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ABSTRACT

Detecting differentially expressed genes is important for characterizing subpopulations of cells. In
scRNA-seq data, however, nuisance variation due to technical factors like sequencing depth and
RNA capture efficiency obscures the underlying biological signal. Deep generative models have
been extensively applied to scRNA-seq data, with a special focus on embedding cells into a low-
dimensional latent space and correcting for batch effects. However, little attention has been given
to the problem of utilizing the uncertainty from the deep generative model for differential expres-
sion. Furthermore, the existing approaches do not allow controlling for the effect size or the false
discovery rate. Here, we present lvm-DE, a generic Bayesian approach for performing differential
expression from using a fitted deep generative model, while controlling the false discovery rate.
We apply the lvm-DE framework to scVI and scSphere, two deep generative models. The resulting
approaches outperform the state-of-the-art methods at estimating the log fold change in gene expres-
sion levels, as well as detecting differentially expressed genes between subpopulations of cells.

1 Introduction

Single-cell omics measurements promise to resolve the heterogeneity of cellular identities, characterizing subtle
molecular changes between cells [1]. In particular, measuring gene expression in single cells—with single-cell RNA-
sequencing (scRNA-seq)—opens up the opportunity to characterize differences in complex scenarios, e.g., for rare
cell-type detection or inter-cell-types/inter-conditions comparative analyses. However, technical factors such as the
sequencing depth and batch effects obscure the underlying biological signal, requiring careful probabilistic modeling
of the data to allow accurate detection of differentially expressed genes.

Many differential expression (DE) methods have been developed to handle the specificity of scRNA-seq data [2, 3, 4],
often building on earlier work on bulk RNA-seq [5, 6]. However, there is a gap between the way these methods are
applied and the structural characteristics of modern datasets. First, the performance of these approaches in modern
datasets is highly dependent on their ability to correct for batch effects [7]. Indeed, a large number of these approaches
rely on generalized linear models (GLMs), while recent benchmarking studies in scRNA-seq data integration focus
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on nonlinear methods (e.g., MNNs [8]) for their evaluation [9]. The linear method present in that benchmarking
study, Combat [10] was found to be suitable only for simple scenarios. Second, most methods for DE analysis are
unable to take advantage of the large sample sizes of current scRNA-seq experiments in learning their underlying gene
expression model. Indeed, DE methods are often run on pairs of cell groups, subsampled from the original data. Gene
expression level estimates could be improved by leveraging shared information across the whole dataset for model
fitting, e.g., to refine a given gene expression levels from gene-gene correlation structures accross batches.

Recent advances in deep generative modeling [11] led to the development of a range of methods for normalization
and analysis of gene expression data at scale, able to deal with millions of cells and able to account for complex study
designs [12]. Most of these models (e.g., scSphere [13], scVI [14], scANVI [15], scGen [16] and CellBender [17])
represent the expected gene expression in cell n as a nonlinear function of a latent low-dimensional summary of the
cell’s state zn and its batch-identifier sn. Such approaches intrinsically lead to information sharing across cells and
across genes and promise to address the aforementioned issues. However, little attention has been given to carrying
out rigorous and accurate DE analyses with those models. Two exceptions are scVI [14] and scANVI [15] in which the
uncertainty in the latent variable zn is used to approximate a Bayes factor and detect differential expression. However,
the Bayesian approach mentioned in [14, 15] has three fundamental limitations. First, the underlying definition of
DE genes is too sensitive and may tag genes with negligible differences in expression and often of limited biological
relevance. Second, interpreting Bayes factors is challenging, because of the difficulty to translate them to established
multiple hypothesis testing metrics, e.g., False Discovery Rate (FDR). Third, scVI proposes to average Bayes factors
from randomly sampled pairs of cells from each group, which lacks theoretical justification.

After presenting background information on differential expression and deep generative models (Section 2), we in-
troduce lvm-DE, a general Bayesian framework for detecting differential expression derived from first principles,
and that addresses those issues (Section 3). lvm-DE takes as input a fitted deep generative model of scRNA-seq
data, a pair of cell groups and a target α. lvm-DE provide as output estimates of the log fold change for ev-
ery gene, as well as a list of DE genes, with FDR control at level α. Notably, our Bayesian hypothesis formu-
lation of differential expression uses a composite alternative, built from the log fold change (as in DESeq2 [5])
to avoid detecting spurious or lowly expressed genes. Then, we benchmark lvm-DE applied to scVI [14] and sc-
Sphere [13] against classical differential expression approaches on simulated and real-world datasets (Section 4).
These results demonstrate that lvm-DE is a valuable tool for understanding differential expression effects in scRNA.
An open-source implementation of lvm-DE is available in beta as part of the scvi-tools Python package [18] (
https://github.com/scverse/scvi-tools/tree/pierre/DE ).

2 Background

Before introducing our statistical framework, we describe two lines of work in scRNA-seq data analysis on which our
work builds: differential expression and deep generative modeling.

2.1 Differential expression

Differential expression analysis of transcriptomics data aims to determine which genes have significantly different
expression levels between two groups of cells A and B (e.g., representing different cell-types or cells obtained under
different experimental conditions). It is known that the direct approach of comparing counts across groups is subject
to noise and bias because of the various sources of technical factors that confound the data [19] (i.e., variation in
library size, batch effects). To address this, all DE methods define (either implicitly or explicitly) a model with a latent
variable hcg that represents the denoised or normalized expression level for each gene g and each condition c ∈ {A,B}.
Differential expression for gene g between condition A and B is then assessed by comparing some statistic measuring
the differences between the distributions of hAg and hBg . Finally, the significance of these differences is corrected to
account for the multiplicity of hypotheses (one per gene) by estimating the false discovery rate (FDR).

Several popular DE frameworks for scRNA-seq data were originally developed for bulk RNA-seq data. Those meth-
ods are still competitive although not explicitly designed for scRNA-seq [20]. Two of the most prevalent methods,
edgeR [6] and DESeq2 [5] model gene expressions as negative binomial distributions. Another widely used method,
Limma-voom [21] uses log-transform counts instead. A common theme to all three methods, however, is that they
rely on Generalized Linear Models (GLM), making it convenient to represent and linearly control for possible biases
(e.g., due to batch effects or GC content). Although these GLMs are fit for every gene separately, it is important to
note that their training procedures pool information across genes, relying on mean-variance relationships to improve
the fit of some of the parameters using Empirical Bayes. Another key contribution, featured in DESeq2, is to propose
a composite null hypothesis in which the hypotheses are made on the fold change being higher than some threshold.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.27.493625doi: bioRxiv preprint 

https://github.com/scverse/scvi-tools/tree/pierre/DE
https://doi.org/10.1101/2022.05.27.493625
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - MAY 27, 2022

This results in exclusion of genes whose log fold change (LFC) is low, even if the differences in their expression are
statistically significant. In practice, this procedure helps exclude genes with little biological interest.

Another set of DE analysis frameworks have been designed specifically for scRNA-seq data, with popular methods
including MAST [2] and SCDE [3]. MAST uses a hurdle model that was designed to account for the abundance
of so called dropouts in scRNA-seq data, namely zero counts that are observed mostly with lowly expressed genes,
due to limitation in RNA capture efficiencies. SCDE takes a conceptually similar approach and employs a Bayesian
framework to models scRNA-seq data as a mixture of negative binomial and Poisson distributions. The negative
binomial component of the mixture accounts for counts that are attributable to gene expression while the Poisson
component models dropout events [22]. In the following, we compare our approach for DGM-based DE against
this collection of DE methods, coming from both bulk (DESeq2, edgeR, limma-voom) and the scRNA-seq literature
(MAST).

2.2 Deep generative models for scRNA-seq analysis

With steadily growing sizes of datasets [23], recent work started to adopt more flexible and non-linear approaches
for modeling gene expression in single cells. While these methods require more data for training, they are often
complemented by scalable inference procedures. One popular line of work relies on advances in deep generative
modeling [12], in which models make use of deep neural networks as link functions in their conditional distributions
(e.g., [13, 14, 15, 16, 17, 24, 25, 26, 27, 28, 29]).

Most of these methods fit a hierarchical probabilistic model (i.e., a graphical model), that includes a low-dimensional
latent variable embedding each cell in some cell state space.

To ensure that these cell embeddings reflect biological variation as much as possible, and remain disentangled from
technical variation, a common practice is to model nuisance factors as parameters or random variables within the
generative model. One factor that is commonly accounted for is variation between cells due to sequencing depth.
For instance , scVI [14] and scANVI [15] models include a random variable that represents the sequencing depth of
each cell. This variable is used as a scaling factor, thus providing normalized expression levels. The hierarchical
model also links the latent representation of cell state directly to the normalized expression values, thus decoupling
the cell embeddings from variations in sequencing depth. An alternative approach, scPhere [13] uses the sum of
observed transcripts as a deterministic scaling factor, but relies on an additional penalty term to ensure that the cell
embeddings are decoupled from it. Deep generative models provide accommodating strategies to correct for other
nuisance factor(s) present in single-cells. Multiple approaches, including scVI, scANVI, or scPhere assume model
normalized gene expression as a function of both cell state embeddings and these nuisance factors. This function
learned during the fitting process and parameterized as a multi-layered perceptron can model intricate non-linear
nuisance effects on gene expression. Such nuisance factors can include batch or patient id in multi-donor data sets, but
have also been generalized to broader covariates, e.g., cell cycles [18].

Distributional assumptions are other key components that can improve cell-state representation and gene expression
modeling. For example, in scGen [16], the counts are normalized, log-transformed and treated as samples from
a normal distribution. Conversely, both scVI [14] and ScPhere [13] model gene expression counts under a negative
binomial likelihood. Other models (e.g., the original work of scVI) include the addition of an additional low-magnitude
term, supposedly handling zero-inflation in the data, due to limitations in sensitivity and the effects of transcription
bursting (discussed in more depth at [30,31]). Another component of importance is the modeling of the cell embedding.
DCA [26] relies on a deterministic embedding, treated as a parameter optimized using maximum likelihood estimation.
Another line of work, variational autoencoders (VAEs) posit a prior distribution on the embedding that regularizes
the embedding space and aims to learn more useful representations [11]. While most unsupervised VAEs posit a
non-informative isotropic Gaussian prior, alternative priors may improve cell representation in specific contexts. For
instance, scANVI [15] leverages partial data annotations to learn more structured priors on the latent variable. scPhere
embeds biological states in a hyper-spherical space with a uniform prior, which could improve the modeling of rare
cell types and hierarchical structures.

While most applications of deep generative models in single-cells revolve around the cell state space, few approaches
consider normalized gene expression values and their uncertainty, that are central for DE. Aiming in this direction,
DCA feeds denoised gene expression predicted by the model as inputs for DESeq2 instead of raw counts to better re-
duce the noise present in scRNA-seq data sets. This is unsuitable from the computational perspective because DESeq2
may be too long to run when dealing with groups of tens of thousands of cells, creating a bottleneck. Also, as DCA
relies on an autoencoder, it does not provide uncertainty estimates on normalized gene expression, and summarizes
the data to its mean instead. This is known to potentially create spurious signal in other downstream applications (e.g.,
gene-gene correlation estimation [32]).
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scVI and scANVI (e.g., [14,15]) both provide integrated tools to perform differential expression between two groups.
First, expected expressions are sampled from the posteriors of representative cells. These values are then subject to
Bayes factor computation to assess significance. This framework has several limitations. First, although Bayes factors
are an appealing alternative to frequentist hypothesis testing for Bayesian models, they may be hard to interpret while
analyzing real-world data and cannot be employed towards decisions with false discovery rate control guarantees.
Second, these approaches estimate significantly DE genes without considering the effect size (i.e., LFC), which can be
extremely low for lowly expressed genes, relatively abundant in scRNA-seq data. Third, this approach is convenient
since model fitting is performed only once using all cells, thus avoiding the need to refit a new model for each DE
test (each considering different pairs of cell subsets). However, scVI does not explicitly account for cell type in its
generative model. As a heuristic, scVI aggregates cells by averaging approximate Bayes factors across randomly
sampled pairs of cells to compare cell populations. We provide more theoretical insight, and an improved approach in
this manuscript.

3 Methods

We introduce lvm-DE, a principled framework to enable the use of deep generative models as means for quantifying
and assessing the significance of differences in gene expression (Figure 1A). lvm-DE takes as input a latent variable
model, a scRNA-seq dataset with covariates (such as batch identifiers) and two groups of cells to be compared, as well
as a significance level α. lvm-DE provides an estimate of the LFC of each gene, between cells of the two groups. It
also provides a list of significantly differentially expressed genes that controls the FDR at level α. These estimates
are derived while controlling for differences in library sizes and for variability due to observed technical confounders,
such as the association of samples with different batch identifiers.

lvm-DE requires five steps (Figure 1B). First, a model is fitted, such that the observed expression values in each cell
(X) are represented by a low dimensional latent random variable (often denoted as z; in VAE- based models such
as scVI, this amounts to learning an encoder network). This representation provides a summary of the state of each
cell, while controlling for differences due to batch effects (s) and sequencing depth, but it does not use the annotation
of cells into the two groups that we wish to compare (Figure 1B1, Section 3.1). Performing DE with an annotation-
agnostic model is convenient as it does not require refitting the model when the we want to compare different groups
of cells. Second, annotations are used to build a posterior distribution of the latent representation of each of the two
groups, providing a summary of their characteristic cell states (Figure 1B2), Section 3.2). Third, cell states posteriors
are used to infer a distribution of normalized expression for every gene (Figure 1B3) in each cell group. These
high dimensional distributions are generated by propagating the low-dimensional representations through the latent
variable models (LVM). In VAE-based models, this amounts to applying the decoder network. Fourth, the normalized
expression values are used to estimate the LFC and a posterior probability for the LFC to be larger than a given cutoff
δ (Figure 1B4, Section 3.3) while correcting for batch effects (Section 3.4). Finally, these posterior probabilities of
DE are used to call genes whose significance is within a desired FDR α (Figure 1B5, Section 3.5).

3.1 Selection of deep generative models for lvm-DE

Our formulation of lvm-DE is general, such that it applies broadly to many types of deep generative models, and can
operate as a wrapper function for differential expression with these models. In the following, we provide the modeling
prerequisites for using lvm-DE and then discuss additional considerations of modeling choices that can lead to better
accuracy.

Let xng be the observed numbers of transcripts in cell n that originate from each gene g and let sn correspond to
the batch annotation. A general form of generative process that qualifies for use by lvm-DE is as follows. First,
a low-dimensional latent variable zn representing a cell’s biological state is sampled from a prior distribution. A
neural network then takes a sample from zn and the batch information sn and maps it to another latent variable, hng
representing the underlying (i.e., normalized) expression level for gene g. Finally, the observations xng are drawn
from model-specific conditional likelihood distributions, such as negative binomial or log-normal, with or without
zero inflation [14,16, 33]. The likelihood of a single observation (cell) in these models should decompose as follows:

p(xn, hn, zn | sn) = p(zn)
G∏
g=1

p(xng | hng)p(hng | zn, sn). (1)

Furthermore, lvm-DE assumes that there exists a tractable approximation to the posterior p(zn | xn) (e.g., using
variational approximations [11], or MCMC [34]). While many published methods satisfy this basic prerequisite, here
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we selected two such models: scVI and scPhere [13, 14], both of which are based on a VAE but differ in their loss
function and distributional assumptions.

Beyond this basic prerequisite, we identified two considerations for improved performance (implementation details
in Appendix A). The first consideration is the need to model the normalized expression levels hng , while controlling
for nuisance variation in sequencing depth. In scVI and scPhere, this is addressed by modeling the gene expression
count xng as a negative binomial distribution with mean parameter lnhng , where ln is a normalizing factor that can
be interpreted as the inferred library size. The second consideration stems from the fact that lvm-DE exploits the
variational distribution (i.e., an approximation of p(zn | xn)) for Bayesian hypothesis testing. In this setting, it has
been reported that VAE trained with the classical evidence lower bound (ELBO) may underestimate the variance of the
variational posterior and thus under perform in tasks of decision making, compared to models trained with alternate
variational bounds [35]. Consequently, we train scVI and scPhere using the importance-weighted evidence lower
bound (IWELBO), which was demonstrated to lead to improved performance in other application domains [36].

3.2 Aggregating individual cell information to capture population expression levels

lvm-DE takes as input a stratification of cells into groups (cn ∈ {1, . . . ,K}; e.g., representing different cell types or
different conditions under which cells were captured), along with a generative model that conforms with Equation 1.

To estimate the distribution of gene expression in every group of cells, we assume that there exists an oracle function
Φ mapping a point in latent space z to the corresponding covariate c = Φ(z) ∈ {1, . . . ,K}. This is a reasonable
assumption because the low-dimensional representation given by scVI or other deep generative models often success-
fully stratifies cells according to their groups [14].

Given a particular value C of the covariate c (e.g., a cell type or a condition), we denote by hCg the normalized
expression level of gene g in condition C. We define hCg , conditioned on a given batch s as

p(hCg | s) =

∫
p(hg | s, z)p(z | Z ∈ Φ−1(C))dz, (2)

where p(z | Z ∈ Φ−1(C)) denotes the prior density p(z) truncated to the preimage of {C} under the oracle function
Φ. Because Φ is unaccessible to us, we may estimate the prior density from the data, in the spirit of empirical Bayes
methods. More precisely, we first approximate it using the posterior of the annotated data:

p(z | Z ∈ Φ−1(C)) ≈
∫
p(z | x)p(x | c = C)dx. (3)

Second, we estimate this quantity using the truncated dataset with cells belonging to condition C, yielding the mixture
density

p(z | Z ∈ Φ−1(C)) ≈ p̂NC
(z) =

1

|NC |
∑
n∈NC

p(z | xn), (4)

where NC is the set of cell indices that belong to the condition C. To reduce the possible sensitivity to outlier
cells, we developed a procedure to identify and remove these from the set NC . To do so, assuming that the latent
mean representations within a cluster are normally distributed, we estimate the covariance matrix from posterior mean
samples

{
Ep(z|xi)[z] | i ∈ NC

}
, and remove observations whose variational mean falls outside the 90%-confidence

ellipse described by the covariance estimate. As demonstrated previously, the empirical prior appearing in Equation
4 is intractable. A first solution is to replace the individual posterior distributions p(z | xn) with their variational
approximations qφ(z | xn), providing the so-called plugin estimator

p̂plugin
NC

(z) =
1

|NC |
∑
n∈NC

qφ(z | xn). (5)

A remaining caveat of this estimator is that it lends equal importance to each sample from the cell population and of
the variational distribution. This is in a way similar to the original scVI, in which pairs of cells are sampled uniformly
at random from the two populations and compared to each other. It is reasonable to expect, however, that in practice
some samples may be of significantly better quality, which explains the previously reported increased performance
from using importance-sampling based estimators [35]. Based on this observation, we use the mixture prior from
Equation 4, approximated by self-normalized importance sampling (SNIS) with the mixture of Equation 5 as the
proposal distribution. In this formulation, we first sample z1, . . . zN ∼ p̂plugin

NC
, and the contribution of each sample zi
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will be proportional to:

wi ∝ p(zi)
∑
n∈NC

p(xn|zi)/p(xn)∑
n∈NC

q(zi | xn)
, (6)

where p(zi) denote the prior density for zi, and the intractable evidence terms p(xn) are estimated with IWELBO
estimators (K = 5, 000 particles). The final samples z̃j correspond to random samples with replacement from {zi, i ≤
N}, where each entry i of the set has weight pi = wi/

∑
j wj [36], such that

z̃ ∼ Categorical(z,p), z = {z1, . . . zN},p = {p1, . . . pN}. (7)

Consequently, samples from z that have high likelihood levels across a large pool of cells from NC will have higher
weights in the posterior, thus further improving the robustness to outliers and to misassignment of cells into groups. In
order to ensure that the importance sampling procedure is sufficiently stable, several diagnosis tools such as the Pareto
smoothed importance sampling (PSIS) estimator [37] may be employed. Once we have samples from the distribution
p(z | Z ∈ Φ−1(C)), we may follow Equation 2 to link these samples to the normalized expression levels hCg for
DE analysis. In the case of scVI and scPhere, expression levels h and cell states z are linked by a neural network
h = f(z, s).

3.3 Fold change estimation for DE

A practical limitation of DE analysis is the identification of genes in which the differences in expression are significant
and yet of low magnitude (low LFC), and thus of less or no interest. To address this, lvm-DE treats the LFC itself as a
random variable and uses a Bayesian analysis to retain only genes in which the effect size is significantly larger than
a cutoff.

To quantify our confidence that the LFC is beyond a desirable level, we introduce the effect size random variable,

rgA,B = log2

hAg + ε

hBg + ε
, (8)

where ε is a small offset used for stability. When gene g has very low expression levels in both conditions, the pseudo-
count ε ensures that the associated LFC has a low magnitude. More details about the choice of ε can be found in
Appendix C).

To test for differential expression in lvm-DE, we introduce three models for which gene g is either up-regulated (Mg
+),

down-regulated (Mg
−) or not differentially expressed (Mg

0) in population A compared to B. These three models are
defined via the change variable rgA,B as follows:

Mg
+ : rgA,B > δ, Mg

− : rgA,B < −δ, and Mg
0 :
∣∣∣rgA,B∣∣∣ ≤ δ, (9)

where δ is a threshold ensuring that the selected genes are interesting in practice. We discuss heuristics for the choice
of δ in Appendix D). The probability of each of those models may be estimated from the data, using the empirical
Bayes method and the SNIS estimator. In particular, we note:

pg := max
[
p(Mg

+), p(Mg
−)
]
, (10)

the probability that gene g is DE (i.e., with absolute LFC greater than δ).

The LFC is a widely used measure of effect size for expression measurements because of its interpretability [5,38,39].
However, our framework could be extended to any difference measure between expression levels, including logit fold
change for DNA methylation, as in scMET [40].

3.4 Batch effect correction

Our exposition in the previous section assumed that all the cells come from a single batch. However, DE analyses are
often required in multi-batch or multi-donor settings.

Two scenarios appear when performing differential expression, depending on whether all batches contain cells from
both conditions. In the most natural setting, such as a biological replicates, we expect a representation of all the
compared conditions in all batches. In this case, let S be any set of batch indices for which there exists at least
one observation of each condition. Following our Empirical Bayes approach, we define batch-specific empirical
priors relying on the subset of observations N s

C = {n | sn = s, cn = C}. Then, the probability of each of the three
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models may be computed by averaging across batches (similar calculations were proposed in [15]). For example, the
probability of up-regulation is computed as

p(Mg
+) =

1

|S|
∑
s

p(Mg
+ | s)p(s). (11)

In some setups however, there may not be perfect overlap of each condition in all batches (e.g., when comparing
tumors, or inflamed tissues to healthy controls). In this more ambiguous scenario, we condition the posterior scales
distributions w.r.t. observed batches, i.e., p(hCg | sn = sobs

n ), sobs
n being the batch that cell n originates from.

3.5 Controlling the false discovery rate

Bayesian decision theory [41] shows that the optimal decision rule for our DE task consists of selecting the top genes
ranked by pg (Equation 10). However, selecting the number of ”top” genes is not straightforward. The use of Bayes
factor to guide this choice carries the complication of not being interpretable when it comes to the expected error rates.
A more intuitive solution is therefore to set the significance threshold α over pg in a way that controls for the false
discovery rate (FDR).

To this end, let dg be the (unknown) binary random variable denoting whether or not gene g is DE . Consider the
multiple binary decision rule µk = (µkg , g ∈ G) that consists in calling DE the k genes with the highest differential
expression probability pg . The false discovery proportion of the decision rule µk can be expressed as

FDP :=

∑
g(1− dg)µkg∑

g µ
k
g

. (12)

We use the formulation of the posterior expected FDP, as introduced in [42] and applied to genomics data in [43, 44],
corresponding to

FDR :=

∑
g(1− pg)µkg∑

g µ
k
g

. (13)

Because this quantity is tractable after inference, a natural choice for k corresponds to the maximum value for which
the posterior expected FDP is below the desired level α.

4 Results

lvm-DE addresses two key tasks in differential expression analysis. The first corresponds to the robust estimation of
the LFC in noisy and sparse data, including for rarely observed cell states.. The second task is evaluating the statistical
significance of the observed effect size, and calling genes as differentially expressed for any target false discovery
rate. For both tasks, we apply the lvm-DE framework to scVI and scPhere. We denote scVI-lvm and scPhere-lvm
the associated combinations, in contrast to scVI that natively provides a test for differential expression. We evaluate
our models in comparison to the current state-of-the-art, including MAST [2], DESeq2 [5], edgeR [6], and Limma-
voom [21] (referred to as voom). For each of these models, we follow the guidelines and implementation details
specified in a recent comparative study of DE methods for scRNA-seq [20] (further details in Appendix E). We assess
lvm-DE performance for LFC estimation, and for the prediction of correct and calibrated DE gene sets using both
synthetic and real datasets. In the real datasets, we focused the analysis on the top 3,000 highly variable genes using
Seurat. Annotations were taken from the respective publications.

4.1 Accurate and calibrated results on simulated scRNA-seq data

As a simulation scheme, we employ SymSim [45], which models biological and technical noise factors (e.g., transcrip-
tional bursting and PCR amplification), as well as statistical dependencies between genes (relying on low dimensional
representation of the kinetics of promoters in each cell). We used SymSim to generate a hierarchy of cell states and
focus our analysis on the comparison of two ”sibling” types, denoted A and B (Figure 2A). We generated a dataset of
10,000 cells and 1,000 genes across five cell-types. The data corresponds to two batches (5,000 cells each) with unique
molecular identifiers (UMIs), which have similar properties to 10x Chromium data. To estimate the ground-truth LFC,
we use the expected gene expression means, derived from the expected promoter-kinetic parameters in each gene
and cell-type [45]. The resulting dataset contains a total number of 396 genes, including 127 differentially expressed
genes. We selected these genes such that DE genes have non-ambiguous high expression differences (absolute LFC
higher than 1), while negatives have negligible expression differences (absolute LFC lower than 0.2) .
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We first evaluated LFC estimates from the models. The lvm-DE-based models offered accurate estimates (Figure
2B), on par with edgeR and DESeq2. This result suggests that lvm-DE properly aggregates individual cells to infer
expression levels in the two subpopulations. An outlier in this analysis was MAST that exhibited a high mean-squared
error range. This likely comes from the fact that this method relies on a hurdle model, whose LFC is difficult to
compare to the ground-truth LFC. It was therefore discarded from further LFC estimation experiments.

By definition, scVI-lvm and scPhere-lvm make use of all cells in the input data, including ”external” cells that are
not in the groups being compared. In our simulation these are simulated cells that are not in groups A or B (Figure
2A). To test whether the inclusion of more external cells affect accuracy, we varied the number of external cells and
conducted differential expression analysis between groups A and B (which remain unchanged). We find that our FDR
control procedure is well calibrated, and remains at the expected level in all cases. Furthermore, we find a steady
increase in the true positive rate (Figure 2C). These results indicate that increase in the overall data sets size, but
not necessarily at the compared populations, leads to increase in power, thus supporting the notion the DGMs can
benefit from information on all cell types (e.g., gene-gene correlations) in a dataset. This is in contrast with the other
benchmark methods listed here which do not absorb any information from cells outside the compared groups.

The results in Figure 2D support the suitability of lvm-DE for characterizing rare cell-types, as capturing gene cou-
plings can help alleviate the issue of small sample size. We tested this by leaving in the input data only a few cells of
group B (representing a rare cell type), while keeping group A as before (representing a more prevalent background;
Figure 2A). For a rare subpopulation of size 50 and up, both lvm-DE methods provide gene lists that are accurate and
control the FDR for several significance levels. For the GLMs, we observed acceptable FDR control in low sample size
setups, but interestingly their FDR becomes higher than its expectation, with larger sizes of the rare subpopulation. An
exception is the default DESeq2 procedure, which uses a composite null hypothesis (i.e., effect size threshold δ > 0).
This method does not suffer from large FDR, but loses power because of the difficulty to properly set the effect size
threshold in practice. Finally, we observe that the Bayes factor approach originally used in scVI reaches high FDR
levels. Consequently, we excluded this procedure from the next experiments.

To further our confidence in these results, we expanded the analysis in two ways. In the first analysis, we modified
our simulation process to generate additional, and possibly more nuanced scenarios of differential expression, such
as bimodality of the ground truth gene expression [46]. Our procedure compares favorably to the other algorithms
as it provides a high number of true positive genes, and few false positives (Figure S1). In a second analysis, we
used MUSCAT [47] as our simulation framework. Unlike SymSim, the data generated by MUSCAT is based on
independent sampling from an underlying (here, negative binomial) distribution. Therefore, in this case, there is no
benefit in using latent variable models, as no couplings between genes (which is to be expected in real data sets) can
be leveraged. In such setups, the lvm-DE methods provided calibrated predictions, while having similar or lower level
of power compared to the GLMs, as expected (Figure S2).

4.2 Favorable comparison to current methods on single-batch, medium-sized PBMC data

To test the performance of lvm-DE with data, we used a 10X Chromium dataset of 9,432 peripheral blood mononu-
clear cells (PBMC) from a human donor [48] (Figure 3A). This data provides an opportunity to establish the relative
performance of lvm-DE in a configuration in which batch effects are not present.

While there is no ground-truth for differential expression in this data, several strategies can help evaluate the estimation
of differential expression. First, we can ensure that lvm-DE does not detect differences in expression when comparing
groups of cells of the same state. We therefore construct negative controls (Figure 3B) by randomly splitting the B cell
population (460 cells) into two groups (230 cells each) and predicting the LFCs with the different algorithms. In this
configuration, we expect to measure negligible expression differences. lvm-DE LFC estimation compares favorably to
its competitors, since scVI-lvm along with scPhere-lvm predict LFC of significantly lower amplitude than their GLMs
counterparts.

Another benchmark strategy is to compare the outcome of the DE analysis to results obtained from an independent
data set. To this end, we used estimations of LFCs and p-values from a bulk-RNA-seq dataset [49], in which DESeq2
was used for pairwise comparisons of monocytes, B cells, plasmacytoid, and myeloid dendritic cells.

The bulk-level LFCs and significance scores were then compared against the results of applying the different algo-
rithms on the single cell data (Figures 3C and 3D). We find that scVI-lvm and scPhere-lvm compare favorably to the
GLMs in recapitulating both the LFC and the significance scores of the reference bulk data. Notably, the cell groups
we analyzed had varying sizes (Figure 3A), demonstrating that lvm-DE can capture state differences for abundant as
well as less common cell-types. A detailed comparison of LFC estimations for every method and for every pair of cell
types is depicted in Figure S3.
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4.3 lvm-DE pools information from different sequencing technologies for better differential expression

lvm-DE can be employed to perform DE in large-scale multi-batched data. As an illustration, we consider the Pbm-
cBench data collection [50], consisting of two biological samples sequenced with seven different protocols, either
droplet (drop-seq, 10Xv2, 10Xv3, inDrop and CEL-seq) or well-based (seq-well and Smart-Seq2). This data provides
the opportunity to further validate the ability of our procedure to alleviate technical factors’ impact on DE.

We compare the estimated LFC of scVI-lvm with bulk-RNA using the same reference as in the previous experiment.
The inclusion of additional data sequenced with different technologies consistently increase the correlation between
lvm-DE effect-size and significance predictions with bulk-RNA data (Figure 4). In contrast, observing more replicates
does not systematically improve the match of GLM’s predictions with bulk-RNA. This suggests that contrary to GLMs,
lvm-DE succeeds in pooling information from heterogeneous experiments to better capture differences between cell-
states.

In summary, lvm-DE benefits when either the number of observed cells increases or when more samples are available,
even if the samples differ technically.

4.4 lvm-DE better recapitulates inflammatory gene expression patterns in COVID-19 patient data

We now focus on a larger PBMC dataset, consisting of 44,721 cells from seven healthy donors and six patients with
confirmed SARS-CoV2 infection [51] (Blish). This dataset provides an opportunity to evaluate procedures for dif-
ferential expression, not only at comparing different cell types (to find their respective markers), but also comparing
donor groups within each cell-type. The latter comparison, revealing the influence of inflammation on different im-
mune compartments, is usually more challenging with a more nuanced and less reproducible signal [52] (Figure 5A).

Starting with between-cluster analysis, we divided the cells into types using annotations from [51]. We started by
applying the algorithms on a negative control setting, obtained by evenly splitting dendritic cells as two clusters (203
cells each) and comparing the two clusters (Figure 5B). As in the previous experiment, the LFC values estimated
by scVI-lvm and scPhere-lvm in this negative control are significantly lower than the rest of the algorithms. We
next proceeded to a comparison between different cell types (irrespective of disease status). Consistent with our
results above we find that the differential expression analysis scVI-lvm and scPhere-lvm more closely match the bulk
reference than the GLM- based methods, in terms of both effect sizes (LFC) and significance (ordering by FDR or
p-values) estimates (Figure 5C and Figure S4 for the individual plots). We also note that the lvm based methods scale
better in terms of computation time for this large dataset (Appendix J).

We next moved to the more challenging task of differential expression between the patient and control population
within each cell-type. SARS-CoV-2 infection has been demonstrated to lead to aberrant secretion of pro-inflammatory
cytokines such as interferon gamma [53]. As a reference to evaluate our DE analyses, we therefore used bulk tran-
scriptome measurement of responses to different cytokines by different immune cell types. We first used a Microarray
dataset [54], which provides reference LFC for cell-type-specific effects of interferon alpha. We find that scVI-lvm and
scPhere-lvm better correlate with the reference microarray (significant under a t-test at significance level α = 0.05;
Figure 5D and Figure S5 for the individual plots). We repeated this analysis with another reference dataset of bulk
RNA-sequencing measurment of responses to other cytokines (IL2, IL4, IL7, IL9, IL15, and IL21), and again find that
the LFC and significance evaluations by lvm-DE had consistently high correlations with the reference (Figure S6).
In summary, we find that also in this more challenging task of within-cell type comparisons, lvm-DE provides more
accurate estimations of gene expression compared to our benchmark methods.

5 Discussion

While much effort has been made recently to design deep generative models for scRNA-seq and more generally multi-
omics data, and despite their promises, little research has been conducted to leverage these models for DE. In this
work, we present lvm-DE, a novel empirical Bayes method for differential expression, taking full advantage of the
flexibility and scalability of latent variable models. This flexibility permits non-linear batch effects assumptions in the
model, while global linear models for batch effect correction assume that each batch has the same cell-type propor-
tions, often invalid in scRNA-seq experiments [8]. Furthermore, most DE pipelines, with few exceptions [55], do not
take advantage of all available samples for between-type comparisons. Latent variable models that lvm-DE rely on can
harness the learned shared gene-gene correlations refine gene expression modelling and hence, increase the number
of detected DE genes. As such, lvm-DE helps characterize gene expression differences between cell populations in
complex large-scale, batch-confounded datasets, and provides calibrated DE gene sets relying on posterior expecta-
tions of the FDP. However, our claim is not that lvm-DE can be applied to any latent variable models. In particular, we
empirically observed that the library size modeling was key, e.g., in DE comparisons involving two populations with
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different RNA content. In scVI, the library size is a latent variable, while in ScPhere it is deterministically assigned to
the number of transcripts. We noticed that latter scheme does not always successfully normalize counts, and outlined
what specific elements were required to unlock differential expression for scPhere (Supplement B)

As ground-truth cell types labels are not available in most scRNA experiments, the success of DE heavily relies on
a careful annotation strategy. Practical realities, including limited data availability or mislabeling, may deteriorate
cell-type prediction accuracy and desired resolution, hence the range of DE analyses. The emergence of high-quality,
expert-annotated cell atlases [56, 57], along with scalable transfer-learning procedures [58] show promise to provide
straightforward and steady ways to annotate cells. As DE pipelines often follow the canonical approach of using the
same gene counts to annotate (i.e., formulate hypotheses) and compare cell populations (testing these hypotheses), a
core challenge is that the detected DE genes may reflect spurious differences, initially captured during the annotation
process [59]. Fortunately, emerging approaches may limit the circularity that is central to DE for scRNA [60]. We
evaluated how such a procedure, molecular cross-validation, could reduce spuriousness using synthetic data, showing
marginal improvement over the canonical approach (Figure S7).

As lvm-DE outlines a generic procedure to conduct DE for latent variable models, improving the LVM of choice
can be a direction to improve the quality of the predictions. One idea could be to leverage available information on
gene localization to improve the underlying representation of gene-gene correlations. For instance, hmmSeq [44] is
a hierarchical Bayesian model for RNA-seq taking gene positioning into account to better capture co-expression of
genes in the same chromosome. Designing models that handle the sparsity of scRNA-seq experiments is another way
to improve DE for latent variable models. From a biological perspective, understanding the nature of zeros and the
necessity to model their excess is an active topic of research [2, 30, 31]. This question depends on the technology
used for sequencing and has already been illustrated through the analysis of zero inflation for scRNA in latent variable
models [15]. Besides, our aim is to formulate a general framework for differential expression for such models, that
is agnostic to such modeling choices. Still, we found that lvm-DE manages to provide meaningful and calibrated
decisions for zero-inflated models (Appendix I, Figure S8).

Designing better optimization procedures for latent variable models in sparse, high dimensional setups is another ob-
jective for scRNA-seq data. Sparsity can indeed hinder lvms’ ability to handle larger number of genes. In scRNA-seq
data, this limitation could be overcome in several ways for models resorting on amortized variational inference. The
use of more refined training procedures, relying on tighter bounds to improve the fitness of the generative model [61]
could unlock DE on larger datasets. The introduction of group-sparsity priors in the decoder could effectively lever-
age the fact that many genes share generalized biological functions to speed up inference [62]. We hypothesize that
scaling up latent variables models to larger datasets might not only help detect more DE genes, but could increase the
resolution of cell populations studies.

Another extension of our work is the formulation of differential analyses for latent variable models that integrate
several omic modalities. scMET [40] is a Bayesian model for differential methylation. Leveraging existing correla-
tions [63] between methylation and gene transcription in a unified latent variable model and formulating meaningful
hypotheses could be a step forward to better understand complex differentiation scenarios, e.g., for embryonic stem
cells characterization [64].

Code availability

The implementation to reproduce the experiments of this paper is available at https://github.com/
PierreBoyeau/lvm-DE-reproducibility . The reference implementation of scVI is available at https://
github.com/scverse/scvi-tools/tree/pierre/DE .

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.27.493625doi: bioRxiv preprint 

https://github.com/PierreBoyeau/lvm-DE-reproducibility
https://github.com/PierreBoyeau/lvm-DE-reproducibility
https://github.com/scverse/scvi-tools/tree/pierre/DE
https://github.com/scverse/scvi-tools/tree/pierre/DE
https://doi.org/10.1101/2022.05.27.493625
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - MAY 27, 2022

# 
ce

lls

# 
ce

lls

# genes

A. Functional overview

B. lvm-DE principle

Model fitting

Latent variable model 

of choice
1 Sampling normalized scales3

Constructing cell states 

oracles
2

k *

# of genes

Predicting gene sets5

Estimate scales for each population

Compute FDR posterior expecations to select an 
adequate number    of preditionsk*

 

  Expression level

Po
st

er
io

r d
en

si
ty

      

Computing differential expression

probabilities
4

Estimate LFC medians and DE probabilities 
and remove batch effects

LFC

Po
st

er
io

r d
en

si
ty

# 
ce

lls

lvm-DE applies to unsupervised LVMs 
with   characterizing cell identities and   
normalized levels of expression

Approximate cell-states posteriors 
from annotations 

Ra
te

  

 

+

Fitted model

 

Counts Batch States

Annotated data

# 
ce

lls

# genes
# 

ce
lls

# 
ce

lls
Differential 
expression 

detection for 
LVMs

lvm-DE

MMP8
UGT2B17

OLFM4
DGKK

RIMBP2
IGHD

...

FAM20C
CLEC9A
TACSTD2

RAB7B

HTR7
LRP1B
...

LFCs

DE genes 
sets at given 
FDR

 

Up regulated 

Down regulated 

Low relevance gen

LFC

Up reg. Down reg.

Posterior Expected FDP
FDR

Z1

Z2

Figure 1: Differential expression model for deep generative models. A. lvm-DE takes annotated data (from clustering,
metadata, or transfer learning), a latent variable model, and a target FDR level as inputs and returns log fold change
(LFC) estimates as well as calibrated DE predictions. B. lvm-DE works as follows. 1. A preliminary step consists in
fitting the latent variable model of choice of the data from the collection of available scRNA-seq data. 2. lvm-DE uses
existing cell states annotations to approximate the distributions of c conditioned on the cell-states. 3. These distri-
butions help determine the normalized expression level distributions of the compared populations. 4. The associated
LFC distribution helps to determine posterior DE probabilities that correspond to the model in which the LFC is higher
than a given threshold. 5. To tag DE genes of interpretable interest, we estimate the maximum number of genes for
which the posterior expected FDR is below the desired FDR level.
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Figure 2: SymSim results. A. Dataset presentation. Top: SymSim is a simulation framework modeling biological
and technical effects to provide realistic simulations. Bottom: We consider a two cell-type DE analysis scenario.
We subsample population A to compare the different algorithms for rare cell-type detection. For this sub-panel and
all the experiments, we refit the models for each scenario such that all of the algorithms use the same number of
observations from A and B for model fitting and DE. B. LFC point estimation error when comparing two populations
of A = B = 200 cells. For Bayesian techniques, we summarize the posterior LFC distribution by its median. For this
figure and in the remainder of the article, boxplots represent medians (line), interquartile range (box), and distribution
range (whiskers) estimates. C. TPR (dots) and FDR (crosses) changes for an increasing number of external cells for
the different latent variable models. D. FDR and TPR of decisions for the detection of DE genes when comparing
varying A ∈ {25, 50, 100, 150} cells to B = 500 cells (for C = 2000). Squares, circles, and diamonds correspond
to decision controlling FDR at targets 0.05, 0.1, and 0.2. For scVI’s original DE procedure, we reject the null when
Bayes factors are greater than 3 in absolute value.
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Figure 3: PBMCs results. A. UMAP from scVI’s embedding B. Negative controls (among B cells), corresponding
to LFC range study for the different methods. For this experiment, the lvm-DE outlier removal procedure was not
employed. C. Positive controls. Distribution of Pearson correlation between the reference LFC (bulk-RNA) and
estimated LFC for pairwise comparisons of B cells, mDC, pDC and monocytes. Each point in these graphs corresponds
to one of the six possible cell-type comparison. For lvm-DE, we use the custom LFC median estimator. Individual
scatter plots can be found in the annex. D. Distribution of Spearman correlations between the reference pvalues (bulk-
RNA) and estimated significance scores for pairwise comparisons of B cells, mDC, pDC and monocytes. GLMs and
lvm-DE respectively used pvalues and posterior DE probabilities as significance scores. Stars represent significant
differences with all the GLMs at various significant levels (*, **, and *** denote respectively significance levels
< 0.05, 0.01, 0.005), under a two-sample F test for the negative control and a one-sided two-sample t test for the
positive control experiments.
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(from bulk-RNA) for two cell-type pairs. Right: Spearman correlation of the predicted significance scores (posterior
differential expression probabilities for scPhere and scVI-lvm, pvalues for other algorithms) and the reference pval-
ues (from bulk-RNA) for two cell-type pairs. In both graphs, points correspond to a given training on a subset of
PbmcBench containing a varying number of batches (color). As GLMs struggled to scale to large sample sizes, these
algorithms used a maximum of 500 cells per dataset.
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Figure 5: SARS-CoV2 dataset results. A. Dataset presentation. UMAP from scVI’s embeddings colored by cell-type
(left) and batch (right). Counts were obtained from 6 healthy donors (H1 to H6) and 7 SARS-CoV-2 infected patients
(C1 to C7). B. Negative controls (among DC cells), corresponding the study of the range of the LFC parameter (LFC)
for the different methods. . C. Positive controls for inter cell-type analysis. Left: Distribution of Pearson correlations
between the reference and estimated LFC for pairwise comparisons of B cells, mDC, pDC and monocytes. Right:
Distribution of Spearman correlations between the reference pvalues and estimated significance scores for pairwise
comparisons. Each point in these graphs corresponds to one of the six possible cell-type comparison. D. Positive
controls for within cell-type analysis. Distribution for different cell-types of Pearson correlations between the refer-
ence and estimated LFC. The reference corresponds to cell-type-specific cytokine signature genes LFC independently
computed on microarray, but that unfortunately did not contain significance assessments. The considered cell-types
are dendritic cells, NK, neutrophils, gd T, B, CD4T, and CD8T cells.
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Supplement

A Implementation of the different LVMs

ScPhere was reimplemented in PyTorch using the same architecture than the original structure. However, to avoid
the scalability and numerical instability of the Fisher Von-Mises distribution for consequent latent dimensions, this
distribution is replaced by the Power Spherical, which does not suffer from those effects [65]. The main difference
we introduced lies in the counts normalization procedure. scPhere uses observed library sizes ln =

∑
g xng . To

ensure that the h are properly normalized for DE applications, we introduce a latent variable l accounting for library-
size differences to augment scPhere. Next, we also empirically observed that the cell-specific overdispersion used by
scPhere sometime caused instabilities in LFC estimation (see Appendix B), and for this reason opted for gene-specific
overdispersion parameters. Originally, both scPhere and scVI use batch normalization for the encoder and decoder.
After facing several stability issues in differential expression tasks with this normalization scheme, batch normalization
was replaced by layer normalization. The two models originally use dropout as a regularization scheme. This choice
implies an infinite ensemble of variational distributions is used during training. During evaluation on such networks,
a common practice consists in disabling dropout by reweighting the regularized layers’ parameters. It is unclear why
the associated distribution should be used for importance sampling. Consequently, we discard dropout layers from the
architecture of the models. The remaining of the architectures follow the different models’ original implementations.
We train each model with minibatches of size 1024 using the Adam optimizer to speed up convergence without
computational toll. For better variational distribution coverage, we optimize the IWELBO with K = 25 particles, and
resort to SNIS to estimate posterior expectations as described above. For these latent variable models, the optimization
scheme, and in particular the learning rate is a vital hyperparameter. To avoid manual tunings of the learning rate in
each experiment for each model, we rely on the automatic learning rate range test [66]. They provide data-driven,
automatic learning rate choices for each latent variable model and experiment.

B Ablation study

Table S1: Features ablation study. The reference model corresponds to scVI-lvm, trained with the IWELBO with 25
particles, and layer normalization. From left to right: FDR Mean absolute error (MAE; lower is better) Ranking score
(RS; higher is better) PSIS shape (PSIS) LFC MSE of non-DE genes (NC, lower is better)

FDR MAE LFC MSE
Ref. 0.0197 0.0998
Ref. - auto δ 0.3185 0.7285
Ref. - outliers 0.3185 0.7285
Ref. - pseudocounts 0.0391 0.1201

First, we analyze the importance of each feature of our DE framework (Table S1). The automatic effect-size threshold
and outlier removal procedures are key components to better approximate the False Discovery Rate. Using pseudo-
counts slightly affects the gene rankings, but it also reduces the risk to attribute high fold changes to null genes. In
the absence of this feature, the MSE of the LFC for non expressed genes nearly doubles. Pseudo-counts can hence be
viewed as a regularization scheme to ensure that the detected genes have practical interest, on top of reducing the risk
of predicting False Positive genes.

Next, we conduct ablation studies of the objective functions and network architectures of the different algorithms
to have a clearer understanding of the hyperparameters’ influence (Tables S2 and S3). In particular, we see that the
choice of overdispersion in scPhere does not modify the ability of the algorithm to properly control the FDR. However,
cell-specific overdispersion seem to increase the LFC error.

Table S2: scVI ablation study. Differences in MAE
with Table S1 are attributable to weight initialization
randomness.

FDR MAE LFC MSE PSIS
Ref. 0.0504 0.1880 0.5988
Ref. + ELBO 0.0243 0.1306 0.4406

Table S3: scPhere ablation study
FDR MAE LFC MSE PSIS

Ref. 0.0572 0.1117 0.0898
Ref. + ELBO 0.3185 0.7282 -0.1042
Ref. - cst overdispersion 0.0300 0.2688 0.1307
Ref. - random library 0.1672 0.3045 0.1104
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C Using pseudo-counts

Most generative models rely on softmax operations to ensure that the normalized means. In such cases, the underlying
expression levels have a straightforward interpretation, as they quantify gene frequencies. The softmax can however
create artifacts when the two conditions A and B do not share the same library size distributions, which often is the
case when A and B are cell-types. As the obtained frequencies can be arbitrarily small, the LFC distribution can reach
extreme values when the gene is not expressed in both conditions.

As a solution, the offset ε (Equation 8) can serve a threshold frequency of interest that mitigates numerical artifacts. It
also filters out low levels of expression, further ensuring that tagged DE genes have a practical interest. It is difficult
to set the offset manually. A meaningful value depends on various parameters, including the sequencing depths of
A and B, as well as the sparsity degree and shape of the data. We automatically tune this parameter, by looking at
the distributions of gene expression levels for unexpressed genes in C ∈ {A,B}. Let G0C be the set of genes with
zero counts in C, and ĥCg the maximum expression levels in gene g. If g ∈ G0C , we can expect ĥCg to correspond to
artifacts coming from the softmax operation. Yet, it is possible that some genes were expressed, but were not observed
in the counts due to the low sensitivity inherent to scRNA sequencing. To ensure the robustness of the procedure to
such events, we estimate the threshold offset as the empirical α lower quantile of ĥCg , g ∈ G0C , denoted as εαC . In the
experiments, we use α = 0.90. In addition to the pseudo-count procedure, we design a robust LFC estimator that will
mitigate instability when both populations do not express the gene.

D Automatic effect-size thresholding

If is not always straightforward how δ should be set. The order of magnitude of the critical effect-size value that will
determine if a gene is called differentially expressed depends on the two compared populations. For this reason, we
suggest an automatic procedure to automatically set the value δ. To do so, we compute the posterior LFC medians
vg := median(rgA,B)) for each gene. We assume that a significant amount of LFCs will concentrate around 0 (which
correspond to the genes that are equally expressed), while DE genes will concentrate around other modes. Based
on this assumption, we fit a three-components Gaussian Mixture Model (GMM) based on medians vg . We denote
mi, i ∈ {1, 2, 3} the three obtained modes. Our δ candidate corresponds to the mean of the largest modes (in absolute
value), whose associated distributions should contain differentially expressed genes.

E Methods detail

We provide a scaled count matrix as input (following [67]) to MAST and edgeR. DESeq2 uses the original count
matrix, which is then subject to internal normalization, using the poscounts estimation, which seemed to improve the
normalization quality. We included the batch information as covariates of the linear models included in the design ma-
trices. Obtained p-values are corrected for multiple hypotheses testing using the Benjamini-Hochberg procedure [68]
for evaluation of false discovery rate. Similar to our approach, DESeq2 formulates composite null hypotheses in which
the LFC absolute value is below a certain threshold δ. We set the value of the δ parameter of DESeq2 to 0.5. To distin-
guish DESeq2’s predictions using composite from the point null hypotheses, we precise δ = 0 in the latter scenario.
For other frequentist methods, which did not provide composite null hypotheses options, a subsequent filtering step of
DE gene sets consisted in discarding genes with predicted LFC below 0.5 in absolute value.

F SymSim extension to differential analysis

SymSim provides counts of the form xng along with labels sng . We focus on the comparison of cell types A and B.

We now describe SymSim-DA, a slight modification of the employed SymSim dataset that induces subtle differences
in expression. Indeed, gene expression within a cluster can be multimodal. Better understanding how differential
analysis tools handle such specificity is vital. The procedure we use consists in modifying the data to introduce multi-
modalities in count distributions, from the raw counts. Let Gd be the set of differentially expressed genes between A
andB. We randomly split this set in gene sets, that we denote GDE ,GEE ,GDP ,GDM , and GDB . The first set coincides
to differential expression, and hence does not require any modification of the original data. The other sets correspond
to equal expression (EE), differences in proportions (DP), differences in mixture (DM), and differences in both (DB)
(Figure S1A). Each set relies on a pool of held-out counts for the two cell-types to artificially introduce other modes.

Both scVI-lvm and scPhere-lvm compare favorably to the other algorithms (Figure S1B.).
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Figure S1: SymSim-DA results, extending the dataset to unlock a broader differential analysis scenario. A. top:
Overview of the different differential distributions for differential analysis. From left to right: 1. Differential expres-
sion, in which the modes of gene expressions are different. 2. Differences in proportion, in which both populations
express the gene according to two modes, but with different weights 3. Differences in mixture, in which the two
populations share the same mode but one of them also has another mode 4. Differences in both, a combination of
the last two scenarios. bottom: differential distributions that do not induce differences between the populations. In
both cases, both populations have the same gene expression, but in EP the gene expression is multimodal. B. Types of
genes detected by each method (at FDR level 0.05). Detections corresponding to DB, DE, DM, or DP correspond to
true positives, while EE or EP genes denote false positives.

G Differential expression on MUSCAT

We proceed to the same analysis than the one conducted in SymSim for a synthetic dataset generated using MUSCAT
(Figure S2). In this framework, an external dataset helps to fit sample-specific negative binomials (with shared, gene
specific overdispersion parameters). These reference distributions are used to construct a synthetic dataset consisting
of several subpopulations. A first simple scenario consists in only focusing on differences of expression. In this case,
each subpopulation will follow negative binomial count distributions, with subpopulation-specific mean parameters.
Here, the presence of other cell-types cannot be leveraged to improve differential expression performance between A
and B S2C). While lvm-DE’s FDR control is acceptable, linear models also work well in this scenario (Figure S2D).

H Individual scatter plots

We here show the complete inter cell-types analysis for the PBMC (Figure S3) and Blish (Figure S4) datasets, as well
as the intra cell-types analysis (Figure S5).

I Zero-inflation effects

We here discuss to the flexibility of the lvm-DE framework to changes in the noise model. In particular, we investigate
if zero-inflated models still control the FDR in the lvm-DE framework (Figure S8). Originally designed to better
account for the low sensitivity of droplet-based sequencing procedures, its pertinence to properly model scRNA has
been challenged [31]. In this dataset, we find that a zero-inflated negative binomial likelihood does not seem to better
capture differentially expressed genes that their negative binomial counterparts. However, zero-inflated models may
still be used by our model.
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Figure S2: MUSCAT results. A. Dataset presentation. B. LFC point estimation error when comparing two populations
of 200 cells. For Bayesian techniques we summarize the posterior LFC distribution by its median. C. TPR (dots) and
FDR (crosses) changes for an increasing number of external cells for the different latent variable models. D. FDR and
TPR of decisions for the detection of DE genes when comparing 25, 50, 100, and 150 cells to 500 cells. Squares,
circles and losanges correspond to decision controlling FDR at targets 0.05, 0.1, and 0.2. Because the original scVI
model does not provide explicit thresholds to tag DE genes, we reject the null when Bayes factors are greater that 3 in
absolute value.

J Running times

Running times of the different methods are provided in Table S4. They correspond for the inter cell-type comparisons
performed on the Blish datasets. All experiments were run on a remote server with one Tesla V100 GPU, 40 virtual
processors and 120 GB of RAM. We observed that the GLMs scaled poorly with higher numbers of batches, with the
exception of Voom, which however provided poor correlation with bulk-RNA. While both scVI and scVI-DE require
additional time to fit their generative model on the entire dataset, the lvm framework also provides other functionalities
(clustering, normalization, imputation tasks) often required for differential expression analysis that require the use of
external packages for the other DE protocols. In addition, scVI-DE differential expression execution time is constant
with respect to the number of cells analyzed for differential expression.

Table S4: Mean Running time on the Blish dataset for the comparison of the six pairs of cell types. Training times
correspond to the required time to fit latent variable models on the whole dataset for 250 epochs.

Blish DESeq2 MAST edgeR Voom scVI-lvm scPhere-lvm
Pre-training (Minutes) N/A N/A N/A N/A 21.4 23.4
Differential expression (Seconds) 266.7 139.0 102.7 1105.3 35.1 41.4
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Figure S3: Inter cell-types analysis for the PBMC dataset, through the comparison of predicted LFC with reference
bulk for pairwise comparisons of B cells, mDC, pDC and monocytes.
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Figure S4: Inter cell-types analysis for the Blish dataset, through the comparison of predicted LFC with reference bulk
for pairwise comparisons of B cells, mDC, pDC and monocytes.
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Figure S5: Within cell-types analysis for the Blish dataset, through the comparison of predicted LFC with cytokyne
genes microarrray.
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Figure S6: Predicted LFC correlations with reference RNA data for several cell-type-specific cytokine stimulation
markers. In each subgraph, points correspond to the correlation for a given cell-type (B, Dendritic, NK, CD4, CD8, or
gamma-deltas.)
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Figure S7: Effect of molecular cross-validation (MCV) on LFC estimation and posterior DE probabilities on Poisson
negative-control data using scVI-lvm. The model either used the same transcripts to train the model and to detect DE
genes (Full) or used different molecules for model fitting and inference (MCV), according to a 80%-20% split. Left:
Distribution of obtained LFC estimates. Middle and right: Distribution of posterior DE probabilities for two LFC
thresholds (δ = 0.1 and δ = 0.3).
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Figure S8: FDR-TPR curves on the Symsim dataset for varying A sizes, comparing different likelihood models for
scVI-lvm. In this experiment, B = 500, C = 2000.
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