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Abstract

Homologous recombination between the maternal and paternal copies
of a chromosome is a key mechanism for human inheritance and shapes
population genetic properties of our species. However, a similar mech-
anism can also act between different copies of the same sequence, then
called non-allelic homologous recombination (NAHR). This process can
result in genomic rearrangements—including deletion, duplication, and
inversion—and is underlying many genomic disorders. Despite its impor-
tance for genome evolution and disease, there is a lack of computational
models to study genomic loci prone to NAHR.

In this work, we propose such a computational model, providing a uni-
fied framework for both (allelic) homologous recombination and NAHR.
Our model represents a set of genomes as a graph, where human haplo-
types correspond to walks through this graph. We formulate two founder
set problems under our recombination model, provide flow-based algo-
rithms for their solution, and demonstrate scalability to problem instances
arising in practice.

1 Introduction

Twenty years ago, at this conference, Esko Ukkonen introduced the problem of
inferring founder sets from haplotyped SNP sequences under allelic recombina-
tion [30]. Ukkonen’s work has since inspired a wealth of research addressing
various aspects and applications of founder set reconstruction ranging from the
reconstruction of ancestral recombinations and pangenomics to applications in
phage evolution [15, 18, 29]. In its original setting, the problem sets out from
a given set of m sequences of equal length n, where characters across sequences
residing at the same index position correspond to a SNP. It then asks for a small-
est set of sequences, called founder set, such that each given sequence can be
constructed through a series of crossovers between sequences of the founder set,
where each segment between two successive recombinations must meet a mini-
mum length threshold. The Founder Set Reconstruction problem is NP-hard in
general [22], but is solvable in linear time for the special case of founder sets of
size two [30, 35]. Since its introduction, various heuristics and approximations
have been proposed [35, 24, 25]. A popular subject of study is a variant that
restricts crossovers to coincide across the given set of sequences. The resulting
problem, known as Minimum Segmentation Problem is polynomial [26]. In his
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seminal paper, Ukkonen devised a O(n2m) algorithm for its solution which has
been improved by Norri et al. [16] to linear time, i.e. O(nm), capitalizing on
recent breakthroughs in data structures [9].

Just like the founder set problem, the vast majority of population genetic
analyses and genome-wide association studies have been focused on SNPs in
the past decades, neglecting the more complex forms of variation—mostly for
technical difficulties in detecting them. In particular, structural variants (SVs),
commonly defined as variants of at least 50bp, have posed substantial chal-
lenges and studies based on short sequencing reads typically detect less than
half of all SVs present in a genome [37]. Recent technological and algorithmic
advances help to overcome these limitations [27]. Long read technologies now
enable haplotype-resolved de novo assembly of human genomes [19], which in
turn enables a much more complete ascertainment of SVs [10]. Earlier this
year, the first complete telomere-to-telomere assembly of a human genome was
announced [17], heralding a new era of genomics where high-quality, haplotype-
resolved assemblies of complex repetitive genomic structures become broadly
available. Presently, the Human Pangenome Reference Consortium (HPRC),
is applying these techniques to generate a large panel of haplotype-resolved
genome assemblies from samples of diverse ancestries [33]. These emerging data
sets enable studying genetic loci involving duplicated sequence, called segmen-
tal duplications (SDs), which are amenable to NAHR and are therefore highly
mutable and show complicated evolutionary trajectories [13, 31].

Interestingly, at loci with highly similar segments arranged in opposite ori-
entations, such as Segment 3 in Figure 1, NAHR can lead to inversion, i.e.
the reversal of the interior sequence (Segment 4 in Figure 1). Because of be-
ing flanked by the same sequence on both sides, such events have been largely
undetectable by sequencing technologies with read lengths below the length of
the duplicated sequence; in particular by conventional short read sequencing.
Recent studies applying multiple technologies reveal that inversions affect tens
of megabases of sequence in a typical human genome [7]. Unlike most other
classes of genetic variation, inversions are often recurrent with high mutation
rates, that is, the same events have happened multiple times in human history
[21]. Depending on the structures of duplicated sequence at a particular locus,
individual human haplotypes can differ in their potential for NAHR. This can
have important implications for the risk for a range of genetic disorders caused
by NAHR-mediated mutations [21].

For over two decades, a branch of research dedicated to the study of gene
orders has produced various models for the study of genome rearrangements.
These range from the classic reversal [3, 2] and transposition [4] model to com-
posed models for two or more balanced rearrangements [32, 8], to generalized
models such as the popular double cut and join (DCJ) model [36, 5]. As the
research in this field continues, advanced models can additionally accommodate
one or more types of unbalanced rearrangements, i.e., deletion, insertion, and
duplication [28, 6]. Yet, none of these models adequately considers sequence
similarity as a prerequisite for NAHR, which is a key molecular mechanism
shaping complex loci in the human genome. In summary, there are now techno-
logical opportunities to study the population history of recalcitrant SD loci that
are prone to genome rearrangements and relevant to disease, but computational
models to facilitate this have so far been lacking.

In this work, we study homologous recombination in a genome model that
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Figure 1: Illustration of an NAHR-mediated inversion. Haplotype A (black
line) represents the original configuration, while haplotype B (red line) can
be derived from A by two recombination events between inverted repeats of
genomic marker 3 as indicated by the red stars.

represents DNA sequences at a level of abstraction where they are already de-
composed into genomic markers with assigned homologies. Here, our notion of
homology is a synonym for high DNA sequence similarity, as we adopt the ter-
minology underlying the concept of homologous recombination. It should not
be confused with the evolutionary meaning of this term. Our model permits re-
combination events to occur between homologous markers independent of their
position within or between haplotypes, as long as the markers’ orientations are
respected. In other words, a marker can only recombine with a homologous
marker along the same direction, as illustrated by Figure 1. By virtue of reca-
pitulating the underlying molecular mechanism (NAHR), it implicitly allows for
all the rearrangements it can give rise to, including deletion, duplication, and
inversion.

Marker decomposition and homology assignment can be done in practice
with genome graph builders such as MBG [23], minigraph [12], or pggb1. In
fact, our algorithms are based on variation graph or pangenome graph, where
nodes correspond to homologous DNA segments and edges between segments
correspond to observed adjacencies in a given set of haplotypes.

2 Methods

2.1 Preliminaries

A (genomic) marker m is an element of the finite universe of markers denoted
by M, and is associated with a fragment of a double-stranded DNA molecule.
Each marker can be traversed in forward and reverse direction. A marker
in forward orientation (which is the default orientation) is traversed from left
to right. Overline notation m indicates the reversal of a marker m, which is
carried out relative to its orientation, i.e., m = m. Similarly, M represents the
set of all reverse oriented markers. We designate two forward oriented markers
{s, S} ⊆ M as terminal markers. In what follows, we study terminal sequences,
that is, sequences drawn from the alphabet of oriented markersM∪M that start
with s or S, end in S or s and do not contain any further terminal markers in
between. A terminal sequence can be traversed in forward and reverse direction.
A haplotype is a terminal sequence that starts with s (source) and ends with S
(sink).

1https://github.com/pangenome/pggb
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Example 1. Consider in the following two sequences of genomic markers A
and X drawn from the universe of markers M = {s, 1, 2, 3, 4, S}, where A =
s12343S and X = s1234321s. Sequence A starts and ends with terminal mark-
ers s and S, respectively, thus constituting a haplotype drawn from M. Con-
versely, X starts with s and ends in s and therefore is a terminal sequence, but
not a haplotype.

Given a sequence A, |A| indicates the length of A which corresponds to the
number of A’s constituting elements. A defines the reverse complementation of
sequence A, i.e., the simultaneous reversal of the sequence and its constituting
elements. The element at the ith position in sequence A is denoted by A[i]. A
segment of sequence A starting at position i and ending at and including position
j, is denoted by A[i..j]. In particular, A[..i] := A[1..i] and A[i..] := A[i..|A|]
denote the prefix and suffix of A, respectively. The operator “+” indicates the
concatenation of two sequences.

Example 1 (con’t). The length of A is |A| = 7; its reverse complement is
A = S34321s; A[4..6] is a segment of A and corresponds to sequence 343; The
segments X[..6] = s12343 and A[7..] = S are a prefix and a suffix of X and
A, respectively; The concatenation of prefix X[..6] and suffix A[7..] results in
haplotype X[..6] + A[7..] = s12343S.

A recombination is an operation that acts on a shared oriented marker m
of any two terminal sequences A and B: let A[i] = B[j] = m; recombination
χ(A,B, i, j) produces terminal sequence C = A[..i] + B[j + 1..]. For a given
set of haplotypes H, span(H) denotes the span, i.e., the set of all haplotypes
generated by applying χ on haplotypesH and their resulting terminal sequences.
Accordingly, we also say that “H is a generating set of span(H)”. Conversely,
given a (possibly infinite) set of haplotypes S such that H ⊆ S, then H is a
generating set of S iff span(H) = S.

Example 1 (con’t). Recombination χ(A,A, 4, 2) produces terminal sequence
X = s1234321s. Subsequent recombination χ(X,A, 6, 6), produces haplotype
B = s12343S. If {A} is a given set of haplotypes, then span({A}) = {A,B}.

In this paper, we study the following two problems:

Problem 1 (Founder Set). Given a set of haplotypes H, find a generating set
F ⊆ span(H) such that

∑
A∈F |A| is minimized.

We call a solution to Problem 1 a founder set and its members founder
sequences.

Problem 2. Given a set of haplotypes H, find a founder set F that minimizes
the number of recombinations applied to haplotypes H and their intermediate
terminal sequences in constructing F .

2.2 Constructing founder sets

Variation graph construction. We solve Problem 1 by studying the variation

graph GH = (V,E ∪
−→
E ) of the given set of haplotypes H. Graph GH is an

undirected edge-colored multigraph where each edge can have one of two colors

corresponding to their membership in edge sets E and
−→
E . In constructing GH,
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each marker m of the universe of forward-oriented markersM is represented by a
tuple of its extremities (mt,mh) also called “tail” and “head” of m, respectively,
and its reverse-oriented counterpart m is represented as (mh,mt). Node set V
of graph GH corresponds to the set of all marker extremities, and each marker

m ∈ M gives rise to one marker edge {mt,mh} ∈
−→
E . Further, any two (not

necessarily distinct) nodes mb
1,m

c
2 ∈ V are connected by one adjacency edge

{mb
1,m

c
2} ∈ E iff there exists a sequence A ∈ H ∪ H with A = ..m1m2.. such

that m1 = (ma
1 ,m

b
1), m2 = (mc

2,m
d
2) and {a, b} = {c, d} = {t, h}.

Example 2. Let H1 = s12343S, H2 = s1112343S, H3 = s123432343S, and
H4 = s12S, then the variation graph GH of H = {H1, H2, H3, H4} is as follows,
with marker edges drawn in gray and adjacency edges in black:

t h2t hs t h1 t h3 t h4 t hS

Proposition 1. Let GH be the variation graph of haplotypes H and X be the
set of all alternating walks between terminal markers st and Sh in GH, then
span(H) = X .

Proof.

⇒ Observe that no recombination can create a new pair of consecutive mark-
ers m1m2 that is not contained in any sequence A ∈ H ∪ H. Therefore,
each haplotype B ∈ span(H) is a succession of consecutive markers drawn
from sequences in H ∪ H, i.e., B can be delineated in GH by following
adjacency edges corresponding to its succession of consecutive markers.

⇐ If each alternating walk X = (st, sh, . . . , St, Sh) ∈ X in variation graph
GH corresponds to a haplotype B ∈ span(H), then X must be producible
through a series of recombinations of haplotypes H and their recombi-
nants. We show this by construction:

(a) Pick some haplotype A ∈ H and initialize i← 1;

(b) Let B ∈ H∪H be a sequence such that for some position j, B[j..j +
1] = m1m2 with m1 = X[i..i + 1] and m2 = X[i + 2..i + 3]. Then
A← χ(A,B, i/2, j).

(c) Increase i by 2 and repeat step b unless i = |X| − 3.

Observe that by construction of the variation graph GH, a suitable se-
quence B ∈ H ∪H must exist in each iteration of step b.

Defining flows on variation graphs. We determine a minimum set of founder
sequences by solving a network flow problem in variation graph GH where flow
is allowed to travel along adjacency edges in either direction. In doing so, we
find a non-negative flow ϕ : V × V → N such that the total flow

∑
u,v∈V ϕ(u, v)

of graph GH is minimized and satisfies the following constraints:
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∀ u, v ∈ V ϕ(u, v) ∈ N (constrain flow to integer)

∀ (u, v) ∈ {(u′, v′) | u′, v′ ∈ V : {u′, v′} ̸∈ E} ϕ(u, v) = 0 (constrain travel of flow)

∀ v ∈ V i(v) :=
∑
u∈V

ϕ(u, v) (incoming flow)

o(v) :=
∑
u∈V

ϕ(v, u) (outgoing flow)

∀ {u, v} ∈ E ϕ(u, v) + ϕ(v, u) ≥ 1 (flow coverage)

o(st) = i(Sh) = 0 (flow direction st → Sh)

∀ m ∈M \ {s, S} i(mt) = o(mh) (flow conservation)

i(mh) = o(mt)

Note that the flow can travel in both directions of an edge {u, v} ∈ E and
that ϕ(u, v) = ϕ(v, u) does not hold true in general. The only node pairs of the
graph that are unbalanced, i.e., do not satisfy flow conservation, are (st, sh) and
(St, Sh).

Example 1 (cont’d). The drawing below illustrates a flow solution on variation
graph GH, with the direction and amount of flow along adjacency edges indicated
by labeled arrowed arcs.

1

1

1

1

1
1

2

21

1

2t h2t hs t h1 t h3 t h4 t hS

Deriving haplotypes from flows. By applying the Flow Decomposition The-
orem [1, p. 80f], any flow, i.e., solution to the above-specified constraints, is
decomposable into a set of alternating paths going from source st to sink Sh

and a set of alternating cycles. Ahuja et al. [1] give a simple and efficient algo-
rithm that does so in polynomial time and which we describe below, adapted
to our circumstances. The idea is to perform a random walk in the graph from
source to sink or within a cycle, thereby consuming flow along adjacency edges
until all flow is depleted. The proof of the algorithm remains unchanged to that
given by Ahuja et al., thus is not repeated here.

1. Set u← st.

2. Setting out from current node u, traverse the incident marker edge to
some node v, choose any neighbor w of v for which ϕ(v, w) > 1. Follow
the adjacency edge to v and decrease the flow ϕ(v, w) by 1. Set u← w.

3. As long as u ̸= St do as follows: if u has been visited in the traversal
before, then extract the corresponding alternating cycle from the recorded
sequence and report it. Proceed with the traversal by repeating step 2.

4. However, if u = St, follow the marker edge to Sh and report the recorded
sequence as a path.
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5. If sh is incident to edges with positive flow, proceed with step 1. Oth-
erwise, there still might be strictly positive flow remaining in the graph
corresponding to unreported cycles. In that case, pick any node u ← ma

such that for some node w, ϕ(mb, w) > 0, {a, b} = {t, h} and m ∈M, and
proceed with step 2.

Example 1 (cont’d). The components of the flow solution on variation graph
GH comprise two cycles C1 and C2, and two (st, Sh)-paths P1 and P2, as
illustrated below.

C1

P1
P2

C2
t h2t hs t h1 t h3 t h4 t hS

What remains is the integration of cycles into walks that then correspond
to the haplotypes of the founder set. The integration is facilitated by a graph
structure, the component graph. The component graph G′ = (V ′, E′, l) is an
edge-labeled, directed multigraph, where, in its initial construction, each al-
ternating (st, Sh)-path and each cycle reported during flow decomposition is
represented by a distinct node of V ′. In the component graph G′, each cycle c
of the flow decomposition sharing one or more markers with another component
c′ is connected by one or more directed edges (c, c′) to that component, with
each edge’s label l(c, c′) corresponding to one distinct shared marker, oriented
according to the their succession in c (which may not be the same as in c′). The
component graph is then successively deconstructed until empty as follows:

1. Remove and report all (st, Sh)-walks with in-degree 0 from node set V ′2.

2. Pick a cycle c ∈ V ′ with in-degree 0, or, if none such exists, any arbitrary
cycle c ∈ V ′.

3. Pick an outgoing edge (c, c′) ∈ E′ such that c′ is a (st, Sh)-walk. If
no such c′ exists, c is only adjacent to cycles, out of which one c′ is
picked at will. Let (ma,mb) ← l(c, c′), {a, b} = {t, h}. If marker m
is embedded in c′ in same orientation, i.e. c′ = ..mamb.., then lin-
earize c in m, i.e., c = mbc1..ck−1m

a, and integrate it into c′ such that
c′ ← ..mambc1..ck−1m

amb.. . Otherwise, integrate the reversed lineariza-
tion of c, i.e, c′ ← ..mbmack−1..c1m

bma.. . Remove cycle c and its outgoing
edges from component graph G′.

4. Proceed with step 1 until no more components remain and all (st, Sh)-
walks are reported.

The search for components with in-degree 0 can be efficiently implemented
through preorder traversal of G′. Note that each cycle must have at least one
outgoing edge and that ultimately all cycles must be integrable into a (st, Sh)-
walk, otherwise this would imply that GH contains a disconnected, circular
component that is not reachable by an alternating path from source st to sink Sh,

2By construction, (st, Sh)-walks have out-degree 0, i.e., those with in-degree 0 are singleton
in G′.
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thus contradicting the correctness of GH’s construction. The reported (st, Sh)-
walks represent the wanted haplotypes of the founder set.

Example 1 (cont’d). The plot below depicts the component graph of compo-
nents C1, C2, P1, and P2 (left) and the final two (st, Sh)-walks that collectively
represent a founder set of H (right).

1

1 2

2 33 4

P2

C1 C2

P1

t h2t hs t h1 t h3 t h4 t hS

t h2t hs t h1 t h3 t h4 t hS
C1

P1

P2

C2

Theorem 1. Any flow that minimizes the total flow
∑

u,v∈V ϕ(u, v) of variation

graph GH = (V,E ∪
−→
E ) of a given set of haplotypes H gives rise to a solution

to Problem 1.

Proof. It is sufficient to show that every flow is decomposable into a set of
haplotypes (⇒) and every founder set represents a valid flow (⇐).

⇒ Any flow of variation graph GH is decomposable into a set of haplotypes
H′, as demonstrated above. Observe that the above-listed flow constraints
enforce the derived haplotypes H′ to cover the entire graph GH and con-
sequently GH′ = GH. This implies that span(H′) = span(H), i.e., H′ is
a generating set of span(H). Therefore, the sum of lengths of haplotypes
derived from a flow solution is an upper bound of Problem 1.

⇐ Any set of haplotypes H′ ⊆ span(H) that covers each consecutive pair of
markers m1m2 in haplotypes H at least once (either in forward orientation
m1m2 or in reverse orientation m2m1) represents a valid flow of GH. To
construct a flow from H′, set ϕ(mb

1,m
c
2) to the number of occurrences of

consecutive markers m1m2 in haplotypes of H′ with m1 = (ma
1 ,m

b
1) and

m2 = (mc
2,m

d
2), {a, b} = {c, d} = {t, h}. Observe that by construction,

flow is integer, travels from source st to sink Sh and satisfies coverage and
conservation constraints.

2.3 Minimizing recombinations in founder sequences

We now present an algorithm towards solving Problem 2, i.e., the problem
of finding a founder set that minimizes the number of recombinations needed
for its construction from a given set of haplotypes H. Our approach is exact
under the assumption that the overall multiplicity of each pair of consecutive
markers in the founder set of a solution to Problem 2 is known, yet the pair’s
particular orientation in a founder sequence may be unresolved. To this end, we
presume a given function ϕ̂(m1,m2) acting as oracle for the overall multiplicity
of any given pair of consecutive oriented markers m1,m2 ∈ M ∪ M. More
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specifically, ϕ̂(m1,m2) reports the total number of occurrences of m1m2 and
m2m1 in a solution to Problem 2. In addition, we make use of function µ(m) :=∑

m′∈M∪M ϕ̂(m,m′) to retrieve the multiplicity of any marker m ∈ M ∪M3.
Our solution makes use of the flow graph that is defined in the subsequent
paragraph. We calculate a matching in the flow graph that describes a set of
founder sequences, each corresponding to a succession of segments of haplotypes
H. The objective of the matching is to minimize the total number of these
segments across all founder sequences which is equivalent to minimizing the
number of recombinations for their construction from haplotype set H.

Flow graph construction. The flow graph GH,ϕ̂ = (Vϕ̂, Eϕ̂∪
−→
Eϕ̂) is a directed

edge-colored multigraph graph with adjacency edges Eϕ̂ and marker edges
−→
Eϕ̂,

where each marker extremity ma, m ∈ M and a ∈ {t, h}, gives rise to 2 · µ(m)
elements in node set Vϕ̂, representing µ(m) many “in” (i) and µ(m) many “out”

(o) nodes. That is, Vϕ̂ = {ixma | m ∈ M, a ∈ {t, h}, x ∈ 1..µ(m)} ∪ {oxma | m ∈
M, a ∈ {t, h}, x ∈ 1..µ(m)}. Each out node u ∈ Vϕ̂ \ ({oxSh | 1..µ(S)} ∪ {oxst |
1..µ(s)}) is incident to one and only one directed adjacency edge (u, v) connect-
ing u to some in node v thereby realizing one occurrence of its representing pair
of consecutive oriented markers in a founder sequence. Conversely, each forward-
oriented marker m ∈ M contributes µ(m)2 many directed marker edges that
connect in/tail nodes with out/head nodes, i.e., {(ixmt , o

y
mh) | x, y ∈ 1..µ(m)}.

Analogously, each reverse-oriented marker m ∈ M contributes µ(m)2 many
in/head-to-out/tail-directed marker edges {(ixmh , o

y
mt) | x, y ∈ 1..µ(m)}.

Example 0 (cont’d). The flow graph GH,ϕ̂ for the given set of haplotypes H =

{H1, H2, H3, H4} and a given ϕ̂ is as follows:

t h2t hs t h1 t h3 t h4 t hS

In nodes and out nodes are highlighted in red and blue, respectively. For clarity,
the direction of marker edges (gray edges; directed from in to out node) is omitted
in the illustration.

Graph decomposition. A perfect matching of marker edges in flow graph
GH,ϕ̂ produces a set of alternating walks and alternating cycles through GH,ϕ̂,
yet only half of the graph is eligible to form a solution to Problem 2. More
precisely, for each marker m ∈ M, exactly half of the number of its associated
nodes in Vϕ̂ must be saturated in the matching that we seek, the other half as
well as their incident edges must remain unsaturated. Further, we aim to admit
only matchings that consist entirely of alternating (ixst , o

y
Sh)-walks, because only

those correspond to valid haplotypes of span(H).

3ϕ̂ and µ are symmetric w.r.t. the relative orientation of markers, ϕ̂(m1,m2) = ϕ̂(m2,m1)
and µ(m) = µ(m)
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At last, we aim to assign to each saturated node v ∈ Vϕ̂ a position in some
haplotype A of given haplotype set H. That way, we are able to determine
whether the incident adjacency edge serves as continuation of the associated
segment in A, or whether the incident saturated marker edge implies a recom-
bination between two distinct segments.

The integer linear program (ILP) shown in Algorithm 1 implements the
above-stated constraints.

Matching constraints. Each edge and node of flow graph GH,ϕ̂ is associated
with binary variables of x and y, respectively, that determine their saturation in
a solution (cf. domains D.1 and D.2). Constraint C.01 ensures that each satu-
rated marker edge is incident to saturated nodes. Perfect matching constraints,
i.e., constraints that impose each saturated node being incident to exactly one
marker edge, are implemented by constraint C.02. Similarly, constraint C.03
ensures that an adjacency edge is saturated iff its incident nodes are saturated.
In other words, constraints C.01-C.03 together ensure that each component of
the saturated graph corresponds to an alternating path or cycle component (the
latter being prohibited by further constraints). The following two constraints
C.04 and C.05 control the overall size of the saturated graph. In doing so, they
ensure that, in a solution to Problem 2, the number of saturated nodes and adja-
cency edges matches the postulated multiplicity of markers µ(m), m ∈M∪M,

and pairs of consecutive markers ϕ̂(m1,m2), m1,m2 ∈M∪M, respectively.

Path constraints. Constraints C.05-C.08 force each component of the sat-
urated graph to start and end in nodes associated with source st and sink Sh,
respectively, thereby ruling out any cycles. To this end, they make use of a set of
integer variables f (cf. Domain D.03) that define an increasing flow within each
saturated component that is bounded by constant T corresponding to the total
flow of the graph, i.e., T :=

∑
m∈M µ(m). In each saturated marker edge, the

flow is increased by 1 while along each adjacency edge, flow is kept constant.
This prevents the formation of saturated cycles, because their flow would be
infinite. Lastly, constraint C.08 preclude paths from starting in Sh or ending
in st, leaving only one option for any saturated component open, that is, the
formation of a (st, Sh)-path.

Haplotype assignment. Each node in a solution to the ILP is associated
with exactly one position in a haplotype in H, recorded by binary variables
c. Moreover, any marker edge whose incident pair of nodes is associated with
the same position of the same haplotype corresponds to a conserved segment,
i.e, no recombination within this marker has taken place. Each marker edge
corresponding to a conserved segment contributes a score unit to the objective
function. These score units are encoded by binary variables t (cf. domain
D.05). Constraint C.09 ensures that each marker is associated with exactly one
position j in a haplotype A of set H ∪ H, while C.10 confines incident nodes
of adjacency edges to represent a consecutive marker pair A[j..j + 1]. At last,
constraint C.11 allows t variables of marker edges to take on value 1 only if that
marker edge is saturated and its incident nodes are associated with the same
haplotype position.

By maximizing the sum over t variables, the objective minimizes the total
number of segments needed to decompose the calculated founder sequences into
segments from haplotypes H ∪H that are delimited by recombination events.
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Algorithm 1 An ILP solution to Problem 2.

Objective:
Maximize ∑

(ixma ,o
x′
mb )∈

−→
Eϕ̂,

A[j]=(ma,mb)

t
A[j]

ix
mao

x′
mb

Constraints:

(C.01) yu + yv≥ 2 xuv ∀ (u, v) ∈
−→
Eϕ̂

(C.02)
∑

(u,v)∈
−→
Eϕ̂

xuv = yu ∀ in nodes u ∈ Vϕ̂

∑
(u,v)∈

−→
Eϕ̂

xuv = yv ∀ out nodes v ∈ Vϕ̂

(C.03) xuv = yu ∀ (u, v) ∈ Eϕ̂

xuv = yv

(C.04)

µ(m)∑
x=1

yix
ma

+ yox
ma

= µ(m) ∀ m ∈M, a ∈ {t, h}

(C.05)
∑

x,x′ s.t.

(ox
mb

1
,ix

′
mc

2
)∈Eϕ̂

xox
mb

1

ix
′

mc
2

= ϕ̂(m1,m2) ∀ (mb
1,m

c
2) s.t. ϕ̂(m1,m2) > 0,

m1 = (ma
1 ,m

b
1), m2 = (mc

2,m
d
2),

{a, b} = {c, d} = {t, h}

(C.06) fu= fv ∀ (u, v) ∈ Eϕ̂

(C.07) fv − fu + Txuv≤ T + 1 ∀ (u, v) ∈
−→
Eϕ̂

(C.08) fv = 0 ∀v ∈ {oxst | x ∈ 1..µ(s)} ∪ {ixSh | x ∈ 1..µ(S)}

(C.09)
∑

A∈H
A[j]=m

c
A[j]
v = 1 ∀ v ∈ Vϕ̂, v associated with extremities of marker m

(C.10) c
A[j]
ox
mb

1

= c
A[j+1]

ix
′

mc
2

∀ (oxmb , i
x′

ma) ∈ Eϕ̂, A ∈ H ∪H,
i ∈ 1..|A| − 1, s.t. A[j..j + 1] =
(ma

1 ,m
b
1)(mc

2,m
d
2)

(C.11) xix
mao

x′
mb

+ c
A[j]
ix
ma

+ c
A[j]

ox
′

mb

≥ 3 t
A[j]

ix
mao

x′
mb

∀ (ixma , ox
′

mb) ∈
−→
Eϕ̂, A ∈ H ∪H,

i ∈ 1..|A|, s.t. A[j] = (ma,mb)

Domains:

(D.01) xuv∈ {0, 1} ∀ (u, v) ∈ Eϕ̂ ∪
−→
Eϕ̂

(D.02) yv∈ {0, 1} ∀ v ∈ Vϕ̂

(D.03) 1≤ fv ≤ T ∀ v ∈ Vϕ̂

(D.04) c
A[j]
ix
ma

, c
A[j]
ox
ma

, c
A[j]
ix
mb

, c
A[j]
ix
mb
∈ {0, 1} ∀ A ∈ H ∪H, j ∈ 1..|A|, A[j] = (ma,mb),

x ∈ 1..µ(m)

(D.05) t
A[j]

ix
mao

x′
mb

∈ {0, 1} ∀ A ∈ H ∪H, j ∈ 1..|A|, A[j] = (ma,mb),
x ∈ 1..µ(m)
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Example 0 (cont’d). The following plot illustrates a matching that is solution
to Algorithm 1 for GH,ϕ̂. Unsaturated nodes and edges are grayed out, haplotype
assignments implied by colored paths. The solution features two recombinations,
marked by “⋆” along their associated marker edges.

t h2t hs t h1 t h3 t h4 t hS

H2 H3 H4

3 Results

We implemented our methods in the programming language Rust [14] and used
Gurobi [11] as the solver. Our software is open source and publicly available on
https://github.com/marschall-lab/hrfs. To run Algorithm 1 on a given
set of haplotypes H, we estimated the overall multiplicity ϕ̂(m1,m2) of pairs of
consecutive markers m1m2 from a network flow solution to Problem 1 on H.
Note that this dispenses Algorithm 1 from being exact in our applications.

All experiments were run on a de.NBI cloud computing machine. For bench-
marking purposes, we ran Gurobi single-threaded and recorded wall clock time
(in seconds) and proportional set size (PSS, in Mb) for memory usage. Optimiza-
tion time was capped at 30 minutes, beyond which the solver must capitulate
and return its best-effort solution found thus far.

3.1 Experimental data

We benchmarked the performance of our algorithms by conducting experiments
on both simulated data and a real-world data set. The former presumed a sim-
ulator, capable of generating haplotypes with duplicated and inverted markers
that can produce intricate homologous recombinations while providing control
over the degree of complexity. To this end, we implemented our own, that con-
structs a single haplotype sequence sampled at random to serve as seed. This
seed sequence is adjustable by the following parameters: (i) number of dis-
tinct markers, i.e., the size of its variation graph, (ii) ratio of duplications, i.e.,
the number of additional edges inducing duplications in a walk of the graph,
(iii) ratio of inversions, i.e., the proportion of inverted orientations within the
set of duplications, and lastly (iv) the number of haplotypes that are input to
subsequent founder set reconstruction. The latter are generated by perform-
ing random walks in the seed sequence’s variation graph and retaining only
those leading from source to sink. Our simulator enables us to explore various
parameterizations that match different situations in biological data.

In addition to simulated data, we applied our methods on a biological data
set from the human 1p36.13 locus described by Porubsky et al. [20] to demon-
strate their computational capabilities in realistic instances.
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Figure 2: Mean number of recombinations by the size of the graph. Experiments
were ran with values ranging from 10 to 200 in for the number of markers,
in increments of 10. The ratio of duplications and of inversions was fixed to
10%, and number of haplotypes to 10. Each colored dot represents the mean
number of recombinations over 50 replicates for one parameter set, after random
assignment trials (blue) and after optimization (red).

3.2 Simulation experiments

To assess the impact of parameter configurations on the results, we ran a number
of different experiments wherein all but one parameters are fixed. A reasonable
choice of constants seemed to be 100 distinct markers, 10% of duplications, 10%
of inversions and 10 haplotypes, motivated by our data on the 1p36.13 locus
and statistics compiled by Porubsky et al. [20].

Reduction in number of recombinations. To evaluate the efficacy of our
solution to Problem 2, we compared the number of recombinations returned by
Algorithm 1 to that in a solution obtained by our network flow algorithm for
Problem 1. While the former is the immediate output of Algorithm 1, additional
efforts needed to be made in order to retain the latter. In doing so, we estimate
the number of recombinations in the flow solution by random assignment of
corresponding segments in the original haplotype set and taking the one with
the lowest number in 100k trials. Figure 2 summarizes the outcome of this
experiment. Over all, Algorithm 1 found a solution with fewer recombinations
in all instances but a few where Gurobi returned barely best-effort solutions
after reaching the time limit of 30 minutes, all of which exhibited a gap of at
least 100%. The parameter settings in those cases were extremal.

Across all experiments and with a fixed ratio of duplications, inversions and
number of haplotypes, the mean estimated number of recombinations both in
the initial founder set and after minimization increases linearly with the number
of markers, by approximately 4.2 and 2.0 per 100 markers respectively, reaching
circa 10 and 3.8 for 200 markers.

Flow solution benchmark. Computing solutions with our network flow al-
gorithm proved to be in almost all of our experiments near-instantaneous. By
varying the number of distinct markers, the algorithm’s performance begins to
deteriorate only with very large instances beyond 100k distinct markers and
becomes excruciating for instances above 1M markers. When varying other pa-
rameters, we fixed the number of distinct markers to 100k rather than 100. Un-
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Figure 3: Flow computation performance. The plots show the distribution of the
runtime in seconds (leftmost two plots) and of peak proportional set size (PSS)
in Megabytes (rightmost two plots) of the solver. The abscissa corresponds to
different values for one simulation parameter, all others being fixed to the values
indicated above. The abbreviations read as follows: Nm, number of markers;
Rd, ratio of duplications; and Ri, ratio of inversions.

der 100k markers, execution completes after a mean wall clock time of 3.4± 2.0
seconds. In 95% of all experiments, the solver’s runtime was too short to make
sufficient measurements for benchmarking memory usage; the maximum PSS
for the remaining ones measured at 78MB. Over the 100k mark, both the graph
size and duplication ratio begin to reduce performance, with an average run-
time of 19.7± 8.7s. We measured peak memory consumption at 758MB across
all conditions, which also occurred only at the very extremes of 100k distinct
markers and a 100% ratio of duplications (Figure 3).

Recombination minimization benchmark. As shown previously, Algorithm 1
successfully reduces the number of recombinations in solutions to Problem 1.
However, its runtime increases dramatically with only moderate increments of
any but one parameter of our simulator, the ratio of inversions; it does not play
any role in performance. For the remaining three, going beyond instances of
200 distinct markers, 20% of duplications, or 40 haplotypes typically does not
allow for the optimization to finish in a reasonable amount of time (Figure 4).
A similar but much less pronounced trend is seen with memory usage, which
still remains relatively low. Peak memory usage was again observed at extreme
parameter values with a PSS of 1072MB with 50 haplotypes.

3.3 Application: Locus 1p36.13

We obtained data from 68 human haplotypes (two per 34 individuals) at the
1p36.13 locus from Porubsky et al. [20] and the CHM13 T2T human reference
sequence [17]. The sequences comprise only eight distinct markers, terminal
markers included. The sequences are attributed to five super populations, out
of which 18 are of African origin (AFR), 16 of Eastern Asian (EAS), 12 of Ad-
mixed American (AMR), 12 of European (EUR), and 10 are South Asian (SAS).
Their variation graph is densely connected with 26 edges (Figure 5). The 68
haplotypes display a high degree of genetic diversity, with haplotype sequences
differing in order, orientation, and copy number of the markers. Haplotype
lengths in terms of the number of markers vary from 15 to 26, with a median
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Figure 4: Solver performance for the minimization of the number of recombi-
nations. The plots are analogous to the ones in Figure 3, this time measuring
performance for the solution to Problem 2. The abbreviations read as follows:
Nh, number of haplotypes; Nm, number of markers; Rd, ratio of duplications;
and Ri, ratio of inversions.

of 19.
Our network flow algorithm determined that the data set can be generated

from a single founder sequence. Our randomized algorithm for calculation of
the minimum number of recombinations in a solution to Problem 1 asserted 15
recombinations after 1M trials, while Algorithm 1 obtained an optimal solution
that revealed only 9 recombinations. Minimization completed in 60.3 seconds
with a peak PSS of 225MB. Note that there exists multiple other co-optimal
solutions.

AFR-NA19036-h1

Source

Sink

Source

Sink

Figure 5: Graphical representation of the variation graph for the 1p36.13 locus
data. On the left, a 2D plot rendered by Bandage [34]. Markers are represented
as numbered colored rectangles, and the undirected edges connecting them as
black curves. Markers 1 and 8 correspond respectively to the source and the sink
of the graph. The right plot shows the walk through the graph corresponding
to the sequence of haplotype NA19036.H1, a sample of African origin in the
experimental data. The sample’s sequence in the previously established notation
is: 123456543273243278.
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4 Conclusion

The advent of sequencing technology and genome assembly methodology to
reconstruct full human genomes enables research into previously inaccessible
segmental duplication loci. This exciting opportunity entails a demand for ex-
planatory models that can infer evolutionary relationships and histories of com-
plex repetitive genomic regions. In this work, we propose a model capable of
explaining a broad range of balanced and unbalanced genome rearrangements.
Our experiments on simulated data and on the 1p36.13 locus demonstrate that
our algorithmic solutions to the founder set problem and the problem of minimiz-
ing recombinations in founder sets are capable of processing realistic instances.

Importantly, the model we are proposing is based on a molecular mecha-
nism with a well-established role in shaping segmental duplication architecture.
In our view, many past models of genome rearrangements have not sufficiently
captured biological reality and there is an important need for further research
aiming to incorporate knowledge of molecular mechanisms into such models.
For instance, we envision future models that additionally include mechanisms
like non-homologous end joining (NHEJ) and mobile element insertions. Fur-
thermore, actual rates at which NAHR occurs depend on factors like the length
of the duplicated sequence, the sequence similarity, as well as the presence of
specific sequence motifs.
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Sović, I., Storer, J. M., Streets, A., Sullivan, B. A., Thibaud-
Nissen, F., Torrance, J., Wagner, J., Walenz, B. P., Wenger, A.,

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.27.493721doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493721
http://creativecommons.org/licenses/by/4.0/


Wood, J. M. D., Xiao, C., Yan, S. M., Young, A. C., Zarate, S.,
Surti, U., McCoy, R. C., Dennis, M. Y., Alexandrov, I. A., Ger-
ton, J. L., O’Neill, R. J., Timp, W., Zook, J. M., Schatz, M. C.,
Eichler, E. E., Miga, K. H., and Phillippy, A. M. The complete
sequence of a human genome. Science 376, 6588 (Apr. 2022), 44–53.
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