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ABSTRACT 

Women with endometriosis have a profound association with autoimmunity. An 

excess of autoantigens in the peritoneal cavity resulting from retrograde 

menstruation could lead to inflammation and pathologic autoimmunity. Using a 

native-conformation protein array, proteome-wide analysis of autoantibodies (AAbs) 

against 1623 proteins were profiled in peritoneal fluids (PF) of 25 women with 

endometriosis and 25 endometriosis-negative women. 46% of endometriotic women 

have five or more AAbs. Diverse cognate autoantigens were identified and 

corresponding AAbs against proteins involved in implantation, B-cell 

activation/development, and aberrant migration and mitogenicity. AAbs recognizing 

tumour suppressor protein p53 were the most frequent at 35% and were targeted 

against native and citrullinated p53 forms. Further, unsupervised hierarchical 

clustering and integrative pathway analysis, we observed clusters of endometriosis-

associated infertile women with 60% positive for two or more AAbs which are 

involved in PDGF, TGF-β, RAC1/PAK1/p38/MMP2 signaling, LAT2/NTAL/LAB-

mediated calcium mobilisation and integrin-mediated cell adhesion. Together, our 

data identifies peritoneal autoimmunity in a significant subset of women with 

endometriosis, with diverse impact on infertility and disease pathophysiology. 
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INTRODUCTION 

Endometriosis is a common gynaecological disorder that affects up to 10% of 

women and is associated with chronic pain and infertility. The disease is defined by 

the presence of endometrial-like implants found outside the uterus, most commonly 

on the peritoneum 1. Given the severe and chronic symptoms, women often develop 

social and psychological morbidities 2, with the cost of disease estimated at US$70 

billion in the United States, similar to those incurred by Rheumatoid Arthritis and 

Diabetes Mellitus 3. The estimated annual economic loss is US$22 billion due to 

productivity loss 4. The retrograde flow of shed endometrial tissues implanting onto 

extra-uterine sites and the harbinger of foreign endometrial tissues and cells to extra-

uterine locations is commonly accepted as the principal initiator of the disease 5. The 

appearance and ineffective clearance of these foreign and cell debris including 

antigens in extra-uterine locations during retrograde menstruation, potentially 

provoke autoimmune responses, immunologic tolerance, or rejection of the autograft 

with alloantigenic potential 6. 

The plausibility of endometriosis being considered an autoimmune disease 

has been postulated, insofar that endometriosis meets most of the classification 

criteria of an autoimmune disease, and there is deregulation of the apoptotic process 

7. Since endometriotic lesions originate from autologous cells containing self-

antigens, it can be speculated that it is abnormal exposure or presentation of these 

antigens that facilitates an autoimmune response. This follows the discovery of IgG, 

IgM, and IgA AAbs directed against cell-derived antigens such as phospholipids and 

histones 8. Anti-endometrial and anti-ovarian autoantibodies (AAbs) against 

transferrin and alpha 2-HS glycoprotein were found in PF of women with 

endometriosis 9,10. AAbs against endometrial and ovarian tissue in sera, vaginal, and 
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cervical secretions in women with endometriosis suggest autoimmune dysregulation 

in women with endometriosis 9, and organ-specificity 11. Further, abnormalities in 

endometrial AAbs strongly suggest a role in endometriosis-associated infertility (EAI) 

12. The association of endometriosis with autoimmune diseases and increased 

incidence of AAbs with endometriosis provides further support 13–17. Interestingly, 

treatment with Danazol or GnRH analogues, which are commonly used as first- or 

second-line therapies for the treatment of endometriosis, suppressed AAb levels 

18,19. 

A defective peritoneal environment characterizes endometriosis, by which the 

peritoneal fluid (PF) that bathes the peritoneal cavity and surrounds endometriotic 

implants is an important microenvironment that contributes to endometriosis. The PF 

is rife with cytokines such as IL-1�, IL-6, IL-8, IL-10, etc 20, and cytokines are critical 

for autoimmune pathophysiology and production. B-cell activating factor (BAFF or 

BLyS), a cytokine necessary for normal B cell development, was up-regulated in 

endometriosis 21. Pathological analyses reported the presence of plasma cells 

(precursors of B-cells), atypical B-cells and activated macrophages in endometriotic 

lesions 21. Intrinsic defects in peritoneal macrophages in endometriosis may also 

contribute to autoimmunity. Macrophages are important immune cells that maintain 

immune homeostasis via phagocytosis of foreign matter, apoptotic or necrotic cells, 

and are recruited to the peritoneum where they are prominently associated with 

endometriosis 22–24. Dysregulation in these immune cells promotes skewed 

tolerogenic peritoneal environments in endometriosis. 

The tumour suppressor p53, encoded by the TP53 gene, is a DNA motif 

binding transcription factor that governs core cellular programs to ensure cell and 

tissue homeostasis, including arresting cell cycle progression and apoptotic 
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response to cellular stress 25. Different patterns of p53 mutations have been reported 

in endometriosis, including missense mutations, overexpression, deletion of the 

TP53 locus, and loss of heterozygosity, that can contribute to or trigger an immune 

reaction by causing self-immunization of non-wildtype p53 26–30. There is a strong 

correlation between the frequency of anti-p53 AAbs and the frequency of p53 

mutations in certain types of cancer, suggesting that p53 mutations are associated 

with the generation of these AAbs 26. Studies in mice revealed the close association 

of p53 deficiency with the development of autoimmune and inflammatory diseases 

31,32. In particular, monocytes/macrophages deficient in p53 inefficiently clear 

apoptotic and necrotic cells, and the failure to clear dying cells can lead to 

accumulation of autoantigens that promote further generation of autoimmunity and 

chronic inflammation 31,33.  

Although examples of autoimmune responses have previously been 

described, the comprehensive breadth of AAb reactivities in endometriosis remains 

undetermined. In this study, an integrated proteome-wide and bioinformatic analysis 

of more than 1600 functional IgG AAbs was performed in PFs of patients with 

endometriosis. We found that in a subset of patients with endometriosis there is 

diverse autoreactivity and elevated AAbs that target biological processes related to 

fertility, autoimmunity, and endometriosis pathophysiology. In these patients, p53 

was identified as the most frequent PF AAb target, which was present in both the 

native and citrullinated form. Citrullination is a post-translational modification of 

arginine side chains into citrulline that produces non-self-neoepitopes, dramatically 

altering immunogenicity and driving further autoantibody production 34. Stratification 

by p53 AAb positive patients found a monocyte / macrophage PF signature. 

Together, these findings have important implications for stratification in 
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endometriosis and the development of new therapeutic strategies against a subset of 

patients with endometriosis. 
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METHODS AND MATERIALS 

 
Study design and Patient Enrolment  

The objective of this study was to identify AAbs found in the peritoneal fluid in 

women with endometriosis. Patients who underwent laparoscopic procedures at the 

KK Women’s and Children’s Hospital, Singapore for various indications such as 

suspected endometriosis, infertility, sterilization procedures and/or pelvic pain were 

recruited into the study. Women provided written informed consent for the collection 

of samples under Centralised Institutional Research Board approval (CIRB 2010-

167-D).  

Exclusion criteria include menstruating patients, postmenopausal patients, 

anovulatory patients, patients on any form of hormonal therapy for at least three 

months prior to laparoscopy, and other potentially confounding diseases, including 

diabetes, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and 

systemic sclerosis. Diagnostic laparoscopy was performed on all patients, with 

careful inspection of the uterus, fallopian tubes, ovaries, pouch of Douglas, and the 

pelvic peritoneum by gynaecologists subspecializing in reproductive endocrinology 

and infertility. PF was prepared as previously described 11, in line with the 

Endometriosis Phenome and Biobanking Harmonisation Project Standard Operating 

Procedures 35. The presence of endometriosis was systematically recorded and 

scored according to the revised American Fertility Society classification (rAFS) of 

endometriosis 36,37 and classified as women with endometriosis (EM+; N=25) or 

without endometriosis (EM-; N=25). Infertile women with endometriosis (EM+ EAI; 

N=15) and without endometriosis (EM- EAI; N=13) were extracted for the 

subsequent analysis. Patient characteristics are shown in Table 1.  
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Autoantibody proteomics 

Proteome-wide AAb profiling utilised the functional protein Immunome™ microarray 

platform (Sengenics, UK), covering 1623 wild-type proteins (antigens), as noted in 

Table S1. This AAb protein array uses a compact, folded, biotinylated, ~80 amino 

acid residue domain derived from the E. coli biotin carboxyl carrier protein (BCCP) 

that preserves the structure and function of the embedded antigens, thus offering 

exquisite selectivity and specificity of bounded autoantibodies 38,39. Patient or control 

PF samples were diluted 1:200 in 2 mL dilution buffer (0.1% Triton X100 (v/v), 0.1% 

BSA (w/v) in PBS) and applied to the array. The arrays were incubated in 

Quadriperm dishes (Greiner BioOne, Stonehouse, UK) and placed on a horizontal 

shaker at 50 rpm for 2 h at room temperature. After several washes, anti-human IgG 

was diluted 1:1000 in assay buffer and Cy3-rabbit antihuman IgG (Dako Cytomation) 

by incubation for 2 h at room temperature according to the manufacturer´s 

recommendations. The array was washed again and dried by centrifugation. All 

arrays were scanned at 10 µm resolution using a microarray scanner (Axon 4200AL 

with GenePix Pro Software, Molecular Devices, Sunnyvale, CA, USA) and 

fluorescence of labelled IgG was detected according to the manufacturer’s 

instructions. The images were saved as 16-bit tiff files and the analysis was 

performed using GenePix software. The interaction between microarray antigens 

and PF AAbs was detected as fluorescence of the bound fluorescently-labeled IgG 

at the protein-specific position on the microarray. The intensity of fluorescence is 

proportional to the amount of AAb present in the PF. Local background obtained 

from the control spots on the array was automatically subtracted, and relative 

fluorescence units (RFU) for each microarray spot were recorded. Each antigen was 

immobilised in quadruplicate on the array. The median RFU for the four readings of 
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each antigen was used for further analysis. All arrays passed quality control tests. 

Mean of CV% of all protein replica spots across all samples was 8.12% (Fig S1A). 

Cy3-labelled biotinylated BSA (Cy3-BSA), with concentrations, kept constant across 

the arrays, serves as the positive control across slides and as a housekeeping probe 

for normalisation of signal intensities across samples, has a CV% of 8.08% (Fig 

S1B). 

 

Citrullination proteomic analysis 

PF samples were diluted at 1:100 in dilution buffer as above. When completely 

thawed, each sample was vigorously vortexed three times at full speed and spun 

down for 3 min at 13,000 rpm using a microcentrifuge. 30 μL of the sample was 

pipetted into 3 mL of wash buffer containing 0.2% v/v tween-20 in 1 × PBS (20°C) 

and vortexed to mix three times. Human PAD1, 2, and 6 were chosen for further 

characterisation due to their expression in the uterus and the ovaries 40–42, and are 

therefore most relevant to endometriosis. PAD1, PAD2, PAD6 were incubated on the 

protein array for the enzymatic conversion of arginine to citrulline groups (herein 

referred to as citrullination protein array). Briefly, each slide was rinsed in 3 mL Wash 

Buffer for 5 min. When the slides were rinsed completely, they were blocked in 

CT100plus blocking buffer for 1 h. All slides were then washed three times in wash 

buffer for 5 min at room temperature. The slides were then incubated with 3 mL of 1 

μg/mL human PAD1, PAD2 or PAD6, covered with aluminium foil and incubated for 

3 h at 37°C at 50 rpm. The slides were then washed for 3 × 5 min at room 

temperature in 3 mL of wash buffer. The citrullinated array was then incubated with 

diluted PF samples on a horizontal incubator at 20°C for 2 h. The citrullination 

protein array was then incubated with an anti-citrulline antibody and fluorescently-
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labelled detection antibody to detect citrulline groups. IgG binding was detected by 

incubation with Cy3-rabbit anti-human IgG (Dako Cytomation) labeled according to 

the manufacturer's recommended protocols (GE Healthcare). Arrays were immersed 

in a hybridization solution containing a mixture of Cy3-rabbit antihuman IgG solution 

diluted 1:1000 in wash buffer for 2 h at 50 rpm at 20°C. After incubation, the slide 

was washed with wash buffer, 3 × 5 min at 50 rpm at room temperature and a final 

wash with 1× PBS for 5 min. The slides were then dried for 4 min at 400 g at room 

temperature and scanned. Hybridization signals were measured with a microarray 

laser scanner (Agilent Scanner) at 10 μm resolution. Fluorescence levels were 

detected according to the manufacturer's instructions, whereby each spot is plotted 

using Agilent Feature Extraction software. All samples passed QC parameters that 

evaluate quantitative metrics related to array and assay quality and consistency of 

results. The coefficient of variance (CV%) of the intra-protein, intra-slide and inter-

array for all proteins and control probes of PAD1, PAD2, PAD6 citrullinated protein 

arrays were 9.20%, 8.35% and 6.63% respectively, below the QC limit of 15%. 

 

Multiplex immunoassay analysis 

The levels of 48 cytokines were measured in the PF fluid using a multiplex 

suspension bead immunoassay (BioRad, CA, USA; Table S1) as previously 

described 20. Briefly, 10 μL of PF was mixed with 10 μL of primary antibody-

conjugated magnetic beads on a 96 DropArray plate (Curiox Biosystems, Singapore) 

and rotated at 450 rpm on a plate shaker for 120 min at 25°C while protected from 

light. Subsequently, the plate was washed three times with wash buffer on the LT210 

Washing Station (Curiox) before adding 5 μL of the secondary antibody and rotating 

at 450 rpm for 30 min at 25°C protected from light. The plate was washed three 
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times with wash buffer and 10 μL of streptavidin-phycoerythrin was added and 

rotated at 450 rpm for 30 min at 25°C protected from light. The plate was washed 

three times with wash buffer. 60 μL of reading buffer was then added and transferred 

to a 96 conical well microtiter plate, and the samples were read using the Bio-Plex 

Luminex 200 (BioRad). The beads are classified by the red classification laser (635 

nm) into its distinct sets, while a green reporter laser (532 nm) excites the 

phycoerythrin, a fluorescent reporter tag bound to the detection antibody. All 

samples were run in duplicates and the average was reported. Quantitation of the 48 

cytokines in each sample was then determined by extrapolation to a six- or seven-

point standard curve using five-parameter logistic regression modelling. Assay CV 

averaged <12 %. When samples were detected in less than 50% of patients or below 

the lower limit of quantification, they were considered undetected. Calibrations and 

validations were performed before runs and every month respectively. 

 

Data analysis 

For statistical analyses, parametric t-test, and Pearson linear regression analysis 

were used, and statistical significance was set at p<0.05. Penetrance-based fold 

change (pFC) analysis method was implemented for the identification of highly 

expressed proteins in each case sample. This method removes any false positive 

signals from the data by setting a protein-specific threshold (i.e. background 

threshold). This defined per-protein background threshold is calculated on the basis 

of two standard deviations from the mean signal intensities for each specific antigen 

measured of the control group. Any antigens below this threshold are excluded from 

further analysis. Individual fold changes for both case and control are calculated by 

dividing the RFU value for each protein in each sample, H, by the mean of the RFU 
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values of each protein across all the control samples (i.e. background threshold), 

that is: 

Individual FC=HCase or Control/μ(HControl)       (Eq. 1) 

For proteins with an individual fold change less than 2 fold above the background 

threshold, their signal intensities (RFU) are replaced with zeros. Penetrance 

frequency (number of case and control samples with individual fold changes ≥ 2-fold) 

for both case and control were determined for each protein as follows:  

FrequencyCase or control =n(Individual FC (Case or control)) ≥2)    (Eq. 2) 

Penetrance Fold Changes (pFC) for both the case and control groups are calculated 

for each protein as follows:  

Penetrance Fold ChangeCase = μ(HCase [�])/μ(HControl)     (Eq. 3) 

Penetrance Fold ChangeControl = μ(HControl [�])/μ(HControl)    (Eq. 4) 

Where HCase [�]= HCase with Fold ChangeCase ≥2 fold and HControl [�]= HControl with Fold 

ChangeControl ≥2 fold       

Putative endometriosis-associated AAbs were identified and ranked according to the 

following criteria:  

1. Penetrance Fold ChangeCase ≥ 2, and  

2. % FrequencyCase ≥ 20%  

  

Pathway enrichment bioinformatics analysis 

Functional enrichment data was obtained from ToppGene Suite based on Gene 

Ontology, pathways and disease, using the ToppFun tool 43. P-values were 
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calculated using the probability density function and false discovery rate (FDR) 

Benjamini and Hochberg corrected, with a corrected p-value or q-value cutoff of q = 

0.05. The OpenTargets Platform was utilised to find proteins associated with 

autoimmunity and endometriosis 44. Here, Overall Association scores between a 

target and disease were calculated using data from multiple sources, and adjusted 

depending on data source and data type. A value of 1 represents the most 

associated. These proteins were cross-referenced to the proteins identified as 

autoantibodies in the Immunome™ microarrays, to highlight proteins known to be 

involved in autoimmuinity, endometriosis, or both.  
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RESULTS 

Diversity of peritoneal autoantibodies in a subset of endometriosis patients 

To obtain a global overview of the repertoire of immunoreactive IgG AAbs in 

endometriosis, PF samples from 25 EM+ women and 25 EM- controls (Table S2) 

were analysed for functional human AAb levels against 1623 correctly folded full-

length antigenic proteins. In EM+, 84.1% of PF AAbs were found at frequencies of 

four to six (Figure 1A). This contrasts with EM- controls whereby the majority of PF 

AAbs (95.1%) were presented with a low frequency of one and two (Kruskal Wallis 

test corrected with Dunn’s test for multiple comparisons, p<0.0001). Of the analysed 

1623 IgG AAbs, 351 discrete AAbs were putatively considered as significant 

(pFCCase ≥ 2, penetrance FrequencyCase ≥ 20%; Table S3). Previously identified PF 

and endometrial tissue AAbs in endometriosis, anti-histone H1.2 and anti-alpha 2-

HS-glycoprotein (AHSG) AAbs were validated (pFC = 3.59  and 3.24; penetrance 

FrequencyCase = 20% and 24%, respectively; Figure S2A, B) 12,45,46. By hierarchical 

clustering, a cluster of twelve (46%) EM+ cases with strong autoimmune profiles (five 

or more significant AAbs per patient; average pFC = 2.24 versus average pFC = 

0.67 for the rest of EM+) were observed (Figure 1B, C), although the cluster was not 

associated with ASRM endometriosis severity, menstrual phase, age, or fertility. 

Intriguingly, a cluster of five fertile EM- controls displayed mild AAb positivity 

(average pFC =1.5 compared to average pFC = 0.71 for the rest of EM-). Many of 

the EM+ AAbs include markers of fertility such as decidualization (PRL) 47 and 

implantation (ACVR2A, SMAD5) 48, autoimmunity such as B-cell activation and 

development (BANK1, FLI1) 49,50, and endometriosis pathophysiology such as 

migration (TIMP3, MMP24) 51,52, and mitogenicity (PDGFB, PDGFRL, FGFR1, 

FGFR2, IGF2, VEGF-D) (Figure 1B). Pathway enrichment, incorporating data from 
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KEGG, Reactome and BIOCARTA, indicated that the AAbs were found to elicit 

pathways involved in MAPK (q = 4.68 � 10-7), PDGF (q = 5.51 � 10-7), LKB1 (q = 

2.74 � 10-6), FGF (q = 4.81 � 10-6), and IL-2-mediated signaling (q = 3.05 � 10-6), as 

well as the Toll-receptor signaling cascade (q = 1.13 � 10-6) (Figure 1D, Table S4). 

The 351 AAbs were cross-referenced to potential targets under “Autoimmunity” and 

“Endometriosis” disease categories using the OpenTargets Platform. 149 AAbs were 

found to be associated with “Autoimmunity”, four with “Endometriosis”  and 74 AAbs 

overlapped with both “Endometriosis” and “Autoimmunity” (Figure 1E; Tables S5, 

S6) (50).  

Endometriosis is associated with an aberrant cytokine and complement 

response (13,35). We did not find evidence of autoimmunity against notable 

cytokines or chemokines (not detected or low autoreactivity with canonical and non-

canonical cytokines or receptors IL1A, IL13, IL18, IL37, CXCR2, CXCR4, CXCR6; 

Figure S2C-J), arguing that they are not targeted directly or neutralized by PF AAbs 

in endometriosis. Collectively, these results revealed that a significant subset of EM+ 

patients are autoimmune positive, evidenced by a relatively large number of 

prominent peritoneal AAbs, which target a diverse range autoantigens related to 

fertility and endometriosis pathophysiology. 

 

Elevated anti-native and citrullinated p53 antibodies in endometriosis is 

associated with monocyte-associated cytokine profile 

The most frequently occurring EM+ AAb was anti-tumour protein p53, which 

was found to occur in 35% of EM+ patients and 58% in the high autoimmunity EM+ 

cases (Figure 2A). Anti-p53 AAb was significantly elevated in EM+ patients 

compared to EM- patients (average pFCcase= 6.46 versus average pFCcontrol = 0), and 
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was not associated with ASRM stage, age, menstrual phase. PF of EM- patients did 

not show positivity for anti-p53. Therefore, anti-p53 AAb was used to stratify EM+ 

patients into p53high (pFCp53 > 2.0) and p53low (pFCp53 < 2.0) for further investigation 

of whether the presence of anti-p53 AAb influenced the peritoneal inflammatory 

environment and the frequency of citrullinated p53.  

Because p53 provokes inflammatory responses by modulating immunological 

changes 53,54, we hypothesized that the presence of anti-p53 AAbs functionally 

altered the PF cytokine milieu. To test this, we performed multiplex suspension bead 

immunoassay of PF cytokines on EM+ p53high samples compared to EM+ p53low and 

EM- samples. 40 PF cytokines were detected (Table S1). A striking 

monocyte/macrophage-related chemokine signature comprising of significantly 

elevated interleukin-6 (IL-6), interferon-gamma (IFNγ), monocyte chemokine protein-

1 (MCP-1), MCP-3, and reduced monokine induced by gamma interferon (MIG) 

distinctly marked p53high samples (Figure 2B). When comparing p53high to EM-, IL-6 

levels were significantly higher in p53high. 

Citrullination is a post-translational modification by which arginine is converted 

to citrulline by peptidylarginine deiminases (PADs) unveiling novel antigenic epitopes 

that are over-enriched in several autoimmune diseases 55. For the study of 

citrullinated targets, we pooled PF samples from EM+ patients based on their levels 

of anti-p53 AAb into two anti-p53 AAb groups (p53high and p53low) (Figure 3A). The 

antigens embedded in the protein array were then citrullinated in vitro with PAD 

isoforms 1,2 and 6 and probed using anti-citrullinated antibodies in the PF samples. 

To validate the performance of this assay, we assessed the concordance of the 

generated proteome data with known citrullinated targets. Known citrullinated 

proteins keratins (KRT15 and KRT19), vimentin (VIM) and aldolase (ALDOA) were 
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observed, thereby validating the assay (Figure S3A). The anti-p53 AAb groups had 

different citrullination patterns depending on whether they were incubated with 

PAD1, 2, or 6, with PAD1 generating the most reactive autoantigens (Figure 3B, 

Figure S3B). In the p53high group 72 citrullinated AAbs overlapped in AAbs 

generated by the three PADs and in the p53low group only one overlapped. Overall, 

the list of anti-citrullinated AAbs overlapped minimally with that of non-citrullinated 

AAbs. Interesting, citrullinated p53 was the only target among the anti-citrullinated 

AAbs that were common to PAD1, 2 and 6 and that overlapped with non-citrullinated 

AAbs (Figure 3C). It was approximately 1.6 times higher in the p53high group 

compared to p53low EM+ and EM- (Figure 3D). Together, our data suggest that in a 

subset of EM+ patients, their anti-p53 AAbs recognized both the modified and native 

form of the antigen, and elicited a unique monocyte/macrophage-like cytokine 

response.  

 

Discovery of novel peritoneal autoantibodies and p53 in endometriosis-

associated infertility  

 

Autoimmunity in EAI potentially works through different putative mechanisms 

or etiology 56. Additionally, a cluster of fertile EM- patients with a mild AAb profile was 

observed (Figure 2A) which suggested plausible confounding of fertility-associated 

autoimmunity in fertile individuals. This led us to perform additional analysis on 15 

infertile EM+ patients and 13 infertile EM- age and ethnicity matched healthy controls 

selected from the above study (Table S2). 109 AAbs were elevated in EAI EM+ 

subjects (pFC≥2; Penetrance FrequencyCase ≥ 20%). Using Manhattan clustering 

distance around the median, clusters of EAI cases with positive AAb responses can 

be seen, with the majority (60% or 9/15) testing positive for multiple AAbs (≥2 
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elevated AAb) (Figure 4A). No AAb was elevated in infertile EM- individuals. The 

most prevalent AAb in EAI patients was anti-TATA-box binding protein associated 

factor 9 (TAF9) (33.3% frequency). Anti-p53 AAb was prevalent at 27% frequency in 

EAI (Figure 4B).  27% of them were also positive for anti-BCL2 Associated Agonist 

Of Cell Death (BAD), anti-fibroblast growth factor receptor 2 (FGFR2), anti-SEPTIN4, 

anti-nuclear nucleic acid-binding protein C1D, anti-nuclear factor erythroid 2-related 

factor 2 (NRF2 or NFE2L2), anti-mitogen-activated protein kinase 1 (MAPK1), anti-

ETS-related transcription factor (ELF1), anti-casein kinase I isoform gamma-1 

(CSNK1G1), anti-coenzyme Q8A (COQ8A), anti-ataxin-3 (ATX3) and anti-DNA-

directed RNA polymerase I subunit RPA12 (ZNRD1) (Table 2). When examining 

AAbs that were common between endometriosis and autoimmunity, analysis using 

the OpenTargets Platform revealed 24 proteins (22%), including p53, that were 

found to be associated with both endometriosis and autoimmunity (Table S7). 

Integrative pathway analysis demonstrated enrichment in AAbs involved in PDGF 

signaling (q = 7.62 � 10-5), TGF-β signalling (q = 0.0007), LAT2/NTAL/LAB mediated 

calcium mobilisation (q = 0.0007), integrin-mediated cell adhesion (q = 0.0009),  and 

the RAC1/PAK1/p38/MMP2 signaling axis (q = 0.0009) (Table S8). 
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DISCUSSION 

Endometriosis is epidemiologically linked to autoimmune diseases such as 

Graves’ disease, systematic lupus erythematosus (SLE), Sjogren's syndrome, 

rheumatoid arthritis and multiple sclerosis 7,8,13–17. Peripheral and endometrial AAbs 

that are associated with endometriosis have been reported 8,57. In this study, we 

investigated 1623 immunoreactive antigens against extracellular IgG AAbs found in 

PF. We show that there is a diversity of AAbs in women with endometriosis, with the 

results obtained herein confirming earlier studies on the patient's PF that recognize 

the same set of antigens, including AHSG and histones. 46% of them have five or 

more AAbs, consistent with the observation that a proportion of EM+ patients, and 

not all, have an autoimmune component 58,59, which has led to a mix of correlation of 

AAbs between the severity of endometriosis and AAbs 60–63.  

The female preponderance to an increased likelihood of autoimmunity and 

endometriosis-associated autoimmunity might be explained by estrogen and 

retrograde menstruation. Activation-induced deaminase (AID) deaminates cytosines 

at immunoglobulin loci, initiating a cascade of events that lead to somatic 

hypermutation and class switch recombination, turning IgG AAbs pathogenic. AID 

has been reported to be estrogen-induced 64. Estrogen up-regulates AID transcript 

and protein levels, and in ovarian tissues where estrogen levels are high, deleterious 

insertions of point mutations or the resolution of double-strand breaks potentially 

accumulate over time, generating pathogenic AAbs 64. Loss or deficiencies in the 

removal of apoptotic cells or intracellular proteins due to their release from dying 

cells are known to cause autoimmunity and chronic inflammation 65,66. The presence 

of cellular debris in the peritoneal cavity as a result of retrograde menstruation and 

defective clearance of apoptotic cells and proteins in endometriosis 67 presents a 
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favourable environment that results in abnormal exposure of autologous antigens to 

the immune system and therefore the initiation of an autoimmune response in the 

peritoneal environment.  

In our study, we showed diverse autoimmune responses that varied from 

patient to patient with endometriosis. In autoimmune diseases, auto-reactive 

lymphocytes expand polyclonally, have different antigen receptors on their surface, 

and thereby recognise different targets. AAbs are stable over long periods 68,69, even 

in the presence of low corresponding antigen levels 70,71. Therefore, AAb levels might 

be generated at different phases of endometriosis disease development, potentially 

early in the course of disease development, and persisted. Notably, in autoimmune 

disorders, such as SLE, diabetes, autoimmune ovarian failure, myasthenia gravis, 

and Addison's disease, the presence of AAbs often precedes the development of 

clinical symptoms and potentially change over time 8,72. Taken together, this may 

explain the observed lack of correlation between AAb levels and the stage of 

endometriosis in this study and the heterogeneous nature of the AAb profiles. It is 

also intriguing to consider plausible correlates of AAb diversity across endometriosis 

subphenotypes 20, menstrual phase and age, characteristics which did not reveal an 

association with specific autoantibody response, although the small sample size may 

limit interpretation.  

B-cells, T-cells, and macrophages are key immune cells in the maintenance of 

immune tolerance, and conversely, their dysfunction in autoimmunity. Macrophages 

are important immune cells that maintain immune homeostasis via phagocytosis of 

foreign matter, apoptotic or necrotic cells and are recruited to the peritoneum and 

prominently associated with endometriosis 22–24. Macrophages play a central role in 

the homeostatic clearance of cell corpses and debris by presenting antigens to T and 
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B cells and secreting cytokines that direct the responses of T and B cells. Failure to 

effectively clear these cell debris will lead to the accumulation of autoantigens and 

drive AAb generation. Tan et al. recently described five subtypes of macrophages in 

endometriosis using single-cell RNAseq in various tissue and physiological 

compartments that vary between the EM+ subphenotypes that plausibly promote a 

tolerogenic environment for the survival of endometriotic lesions 73. Previous flow 

cytometry, cytokine and single cell-RNA sequencing analyses demonstrated the 

aberrant activation and dysfunction of B cell and T cell responses in endometriosis 

20,73,74. In EM+ PF, activated T cells and relative frequencies of CD8+ T-cells, Treg 

cells, and Teff cells are higher relative to blood 75. CD4+Foxp3+ Treg cells are 

significantly increased in EM+ peritoneal fluids and lesions suggesting endometriotic 

tolerance 74,76,77. Additionally, PF CD69+ T cells, which denote activated T cells, are 

significantly higher in EM+ compared to EM-. In the same study, CD69 T cells are 

strongly associated with CD161, a marker of multiple sclerosis 78. Recent findings in 

endometriosis revealed that peritoneal Treg cells are disproportionally increased and 

functionally altered in PF and endometriotic lesions 74,76,77. Intrinsic defects in 

macrophages in endometriosis plausibly contribute to autoimmunity. However, the 

presence of diverse AAbs in the PF suggest eventual surmounting of autoimmunity 

and the introduction of self-tolerance to cell debris and lesions. 

As evidenced in Proteinatlas, p53 is barely detectable in endometrial stromal 

or epithelial cells 30,79 but is highly expressed in monocytes, B- and T-cells 80. 

Although p53 expression in endometriosis has been controversial 81–83, our data 

suggest and are consistent with the finding that anti-p53 AAb is restricted to patients 

with mutated forms of p53. Different patterns of TP53 mutations have been reported 

in endometriosis, including missense mutations and loss of heterozygosity that can 
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contribute to or trigger an immune reaction by causing self-immunization of non-

wildtype p53 26–28. It is worth noting that immunogenic epitopes are mapped primarily 

to both the N- and C-terminals of the protein 84, while TP53 mutations are 

concentrated in the central portion (exons 4 to 8) 85 where autoimmunity against p53 

can be generated 86. Therefore, the anti-p53 AAbs captured by the array used here 

targeted both wild-type and mutant p53 in the PF of women with endometriosis. The 

interplay of p53 and macrophages has also been observed, more specifically 

induction of anti-p53 AAbs was associated with a monocyte/macrophage cytokine 

signature in EM+ women.  Chemokines MCP1 (CCL2) and MCP3 (CCL7) are 

monocyte/macrophage chemoattractants 87. Their increased levels point towards the 

infiltration of monocytes/macrophages into the peritoneum of EM+ women. The 

secretion of MIG (CXCL9) by predominantly monocytes/macrophages is induced by 

IFNγ and mediated by the JAK-STAT signalling pathway. Further studies are 

required to dissect the functions of anti-p53 AAbs and others, whether they are 

protective or pathological, and their relative contribution to endometriosis and EAI.  

Citrullinated p53 has previously been reported 88,89 but not in endometriosis. 

This study showed that women with endometriosis have native and citrullinated anti-

p53 AAbs, among others. To date, five human PAD isotypes that are responsible for 

enzymatically modifying arginine to citrulline have been described 55. PAD1 is 

expressed mainly in the uterus, PAD2 have widespread distribution including 

expression in the uterus, PAD3 is found in the epidermis, PAD4 expression is mainly 

restricted to leukocytes and PAD6 is expressed in ovaries and is a crucial enzyme in 

fertility 40,41,90,91. The protein array used in this study adopts the correct folding of 

proteins 38, providing a more accurate reflection of bona fide in vivo functional 

citrullination. The incubation of PF with citrullinated antigens converted by PADs 1, 2, 
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and 6 identified a diversity of anti-citrulline AAbs, including p53, suggesting the 

likelihood that PADs can be found in the peritoneum and peritoneal cavity are 

responsible for citrullinating proteins. Our finding of anti-citrullinated p53 AAbs further 

renders p53 as a potential target of pathologic autoimmunity in endometriosis. In-

depth profiling studies on the cellular and tissue distribution and expressions of 

PADs in endometriosis will identify the sources of citrullination and the degree of 

excessive and pathological conversion of proteins by the PAD isotypes.  

 The relatively tight clustering of fertile non-endometriosis controls who were 

positive for AAbs is rather striking. Fetal-derived DNA due to fetal microchimerism 

has been found in maternal blood as early as the first trimester and up to 38 years 

after pregnancy 92,93, triggering autoimmune adverse responses 94. Such 

observations could be explained via the following mechanism: AAbs that recognize 

different surface proteins might influence different stages of the fertilization process; 

AAbs directed against different epitopes of the same oocyte surface antigen may 

also affect the development and/or fertilization process, and the use of patients with 

a mix of fertility status. In addition, the delayed diagnosis of endometriosis 95 implies 

that by the time endometriosis is diagnosed, her ovaries might already be damaged 

or follicular supply exhausted, and presumably, also the target antigen for the 

autoimmune attack on her ovary. Interestingly, anti-ceramide transport protein 

(CERT, also known as COL4A3BP) AAbs were elevated in 20% of cases compared 

to 6.7% of controls, consistent with our earlier sphingolipidomic analysis of aberrant 

sphingolipid and ceramide metabolism in EAI 96. The impact of pregnancy on the 

maternal and fetal systemic immune systems can also modulate ongoing 

autoimmune diseases and trigger their development 97. The enrichment of 

NTAL/LAB/LAT2 pathway, found in activated B cells and monocytes 98, further 
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suggests the implication of B-cell mediated autoimmunity in EAI. Integrin-mediated 

and TGF-β pathways have also been implicated in fertility and endometriosis 99–101. 

In summary, this study provides an expansive peritoneal AAb landscape in a 

subset of endometriosis patients and identified p53 as a high-frequency AAb target 

that defined its association in autoimmunity. These results suggest causal inference 

of p53 and previously underappreciated pathways that are linked to the 

autoimmunological etiology of endometriosis, with implications on novel therapeutic 

paradigms centered around modulating these pathways and potentially immune cells 

to enhance endometriosis immunotherapies.  
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Tables 

Table 1. Summary of patient characteristics 

Figure 1. Women with endometriosis have diverse peritoneal autoantibodies. 
(A) Distribution histogram of frequency of positive autoantibodies with fold change 
≥2, showing that more EM+ cases (n=25) possessing frequencies of autoantibodies 
of four and five and up to eight, compared with EM- controls of one or two 
autoantibodies (n=25). (B) Heatmap of  351 autoantibody levels in women with (n = 
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25 ) and without endometriosis (n =25 ). Autoantibody levels were Z score 
normalised against control population mean and SD, with Z scores >2 corresponding 
to positive autoantibody levels. Autoantibodies cluster into three major clusters, 
control, endometriosis, and endometriosis with high autoimmunity. (C) Bar graphs of 
EM+ cases and EM- controls with strong (≥5 significant autoantibodies per patient) 
and weak (<5 significant autoantibodies per patient) autoimmune profiles. (D) 
Pathway enrichment q-values (FDR Benjamini-Hochberg), indicated that positive 
autoantibodies in endometriosis were found to elicit pathways involved in MAPK (q = 
4.68 � 10-7), PDGF (q = 5.51 � 10-7), Toll-receptor signaling cascade (q = 1.13 � 10-

6), LKB1 (q = 2.74 � 10-6), IL-2-mediated signaling (q = 3.05 � 10-6 )  , and FGF (q = 
4.81 � 10-6)as  top ranked pathways. ( E)  Number of the 351 autoantibodies 
associated with autoimmunity, endometriosis or bose, as determined by the 
OpenTargets Platform. 

 

Figure 2. Predominance of anti-p53 autoantibody in endometriosis. (A) Bar 
graph of anti-p53 autoantibody fold change, showing that the autoantibody levels are 
elevated in EM+ cases. (B) Dot plot of chemokines indicative of changes in cytokine 
milieu in endometriosis patients with high p53 autoimmunity. 

 

Figure 3. Identification of citrullinated autoantibodies in endometriosis. (A) 
Schematic of citrullinated autoantibody protein array generation for profiling. 
Peritoneal fluids from EM+ patients based on their levels of anti-p53 autoantibody 
levels into two anti-p53 autoantibody groups - p53high and p53low. (B) Different 
citrullination patterns were obtained depending on whether they were incubated with 
PAD1, 2, or 6, with PAD1 generating the most reactive autoantigens. (C) In the 
p53high group 72 citrullinated autoantibodies overlapped in autoantibodies generated 
by the three PADs and in the p53low group only one overlapped. Overall, the list of 
anti-citrullinated autoantibodies overlapped minimally with that of non-citrullinated 
autoantibodies. Citrullinated p53 was the only target among the anti-citrullinated 
autoantibodies that were common to PAD1, 2 and 6 and also that overlapped with 
non-citrullinated autoantibodies.  

Figure 4. Peritoneal autoantibodies in endometriosis-associated infertility. (A) 
Unsupervised clustering heatmap of 109 autoantibody levels in women with (n = 15) 
and without endometriosis (n =13). Autoantibody levels were Z score normalised 
against control population mean and SD, with Z scores >2 corresponding to positive 
autoantibody levels. Hierarchical clustering was completed using the median 
distance, and Manhattan clustering. (B) Number of the 109 autoantibodies 
associated with autoimmunity, endometriosis or both, as determined by the 
OpenTargets Platform. 
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ACVR1
ACVR1C
ADCK1
AK3
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ATP5B
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CA9
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PIM1
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TLK2
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