports indicate that individuals ended up perceiving more animations 422 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

as “Social”. Thus, experimenter labels appear to be insufficient to explain all individuals’ “ground 423 

truth” percepts.  424 

(3) Responders may have been quicker to declare something as “Social” than “Non-425 

social”: Next, to get at a more subconscious measure of perceptual decision-making for social 426 

information, we compared response times between “Social” (med = 0.87s, SE = 0.009s) and 427 

“Non-social” (med = 0.9s, SE = 0.012s) responses (Figure. 1d) and found that “Social” responses 428 

were overall faster (p < 10-3, Wilcoxon signed rank). Since response times could differ by 429 

animation due to their heterogeneity, we additionally performed an LME analysis with response 430 

(“Social” or “Non-social” [baseline]) as the fixed effect, and both animation and participant as 431 

random effects. We observed a trend towards shorter RTs for “Social” responses, but this did not 432 

reach significance (Est. = –0.037, p = .1).  433 

(4) “Unsure” responses were more common for animations intended as Random 434 

compared to those intended as Mental: We studied the distribution of “Unsure” responses 435 

between animations that were intended to be “Social” (Mental) or “Non-social” (Random) and 436 

noted that there was a higher percentage of “Unsure” responses in the animations intended as 437 

Random (M = 9.41%, SE = 0.5%; Figure 1e) compared to those intended as Mental (M = 438 

2.70%, SE = 0.26%). This indicated that people were more reluctant to label something “Non-439 

social” (as opposed to “Social”) when their confidence is low. In other words, they err on the 440 

side of false alarms rather than misses; this fits with the idea that misses are likely costlier than 441 

false alarms. We formally compared the frequency of “Unsure” responses using logistic 442 

regression with Mental (coded 1) and Random (coded 0) label as the fixed effect and participant 443 

ID and animation as random intercepts. Results showed higher uncertainty on Random trials 444 

even after accounting for the differences in animations (Est. = -1.61, p =.005). 445 
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 446 

To summarize, the behavioral data overall showed a bias towards “Social” responses based on 447 

percentage of each response type, response times and degree of uncertainty. 448 

 449 

Figure 1. Behavioral data from the HCP participants (n=823) show a bias toward “Social” 450 

responses. (a) Number of responses per type ("Social", "Non-social", "Unsure") and animation 451 
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sorted from most to least “Social”. (b) Percentages of "Social" and "Non-social" responses. 452 

There was a higher number of “Social” responses (p < 10-21, paired t-test). (c) Signal detection 453 

theory metric “criterion” across participants based on experimenter-assigned labels. Mean 454 

criterion was negative (-0.05, p < 10-17, Wilcoxon signed rank test), indicating a bias toward 455 

false alarms (i.e., declaring an animation labeled Random by experimenters as “Social”). (d) 456 

Response time for “Social” and “Non-social” responses. “Social” responses tended to be 457 

quicker (Wilcoxon signed-rank, p < 10-3). (e) “Unsure” responses for animations labelled 458 

Mental and Random by experimenters. There was a higher percent of “Unsure” responses for 459 

Random responses (LMEM: Est. = -2.15, p < .005). **: p<.001, ***: p < .0001 460 

Decision time as to whether an animation is “Social” varies widely between animations 461 

In the HCP study, participants had to wait till the end of each animation (lasting 20s) to make a 462 

behavioral response. However, the decision as to whether an animation was “Social” or “Non-463 

social” was presumably made sometime during passive viewing, although the decision time 464 

could have varied widely across animations and participants. This variability, in turn, might 465 

influence the timecourse of brain activity (e.g., visual attention for the same animation may be 466 

different when a participant makes a decision 2 seconds after the animation begins vs. 15 467 

seconds after). Hence, getting information as to when decisions could likely have been made 468 

during each animation was critical to modeling and interpreting neuroimaging data. To this end, 469 

we performed an independent online behavioral study using the same animations where 470 

participants (final n = 90) were instructed to indicate their percepts as soon as they had arrived at 471 

a decision (“during” phase). To compare the results with the HCP study, participants were also 472 

instructed to respond at the end of each trial (“after” phase).  473 
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     The consensus across participants of which animations were generally “Social” versus 474 

“Non-social” in the online sample was comparable to that of the HCP sample (see Figure 2a). As 475 

a corollary to this, the animations with high variability in decision times in the online RT 476 

experiment also tended to have less consensus across participants in the HCP study – the latter 477 

operationalized as (1) the absolute value of the difference between % ”Social” and % “Non-478 

social” animations (Figure 2b, left) and  (2) higher number of “Unsure” responses (Figure 2b, 479 

right).  The reaction time data from the “during” phase (Figure 2c) showed that while most 480 

responses were made in the earlier half of the 20 second animations, there was a high variability 481 

in decision time both within and across animations. This means that the brain activity 482 

corresponding to an especially ambiguous animation (e.g., SCARING, RANDOM MECH) could 483 

have been vastly different even amongst participants who reported the same percept for these, 484 

depending on when each participant made their decision and how this affected their attention 485 

before and after the decision. Hence, we identified two animations with the most comparable 486 

decision times, namely, COAXING (med = 3.45s, SEM = 0.27s), a predominantly “Social” 487 

animation, and BILLIARD (med = 3.7s, SE = 0.25s), a predominantly “Non-social” animation, 488 

whose decision times were not significantly different (Wilcoxon signed-rank test [paired], T = 489 

1619, p = .57). We used this pair of animations in later analyses that required a control for 490 

decision time while watching an animation. 491 

 492 

 493 

 494 

 495 

 496 
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 497 

Figure 2: Results of the online RT experiment to characterize decision time for each 498 

animation. (a) Number of "Social", 'Non-social" and "Unsure" responses per animation made 499 

during (lighter shades) and after (darker shades) each animation. Order of animations on the Y-500 

axis is the same as for the HCP data in Figure 1a. The degree to which animations were 501 

reported “Social” is comparable to the HCP behavioral data in Figure 1a. (b) Standard 502 
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deviation of response time while watching each animation (in seconds; X-axis) vs. two indicators 503 

of uncertainty from the HCP behavioral data on the Y-axes (left: absolute difference between 504 

number of "Social" and "Non-social" responses, an indicator of how definitive responses for this 505 

animation were across participants; right: % of “Unsure” responses). Spearman (rank) 506 

correlation shows a trend (p ≤ .1, marked with ‘+’) for the animations with higher variation in 507 

response times in the online RT experiment (X-axes) to also a less definitive response (left) and a 508 

higher % of “Unsure” responses (right) in the HCP behavioral data. (c) Distribution of 509 

response times for “Social” and “Non-social” responses while watching each animation (in 510 

seconds). As seen in (b), decision times varied more for some animations than others. Note the 511 

similarity in the decision times between COAXING “Social” and BILLIARD “Non-social”. 512 

Much of the brain responds more strongly to what is perceived as social information      513 

In the next set of analyses spanning this and the next two sections, we used the fMRI data to 514 

understand where and when the brain distinguishes social from non-social information. For all 515 

fMRI analyses, whole-brain data were parcellated into 268 regions covering the cortex, subcortex, 516 

and cerebellum using the Shen atlas (Shen et al., 2013) to ease the computational burden of voxel-517 

wise analyses. 518 

In the first fMRI analysis, we focused on the question of “where” by comparing overall 519 

neural responsiveness while viewing animations ultimately deemed “Social” versus “Non-social”. 520 

In addition to regions along the STS which are known to be involved in animacy and interaction 521 

perception, we hypothesized that differences might emerge as early as visual regions. We 522 

compared “Social” and “Non-social” responses using a general linear model (GLM) approach—523 

again, using the participant’s reported percept rather than the experimenter-assigned label as input 524 

to the model—in three separate contrasts to ensure results were robust to different confounding 525 
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factors: 1) within the single most ambiguous animation (RANDOM MECH), which controls for 526 

visual input (since all participants saw the same animation, but reported different percepts; across-527 

participants); 2) between two animations with similar decision times (COAXING vs BILLIARD), 528 

to control for effect of when the decision was likely made on the timecourse of brain activity during 529 

passive viewing (within-participants); and 3) across all ten animations, to maximize power and 530 

ensure generalizability (within-participants). We then identified social processing regions by 531 

taking the intersection of the regions showing a significant difference in all three analyses.   532 

In total, 70 parcels showed "Social" > "Non-social" activity (FDR q <. 05, black contours 533 

in Figure 3) consistently across all three comparisons, and no parcel showed "Non-social" > 534 

"Social" across analyses. Of these, 66 parcels showed positive activations for both the “Social” 535 

(β”Social” > 0) and “Non-social” (β”Non-Social” > 0) responses for both RANDOM MECH and 536 

COAXING-BILLIARD , suggesting that on the whole, much of the brain showed higher activation 537 

and not lower deactivation to “Social” compared to “Non-social”. These parcels spanned the 538 

occipitotemporal and prefrontal cortex, the cerebellum, and some sub-cortical regions (details in 539 

Table 3).  540 

 541 
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                542 

 543 

 544 

Figure 3: Identifying regions showing differential activity between “Social” and “Non-social” 545 

percepts. Mean differences between GLM regression coefficients (β) for (a) RANDOM MECH 546 

(mean (RANDOM MECH "Social") – mean (RANDOM MECH "Non-social"), (b) COAXING-547 
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BILLIARD (mean(COAXING "Social"-BILLIARD "Non-social")) and (c) ALL (estimated from 548 

run-level regressors, see Methods). Colored regions are significant at an uncorrected threshold 549 

(p < 0.05) in each of the three analyses, while black contours in a-c show the social processing 550 

regions significant after correction for multiple comparisons (FDR q < .05) in all three analyses. 551 

Note: Colorbar ranges are different between the three subplots, since each was estimated 552 

separately using different analyses, and hence the values shouldn't be directly compared. 553 

Some brain regions show parametric responses to degree of perceived socialness 554 

The previous analysis identified social information-processing regions that robustly showed a 555 

higher response to information ultimately reported as “Social”. By leveraging “Unsure” responses 556 

as an intermediate level of perceived socialness between “Social” and “Non-social”, we further 557 

probed the neural correlates of conscious social perception—i.e., an “Unsure” response would 558 

indicate that some evidence for a social interaction was detected, but not enough to be fully 559 

confident in a “Social” response.  560 

For this analysis, we probed which brain regions responded proportionately (quantified by 561 

the slope βs) to levels of perceived socialness — “Social”, “Unsure” and “Non-social”. 562 

Specifically, we sought to identify regions showing parametric responses, i.e., β"Social" > β"Unsure" > 563 

β"Non-social" (condition S > U > NS) or β”Social" < β"Unsure" < β"Non-social" (condition S <  U < NS) using 564 

conjunction analyses across all animations (n=814) using separate LMEMs for “Social” vs. 565 

“Unsure” and “Unsure” vs. “Non-social” (see Methods for details). We further limited this analysis 566 

to the parcels that showed robust differences between “Social” and “Non-social” even when 567 

controlled for visual inputs and decision time (n = 70; cf. black contours in Figure 3). 568 

38 parcels showed a consistent S > U > NS response pattern and of these, 35 survived 569 

multiple-comparison correction (q <.05) across all parcels (Figure 4a-b). This included posterior 570 
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and inferior parts of the temporal cortex including parts of the motion-processing region V5/MT 571 

(with more parcels in the right hemisphere), middle and inferior frontal gyrus, precuneus, right 572 

thalamus and postero-lateral parts of the cerebellum. 573 

To see if similar trends emerge when controlling for visual input, we plotted the 574 

timecourses for each response type for a subset of the parcels showing parametric responses pattern 575 

to the most ambiguous animation (RANDOM MECH; Figure 4c). We plotted a sub-set of the 576 

parcels in which “Unsure” was the closest to the halfway point between “Social” and “Non-social” 577 

both in terms of the mean regression coefficient and the magnitude of activity at the end of the 578 

stimulus presentation period (20s) for each parcel and response (the rationale being that the signal 579 

during the final timepoints of the animation should be the best reflection of a participant’s 580 

ultimately reported percept). As expected, this results in brain regions which show parametric 581 

neural responses to degrees of reported socialness, albeit with large errorbars for the smaller groups 582 

(“Social” and “Unsure”). 583 

 Thus, it appears that there are at least some cortical and sub-cortical regions that show a 584 

graded response to degrees of social information. There was a higher number of such parcels in 585 

temporal, occipital and sub-cortical regions, although they were present across the cortex. This 586 

trend can be seen even on plotting the timecourses for the various responses to a single animation. 587 

 588 
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 589 

Figure 4. Brain regions showing parametric responses to social content. (a-b) Colored parcels 590 

show mean differences (FDR q < .05) in slope regression coefficients ("Social"-"Unsure" and 591 

"Unsure"-"Non-social") for the 35 parcels which showed a graded response to perceived 592 
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socialness ("Social" > "Unsure" > "Non-social" or vice-versa) across all animations and within 593 

the social processing regions obtained from the GLM analysis (cf. black contours in Figure 3). 594 

(c) Timecourses for the most ambiguous animation (RANDOM MECH) in 10 of the brain parcels 595 

sorted by how close “Unsure” is to the mid-point between “Social” and “Non-social” (details in 596 

text). These parcels included bilateral frontal regions, right middle and inferior occipito-597 

temporal regions (including the anterior part of right V5/MT and parts of the cerebellum. 598 

Processing of social versus non-social information diverges early in time and across the 599 

cortex 600 

The whole-trial-based analyses above showed that several regions spanning the whole brain are 601 

more responsive to information that is ultimately reported as social (versus non-social) even 602 

when controlling for decision time and visual input.  However, this difference, especially in early 603 

visual regions, could reflect (1) the accumulation of evidence that led to the perception of an 604 

animation as “Social”, (2) the consequence of having perceived an animation as “Social” (i.e.., 605 

top-down attention effects on sensory regions), or (3) a combination of both. To gain a better 606 

understanding of the dynamics of evidence accumulation leading to a “Social” percept, we 607 

compared BOLD activity at each timepoint (TR) after stimulus onset to determine the timepoint 608 

of earliest divergence between “Social” and “Non-social” percepts.  609 

To ensure that the differences observed at each timepoint are comparable in terms of the 610 

underlying cognitive processes (i.e., evidence accumulation versus decision-making versus post-611 

decisional processes), we performed this analysis on the animation pair which likely had 612 

comparable decision times, namely COAXING-BILLIARD. Decision times for these animations 613 

were both early and close in time (as explained in Materials and Methods and the Results section 614 

for the online RT experiment, also see Figure 2c). These animations were similar visually with 615 
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the same two triangular agents on the screen (see Table 1) – nevertheless, they did vary in the 616 

temporal dynamics and some low-level visual features. To minimize the effect on these on the 617 

BOLD activity, we regressed out the total optic flow and mean brightness from the BOLD 618 

responses of each animation and participant, and compared the residual COAXING and 619 

BILLIARD timecourses at each TR.  To guard against spurious fluctuations early in the 620 

animations, we limited our analysis to the social processing regions (70 parcels) that showed a 621 

consistent difference in activity between “Social” and “Non-social” responses (Figure 3, black 622 

contours).  623 

Differences in brain activity between “Social” and “Non-social” percepts emerged early, 624 

i.e., in TRs 1-3 after stimulus onset in many regions tested (Figure 5a). There were early 625 

differences between “Social” and “Non-social” in both hemispheres, both in posterior regions 626 

such as the fusiform gyrus, lateral occipital cortex, pSTS and posterior parts of the cerebellum as 627 

well as in frontal areas such as the lateral precentral gyrus, posterior parts of the middle and 628 

inferior frontal gyrus (MFG, IFG), the orbitofrontal cortex (OFC) in the left hemisphere, and the 629 

IFG and supplementary motor area (SMA) in the right hemisphere. Later TRs, which are more 630 

likely to reflect post-decisional activity, showed divergences in the bilateral inferior and superior 631 

frontal regions, the right precuneus, bilateral intraparietal sulcus (IPS) and bilateral posterior 632 

cerebellum. Within the regions that showed a significant overall differential activation for 633 

“Social”, the latest changes were seen in the left IPS and frontal pole and the right IFG and right 634 

anterior and medial cerebellum. 635 

To visualize the earliest differences in the posterior regions and to understand how 636 

generalizable these dynamics are, we plotted (Figure 5b) the residual timecourses for 637 

COAXING-BILLIARD (left column, our main analysis) alongside the averaged “Social” and 638 
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“Non-social” timecourses across all the other animations (All except COAXING-BILLIARD; 639 

middle column) and within the most ambiguous animation (RANDOM MECH; right column). 640 

The two latter analyses are not as well suited to pinpointing when differences emerged because 641 

decision times were likely more variable across individuals and responses for these animations 642 

(per our online RT experiment), thus making timecourses noisier and less comparable. Despite 643 

this, we see similar relative trends in these posterior regions (each row) as to when and how they 644 

distinguish between “Social” and “Non-social” reports. Responses emerged much later for the 645 

“All except COAXING-BILLIARD” condition in line with the later and more variable decision 646 

times for most animations; see Figure 2c). When comparing within the same animation 647 

(RANDOM MECH), we see trends emerging early on, although the magnitudes are smaller and 648 

the error for the “Social” responder group are large, possible because of the smaller group size (n 649 

= 107) compared to the majority percept of “Non-social” (n = 670). Note that the latter two 650 

timecourses are plotted only for visual examination and that we did not perform statistical 651 

analyses here. 652 

To summarize, while watching an animation that was eventually reported as “Social”, 653 

differences in brain activity emerged early across much of the brain, involving both ventral 654 

visual processing regions and occipito-temporal regions involved in action and animacy 655 

detection as well as social cognition. The early jump in activity in these regions is in line with 656 

the recently suggested “third visual pathway” that projects directly from early visual cortex to the 657 

superior temporal sulcus and is specialized for social perception (Pitcher & Ungerleider, 2021). 658 
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 659 

Figure 5. Timecourse analysis showing when and where differences between “Social” and 660 

“Non-social” percepts emerge. (a) Brain map of the earliest timepoint at which brain activity 661 
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diverges between "Social" and "Non-social" responses for the COAXING and BILLIARD 662 

animations, respectively (within-participant analysis). Analysis was limited to the robust social 663 

processing brain regions (cf. Fig. 3, black contours), and BOLD signal timecourses were 664 

residualized with respect to the visual features of brightness and optic flow to minimize the 665 

effects of any differences in low-level sensory information between the two animations. Colors 666 

show how early (purple-blue) or late (yellow-green) activity diverged. (b) BOLD signal 667 

timecourses in the left posterior regions illustrating how "Social" and "Non-social" activity 668 

diverge in the pre-decisional period for COAXING and BILLIARD. Rows: regions are sorted by 669 

the earliest divergence TR and then from posterior to anterior. Columns: left, timecourses for the 670 

two animations matched for approximate decision time, COAXING (“Social”) and BILLIARD 671 

(“Non-social”), the main focus of this analysis. Others: timecourses from the same regions 672 

shown for two supporting analyses: across all animations except COAXING-BILLIARD 673 

(“Social” vs. “Non-social” response trials), middle; and for the most ambiguous animation, 674 

RANDOM MECH (“Social” vs. “Non-social” responders), right.  675 

Individual differences in behavior and brain activity while viewing animations covary with 676 

internalizing symptoms  677 

Lastly, we explored whether individual differences in behavioral and neural responses to 678 

social animations covaried with trait-level measures. Specifically, we focused on internalizing 679 

symptoms from the Achenbach Adult Self-Report Scale, because past work has shown that certain 680 

internalizing traits (e.g., loneliness, anxiety) are associated with a stronger tendency to perceive 681 

visual cues as socially salient. We hypothesized that individuals with higher internalizing scores 682 

would show stronger behavioral and neural reactivity to potentially social information. 683 
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 Using the behavioral data, we tested whether the response bias towards “Social” (cf. 684 

Figure 1a) was even stronger for individuals higher on internalizing symptoms. Indeed, there was 685 

a positive relationship between the bias toward “Social” responses and internalizing score 686 

(Spearman rank correlation r =.104, p =.003, Figure 6a). We tested the specificity of this 687 

relationship by contrasting it to the correlation with externalizing trait scores, which index more 688 

“acting out” behaviors like rule-breaking and aggression and have not been linked to social 689 

perception tendencies. The correlation with externalizing symptoms was weaker and showed only 690 

trend-wise significance (r=.058, p=.096), and comparing the correlations showed a trend towards 691 

a significant difference between the two (t = 1.317, p = .094). Furthermore, individuals with higher 692 

internalizing scores were more likely to give a “Social” or “Unsure” (as opposed to “Non-social”) 693 

response to the most ambiguous animation, RANDOM MECH (“Social” or “Unsure”, M = 49.34, 694 

SE = 0.69; “Non-social”, M = 47.65, SE = 0.45; unpaired t-test, t = 2.054, p = .04, Figure 6b). 695 

Mean externalizing symptoms were also higher for the “Social” or “Unsure” group (M = 49.31, 696 

SE = 0.57) compared to the “Non-social” group (M = 47.98, SE = 0.38), although the difference 697 

was smaller (unpaired t-test, t =1.95, p =.05). 698 

Lastly, individuals with higher internalizing scores were also more likely to give an “Unsure” 699 

response to animations intended as Random (r=.098, p=.005), but not to animations intended as 700 

Mental (r = –.024, p = .49), indicating a preference for false alarms over misses when it comes to 701 

detecting social information (difference between correlations: t = 2.47, p = .007). Demonstrating 702 

specificity to internalizing symptoms, percent “Unsure” responses did not correlate with 703 

externalizing symptoms for either Random (Spearman r = .048, p = .17) or Mental (r = .01, p = 704 

.75) animations. 705 
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Together, these analyses support a link between internalizing symptoms and a greater tendency 706 

to perceive social information, perhaps driven by a homeostatic drive to seek social connections. 707 

To understand whether neural activity while scanning for social information also covaried with 708 

internalizing symptoms, we related trial-wise regression coefficients to internalizing symptom 709 

scores in an LMEM (fixed effect: internalizing score; random effect: animation). In a whole-brain 710 

analysis, 50 parcels showed a significant relationship (q < .05, Figure 6d) between internalizing 711 

score and neural responsiveness. In 48 of these, the LME estimates were negative – i.e., as 712 

internalizing scores increased, the mean regression coefficients for an animation decreased – 713 

although all 48 parcels showed above-baseline activity as evidenced by the positive regression 714 

coefficients (𝛽̅ > 0 for all parcels). Thus, while individuals with higher internalizing scores showed 715 

positive activity in these regions when scanning animations for social information, the magnitude 716 

of this activity was lower than in individuals with lower internalizing scores. These relationships 717 

were seen in the right angular gyrus, the bilateral superior parietal lobule, supramarginal gyrus, 718 

regions along the dorsal midline, and left cerebellum (colored blue in Figure 6d). The two 719 

remaining parcels, left precuneus and posterior cingulate cortex (colored red in Figure 6d), showed 720 

a mean estimate that was positive but showed a net deactivation in the group-level analysis (i.e., 721 

𝛽̅ < 0), indicating that individuals with higher internalizing scores showed less deactivation in 722 

these regions. Thus, in most of the parcels that showed trait-dependent responses, the absolute 723 

magnitude of activity decreased with increasing internalizing symptom scores (which manifests as 724 

positive LME estimates when 𝛽̅ < 0 and negative LME estimates when 𝛽̅ > 0). 725 

Interestingly, the lateral occipital parcels from the social processing regions (shown as black 726 

contours in Figure 6d) were not as prominent here, showing only a partial overlap (13 parcels) 727 

with the parcels showing trait effects. In the overlapping parcels, which comprised bilateral 728 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

occipito-temporal regions, the cerebellum and parts of the right superior frontal and left inferior 729 

frontal gyrus, individuals high on internalizing traits showed overall less reactivity in many brain 730 

regions while scanning the environment for social interactions. To reconcile this decrease in neural 731 

reactivity (Figure 6d) with the observed increase in behavioral sensitivity (Figure 6a-c), one 732 

interpretation is that these individuals have a lower threshold for the amount of neural activity 733 

required to declare something “Social”.  734 

 735 
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Figure 6: Relationship between internalizing trait scores, behavior and brain activity. (a) 736 

Response bias (% difference between 'Social" and "Non-social" responses per participant) 737 

correlates positively with internalizing symptom score (Spearman correlation coefficient rs = .1, 738 

p=.003).  (b) Internalizing scores across individuals who perceived the most ambiguous 739 

animation, RANDOM MECH, as "Non-social" were lower than those for individuals who 740 

reported some degree of socialness to RANDOM MECH ("Social" or "Unsure" responses).  741 

* indicates p < .05.  (c) Internalizing score correlates positively with the percent of "Unsure” 742 

responses per participant for the generally non-social animations (Random; left; Spearman rs = 743 

.098, p =.005) but not for the generally social animations (Mental; right; Spearman rs = .024, p 744 

= .49). These correlation magnitudes were significantly different (t= 2.47, p = .007). (d) LME 745 

estimates obtained by fitting the slope βs for each participant and animation to internalizing 746 

symptom scores per participant plotted over the brain. Colored parcels showed a significant 747 

relationship (FDR q < 0.05) and the social processing regions from the GLM analysis (cf. 748 

Figure 3) are shown in black. Most regions show a negative relationship with internalizing 749 

symptoms and there is only a partial overlap with the parcels that best differentiate “Social” and 750 

“Non-social” information. 751 

 752 

Discussion (1197/1200 words) 753 

In this study, we investigated behavioral and neural signatures of social signal detection using a 754 

large dataset of neurotypical young adults. Behavioral responses showed a small but consistent 755 

bias toward perceiving information as social (as opposed to non-social), which manifested as a 756 

higher number of “Social” responses and a reluctance to report information as “Non-social”. We 757 

used the observers’ own labels of what was social and non-social to then identify brain regions 758 
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that differentiate conscious social percepts, controlling for both visual input (RANDOM MECH) 759 

and decision time (COAXING-BILLIARD), and found that widespread patterns of brain activity 760 

differentiate conscious social percepts. A few brain regions also showed parametric responses to 761 

degrees of perceived socialness (“Social” > “Unsure” > “Non-social” responses). We further 762 

noted that brain activity for information ultimately deemed “Social” diverged from “Non-social” 763 

both early in time and in the cortical hierarchy. Lastly, we found that a trait-level measure of 764 

internalizing symptoms (e.g., loneliness, anxiety) could explain some of the variability in 765 

percepts and brain activity, such that individuals with higher internalizing traits had a higher 766 

tendency to perceive information as social yet lower reactivity in neural systems while scanning 767 

for this information. 768 

Humans have been described as an “obligate social” species, evolutionarily tuned to 769 

social interactions (Rutherford & Kuhlmeier, 2013). In our results, both the bias towards 770 

“Social” responses in the behavioral data and the covariation between internalizing symptoms 771 

and sensitivity to social signals, which could reflect a homeostatic drive to seek social 772 

connection (Tomova et al., 2020), are in line with this.  Moreover, previous studies have shown 773 

that people who report greater loneliness tend to form illusory social connections (Epley et al., 774 

2008), overattribute animacy even in the absence of clear humanlike features (Powers et al., 775 

2014) and have greater attention and memory for social cues (Gardner et al., 2005). 776 

Past fMRI studies of animacy and social interaction perception using stripped-down 777 

geometric shape animations have primarily used two types of stimuli: short animations with 778 

simple, controlled motion profiles (e.g., Blakemore et al., 2003; Lee et al., 2014; Schultz et al., 779 

2005; Tavares et al., 2008) or complex, scripted animations (Castelli et al., 2000; Nguyen et al., 780 

2019; Osaka et al., 2012). Both sets of studies have primarily identified bilateral pSTS as 781 
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relevant to intentional motion processing together with the lateral occipital cortex (LOC), 782 

angular gyrus, superior parietal lobule and medial prefrontal cortex. In this study, we observed 783 

differences between social and non-social percepts in these regions but additionally in the 784 

occipital pole, the left temporal pole and dorsolateral and ventrolateral prefrontal cortex. Several 785 

of these regions also showed parametric responses to degrees of perceived socialness. We did not 786 

observe a strong right-hemisphere dominance in this study as in some past work (Lee et al., 787 

2014; Pitcher & Ungerleider, 2021). These disparities could be the result of the higher sensitivity 788 

we get as a result of the large sample size in the HCP compared to most other studies (n well 789 

below 100) and/or the use of observers’ own responses as stimulus labels instead of 790 

experimenter-assigned categories. The latter could be the bigger reason, since several of these 791 

additional regions were not seen even in past studies of the same HCP dataset (Barch et al., 792 

2013; Li et al., 2020; Westfall et al., 2017). Future users of the HCP social task dataset are hence 793 

cautioned to not rely on experimenter-assigned labels alone. 794 

In the timecourse analysis, we observed that the brain starts responding differently to social 795 

information early in time across postero-lateral visual processing regions, even before 796 

participants had likely arrived at a decision about whether an animation was social. Activity in 797 

these regions may therefore reflect pre-decision evidence accumulation processes, in which 798 

participants are using visual cues to determine whether agents are moving in a manner consistent 799 

with an intentional social interaction. Of note, these differences were unlikely to be due to 800 

differences in visual inputs since we regressed out the optic flow and brightness from each 801 

timecourse prior to the analysis.  Early differences also emerged in the pSTS—an area critical to 802 

the third visual stream hypothesis (Pitcher & Ungerleider, 2021)—and lateral precentral gyrus, 803 

OFC and SMA. The presence of early differences in frontal regions involving the OFC is in line 804 
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with previous accounts of a coarse-to-fine visual processing, where an early coarse information 805 

processing wave works in parallel with the slower more detailed processing via the ventral 806 

stream in spontaneous perception (Bar et al., 2006; Baror & He, 2021).  807 

Brain activity while scanning animations for social information was lower for individuals 808 

with high internalizing scores in several regions including parts of the default mode network 809 

(angular gyrus, precuneus and posterior cingulate cortex) – some of which have been linked to 810 

depression, early-onset psychosis and anxiety (Collin et al., 2021; Nair et al., 2020; Sheline et al., 811 

2009; Zhao et al., 2007) – and some of the social information processing regions (occipito-812 

temporal, frontal, cerebellar) that robustly emerged from the group-level GLM analysis. 813 

Together with the positive correlation between the “Social” bias in behavior and the internalizing 814 

scores, this suggests that individuals with higher internalizing scores may have a lower threshold 815 

for declaring something “Social”. 816 

One limitation of this dataset is the heterogeneity of the animations, which were taken from 817 

two studies (Castelli et al., 2000; Wheatley et al., 2007) with vastly different visual features. 818 

Paradoxically these animations are also not optimal to study ambiguous perception since they did 819 

have a dominant percept. Nevertheless, the large sample size enabled us to study percept-level as 820 

well as inter-individual differences. Further, the order of animations was not counterbalanced. 821 

Even though the timecourse analysis controlled for key visual differences, we acknowledge that 822 

we used two specific stimuli presented in a certain sequence in the HCP task, and hence cannot 823 

confidently extend these results to all social and non-social stimuli. We therefore propose this as 824 

an early step to future studies that investigate social processing pathways using more controlled 825 

stimuli. 826 
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Another limitation is that in this task, individuals had only three response options. However, 827 

participants’ confidence levels in these responses may have been vastly different, especially 828 

since the data showed that some animations were more ambiguous than others. Further, even 829 

given a response of “Social”, the nature of the particular interaction perceived could have varied 830 

across individuals, even for the same animation. This could have reduced the effect sizes and can 831 

be overcome in future experiments by using richer behavioral characterizations of percepts (e.g., 832 

continuous response scales) and/or indirect physiological measures like pupillary responses or 833 

electromyography.  834 

In summary, we describe behavioral and neural processes that underlie how people arrive at 835 

conscious percepts of social information. We find evidence that neurotypical individuals are 836 

primed to detect social signals, and that this detection process is reflected in widespread brain 837 

activity that happens early in time and in the cortical hierarchy. We also find considerable 838 

heterogeneity among individuals’ percepts of particularly ambiguous information – i.e., 839 

information that may or may not be social in nature – and describe one trait-level factor that may 840 

influence behavioral and neural tendencies toward social versus non-social percepts. Together, 841 

results indicate the need for a more nuanced view of social perception in which socialness is in 842 

the “eye of the beholder”. 843 
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