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Abstract

Alternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps

in the post-transcriptional regulation of eukaryotic gene expression. Protocols captur-

ing and sequencing RNA 3’-ends have uncovered widespread intronic polyadenylation

(IPA) in physiological and disease conditions, where it is currently attributed to stochas-

tic variations in pre-mRNA processing. Here, we took advantage of the massive amount

of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simul-

taneously identify and match tissue-specific usage of intronic polyadenylation sites with

tissue-specific splicing. A combination of computational methods including the analysis

of short reads with non-templated adenines confirmed highly abundant IPA events. Among

them, composite terminal exons and skipped terminal exons expectedly correlate with splic-

ing, however we also observed a considerable fraction of IPA events that lack AS support

and can be attributed to lariat polyadenylation (LPA). We hypothesize that LPA originates

from a dynamic coupling between APA and AS, in which the spliceosome removes an
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intron after CPA have already occurred in it. Taken together, these results suggest that co-

transcriptional pre-mRNA splicing could serve as a natural mechanism of suppression of

premature transcription termination.

Introduction 1

The majority of transcripts that are generated by the eukaryotic RNA Polymerase II undergo en- 2

donucleolytic cleavage and polyadenylation (CPA) at specific sites called the polyadenylation 3

sites (PASs) (1). More than half of human genes have multiple PASs resulting in alternative 4

polyadenylation (APA) (2, 3). APA modulates gene expression by influencing mRNA stabil- 5

ity, translation, nuclear export, subcellular localization, and interactions with microRNAs or 6

RNA binding proteins (RBPs) (4, 5). APA is widely implicated in human disease, including 7

hematological, immunological, neurological disorders, and cancer (6, 7). 8

APA can generate transcripts not only with different 3’-untranslated regions (3’-UTR), but 9

also transcripts encoding proteins with different C-termini (8). Recent studies have shown that 10

more than 20% of human genes contain at least one intronic PAS located upstream of the 3’- 11

most exon, resulting in intronic polyadenylation (IPA) (9). While alternative 3’-UTRs con- 12

tain cis-regulatory elements that impact the stability, localization and translation rate of the 13

mRNAs (5), the alteration of the protein primary sequence can lead to important functional 14

changes (10). For instance, IPA in DICER generates a truncated protein with impaired miRNA 15

cleavage ability that results in decreased endogenous miRNA expression (11, 12). Remark- 16

ably, the truncated oncosuppressor proteins that are generated by IPA often lack the tumor- 17

suppressive functions and contribute significantly to tumor onset and progression (11). Thou- 18

sands of recurrent and dynamically changing IPA events have been identified in transcriptomic 19

studies, indicating that current knowledge on IPA is largely incomplete (13). 20

The interplay between splicing and polyadenylation has long been recognized as being re- 21

lated to cotranscriptional pre-mRNA processing (14). Many splicing factors have dual roles 22

serving both splicing and polyadenylation, including U2AF (15), PTBP1 (16), members of Hu 23

protein family (17), and others (8). The observation that IPA is associated with weaker 5’-splice 24

sites and longer introns (9), and experiments on mutagenesis of CPA and splicing signals in 25
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plants (18) together suggest that splicing and polyadenylation operate in a dynamic competition 26

with each other. Furthermore, nascent RNA polymerase II transcripts, which are susceptible to 27

CPA at cryptic PASs, are protected from premature transcription termination by U1 snRNP in 28

a process called telescripting, most remarkably in genes with longer introns (19). This raises a 29

number of challenging questions about the abundance of cryptic intronic PASs, mechanisms of 30

their inactivation, and relation to alternative splicing. 31

Various experimental protocols have been developed to identify the genomic positions of 32

PASs (20). Many of them use oligo(dT) (3’RNA-seq, PAS-seq, polyA-seq) or similar primers 33

(3’READS) to specifically capture transcript ends (21–24). A combination of these protocols 34

yielded a consolidated set of more than 500,000 human PASs (25–27, 27), however many more 35

PASs may be active in tissue- and disease-specific conditions. A number of computational 36

methods also attempt to identify PASs from the standard polyA+ RNA-seq data as genomic 37

loci that exhibit an abrupt decrease in read coverage (13, 28, 29, 29–32). However, since the 38

density of RNA-seq reads is highly non-uniform along the gene length, many of these methods 39

are limited to PASs that are located in the last exon or 3’-UTR, thus focusing on quantifying 40

relative usage of PASs with known genomic positions rather than identifying novel PASs. 41

On the other hand, RNA-seq data contain an admixture of reads that cover the junction 42

between the terminal exon and the beginning of the poly(A) tail. They align to the reference 43

genome only partially due to a stretch of non-templated adenine residues. Although the fraction 44

of such reads is quite small and normally does not exceed 0.1%, they can potentially be used for 45

de novo identification of PASs. Previous implementations of this approach, ContextMap2 (32) 46

and KLEAT (31), demonstrated that the analysis of RNA-seq reads containing a part of the 47

poly(A) tail offer a powerful alternative to coverage-based methods when analyzing a suffi- 48

ciently large panel of RNA-seq experiments. 49

In this work, we took advantage of the massive amount of RNA-seq data generated by the 50

Genotype Tissue Expression Project (GTEx), the largest to-date compendium of human tran- 51

scriptomes (33), to simultaneously assess alternative splicing and intronic polyadenylation and 52

match their tissue-specific patterns. We found a remarkable variability of PAS positions around 53

annotated transcript ends and identified a core set of 318,898 PAS clusters that are expressed in 54
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GTEx tissues, which is consistent with other published sets. We further characterized the distri- 55

bution of PAS clusters in the untranslated, exonic, and intronic regions of protein-coding genes 56

and described the relationship between tissue-specific IPA and AS. In inspecting the concor- 57

dance between IPA and AS patterns, we unexpectedly found a considerable fraction of unanno- 58

tated intronic PAS clusters lacking splicing support and attributed them to lariat polyadenylation 59

(LPA), a term we introduce here to describe the dynamic coupling between CPA and AS. 60

Results 61

The identification of PAS 62

The majority of short reads in the output of polyA+ RNA-seq protocols align perfectly to the 63

genome, but a small fraction map only partially due to stretches of non-templated adenines 64

generated by CPA. Since RNA-seq reads with incomplete alignment to the genomic reference 65

tend to map to multiple locations, we took a conservative approach by analyzing only uniquely 66

mapped reads from 9,021 GTEx RNA-seq experiments (33) with additional restrictions on se- 67

quencing quality (see Methods). We extracted polyA reads, defined as reads containing a soft 68

clipped region of at least six nucleotides that consists of 80% or more adenines, excluding short 69

reads aligning to adenine-rich genomic tracks and omitting samples with exceptionally large 70

numbers of polyA reads (Figure S1). Out of 356 billion uniquely mapped reads, 591 million 71

(0.17%) polyA reads were obtained. At that, the average adenine content in soft clipped regions 72

of polyA reads was 98% despite the original 80% threshold, indicating that the selected short 73

reads indeed contain polyA tails. 74

The alignment of a polyA read is characterized by the genomic position of the first non- 75

templated nucleotide, which presumably corresponds to a PAS, and the length of the soft clip 76

region, here referred to as overhang (Figure 1A). Consequently, each PAS is characterized by 77

the number of supporting polyA reads, referred to as read support, and the distribution of their 78

overhangs. Our confidence in PAS correlates not only with the read support, but also with the 79

diversity of the overhang distribution, which is measured by Shannon entropy H . Out of 9.6 80

million candidate PASs, 2.1 million (22%) had H ≥ 1 and 565,387 (6%) had H ≥ 2 (Fig- 81
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ure S2). In further analysis, we chose to use the threshold H ≥ 2 in order to obtain a list of 82

PASs that matches by the order of magnitude the consolidated atlas of polyadenylation sites 83

from 3’-end sequencing (25) and captures sufficiently many annotated gene ends (Supplemen- 84

tary File 1). Out of 565,387 PASs with H ≥ 2, 331,563 contained a sequence motif similar 85

to the canonical consensus CPA signal (NAUAAA, ANUAAA, or AAUANA) in the 40-nt up- 86

stream region (34, 35). The latter PASs will be referred to as PASs with a signal. 87

To characterize the occurrence of PASs in different genomic regions, we subdivided the 88

human genome into a disjoint union of intervals corresponding to protein-coding genes, non- 89

coding genes, and intergenic regions. In total, 336,045, 49,665, and 179,677 PASs were detected 90

in these respective regions; of these 69%, 61%, and 39% were PASs with a signal, respectively. 91

The level of polyA read support in different genomic regions also varied, e.g. 25.5%, 14%, 92

and 7% PASs were supported by 100 or more polyA reads in protein-coding, non-coding, and 93

intergenic regions, respectively (Figure 1B). As expected, protein-coding regions had the largest 94

density of PASs per megabase. However, large absolute number of PASs in intergenic regions, 95

including PASs without canonical consensus CPA signals, points at a remarkable number of 96

RNA Pol II transcripts that are transcribed from them consistently with the current knowledge 97

on pervasive transcription (36–38). 98

An example of a gene that is highly covered by polyA reads is RPL5 (Figure 1C). We iden- 99

tified several PASs in the vicinity of its annotated transcript end (TE), some of which were 100

supported by as many as 100,000 polyA reads with more than 20 different overhangs. Unex- 101

pectedly, instead of a single peak, we observed a relatively dispersed cluster of PASs spanning 102

twelve nucleotides. Manual inspection confirmed that the RNA-seq read alignments ending in 103

all these positions indeed were followed by non-templated polyA tracks, thus indicating that 104

the observed pattern was due to biological stochasticity and not to mapping artifacts. Remark- 105

ably, the number of polyA reads decayed with increasing the length of the overhang (Figure 1C, 106

bottom). This decrease could result from the mapping bias, in which a lower fraction of reads 107

with larger soft clip regions can be mapped uniquely, or be a consequence of degradation of the 108

substrates possessing multiple terminal adenines by exonucleases (39). 109
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PAS clusters 110

Large variability of PASs positions in RPL5 motivated us to explore the distribution of distances 111

from each PAS to its closest annotated TE in protein-coding genes (Figure 2A). Among PASs 112

that were located within 100 nts from an annotated TE, 71% fell within 10 nts, and 78% of 113

PASs with a signal did so. Similarly, for each annotated TE, we computed the interquartile 114

range (IQR) of the distances to all PASs located within 100 nts, excluding TEs with a single 115

PAS (Figure 2B). Approximately 83% of TEs had IQR below 10 nts, and 87% of TEs did so 116

when considering only PASs with a signal. A similar variability of PAS positions was observed 117

in a massively parallel reporter assay (35). We therefore chose to merge PASs that were located 118

within 10 nts of each other (Figure 2C). This yielded 318,898 PAS clusters (PASCs), of which 119

90% had length below or equal to 10 nts, 72% consisted of a unique PAS, and 99% consisted of 120

less than ten individual PASs (Supplementary File 2). In what follows, a PASC will be referred 121

to as PASC with a signal if it contains at least one individual PAS with a signal; the polyA read 122

support of a PASC is defined as the total number of supporting polyA reads of its constituent 123

individual PASs. 124

We next asked how PASCs identified from GTEx RNA-seq data correspond to the con- 125

solidated atlas of PASs derived from 3’-end sequencing (PolyASite 2.0 (25), in what follows 126

referred to as Atlas) and TEs annotated within the GENCODE consortium (40). To assess this, 127

we surrounded TEs from GENCODE by 100 nt windows and analyzed pairwise intersections 128

of the three respective sets (Figure 2C). The precision of GTEx with respect to GENCODE, i.e., 129

the proportion of PASCs from GTEx that were located within 100 nts of an annotated TE, was 130

higher than that of PolyASite 2.0, while the recall, i.e., the proportion of annotated TEs that are 131

supported by at least one PASC from GTEx within 100 nts, was lower. Conversely, the preci- 132

sion of GTEx with respect to PolyASite 2.0 was lower compared to that of GENCODE, while 133

the recall was higher. This comparison indicates that GTEx RNA-seq data yields a slightly 134

more conservative set of PASCs than PolyASite 2.0. The benefit of using GTEx PASCs is that 135

RNA-seq provides a snapshot of alternative splicing and polyadenylation assessed in the same 136

conditions. Additional analysis of the relationship between precision and recall for GTEx and 137

PolyASite 2.0 weighted by the polyA read support confirmed that the two sets are consistent 138
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(Figure S3). 139

Since 85% of newly identified PASCs did not have an annotated TE within 100 nts, we 140

focused on this group of PASCs (referred to as unannotated PASCs) and explored their relative 141

position within the gene length, which is equal to 0% and 100% for the 5’-end and 3’-end of 142

the gene, respectively (Figure 2E). Despite TEs no longer being considered, we observed a 143

considerable increase in the density of PASCs towards the 3’-end for those with and without a 144

signal, and a much weaker, but noticeable increase in the 5’-end. This recapitulates the general 145

tendency of PASCs to occur more frequently towards the 3’-end of the gene, a pattern that is 146

also observed for unannotated PASCs from Atlas (Figure S4). 147

PAS clusters in protein-coding regions 148

We next focused on a subset of 164,497 PASCs that were located in protein-coding genes and 149

explored their distribution within gene parts, namely in the 5’-untranslated region (5’-UTR), 150

the 3’-untranslated region (3’-UTR), and the coding part (CDS). Each CDS region was further 151

subdivided into intronic, always exonic, and alternative exonic parts (see Methods). Since these 152

regions differ by length, we quantified PASCs not only by absolute number, but also by density, 153

i.e., the number of PASCs per nucleotide. Additionally, we quantified the expression of PASCs 154

by taking into account the read support, in which each PASC was weighted by the number of 155

supporting polyA reads (Figure 3). 156

As expected, PASCs were quite frequent in CDS by absolute number, but their density 157

was the highest in 3’-UTRs since CDS regions are also longer than UTRs (Figure 3A). The 158

enrichment in 3’-UTRs was more prominent when taking into account the number of supporting 159

polyA reads. Similarly, PASCs were most frequent in introns by absolute number, but their 160

density was the lowest after normalization (Figure 3B). The positional distribution of PASCs 161

had a pronounced peak in the end of exonic regions and in the beginning of intronic regions 162

(Figure S5), and similar peaks were also observed for PolyASite 2.0 (Figure S6). However, 163

despite low density, intronic PASCs were still quite frequent in number, and among them there 164

could be PASCs leading to premature CPA. 165

One obvious reason for low intronic density of PASCs is the undercoverage bias of the 166
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polyA RNA-seq protocol, in which introns become invisible for RNA-seq after they are re- 167

moved by the spliceosome and degraded. This indicates that the number of supporting polyA 168

reads could strongly underestimate the actual abundance of IPA events. We therefore normal- 169

ized the number of polyA reads to the average read coverage in the respective CDS parts and 170

found that polyA reads would have been most frequent in intronic regions if the coverages were 171

the same (Figure 3C). 172

Complementary to this, we estimated the relative frequency of single nucleotide substitu- 173

tions that give rise to the canonical polyA signal (AATAAA) from a pre-consensus sequence 174

in the common ancestor of human and macaque (see Methods). The number of substitutions 175

creating the AATAAA signal relative to the number of substitutions creating other hexamers 176

was significantly higher in intronic as compared to other regions (Figure 3D). In sum, these 177

findings indicate that intronic PASCs could be more active than exonic PASCs both in terms of 178

expression and evolutionary dynamics. 179

Tissue-specific polyadenylation 180

While PASC positions can be robustly identified by pooling hundreds of millions of polyA reads 181

across the entire GTEx dataset, the rate of their tissue-specific usage cannot be assessed in the 182

same way due to insufficient number of polyA reads in individual samples. Instead, the rate 183

of PASC expression in tissues can be measured by coverage-based methods, as their positions 184

have been already identified. We adapted the procedure from (11), in which the average read 185

coverage was measured in 150-nt windows, wi1 and wi2, before and after each PASC. To quan- 186

tify PASC expression, we used logFC = log10(wi1/wi2) metric, which captures the magnitude 187

of read coverage drop at PASC, and DESeq2 (41), which additionally accounts for variation 188

between samples (Figure 4A). 189

First, we analyzed the set of 164,497 PASCs in protein-coding genes by pooling read cov- 190

erage profiles across all GTEx samples, excluding PASCs located within 200 nts from exon 191

boundaries to avoid measuring the read coverage drop at exon-intron boundaries. In the result- 192

ing set of 126,310 PASCs (Supplementary File 3), the read density in wi1 and wi2 averaged 193

to 8.8 and 3.7 reads per nucleotide per sample, respectively, indicating at least twofold drop af- 194
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ter PASCs. Consistently with this decrease, the logFC distribution was skewed towards positive 195

values with a noticeably bigger skewness for PASCs with a signal and PACSs near annotated 196

TEs (Figure 4B). The number of supporting polyA reads was positively correlated with logFC 197

not only for PASCs near annotated TEs, but also for unannotated PASCs with a signal (Fig- 198

ure 4C). 199

For each PASC, we computed the average read density in wi1 and wi2 separately in each 200

tissue. Out of 126,310 PASCs, on average 18,470 (15%) had logFC > 1 per tissue, while 201

DESeq2 analysis has identified a significant difference between read coverage in wi1 and wi2 202

for on average 43,615 (35%) of PASCs per tissue. In each tissue, on average 90% of PASCs 203

with logFC > 1 were also significant according to DESeq results. Since the results of the two 204

methods overlapped, we chose to call a PASC with logFC > 1 as expressed. 205

We next compared the set of expressed PASCs to a reference set containing 689,346 PASs in 206

3’-UTRs of human genes that was derived from the GTEx using DaPars algorithm (42). Since 207

the exact positions of PASCs in 3’-UTRs may vary, we selected 3’-UTRs that contain at least 208

one expressed PASC according to logFC > 1 condition and compared them to 3’-UTRs that 209

were called as expressed by DaPars in genes with more than one annotated 3’-UTR. On average 210

85% of 3’-UTRs containing a PASC with logFC > 1 were also called as expressed by DaPars, 211

and vice versa 50% of 3’-UTRs called as expressed by DaPars contained at least one PASC with 212

logFC > 1, thus confirming that the expression of PASCs in tissues as measured by the logFC 213

metric and the results obtained by DaPars are consistent. 214

Since the analysis of tissue-specific polyadenylation per se falls beyond the scope of this 215

report, we next focused on intronic PASCs and examined the relationship between IPA and AS. 216

Intronic polyadenylation and splicing 217

Alternative terminal exons that are generated through IPA can be divided into two classes: 218

skipped terminal exons (STE), which may be used as terminal exons or excluded, and composite 219

terminal exons (CTE), which result from CPA in a retained intron (9). To distinguish between 220

these possibilities, we estimated the average read coverage in two additional windows, we1 and 221

we2, and computed the number of split reads starting at the intron 5’-end and landing before (b) 222
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and after (a) each intronic PASC (iPASC) in each tissue (Figure 5A). We expect that, in addition 223

to large wi1/wi2 ratio, STE are characterized by large we1/we2 ratio and presence of split reads 224

landing before PASC, while CTE are characterized by small we1/we2 ratio and absence of such 225

split reads. For simplicity, the values of the read coverage in the four windows are also denoted 226

by we1, we2, wi1, and wi2. To quantify the rate of splicing, we used ψ = a/(a+ b) ratio. Large 227

ψ values (ψ ' 1) indicate that the intron is spliced canonically, while low ψ values (ψ ' 0) 228

indicate the presence of unannotated AS events before iPASC. 229

As a result, we obtained 2,079,325 iPASC-tissue pairs comprising 67,075 iPASCs in 31 230

tissues and evaluated Pearson correlation coefficient r between ψ and logFC for each iPASC 231

with a sufficiently large ψ range (IQR > 0.03) across tissues. As expected, the distribution of 232

r was significantly skewed towards negative values as compared to the distribution, in which 233

tissue labels were shuffled (Figure 5B). We manually followed specific examples in NCAM1 234

(Neural Cell Adhesion Molecule 1) and SORBS2 (Sorbin And SH3 Domain Containing 2) genes 235

and, indeed, observed a substantial negative association between CPA and splicing, i.e., the 236

larger the splicing rate, the lower the CPA rate (Figure 5C). 237

Next, we considered 87,622 iPASC-tissue pairs with a substantial read coverage drop at 238

PASC (logFC > 1) and a sufficiently high read coverage in the intronic window before PASC 239

(wi1 > 0.1we1). The bivariate distribution of log(we1) and log(we2) (Figure 5D, left) revealed 240

two groups of PASCs separated by the line we2 = 0.3we1, one with comparable values of we1 241

and we2 (above the line) and the other, in which we2 was substantially lower than we1 (below 242

the line). Our expectation was that these two groups, we1'we2 and we1�we2, correspond to 243

CTE and STE, respectively. Indeed, when considering 968 annotated CTEs and 1880 annotated 244

STEs, we found that the former clustered above the separating line (Figure 5D, middle), while 245

the latter clustered below (Figure 5D, right). In accordance with this observation, the distri- 246

butions of ψ values of the annotated CTE were characterized by a pronounced peak at ψ ' 1 247

indicating the absence of splicing events in the intron before PASC, while STE had a peak at 248

ψ ' 0 indicating that a splice site upstream of PASC was used (Figure 5E, middle and right). 249

However, in inspecting the distribution of all 87,622 iPASC-tissue pairs, of which approx- 250

imately 35% (respectively, 65%) were located above (respectively, below) the separating line, 251
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we unexpectedly found a bimodal distribution of ψ values in the latter group, which should 252

presumably correspond to STE (Figure 5E, left). As expected for STE, the peak at ψ = 0 in- 253

dicates the activation of a splice site in the intron upstream of PASC, while the peak at ψ = 1 254

corresponds to a group of iPASCs that are characterized by a large drop from we1 to we2 in the 255

absence of splicing between we2 and wi1, which is incompatible with the STE model. 256

We next followed tissue-specific splicing and CPA patterns in a few cases (Figure 6). The 257

intronic PASC in the MEGF8 gene, which encodes a membrane protein associated with Carpen- 258

ter syndrome (43), is an example of a CTE supported by intronic reads in absence of splicing 259

events before PASC, most remarkably in thyroid tissue (Figure 6A). In the Attractin (ATRN) 260

gene, which encodes a transmembrane protein associated with kidney and liver abnormalities 261

in mice (44), PASC is expressed in muscle tissue along with the elevation of read coverage 262

in the upstream region and activation of a splice site at its border, thus likely representing an 263

unannotated STE (Figure 6B). These PASCs are supported by CSTF2 eCLIP footprints and 264

PolyASite 2.0 (25). 265

In contrast, PASC in the ATRX gene, which encodes a chromatin remodeler linked to a 266

range of diseases (45), exhibits elevated read coverage upstream of PASC, however it lacks 267

splice junctions that could support STE, or RNA-seq reads in the beginning of the intron that 268

could support CTE (Figure 6C). The only possible explanation for these findings would be that 269

canonical splicing and IPA co-exist and operate concurrently, a possibility that we named lariat 270

polyadenylation (LPA). Our hypothesis is that LPA originates from a dynamic coupling between 271

APA and AS, in which the spliceosome can remove an intron after CPA has already occurred in 272

it. 273

To estimate the abundance of LPA events, we considered a strict set of iPASC-tissue pairs 274

described above and categorized them as CTE, STE, and LPA according to the following cri- 275

teria: we2 > 0.3we1 (CTE), we2 ≤ 0.3we1 and ψ ≤ 0.9 (STE), and we2 ≤ 0.3we1 and 276

ψ < 0.9 (LPA) (Supplementary File 4). This yielded 4,435, 2,863, and 2,821 CTE, STE, and 277

LPA cases, respectively, indicating that the latter are almost as abundant as STE and, therefore, 278

must contribute greatly to the observed landscape of intronic polyadenylation. 279
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Discussion 280

The GTEx dataset represents an ideal resource for studying the interaction between IPA and 281

AS because the information on the positions and tissue-specific expression of intronic PAS 282

is complemented by tissue-specific splicing rates inferred from split reads aligning to splice 283

junctions. Such matched data are currently in high demand (11). In this work, we applied for 284

the first time the approach based on short reads containing a part of the poly(A) tail, one that 285

was used previously on much smaller datasets (31, 32), to identify PASs from RNA-seq data at 286

the sequencing scale when it becomes efficient. The method can be combined with coverage- 287

based methods to detect tissue-specific usage of PASs, remarkably not only in the untranslated, 288

but also in the coding regions. 289

PolyA reads provide a snapshot of CPA at single nucleotide resolution, which reveals that 290

PASs form clusters of different sizes. This indicates that the precision of CPA machinery is 291

highly variable, in some cases providing narrow clusters of closely spaced PASs, and broad 292

regions with imprecise cleavage points in the others. Other steps of pre-mRNA processing such 293

as splicing are more restricted to producing error-free mRNAs due to protein-coding constraints, 294

however they are also prone to stochastic variations (46). The functional relevance of stochastic 295

variations in CPA events is currently not well understood. Our results raise a valid concern 296

about the determinants of CPA precision in different PAS classes, thus opening new avenues to 297

be explored in future studies. 298

The approach based on polyA reads has limitations related to mappability of reads with long 299

soft clip regions. The frequency distribution of polyA reads decays with increasing the length 300

of the overhang, likely due to mapping bias. Positional distribution of PASCs in constitutive 301

exons and introns has a pronounced peak in the end of exonic regions and in the beginning 302

of intronic regions, with a particular enrichment for PASCs without a signal (Figure 3C). Yet, 303

PASCs with a signal are also enriched in the 50–150 nt region downstream of the donor splice 304

site. This pattern resembles the correlation between CAGE tags and internal exons of annotated 305

transcripts and widespread occurrence of polyA-seq peaks near exon boundaries (47, 48), but 306

it could also result from erroneous mappings of split reads, e.g. when adenine-rich part of 307

the read or a short segment between splice junction and the stretch of non-templated adenines 308
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is incorrectly attributed to a soft clip region by the mapper (example in Figure S7). Of note, 309

mapping split reads with short exonic parts appears to be a common problem of all methods 310

since the positional distribution of PASCs obtained by other protocols, e.g., in PolyASite 2.0 311

data, has similar peaks near exon boundaries (Figure S6). 312

While the majority of polyA reads align to 3’-UTRs, a small fraction (5–8%) still map to 313

the coding part raising important concerns about their implication in premature transcription 314

termination (49). Transcripts harboring incomplete reading frames translate into potentially 315

deleterious truncated proteins that may pose a hazard to the cell (50). In eukaryotes, early tran- 316

scription termination is tightly linked with CPA, which occurs at cryptic PAS typically located 317

in introns, although a small fraction of PAS-mediated cleavage may also occur within internal 318

exons. IPA typically generates transcripts that harbor a premature termination codon (PTC) or 319

transcripts without a stop codon, which are unstable and get rapidly degraded via nonsense me- 320

diated decay (51) and nonstop decay pathways (52). A number of functionally important IPA 321

cases have been described in specific genes (10, 53–57), but the widespread nature of IPA has 322

been appreciated only recently with the development of 3’-end sequencing methods (58). 323

Strikingly, despite low density, PASCs within the coding part are quite abundant in number 324

and, after proper normalization of the read coverage, they appear to be much more frequent 325

in introns than in exons. Higher abundance of PASCs in introns is complemented by weaker 326

evolutionary pressure on generating the canonical AATAAA consensus from pre-consensus se- 327

quences in introns, which on one hand may reflect the constraints on maintaining the amino acid 328

sequence, but, on the other hand, also hints at the existence of a mechanism that counteracts the 329

activity of cryptic intronic PASs. A remarkably large number of intronic PASs that are listed in 330

current catalogs brings an outstanding question of how could it be that virtually every intron of 331

every human gene contains a cryptic intronic PAS, but cells are still able to produce full-length 332

transcripts? 333

Our hypothesis is that a considerable fraction of the observed IPA cases could be attributed 334

to LPA, a situation in which splicing and polyadenylation co-exist and operate concurrently 335

along with the elongating transcription. The spliceosome and the CPA machinery both recog- 336

nize signals that are located in the nascent pre-mRNA and bind the same pre-mRNA substrate 337
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at the same time. These processes operate at their intrinsic rates subordinate to the transcription 338

elongation speed and, depending on tissue-specific conditions, one of them could operate faster 339

than the other. Particularly, if the spliceosome has already assembled on an intron when CPA 340

started PAS-mediated cleavage, the second catalytic step of the splicing reaction would remove 341

the polyadenylated part, thus leading to LPA. If CPA machinery has operated faster than the 342

spliceosome could excise the intron, then the outcome would be IPA. Recently, we proposed 343

a related mechanism to explain RNA structure-mediated suppression of premature CPA (59). 344

However, besides RNA structure, a multitude of tissue-specific factors, all which are impossible 345

to list here, are responsible for correct temporal and spatial interactions of splicing and CPA ma- 346

chineries. In this light, it appears plausible that an important side function of co-transcriptional 347

splicing might be to prevent premature transcription termination by counteracting the activity 348

of cryptic intronic PASs through LPA. 349

Conclusion 350

Massive amounts of RNA-seq data in the GTEx dataset open a unique possibility to jointly 351

analyze tissue-specific splicing and polyadenylation. Patterns of intronic polyadenylation and 352

splicing again demonstrate that splicing and polyadenylation are two inseparable parts of one 353

consolidated pre-mRNA processing machinery, leading to a conjecture that co-transcriptional 354

splicing could be a natural mechanism of suppression of premature transcription termination. 355

Acknowledgments 356

The authors thank Vera Rybko, Dmitry Skvortsov, and Olga Donstova for insightful discussions 357

about molecular mechanisms of splicing and polyadenylation. 358

Funding 359

All authors acknowledge Russian Science Foundation grant 21-64-00006. 360

14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.27.493724doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493724
http://creativecommons.org/licenses/by-nd/4.0/


Availability of data and materials 361

The datasets generated during the current study are available online at https://zenodo. 362

org/record/6587186. The source code used for the analysis is available at https:// 363

github.com/mashlosenok/RNAseq_PAS_finder. 364

Authors’ contributions 365

DP designed and supervised the study; MV and SM performed data analysis; DP and MV wrote 366

the first draft of the manuscript. All authors edited the final version of the manuscript. 367

Methods 368

Genome assembly and transcript annotation 369

February 2009 (hg19) assembly of the human genome and GENCODE transcript annotation 370

v34lift37 were downloaded from Genome Reference Consortium (60) and GENCODE web- 371

site (40), respectively. Transcript annotations were parsed by custom scripts to extract the 372

coordinates of transcript ends, exons and introns. The attribution of PAS to protein-coding, 373

non-coding, and intergenic segments was done on the basis of their occurrence in the corre- 374

sponding gene types. 375

Partition of protein-coding genes 376

To partition protein-coding genes into segments, we parsed the annotation of protein-coding 377

transcripts from GENCODE and extracted 5’-UTRs, 3’-UTRs and CDS of all transcripts as fol- 378

lows. Genomic regions that were not covered by any transcript were classified as intergenic. A 379

gene part was classified as 5’-UTR (respectively, 3’-UTR) if it belonged to the 5’-UTR (respec- 380

tively, 3’-UTR) of at least one annotated transcript of the gene; the rest of the gene sequence 381

was classified as CDS. We next considered exons and introns of all annotated protein-coding 382

transcripts and used them to further subdivide CDS regions into exonic, intronic, and alternative 383
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regions. A genomic region was classified as always exonic (respectively, intronic) if it belonged 384

to exonic (respectively, intronic) parts of all annotated transcripts that overlap the region; other- 385

wise, it was classified as an alternative exonic region. 386

Identification of PAS from RNA-seq data 387

GTEx RNA-seq data were downloaded from dbGaP (dbGaP project 15872) in fastq format and

aligned to the human genome assembly hg19 using STAR aligner version 2.7.3a in paired-end

mode (61). PySAM suite was used to extract uniquely mapped reads (NH:1) (62). To identify

polyA reads, we considered all reads containing a soft clipped region of at least 6 nts excluding

reads with average sequencing quality below 13, which corresponds to the probability 0.05 of

calling a wrong base. We required that the reported nucleotide sequence of the clipped region,

which always corresponds to the positive strand according to BAM format, contained at least

80% T’s if the soft clip was in the beginning of the read, and 80% A’s if the soft clip was in the

end of the read. In fact, the requirement of 80% A’s or T’s was excessively strict since 87% of

soft clip regions consisted entirely of A’s or T’s. Samples that contained an exceptionally high

number of polyA reads were excluded from analysis (Figure S1). PolyA reads were pooled by

the genomic position of the first non-templated nucleotide, referred to as PAS position, resulting

in read counts (fi) for each value of the overhang (i). Accordingly, each PAS was characterized

by the number of aligned polyA reads

f =
∑
i

fi

and Shannon entropy of the overhang distribution

H =

∑
i

fi log2 fi

f
− log2 f.

In order to select a reasonable number of PAS, we repeated the above steps using an array 388

of thresholds on the minimal overhang length and Shannon entropy threshold H and computed 389

the number of annotated gene ends that are supported by PAS (Figure S2). The threshold 390

H ≥ 2 in combination with the minimum overhang length of 6 nts appears to be optimal since 391

it captures 85% annotated gene ends and yields 565,387 PAS, a number that corresponds by 392
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the order of magnitude with the size of the PAS set reported in PolyASite 2.0 (25). PASs 393

that were located within 10 nts of each other were merged into clusters (PASCs) using the 394

GenomicRanges package (63). 395

Precision and recall 396

The list of PASCs obtained from the GTEx RNA-seq data (referred to as GTEx) was validated 397

against two reference sets, the published set of PASCs inferred from the 3’-end sequencing (25) 398

(referred to as Atlas) and the set of annotated TEs provided by GENCODE consortium (40) (re- 399

ferred to as GENCODE). In each comparison, we calculated the precision and recall metrics of 400

GTEx with respect to the reference set by imposing variable thresholds on PASC support level. 401

First, GTEx and Atlas were both compared to GENCODE so that a PASC was considered a 402

true positive if it was located within 100 nts from an annotated TE. The precision and recall 403

metrics varied depending on the number of supporting polyA reads (in GTEx) and the average 404

expression (in Atlas) reaching the optimal F1 = (P−1 + R−1)−1 score at P = 0.57− 0.58 and 405

R = 0.49− 0.51 (Figure S3, top left). The same scores, in which each PASC was weighted by 406

the read support, showed a similar performance with the optimal F1 score of P = 0.83 − 0.86 407

and R = 0.73− 0.76 (Figure S3, bottom left). In comparison to Atlas as a reference set by the 408

number of PASC, GTEx showed a moderate performance with P = 0.66 and R = 0.30, espe- 409

cially in terms of recall, i.e., a large fraction of PASCs from Atlas were not detected (Figure S3, 410

top right). However, when the same comparison was made by the number of transcripts, i.e., by 411

weighting PASCs by the read support, the precision and recall were 0.92 and 0.97, respectively, 412

indicating that the GTEx primarily misses PASCs with low level of read support (Figure S3, 413

bottom right). 414

Relative position in the gene 415

For each PASC, which is characterized by the interval [x, y] in the gene [a, b], where x, y, a, 416

and b are genomic coordinates on the plus strand, we defined p, the relative position in the gene 417

as p = x−a
(y−x)−(b−a)+1

for genes on the positive strand, and used the value of 1 − p for genes 418

on the opposite strand. The values of p outside of the interval [0, 1] indicate that the PASC is 419
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located outside of the annotated gene boundaries. In the same way, PASC relative positions 420

were computed in exonic and intronic regions. 421

Read coverage and fold change 422

To quantify the extent, to which CPA happen at a specific PASC in a specific tissue, we first 423

calculated the read coverage genomewide for each GTEx sample by considering only uniquely 424

mapped reads (MAPQ=255 when processed via STAR mapper) with bamCoverage utility 425

using flags -binSize 10 –minMappingQuality 255 (64) and averaged the read coverage values 426

between samples within each tissue using wiggletools mean utility (65). 427

Next, we calculated the mean read coverage per nucleotide in 150-nt windows starting 428

10 nts upstream and downstream of each PASC in each tissue (referred to as wi1 and wi2) using 429

multiBigwigSummary utility (64) and computed the log-fold-change metric (logFC) 430

as the logarithm of the ratio of the mean read coverage in the upstream and downstream win- 431

dows, respectively, with a pseudocount of 10−3. To take into account the variation between 432

samples when assessing PASC expression, we followed the approach described previously (11) 433

by detecting significant differences in read counts between the upstream and downstream win- 434

dows (padj < 10−3) using DESeq2 (41), separately in each tissue. 435

Intronic PASCs were defined as PASCs located within at least one annotated intron of a 436

protein-coding gene >200bp away from the closest annotated splice site (n = 67, 075). The 437

shortest intron containing a PASC was chosen, and the average read coverage was computed not 438

only in wi1 and wi2, but also in 150-nt windows starting 10 nts upstream and downstream of 439

the intron 5’-end (we1 and we2, Figure 5A). An intronic PASC located within 100 nts from an 440

annotated TE of a protein-coding transcript (n = 2, 921) was categorized as STE (respectively, 441

CTE) if the terminal exon of the transcript fully belonged to the containing intron (respectively, 442

overlapped the interval from 5’-splice site to PASC). This categorization yielded 968 CTEs and 443

1880 STEs, while 73 PASCs were located near TEs of several transcripts resulting in conflicting 444

annotation. 445

To estimate the mean read coverage in constitutive exons, alternative exons, and introns, the 446

total read coverage values per nucleotide in all GTEx samples were averaged between windows 447
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located in the respective regions to obtain normalization factors (3.3 ·106, 3.2 ·106, and 8.0 ·104, 448

respectively). The latter were used to normalize the fraction of polyA reads in the respective 449

regions (Figure 3C) relative to the average read coverage. 450

Splicing metrics 451

To quantify tissue-specific alternative splicing associated with intronic PASCs, we computed 452

split read counts using IPSA pipeline as explained earlier (33, 66). The counts of split reads 453

were pooled within each tissue to compute the ψ = a/(a+ b) metric (Figure 5A), defined here 454

as the number of split reads supporting splicing of the shortest annotated intron that contains 455

PASC (a) as a fraction of the number of split reads supporting splicing of the shortest annotated 456

intron and the number of split reads supporting splicing from the donor site to any acceptor site 457

located before PASC (b). The latter split reads are referred to as “landing before PASC”. 458

Evolutionary dynamics of consensus sequences 459

In order to quantify the number of single nucleotide substitutions that convert a pre-consensus 460

polyadenylation signal (defined as any sequence that differs by 1 nt from the canonical AATAAA 461

sequence) to the canonical polyadenylation signal AATAAA, we downloaded multiple sequence 462

alignment of 45 vertebrate genomes with the human genome (GRCh37) from the UCSC Genome 463

Browser in MAF format (67). The alignments with M. mulatta (rhesus) and C. jacchus (mar- 464

moset) genomes were extracted from MAF, and the alignment blocks were concatenated. The 465

genomic sequence in the common ancestor (CA) of human and rhesus with marmoset as an out- 466

group was reconstructed by parsimony. We identified all positions of pre-consensus hexamers 467

in the CA and computed the number of single nucleotide substitutions on the human branch that 468

led to the canonical AATAAA signal as a fraction of single nucleotide substitutions on the hu- 469

man branch that led to any change in the pre-consensus, separately in always exonic, alternative 470

exonic, and intronic regions. In total, 16,408,153 such substitutions were analyzed. 471
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Figure 1: The identification of PAS. (A) The alignments of short reads with non-templated adenine-rich ends

(polyA reads). The genomic position of the first non-templated nucleotide corresponds to a PAS. The length of

the soft clip region is referred to as overhang. (B) PolyA read support of PAS in protein-coding genes, non-coding

genes, and intergenic regions. The number of PASs in each group is indicated in the inset. (C) The end of the

RPL5 gene is highly covered by polyA reads. Top: the positional distribution of the number of polyA reads and the

number of staggered polyA reads (i.e., the number of different overhangs). Bottom: the distribution of overhangs

at the indicated positions.
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Figure 2: PAS clusters in protein-coding genes. (A) The distribution of distances from each PAS to its closest

annotated transcript end (TE) for PAS with (n = 122, 448) and without a signal (n = 22, 361). (B) The variability

of PAS positions around TEs, measured as the interquartile range (IQR) of distances from the TE to all PASs within

100 nts. (C) PAS located <10 bp from each other are merged into PAS clusters (PASCs). (D) Pairwise comparison

of PASs inferred from GTEx, PolyASite 2.0 (25) (Atlas), and GENCODE. Left: the proportion of PASC from

GENCODE that are supported by Atlas or GTEx (precision) and the proportion of PASC from Atlas or GTEx that

are supported by GENCODE (recall). Right: the proportion of PASC from Atlas that are supported by GENCODE

or GTEx (precision) and the proportion of PASC from GENCODE or GTEx that are supported by Atlas (recall).

(E) The relative positions of unannotated PASCs (i.e., ones not within 100 bp of any annotated TE) along the gene

length. 0% and 100% correspond to the 5’-end and 3’-end of the gene, respectively. The inset shows distribution

of absolute positions of unannotated PASCs around the gene end.
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Figure 3: PAS clusters in protein-coding regions. (A) The distribution of PASCs in 5’-UTRs, CDS, and 3’-

UTRs. Shown are the total number of PASC (PASC count), PASC density per nt (PASC density), the total number

of polyA reads (read count), the total number of polyA reads per nt (read density). (B) The distribution of PASCs

from CDS in introns, constitutive exons (always exon), and alternative exons. (C) The proportion of polyA reads

(reads ratio) normalized to the average read coverage in each region (defined as the number of polyA reads per

million aligned reads; see Methods for details). (D) The relative frequency of single nucleotide substitutions in

pre-consensus sequences that give rise to the canonical polyA signal (AATAAA) in the human lineage.
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Figure 4: Coverage-based metrics of PASC expression. (A) The average read coverage was measured in 150-nt

upstream and downstream windows, wi1 andwi2, around PASC. (B) The distribution of logFC = log10(wi1/wi2)

metric for annotated (n = 37, 194, top) and unannotated PASCs (n = 89, 116, bottom). A PASC is referred to

as annotated if it is within 100 bp of an annotated TE. The dashed line represents the cutoff logFC = 1. (C) The

logFC = log10(wi1/wi2) metric positively correlates with the number of supporting polyA reads not only for

annotated, but also for unannotated PASCs with a signal.
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Figure 5: Intronic polyadenylation and splicing. (A) Exonic (we1 and we2) and intronic (wi1 and wi2) 150-nt

windows used to assess PASC expression and splicing; a denotes the number of split reads supporting the anno-

tated intron. b denotes the number of split reads landing before PASC. (B) The distribution of Pearson correlation

coefficients of ψ and log10(wi1/wi2) for n = 5, 081 PASCs, as compared to shuffled control. The bias towards

negative values is indicated by an arrow. (C) Case studies of negative association between ψ and log10(wi1/wi2)

in NCAM1 and SORBS2 genes. The genomic coordinates of PASC are in GRCh37 assembly. (D) Bivariate distri-

bution of we1 vs. we2 in PASC-tissue pairs for all PASCs (n = 67, 075, left), annotated CTE (n = 968, middle),

and STE (n = 1, 880, right). The dotted line in log coordinates corresponds to we2/we1 = 0.3. To further analyze

unannotated STEs (red triangle), only tissues where iPASC was expressed (logFC > 1) and where the intron cov-

erage was at least 10% of the exon coverage (wi1 > 0.1we1) were considered. (E) ψ distribution for PASCs from

the red triangle in panel D (left), CTE (middle), and STE (right); +TE (−TE) denote PASCs within (not within)

100 nts of annotated TE. The peak at ψ ' 1 represents putative STEs without evidence of splicing between the

upstream exon and PASC, attributed here to lariat polyadenylation (LPA).
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Figure 6: Case studies of IPA. (A) The iPASC between exons 1 and 2 of MEGF8 represents a CTE, as evidenced

by high read coverage in we2 and the absence of other splicing events ψ ' 1. The eCLIP peaks of CSTF2 and

PASC from PolyAsite 2.0 are indicated below. Arcs represent tissue-specific splice junctions. (B) The iPASC

between exons 25 and 26 ATRN represents a STE with tissue-specific expression in heart and muscle tissues, as

evidenced by splice junctions and the read coverage. (C) The iPASC between exons 1 and 2 likely represents a

LPA case because the read coverage is low at the 5’-end of the intron and detectable directly upstream of iPASC,

but there is no evidence of STE by splice junctions.
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