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Abstract

A major challenge in biotechnology and biomanufacturing is1

the identification of a set of biomarkers for perturbations2

and metabolites of interest. Here, we develop a data-driven,3

transcriptome-wide approach to rank perturbation-inducible4

genes from time-series RNA sequencing data for the discovery5

of analyte-responsive promoters. This provides a set of biomark-6

ers that act as a proxy for the transcriptional state referred to7

as cell state. We construct low-dimensional models of gene ex-8

pression dynamics and rank genes by their ability to capture9

the perturbation-specific cell state using a novel observability10

analysis. Using this ranking, we extract 15 analyte-responsive11

promoters for the organophosphate malathion in the underuti-12

lized host organism Pseudomonas fluorescens SBW25. We de-13

velop synthetic genetic reporters from each analyte-responsive14

promoter and characterize their response to malathion. Further-15

more, we enhance malathion reporting through the aggregation16

of the response of individual reporters with a synthetic consor-17

tium approach, and we exemplify the library’s ability to be useful18

outside the lab by detecting malathion in the environment. The19

library of living malathion sensors can be optimized for use in20

environmental diagnostics while the developed machine learning21

tool can be applied to discover perturbation-inducible gene ex-22

pression systems in the compendium of host organisms.23

Introduction24

A major step in biomanufacturing and biotherapeutic processes is25

the optimization of production efficiency and therapeutic efficacy,26

respectively. Often, destructive or costly measurements such as27

high-performance liquid chromatography or next-generation se-28

quencing are used to observe the partial or total effect of a com-29

pound on known biomarkers that act as proxies for the cellular30

state. These biomarkers, though difficult to identify, once known,31

can be used as sensors to gauge the efficiency and efficacy of32

biotechnological processes across a wide array of experimental33

conditions.34

Transcriptional genetic sensors are a class of biological com-35

ponents that control the activity of promoters [1] and have been36

used to construct whole-cell (living) biosensors [2–4]. A large37
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portion of transcriptional sensors rely on transcription factor- 38

promoter pairs [5] and have been used in whole-cell biosensing 39

for detection of heavy metals [6], pesticides and herbicides [7–9], 40

waterborne pathogens [10], disease biomarkers [11–14], and many 41

more applications discussed in [15]. Since microbes are found 42

in virtually all terrestrial environments, one could imagine that 43

there would be no shortage of transcriptional genetic sensors for 44

novel sensing applications. However, given a novel sensing ap- 45

plication for a target compound or perturbation, transcriptional 46

genetic sensors are typically unknown a priori. Moreover, a com- 47

plete methodology for discovering sensors and biomarkers for the 48

target analyte in novel organisms does not yet exist. 49

The transcriptional activity of an organism can be measured 50

through RNA sequencing (RNA-seq) to produce a snapshot of 51

the bulk cell state subject to intrinsic and extrinsic perturbations. 52

The typical approach for identifying upregulated and downregu- 53

lated genes across experimental conditions is to apply differential 54

expression analysis [16, 17]. A major pitfall with differential ex- 55

pression analysis is its lack of statistical power when faced with 56

a sparse number of biological replicates. That is to say that the 57

false-positive rate increases drastically when only a small number 58

of biological replicates are available [18] as is often the case due 59

to the costliness of RNA-seq. A related issue arises in that one 60

must sacrifice time points for biological replicates, reducing the 61

fidelity of the dynamical process being studied. As most biolog- 62

ical processes are dynamic, time-series profiles are essential for 63

accurate modeling of these processes. Furthermore, differential 64

expression analysis provides no information beyond which genes 65

are upregulated/downregulated [19]. An analysis of expression 66

dynamics provides a potential route to design a sensing scheme 67

for a target analyte for which no single sensor exists. 68

A typical RNA-seq dataset contains hundreds to tens of thou- 69

sands of genes; despite that, a subset of genes, often referred to 70

as biomarkers, are typically sufficient for representing the under- 71

lying biological variation in the dataset. This is explained by the 72

fact that variations in many genes are not due to the biologi- 73

cal process of interest [20] and that many genes have correlated 74

expression levels [21]. Several algorithms to identify the mode- 75

of-action for a compound have been developed from the perspec- 76

tive of network reconstruction and have been used to reconstruct 77

known regulatory networks and discover new ones [22–26]. Net- 78

work reconstruction relies on steady-state data, is computation- 79

ally expensive for high-dimensional systems, and the number of 80

unknown parameters necessitate the collection of large, diverse 81
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datasets. It is recommended to collect 1/10th the amount of82

samples as number of genes screened. To screen a model bacte-83

ria, e.g. E. coli, this amounts to roughly 400 RNA-seq samples;84

this can be prohibitively expensive. Conversely, we aim to devise85

a methodology that identifies biomarkers of interest from time-86

series data that is computationally inexpensive, and we validate87

our approach on limited datasets by closing the design-build-test88

loop.89

The task of identifying a subset of the state (biomarkers) which90

recapitulate the entire state (transcriptome/cell state) and ex-91

plain the variations of interest is well studied in the field of dy-92

namics and controls in the form of optimal filtering and sensor93

placement [27,28]. In the context of dynamic transcriptional net-94

works, sensor placement is concerned with inferring the under-95

lying cell state based on minimal measurements; this introduces96

the concept of observability of a dynamical system [29]. The97

transcriptome is observable if it can be reconstructed from the98

subset of genes that have been measured. In other words, these99

genes encode the required information to predict the dynamics100

of the entire transcriptome. To the best of our knowledge, mea-101

sures of observability have not been applied to genetic networks102

to identify genetic sensors, biomarkers, or other key genes.103

Due to the lack of DNA-binding information, transcriptional104

measurements of a population are not sufficient for the identi-105

fication of biosensors. Several techniques have been developed106

to analyze temporal correlations in time-series RNA-seq data in107

order to identify biomarkers of interest [30]. Dynamic cluster-108

ing tools have been developed which group genes according to109

co-expression patterns [31, 32]. Dynamic gene regulatory net-110

work reconstruction (GRN) tools use time-series RNA-seq data111

to infer the functional interplay among genes when affected by112

a perturbation [33, 34]. In both clustering and GRN, the ques-113

tion of selection of informative genes for downstream targeted114

gene profiling is not addressed. A primary advantage of observ-115

ability analysis is the use of temporal correlations to identify an116

optimal set of biomarkers that act as proxy for the perturbation-117

induced cell state. Genes which contribute more to observability118

are considered as informative genes or optimal biomarkers; these119

biomarkers can then be selected for targeted gene profiling.120

Overall, a systematic approach for identifying genetic reporters121

from RNA-seq datasets is still an open and challenging issue. In122

this work, we develop a machine learning methodology to ex-123

tract numerous endogenous biomarkers for analytes of interest124

from time-series gene expression data (Figure 1). Our approach125

consists of three key steps, each of which is depicted in the middle126

panel of Figure 1. The first step adapts dynamic mode decompo-127

sition (DMD) [35–37] to learn the transcriptome dynamics from128

time-series RNA-seq data. Beyond the scope of sensor discovery,129

we show how the dynamic modes can be utilized to cluster genes130

by their temporal response. Secondly, we construct and solve131

an observability maximization problem which assigns weights to132

each gene [38,39]; highly ranked genes are those which can reca-133

pitulate the perturbation-induced cell state. Using this ranking,134

optimal biomarker genes may be selected. To ensure the ranking135

is identifying genes which can recapitulate the cell state, the final136

step is to measure how well a chosen subset of genes can recon-137

struct the cell state. To validate our proposed methodology, we138

use our method to generate a library of 15 synthetic genetic re-139

porters for the pesticide malathion [40–42], an organophosphate140

commonly used for insect control, in the bacterium Pseudomonas141

fluorescens SBW25. The transcriptional sensors play distinct bi-142

ological roles in their host and exhibit unique malathion response143

curves. Our method uses no prior knowledge of genes involved144

in malathion sensing or metabolism. Moreover, we use no data145

source beyond RNA-seq, thereby providing a cost and computa- 146

tionally efficient approach for biomarker identification. 147

Results 148

Induction of malathion elicits fast host response. To start, 149

we will first introduce the time-series RNA-seq dataset that we 150

will use throughout this work. The transcriptional activation and 151

repression of the soil microbe Pseudomonas fluorescens SBW25 152

was induced by malathion at a molar concentration of 1.29 µM 153

(425 ng/µL). This concentration was chosen for the following two 154

reasons: i) it is a moderate amount that can typically be found 155

in streams and ground water after recent pesticide use based on 156

studies done in the United States, Malaysia, China, Japan, and 157

India [43,44], and ii) the characteristic concentration of a metabo- 158

lite in bacteria is on the order of 0.1− 10 µM [45]. Malathion is 159

an organophosphorus synthetic insecticide used mainly in agri- 160

cultural settings [46] while SBW25 is a strain of bacteria that 161

colonizes soil, water, and plant surface environments [47]. This 162

makes the soil-dwelling strain a prime candidate for identification 163

of transcriptional genetic reporters for the detection of malathion. 164

To enable rapid harvesting and instantaneous freezing of cell 165

cultures, we made use of a custom-built vacuum manifold, en- 166

abling fast arrest of transcriptional dynamics (Supplementary 167

Figure 10 and Methods). Following malathion induction, cells 168

were harvested at 10 minute intervals for 80 minutes, obtaining 169

a total of 9 time points across two biological replicates that were 170

sequenced. As the focus of our study is on identifying trends 171

and correlations across time, we heavily favored time points in 172

the trade-off between time points and biological replicates. To 173

identify candidate biomarker genes for malathion induction and 174

subsequently build synthetic transcriptional reporters, we also 175

collected samples from a cell culture that was not induced with 176

malathion. See the Methods section for further details on cell 177

culturing and harvesting. 178

RNA sequencing (RNA-seq) provides a snapshot of the entire 179

transcriptome i.e. the presence and quantity of RNA in a sample 180

at a given moment in time. In this work, we examine the fold 181

change response given by first normalizing the raw counts to ob- 182

tain transcripts per million (TPM) [48] followed by calculating 183

the fold change of the malathion condition with respect to the 184

negative control, z = (xM + 1)/(xC + 1). The implication is that 185

the fold change is the cell state, zk for some time point k, we are 186

concerned with for discovery of genetic reporters. Of the nearly 187

6000 known genes in the SBW25 genome, a large fraction of them 188

were not expressed at significant levels. We filtered genes with 189

TPM < 100 and specifically only 10% of or 624 genes are kept 190

for modeling and analysis due to their relatively high abundance. 191

Given our goal of extracting salient analyte-responsive pro- 192

moters from time-series gene expression data, we first model 193

the dynamical process that is driven by the input of malathion 194

on the SBW25 transcriptome. In the next section, we apply 195

dynamic mode decomposition (DMD) to approximate the fold 196

change response with a sparse collection of dynamic modes. We 197

demonstrate how DMD can accurately describe gene expression 198

dynamics by decomposing the time-series gene expression into 199

temporally relevant patterns. 200

Dynamic mode decomposition uncovers modes of host 201

cell response. 202

Dynamic mode decomposition (DMD) is a time-series dimen- 203

sionality reduction algorithm that was developed in the fluid dy- 204

namics community to extract coherent structures and reconstruct 205

dynamical systems from high-dimensional data [35]. Recently, 206
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Figure 1: Transcriptional genetic sensors underlying the response from environmental perturbations can be ex-
tracted using data-driven sensor placement. Bulk RNA sequencing (RNA-seq) measures transcript abundance over time
following transcriptome perturbations. Our method starts by applying dynamic mode decomposition (DMD) to the fold change
response to discover dynamic modes which govern the evolution of the cell state. The dynamic modes are used to design a state
observer (gene sampling weights) that maximize the observability of the transcriptome dynamics. Measurements from a subset of
genes (biomarker genes) informed by the gene sampling weights are then used to reconstruct the cell state. Our method returns:
1) a dynamics matrix (or equivalently, a set of dynamic modes) describing how expression of gene i at time t is impacted by gene j
and time t − 1. and 2) gene sampling weights signifying a gene’s contribution to the observability of the cell state. The outcome,
demonstrated in this work, is a library of synthetic analyte-responsive promoters (genetic reporters) that are used to detect an
analyte of interest. Since each genetic reporter has a unique response to the same perturbation, the library can be artificially fused
to produce a purely virtual sensor for enhanced reporting.

several works have adapted and applied DMD to biological sys- 207

tems in various contexts [49–53], choosing DMD for its ability208

to i) reproduce dynamic data over traditionally static methods209

such as principal component [54] or independent component anal-210

ysis [55] and ii) represent the dynamics of high-dimensional pro-211

cesses, in our case gene interaction networks, using only a rela-212

tively small number of modes.213

To uncover the diverse modes of the host cell response to214

malathion induction, we performed (exact) DMD [37] on the215

transcriptomic dataset (see Methods for the details). Specifi-216

cally, we perform exact DMD on the standardized fold change,217

z̄, which decomposes a gene expression matrix (genes × time218

points) into dynamic modes, eigenvalues, and amplitudes in the219

form220

ẑt =

r∑
i=1

viλ
t
ibi = VΛtb = VΛtV−1z0 (1)

where the rank r reconstruction of the cell state at time t is ẑt, vi221

are the learned dynamic modes, λi, are the learned eigenvalues,222

and bi is the amplitude associated with each dynamic mode (of-223

ten known as loading in the dimensionality reduction literature).224

From this we see that the transcriptome dynamics are modeled by225

a sum of damped, forced, and unforced sinusoidal behavior when226

the magnitude of the eigenvalues are less than one, greater than227

one, or exactly equal to one, respectively. This decomposition 228

constructs a low-dimensional linear model from high-dimensional 229

time-series data; quantitative features of a nonlinear model are 230

not captured in our model, e.g. multiple equilibria and chaos. If 231

these nonlinear features are relevant to the system being studied, 232

one can extend DMD to capture arbitrary nonlinearities, at the 233

cost of requiring a larger number of samples to infer the parame- 234

ters of the nonlinear function [56]. In this section we will describe 235

how modeling the fold change response with DMD enables the 236

identification of biologically relevant temporal patterns that are 237

driven by the malathion perturbation. 238

We found that 10 dynamic modes provide an optimal balance 239

between predictive accuracy and model instability. As the num- 240

ber of modes, r, is increased, we see monotonically increased pre- 241

dictive accuracy as measured by the coefficient of determination 242

(R2) (Figure 2a (left)). However, the number of eigenvalues with 243

magnitude greater than one, i.e. unstable modes, also increases 244

with the number of modes (Supplementary Figure 3). As we will 245

discuss in further detail in the next section and in the Meth- 246

ods, instabilities introduce challenges in observability analysis, 247

therefore we aimed to minimize the presence of unstable modes 248

in the learned dynamics. Although, since predictive accuracy is 249

important, we could not altogether remove unstable modes. 250

Using the 10 dynamic modes, we obtain an accuracy of 0.92 251
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Figure 2: Dynamic mode decomposition provides a predictive and interpretable model of gene expression dynamics.
(a) The coefficient of determination for the reconstruction is shown while varying number of DMD modes, r in (1) (left). 10 DMD
modes are used to construct transcriptome dynamics in this work and the mean-squared error per gene is shown in the histogram on
the right. (b) The eight-step prediction is visualized for five randomly selected genes in the transcriptomic dataset. The error bars
represent the sample standard deviation across two biological replicates (blue solid curve) and across predictions (orange dashed
curve). Magenta squares overlapping each gene’s initial condition indicates the data that is provided to make predictions. The
coefficient of determination, R2, for the eight-step prediction across all genes is computed to be 0.92. (c) The DMD spectrum
reveals the growth, decay, and oscillation of each of the 10 dynamic modes that comprise the transcriptomic dataset. Each marker
is an eigenvalue, and its diameter is proportional to the magnitude of the corresponding dynamic mode. Eigenvalues inside the
unit circle correspond to decaying dynamics, eigenvalues with nonzero imaginary part correspond to oscillatory dynamics, and
eigenvalues outside the unit circle correspond to growing dynamics. (d) The eigenvalue scaled amplitudes, λtibi, of modes 1, 2, and
6 are visualized (upper) along with the 10 genes whose dynamics are most impacted by each of the modes (lower). The marker used
for each mode indicates which eigenvalue it corresponds with in (c).

as measured across all genes. Figure 2b shows a set of 5 genes252

and their temporal predictions using the DMD model. The pre-253

dictions are computed by feeding an initial condition feeding an254

initial condition (the gene expression at time t = 0) to the model255

and then predicting all subsequent time points; for the nine time256

points in the dataset. This amounts to two eight-step predictions257

across the biological replicates. We emphasize that this is dis-258

tinct from measuring model accuracy by computing a one-step259

prediction for each time point, which gives very little informa-260

tion about the dynamic process that has been captured. The261

low-dimensional model learned via DMD has accurately captured262

the dynamics of the fold change response. To provide a founda-263

tion for understanding when linear models can accurately repre-264

sent fold change dynamics, we have shown, in the Supplementary265

Information (Section 1.4), that the fold change response of two266

linear systems, under stated assumptions, can be represented as267

the solution of a linear system.268

Our DMD analysis uncovers three distinct modal responses of269

the malathion-perturbed transcriptome dynamics, namely sta-270

ble, oscillatory, and unstable responses. We classify each mode’s271

response type by the behavior of the associated eigenvalue. If the272

associated eigenvalue has magnitude less than one or greater than273

one, the mode is classified as stable and unstable, respectively. 274

If the eigenvalue also has a nonzero imaginary part, the mode 275

is classified as oscillatory as well. We have plotted the 10 DMD 276

eigenvalues relative to the unit circle in Figure 2c and labeled the 277

eigenvalues according to their type. 278

Stable modes are characterized by eigenvalues which are in- 279

side the unit circle. The magnitude of eigenvalues inside the unit 280

circle are strictly less than one and such a set of stable modes 281

indicate relative decay, that is to say that many genes have a tem- 282

poral response which only transiently deviate from a neutral fold 283

change (fold change equal to one for non-standardized trajecto- 284

ries and fold change equal to zero for standardized trajectories). 285

Stable modes that have eigenvalues nearer to the unit circle are 286

capturing majorly uninhibited genes, while stable modes that are 287

nearer to the origin are capturing genes which converge to neu- 288

tral fold change exponentially, i.e. they exhibit strong relative 289

decay in their fold change. 290

Dynamic modes which are oscillatory are characterized by by 291

eigenvalues with nonzero imaginary part. Since gene expression 292

data is always real-valued, oscillatory modes will always come 293

in complex conjugate pairs. Each pair of complex-valued modes 294

then describes a fixed frequency of oscillation, and each gene’s 295
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dynamics can be reconstructed from one or more of these fre-296

quencies. The work of Sirovich found that the oscillatory modes297

obtained from DMD represent the genes underlying the yeast298

cell cycle, and the frequencies of oscillation were shown to pro-299

vide an estimate of the cell cycle period that agrees with the300

literature [51].301

Unstable modes are characterized by eigenvalues whose mag-302

nitude is larger than one. Many genes show temporal response303

that were either upregulated or downregulated. If the upreg-304

ulation and downregulation is persistent throughout the gene’s305

temporal profile or occurs at later times, there must be at least306

a single mode with eigenvalue outside the unit circle to be able307

to capture the underlying unstable response. This is because308

DMD is essentially learning a linear state-space representation309

of the fold change response and a linear system can only exhibit310

three types of limiting behaviors, i) convergence to the origin311

(stable), ii) periodic orbits, and iii) divergence to infinity (un-312

stable). Therefore, for the reconstruction accuracy to be maxi-313

mized, DMD eigenvalues with magnitude larger than one may be314

necessary. Such eigenvalues are marked with relative growth in315

Figure 2c. Though the two unstable eigenvalues are outside the316

unit circle, they are only marginally so, implying that unstable317

trajectories make up only a small portion of the transcriptomic318

response to malathion.319

Despite the fact that most genes require a superposition of320

all of the dynamic modes for accurate reconstruction, we show321

that the modes can successfully group genes into interpretable322

clusters. Figure 2d (upper) shows the evolution of three dynamic323

modes (λtibi) representative of the transcriptomic dataset: modes324

1, 2, and 6, corresponding to stable (modes 1 and 6) and unstable325

(mode 2) directions in gene space. The loading of mode j on gene326

i, Vij , can be used to identify genes which are most influenced327

by the corresponding mode. In this way, we can use the DMD328

modes to cluster temporal responses in gene space, providing an329

interpretation to each DMD mode. The temporal gene clusters330

are shown in Figure 2d (lower).331

The genes which are most influenced by mode 1 are those which332

diverge, in a stable manner, from a neutral fold change while the333

genes most influenced by mode 2 are those which diverge away334

from neutral fold change, capturing unstable trajectories. This335

is consistent with the eigenvalues of mode 1 and mode 2, which336

are stable and unstable, respectively. Finally, the genes most337

influenced by mode 6 are those with no clear trend present in338

their dynamics. In the next section, we will characterize those339

genes which contribute to cell state reconstruction and act as340

reporters for the malathion specific response. Relatedly, of the341

20 genes that are most impacted by mode 1, seven of these genes342

contribute highly to cell state reconstruction (they are within the343

top 20 genes that contribute to the observability of the system).344

The results of this section demonstrate that the set of 10 re-345

covered DMD modes, eigenvalues, and amplitudes are indeed bi-346

ologically relevant to the dynamics of the malathion response347

in the window of time that we have sampled the transcriptome.348

A key takeaway is that gene expression dynamics sampled at349

the resolution of minutes can be well approximated by a linear350

dynamical system, i.e. by a set of exponentially shrinking and351

growing modes. In what follows, we develop a sensor placement352

framework, relying on the learned linear dynamical system, to353

generate a ranked list of biomarker genes, i.e. subsets of genes354

which show variation to malathion induction and that can reca-355

pitulate the cell state.356

Sensor placement for cell state inference and extrac-357

tion of genetic sensors. Gene interaction networks are com-358

plex systems that induce systematic interdependencies between359

genes. That is to say that the expression of most genes, if not 360

all, depends on the expression of at least one more genes in the 361

network. These interdependencies make it possible to measure 362

only a subset of genes to infer the behavior of all other genes [57]. 363

The approach taken in this work for evaluating whether a gene is 364

an encoder of cell state information is to quantify how much each 365

gene contributes to observability. To do this, we optimize a scalar 366

measure of the observability gramian, a matrix which determines 367

the amount of information that a set of sensors can encode about 368

a system. Specifically, if we let the DMD reconstruction of the 369

cell state be rewritten as ẑt = VΛV−1zt−1 = Kzt−1 and define 370

an output equation 371

yt = w>z̄t (2)

where w is a vector of weights, called sampling weights, that 372

define the contribution of each gene to the output of the system, 373

then we define the observability gramian [58] as 374

Xo =

∞∑
i=0

Ki>ww>Ki. (3)

In the context of transcriptome dynamics, given the DMD 375

representation of the dynamics, K, and a chosen gene sensor 376

placement, w, the gramian quantitatively describes i) to what 377

degree cell states are observable and ii) which cell states cannot 378

be observed at all. Increasing i) while decreasing ii) is the aim 379

of many sensor placement techniques; furthermore, many scalar 380

measures of the gramian have been proposed to determine the 381

sensor placement (the weights w) which maximize the observ- 382

ability of the underlying dynamical system [59–61]. Many of 383

the proposed approaches require explicit computation of the ob- 384

servability gramian, which can be computationally expensive for 385

high-dimensional networks and intractable for unstable systems. 386

Here we develop an optimization framework which does not 387

require explicit computation of the gramian. We do this by max- 388

imizing the signal energy,
∑T
i=0 y

2
i , of the underlying system. 389

The resulting sensor placement problem is then defined to be an 390

integer program in which the weights can only takes binary val- 391

ues 0 or 1. As high-dimensional integer programs are known to 392

be computationally intractable, we employ several relaxations on 393

the problem. The details of the full sensor placement problem 394

and the relaxations are presented in the Supplementary Infor- 395

mation (Section 1.2). Notably, we have approximated the full 396

sensor placement problem to one in which an analytical solu- 397

tion always exists. This reduces the overall computational com- 398

plexity, providing an approach which scales for a wide array of 399

high-dimensional biological datasets collected from diverse host 400

organisms. 401

The strategy we employ is to assign gene sampling weights, wg, 402

to each gene g through optimizing sensor placement, i.e. max- 403

imizing the signal energy. The significance of the magnitude of 404

each weight is to rank each gene by their contribution to ob- 405

servability. The Methods section provides quantitative details on 406

the relationship between observability, the observability gramian, 407

and signal energy for sensor placement. In the Supplementary 408

Information (Section 1.3), we provide a brief exposition of the 409

observability maximization problem on simulated systems. We 410

show how the sampling weights are affected by network topology 411

and the number of time points. 412

By examining the learned gene sampling weights, we found 413

that nearly all 624 modeled genes contribute, many insignifi- 414

cantly, to the observability of the system. Displayed in Figure 3a 415

(upper) are the magnitude of gene sampling weights, w, normal- 416

ized by the standard deviation of the corresponding gene, that 417

maximize the observability of the cell state. Weights that are 418
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a c

d e

fb

Figure 3: Gene sampling weights which maximize observability provide a machine learned ranking for extraction
of genetic sensing elements. (a) The gene sampling weights, w, normalized by standard deviation of the corresponding gene,
are sorted by magnitude and plotted in the upper panel. The weights are grouped into three categories: i) the third of genes with
highest magnitude of sampling weights (plotted in green), ii) the third of genes with second highest magnitude of sampling weights
(plotted in orange), and ii) and the lower third that remains (plotted in blue). The lower panel is a histogram of the sampling
weights and a kernel density estimate is superimposed. (b) The reconstruction accuracy (R2) between the true initial condition
and the estimated initial condition when sampling 50 genes at random from each of the aforementioned groups for T = 2 time
points (top). The reconstruction accuracy was measured for a total of 100 runs each with a distinct set of 50 genes from each group.
(Bottom) The reconstruction accuracy for the high group as a function of T . (c) Reconstruction accuracy between the estimated
initial condition ẑ0 and the actual z̄0 is plotted for number of sampled time points T = 1 to T = 10. Each data point is obtained by
sampling genes by rank (the amount sampled is given on the x-axis), generating outputs for T time points, and then estimating the
initial condition. (d) The fold change response of the 20 genes which contribute most (top) and least (bottom) to the observability
of the initial cell state are plotted. The error bars represent the sample standard deviation across two biological replicates. (e) The
background subtracted TPM (malathion (TPM) − negative control (TPM)) of the 15 biomarker genes selected from the proposed
ranking – by contribution to observability. The label on each x-axis indicates the percentage rank (out of 624 genes) of the gene,
with respect to the gene sampling weights, with 100% corresponding to highest rank. The error bars indicate the sample standard
deviation across two biological replicates. Malathion was introduced to the cultures after collecting the sample at 0 minutes, hence
this sample is not used for modeling and cell state inference and this time window is shaded in gray. (f) A Venn diagram comparing
180 differentially expressed genes and genes with the largest sampling weights identifed by our approach (top). The bottom panel
shows a histogram of the L2 norm (Euclidean distance from the origin) of the fold change responses for the genes in the unique sets
in the Venn diagram.

negative-valued (only magnitudes are shown here) correspond to419

downregulated genes and weights that are positive-valued corre-420

spond to genes that are upregulated. The higher the magnitude421

of the gene sampling weight, the more important the gene is likely422

to be for cell state reconstruction. The lower portion of Figure423

3a shows the histogram of the sampling weights in w, display-424

ing that there are fewer higher magnitude genes overall. To test425

the notion that genes with higher weights contribute more to the426

observability, the sampling weights are artificially grouped into427

three categories, distinguishing genes which correspond to the 428

top (green), middle (orange), and lower (blue) third for magni- 429

tude of sampling weights. Each category contains 208 genes, and 430

next we show the gain in information that can be achieved when 431

sampling from one category over another. 432

To examine the contribution to observability provided by genes 433

in each of the categories, we perform Monte Carlo simulations to 434

estimate the expected predictability of the initial cell state. From 435

output measurements, yt (t = 1, 2, ...T ), that are generated by 436
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randomly sampling 50 genes from a specified category (low, mid,437

high), the initial cell state, z̄0, is estimated and the coefficient of438

determination (R2) between the actual and estimated cell state439

is computed as a measure of reconstruction accuracy. The simu-440

lation is repeated 100 times for each category and the resulting441

distributions over the random gene sets are plotted in Figure 3b.442

In the top panel, we can see that when T = 2 (2 time points are443

used for reconstruction), predictability of the cell state is highest444

for the genes in the high category. Specifically, the reconstruction445

accuracy is three and two times larger in the high category than446

in the low and mid categories, respectively. In the lower panel447

we show how the reconstruction accuracy changes with changing448

the number of time points, T , for the high group of genes. We449

find that that reconstruction accuracy monotonically increases450

with T , however we point out that due to not being able to ac-451

curately capture network topology from sparse data, the results452

gathered at large T (T ≥ 6) do not show significant differences453

between the groups. This is due to the fully-connected topol-454

ogy of the state-space model we have learned using DMD. The455

interdependencies between genes (though mostly miniscule) are456

amplified exponentially over time, resulting in highly observable457

genes transferring information to lowly observable genes. Hence,458

it may not be possible to distinguish reconstruction accuracy of459

the groups of genes when evaluated at large times.460

Measuring fewer genes for many time points leads to higher461

cell state reconstruction accuracy than if many genes are mea-462

sured for fewer time points. This result is demonstrated in Fig-463

ure 3c which shows how the cell state reconstruction accuracy464

is affected by two parameters, the number of sampled genes and465

the number of time points, T , that the genes are measured for.466

The reconstruction accuracy is again the coefficient of determi-467

nation, R2, between the reconstructed initial condition, ẑ0, and468

the actual initial condition z̄0. For each T , the first data point469

is generated by sampling only the five genes with the highest470

sampling weights for T time points. The complete cell state is471

then inferred from these measurements alone and the coefficient472

of determination between the estimated and actual cell state can473

be computed (see Methods for a detailed description of the cell474

state inference algorithm). To compute subsequent data points,475

the next five genes with maximum sampling weights are simul-476

taneously measured along with previously measured genes, and477

the cell state is reconstructed again. For the response of SBW25478

to malathion, we find that even if only the top five genes are479

measured but for T = 10 time points, the cell state reconstruc-480

tion is still more accurate than if all genes with nonzero sampling481

weights are measured with T ≤ 8 time points. Specifically, the482

reconstruction accuracy with 5 genes sampled for T = 10 time483

points is nearly 0.9 while the reconstruction accuracy with 600484

genes sampled for T = 8 time points is slightly greater than 0.8.485

This signifies that the ability to study the dynamics of a few genes486

with fine temporal resolution can greatly increase the knowledge487

of the entire system.488

Failure to reconstruct the initial cell state is a result of two489

mechanisms. The first is that we only have access to the DMD490

representation of the dynamics, not the true dynamics. There-491

fore, any output measurements generated using the DMD model492

will certainly incur an error with respect to the actual dynam-493

ics. As error accumulates each time-step, it is possible for the494

reconstruction accuracy to decrease with increasing time points.495

The second hindrance for full cell state reconstruction is when496

many genes contain redundant information. If two genes have497

nearly identical gene expression profiles, adding the second gene498

to the set of measurements provides no useful information for the499

cell state inference. This may explain the asymptotic behavior500

of the curves in Figure 3c. There are only relatively few distinct 501

dynamic profiles present in the transcriptomic dataset, and once 502

all distinct profiles have been sampled, no further improvement 503

in reconstruction can occur. This explanation is consistent with 504

the fact that many genes co-express [21] and this fact has even 505

been used to reconstruct dynamic gene regulatory networks [62]. 506

The gene sampling weights, w, provide a machine learned 507

ranking for discovering genetic biomarkers. Recall that the fold 508

change was taken to be the state of the system when performing 509

DMD. In so doing, we show that the observability-based ranking 510

can also predict genes that respond to malathion in a condition 511

specific manner. Specifically, genes which contribute highly to 512

the observability of the system are genes which show prolonged 513

dysregulation in the presence of malathion. This is visualized in 514

Figure 3d where in the top panel the 20 genes which have the 515

largest sampling weights are plotted. Each of the 20 genes show 516

dysregulation from the neutral fold change (0) that is persistent 517

over the course of the time-series. Conversely, the 20 genes with 518

lowest sampling weights show no clear trend or signal of dysregu- 519

lation. Significant correlations are present among the genes which 520

contribute highly to observability. This is due to the fact that 521

we have solved a relaxed version of the sensor placement problem 522

that allows each gene to have nonzero weight towards maximizing 523

the observability. In the unrelaxed problem, only a pre-defined 524

number of genes can have nonzero weight and therefore to capture 525

all the distinct temporal profiles in the transcriptomic dataset, 526

selected genes are likely to be uncorrelated. 527

To show that observabilty-ranked genes can act as genetic re- 528

porters for malathion, we selected a set of 15 genes with which 529

to construct transcriptional reporters from. The 15 time-series 530

profiles generated via RNA-seq are visualized in Figure 3e in 531

the form of TPMmalathion − TPMcontrol. Because of the signifi- 532

cant correlations among the top ranked genes, we reutilized the 533

Monte Carlo strategy to select the set of 15 genes with which 534

to build a library from. Another suitable approach would be to 535

select genes from the top of the ranking and remove any genes 536

which are correlated until only 15 genes remain. To select this 537

set of 15, the genes were first ranked (out of 624 genes) based 538

on their gene sampling weights. Then a randomly chosen sub- 539

set of 15 genes from the top half of the ranking were used to 540

reconstruct the cell state. The subset of 15 which produced the 541

highest cell state reconstruction accuracy, i.e. which maximize 542

the observability of the cell state, were chosen as the biomarker 543

genes with which to design genetic reporters from. Specifically, 544

the observability maximizing set of 15 genes shown in Figure 3e 545

achieve a cell state reconstruction accuracy of 0.67 when outputs 546

are generated using T = 8 time points. 547

We find that the overall correlation among the 15 selected 548

genes is far less than the correlation among the 15 genes with 549

highest sampling weights. To measure the correlation between 550

gene sets, we use the following metric 551

||1k×k −Rabs||F (4)

where 1k×k is the matrix of k × k ones and Rabs is the element- 552

wise absolute value Pearson correlation coefficient matrix of the 553

k selected genes. When the metric approaches zero, the overall 554

correlation between the selected gene set is large. Conversely, 555

when the metric approaches infinity, the overall correlation be- 556

tween the selected gene set is small. We find for the selected 557

15 (shown in Figure 3e), metric is 7.0 and for the 15 genes with 558

maximum sampling weights, the metric is 2.9 559

Of the 15 selected biomarker genes, 12 appear to be activated 560

by induction of malathion while the remaining 3 appear to be 561

repressed. Table 1 lists the molecular functions of each of the se- 562
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lected genes based on their Gene Ontology (GO) annotations [63].563

Where gene names are not available, we have used protein anno-564

tations to denote those genes. It is shown that the set of molec-565

ular functions are diverse, indicating that malathion drives the566

activation and repression of disparate biological processes. When567

synthesized into genetic reporters, as we will show in the next568

section, these biomarker genes exhibit distinct dynamic range,569

sensitivity, and time-scales in response to malathion.570

Comparing our approach to differential expression analysis,571

we find that our results are largely in complement to each other.572

To start, we used DESeq2 [16] and found five significantly dif-573

ferentially expressed genes after multiple-testing correction with574

the Benjamini-Hochberg procedure. The fold changes of the five575

genes lie in the range 0.52 - 1.54 and the control subtracted tem-576

poral responses are visualized in Supplementary Figure 9.577

Next, we used non-corrected p-values and a significance thresh-578

old of 0.05 to call a gene differentially expressed. This identified a579

total of 180 differentially expressed genes (however they cannot580

be called significant) after induction of malathion. Comparing581

these genes to the genes with 180 largest sampling weights, we582

find that there are 31 genes are in common (Figure 3f, upper).583

To show the distinction between the genes identified between584

the two approaches, we visualize the histogram of the L2 norm585

of each gene’s fold change response (Figure 3f, lower). We see586

that our approach, labeled, obs. max., identified genes with fold587

change response centered around 3.0, while DESeq2 identifies two588

clusters of genes centered around 3.2 and 2.5.589

It is interesting to note that our approach identifies genes al-590

most exactly where DESeq2 identifies no genes to be differentially591

expressed. Overall, differential expression analysis is not always592

suitable for a dataset with low number of biological replicates593

and can result in very few genes being called as differentially ex-594

pressed, as was our case. In contrast, our approach, as we show595

in the next section, identifies malathion responsive genes that596

differential expression analysis was not able to identify.597

Design and characterization of fluorescent malathion598

sensors.599

To validate the transcriptome-wide analysis for identification600

of analyte-responsive promoters, the putative promoters of the601

candidate sensor genes were cloned into a reporter plasmid con-602

taining a reporter gene encoding sfGFP (superfolder green fluo-603

rescent protein) and transformed into the host SBW25 (Figure604

4a). The reporter strains are cloned in an unpooled format, allow-605

ing for malathion response curves to be generated at the reporter606

level as opposed to a pooled study which would incur additional607

sequencing costs for individual strain isolation.608

Malathion reporters are characterized in the laboratory in an609

environmentally relevant way by sourcing malathion from the610

commonly used commercial insecticide called Spectracide (con-611

taining 50% malathion). First, it was verified that the response612

of the reporters to analytical standard malathion was consistent613

with the response when induced with Spectracide. That is to614

say that if the reporter was upregulated (downregulated) in re-615

sponse to malathion, it was also upregulated (downregulated) in616

response to Spectracide. Furthermore, the culture media con-617

taining nutrients and Spectracide that the reporter strains were618

cultured in was analyzed with mass spectrometry and compared619

to the mass spectrum of analytical standard malathion. Compar-620

ing the two mass spectra, we found that they are nearly identical621

(Supplementary Figs. 11-23). See the Methods section for more622

details about the use of Spectracide as a source for malathion623

and Supplementary Figure 6 for the effect of Spectracide on the624

growth of the reporter strains.625

To examine the transcriptional activity of sfGFP, controlled626

by the biomarker gene promoters, cells are grown in rich medium 627

and fluorescence output was measured every three minutes over 628

24 hours of growth. This resulted in 400 time points per re- 629

porter strain, a nearly 45 fold increase over the number of time 630

points obtained via RNA-seq see Supplementary Figure 7. Prior 631

to starting the experiment and collecting fluorescence measure- 632

ments, reporter strains were induced with Spectracide to drive 633

the reporter response. Due to the long half-life and fast mat- 634

uration time of sfGFP [64], the reporter protein can accumu- 635

late inside the cell and does not accurately represent the mRNA 636

abundance – which is subject to fast degradation by ribonucle- 637

ases. This results in the genetic reporters serving as a proxy for 638

the rate of transcription initiation over time, rather than mRNA 639

abundance. This is distinctly different from the transcript abun- 640

dance that is measured via RNA-seq due to the instability of 641

mRNA molecules. 642

Examining the transcription initiation driven by malathion at 643

distinct concentrations reveals detailed gene expression dynam- 644

ics, dependencies of expression on malathion concentration, as 645

well as the correlations. Firstly, the fold change (with respect 646

to 0.0 µM malathion and referred to as the background) re- 647

veals oscillatory signals in several strains; the reporters atpB, 648

petA, cspA2, and acrA each contain oscillations that are near in 649

phase at 0.38 µM malathion (Figure 4c). As the concentration of 650

malathion is increased, only atpB and petA appear to remain in 651

phase while the signals of the other strains strongly increase. We 652

also see that anti-sigma 28 factor and rpoA oscillate with lower 653

frequency and that anti-sigma 28 factor hits a peak around 10 654

hours after induction while rpoA hits an anti-peak around 10 655

hours after induction. For the lower malathion concentration, 656

sucC has a large lag time until transcriptional activation occurs, 657

however there is a sharp decrease in the lag time at the higher 658

concentration. The strains acrA, gltA, putative outer membrane 659

porin A, putative ABC transport system, and lpxC consistently 660

respond within minutes of malathion induction with lpxC being 661

the reporter with highest signal over background and acrA the 662

reporter with highest overall signal energy (area under the curve) 663

in early times. Though cspA2 was shown by the RNA-seq data 664

to be repressed by malathion, we find that cspA2 strain is consis- 665

tently activated in the presence of malathion. Of the remaining 666

repressed promoters, uncharacterized protein II is far more re- 667

pressed in the presence of malathion across all concentrations 668

tested. 669

The response curves of the reporter strains to malathion can 670

be mathematically characterized by Hill functions [65] (Methods) 671

which are described by two parameters. The first parameter is 672

the Hill coefficient or cooperativity, n, which is a measure of how 673

steep the response curve is. This is also denoted as a measure of 674

ultrasensitivity which results in sigmoidal like response curves. 675

The second parameter, KM , is the Michaelis constant and it is 676

equal to the malathion concentration at which the response is 677

half of its minimum value subtracted from its maximum value. 678

Figure 4d shows the malathion response curves of each reporter 679

strain at the time point with maximum fold change with respect 680

to the 0 µM malathion condition. The solid line depicts the fit of 681

a Hill function to the experimentally generated response curves 682

and the parameters of each Hill function are given in Table 1. 683

The response shown is the average fluorescence per cell obtained 684

by normalizing the sfGFP signal by the optical density. See Sup- 685

plementary Table 4 for the precise time points used here for each 686

strain and see Methods for further details on parameter fitting. 687

We find that there is significant variation across the Hill coef- 688

ficient, dynamic range, and Michaelis constant in the library of 689

reporters (Figure 4d). The Hill coefficient, n, ranges from 1.1 to 690
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Figure 4: Our machine learning approach successfully extracted 15 sensors, each with distinct malathion response
curves. (a) A map of the plasmid, pBHVK, used to construct the library. The plasmid contains a kanamycin resistance gene
as well as a fast-folding sfGFP gene. (b) Hierarchical clustering performed on correlations between each pair of reporter strain
response at 1.87 µM malathion. (c) Average per cell sfGFP signal at 0.37 µM (left) and 1.83 µM (right) malathion normalized
by signal at 0.0 µM malathion is shown for all 15 engineered strains. (d) Transfer curves (or response curves) for each strain is
depicted with markers and their fit to Hill equation kinetics are given by solid lines. The Hill equation parameters are given in
Table 1 The promoter sequences corresponding to each reporter and time points for each transfer curve are given in Supplementary
Tables 2 and 4, respectively. The error bars represent the standard deviation from the mean across three biological replicates.

7.4, and recalling that this parameter is a measure of sensitivity,691

the extremes depicted by a small slope in strain fabA and large692

slope in strain sucC, respectively. The dynamic range, measured693

as the difference between the maximum signal and the minimum694

signal, ranges from 80 to 1401 and is obtained by sucC and the695

repressed uncharacterized protein II, respectively. The Michaelis 696

constant ranges from 0.2 to 1.5, depicted by the shift in malathion 697

concentration at which half of the maximum signal is achieved 698

from fabA and cspA2. 699

Overall, we find that each synthetic reporter, selected via our 700
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a b

Figure 5: The 15-dimensional genetic reporter cell state provides a unique response to malathion. (a) For each genetic
reporter, the heatmap depicts the Pearson correlation of the malathion fold change response (rows) with the fold change response to
zeta-cypermethrine, permethrin, fructose, or lactose (columns). (b) The fold change response (reporter + compound with respect
to reporter + no compound) of four reporters – two with highest overall correlation and two with lowest overall correlation across
compounds. The error bars represent the propagated standard deviations of each of the individual responses across three biological
replicates.

data-driven sensor placement framework, is capable of detect-701

ing malathion with distinct dynamic ranges and sensitivity. We702

next sought to characterize the specificity of the reporters to703

malathion. We note that two of the selected reporters, ABC704

transporter and acrA, are membrane transporters which often705

respond to many environmental stimuli.706

Through screening of our reporter library with four other com-707

pounds, we found that the response of the reporters to malathion708

is unique. To characterize the specificity of reporting to other709

pesticides, we tested with zeta-cypermethrin and permethrin,710

two frequently used pesticides. To test whether the reporters re-711

sponse changes due to overall changes in metabolism, we tested712

with the two sugars fructose and lactose. The concentration713

of the pesticides were 1.87 µM to be consistent with previous714

malathion screens and the concentration of fructose and lactose715

were 14.2 and 7.5 µM , respectively. The time-lapse response of716

all 15 reporters to the four compounds and malathion are shown717

in Supplementary Figure 8.718

In Figure 5a we show the Pearson correlation coefficients be-719

tween reporter responses to malathion and reporter responses720

to the four other compounds. The rows of the heatmap show721

how correlated the malathion response of a single reporter is722

across compounds while the columns show the overall correla-723

tion of a compound response to the malathion response for the724

15 reporters. The correlation metric shows that induction with725

permethrin is most (linearly) related to malathion response while726

induction with zeta-cypermethrin is least related to malathion727

response.728

Though the correlation coefficient between malathion response729

and other compounds may be high for several (reporter, com-730

pound) combinations (e.g. lpxC and acrA), the time-lapse re- 731

sponse of the reporters show significant deviations across comop- 732

und in their transient response. The top row of Figure 5b show 733

the fold change response of lpxC and acrA after perturbation 734

with each of the compounds. We see that at early times, the 735

response due to malathion is significantly larger compared to 736

the response due to other compounds. At later times, each of 737

the responses converges to a neutral fold change, resulting in an 738

overall high correlation. The bottom row Figure 5b shows the 739

fold change response of two reporters with overall negative cor- 740

relation across compounds. Here we see that both the transient 741

and long-term responses of other compounds deviate from the 742

malathion response. 743

We also see the activation of fabA with induction of fructose 744

and lactose. However, this is only the case for 1/3 of the re- 745

porters. Of the 15 reporters, 10 of them show no significant 746

response to fructose or lactose (see Supplementary Figure 8), in- 747

dicating that the overall the selected genes are not responding to 748

broad changes in metabolism. 749

Overall, through observability analysis for extraction of sensor 750

promoters and through the analysis presented in Figure 5a, we 751

find that the set of 15 reporters acts as a 15-dimensional cell state 752

that can be used for malathion sensing and detection. As stated 753

prior, though we cannot conclude from our experiments and anal- 754

ysis that malathion directly interacts with any single promoter 755

we have extracted, the 15-dimensional fingerprint provided by 756

our reporters is unique and reproducible. 757

Pooling reporters at the assay level results in an en- 758

hanced malathion reporter 759

We next sought to aggregate the response of each reporter to 760
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a bIncreasing malathion 
concentration

Figure 6: Pooling all 15 malathion reporters results in
enhanced reporting for environmental monitoring. (a)
Time-lapse response after pooling all 15 malathion reporters into
a single well and inducing with malathion. Error bars represent
the sample standard deviation across three biological replicates.
(b) The fold change at 24 hours of the pooled reporter with
malathion induction with respect to the pooled reporter without
malathion induction. The error bars represent the progated stan-
dard deviations of each of the individual responses across three
biological replicates.

improve upon the signal-to-noise ratio (SNR). As individual sen-761

sor measurements are combined, the SNR must either remain762

constant or increase. In lieu of constructing a combinatorial pro-763

moter which can be challenging due to the curse of dimensionality764

when combining n promoters out of a set ofN total promoters, we765

established a simpler protocol which pools individual malathion766

reporters into a single culture.767

The motivation for such an experiment is due to the diffi-768

culty of strain isolation in an environmental setting. In order for769

our library of reporters to prove useful in the field, they should770

be able to operate in tandem without negative effects on the771

malathion response. To measure the response of all reporters in772

a pooled fashion, we first cultured all 15 reporter strains individu-773

ally. Then before taking measurements, we pooled all the strains774

in equal numbers by carefully measuring the density of each cul-775

ture. The pooled culture was then put into a plate reader and776

the sfGFP and optical density were measured over time.777

Pooling all 15 genetic reporters results in a salient malathion778

response. The time-lapse curves of the sfGFP normalized by cell779

density are shown in Figure 6a and the fold change 24 hours780

after malathion induction is shown in Figure 6b for varying con-781

centrations. At a malathion induction concentration of 1.12 µM ,782

the pooled reporter exhibits a sustained response after an initial783

transience with a fold change of 2.1 after 24 hours of growth.784

In contrast, the maximum fold change achieved by any individ-785

ual reporter at the same concentration is 2.3 and is a transient786

response (lpxC, see Figure 5b). The maximum fold change cor-787

responding with a sustained response is 1.5 obtained by cspA2.788

For sustained salient to malathion, the pooled reporter provides789

more salient response than any individual reporter alone.790

Our experiments confirm the usefulness of the malathion re-791

porters outside of the laboratory and in field environments. A792

potential strategy for environmental malathion monitoring would793

be to collect a soil sample, culture the pooled reporters from a794

media made from the sample, then measure the sfGFP response.795

Though this strategy is enticing, we next aim to understand if796

it is possible to detect malathion in environmental samples from797

our individual reporters.798

Detecting malathion in environmental samples. The799

malathion reporter library, selected through observability analy-800

sis, has only been examined in an ideal laboratory scenario with801

either pure or processed malathion whose mass spectrum has 802

been analyzed; it is not yet known if the reporters will be able 803

to sense malathion when induced with actual environmental wa- 804

ter samples that have been treated with the insecticide. In the 805

previous section we showed that pooled reporters act as salient 806

malathion sensors. However, confounding factors may be present 807

in the environmental sample such as other small compounds that 808

may make it difficult to deconvolve malathion response from the 809

response due to the confounder. Therefore, in this section we de- 810

scribe an experiment to assess whether or not the malathion con- 811

centration can be deduced from our individual reporters treated 812

with environmental insecticide samples. 813

In order to test if the genetic reporters can sense malathion 814

from environmental samples, irrigation water was collected from 815

three crops after being sprayed with a mixture of Spectracide 816

(50% malathion) and water (Figure 7a). The concentration of 817

the mixture sprayed was either 0, 1, or 8 times the maximum rec- 818

ommended working concentration of Spectracide – 1 fluid ounce 819

per gallon of water. To rid the solution of unwanted microbes 820

and particles, the irrigation water was strained and filtered prior 821

to to the induction of the genetic reporters (see Methods). The 822

growth and induction protocols all remain the same as for the 823

samples treated with Spectracide in Figure 4c,d. 824

We found that a total 9 out of the 15 of the reporters were acti- 825

vated by induction of the irrigation water containing malathion. 826

Fig 7a shows the average per cell fluorescence 24 hours after 827

induction of the nine strains subjected to 0, 1, or 8 times the 828

working concentration of Spectracide. The reporters atpB, petA, 829

sucC, rpoA, fabA, and gltA all show a response to malathion at 1x 830

working concentration, while the remaining three did not show 831

significant differences from the negative control in this range. 832

Among the strains in Figure 7b, the strain sucC was activated 833

the most, showing an 80% increase from the 0x to 8x condition 834

after the 24 hour time period. This shows that many of the se- 835

lected genetic reporters, 60%, are able to detect malathion in 836

environmentally relevant scenarios, and, furthermore, we can use 837

this data to infer the concentration of malathion present in the 838

samples collected from the environment. 839

The response curves characterized previously in Figure 4d for 840

each of the genetic reporters can be used to make an inference 841

about the amount of malathion present in each environmental 842

sample. Note that we are making the assumption that the re- 843

sponse curves characterized for each of the nine reporters can be 844

applied to this new setting of treatment with irrigation water. 845

With this assumption we can then use the fitted Hill equations 846

from Figure 4d and numerically estimate the malathion concen- 847

tration that reproduces the signal at 1 or 8 times the working 848

concentration of Spectracide. The results obtained are shown in 849

Figure 7b for each of the nine strains. Through this approach, the 850

reporters provide a range of inferred malathion concentrations; 851

at the working concentration of Spectracide, we can infer that 852

the concentration of malathion is in the range 0.48 − 0.97 µM 853

and at 8 times the working concentration of Spectracide, we can 854

infer the concentration of malathion to be in the range 0.82 − 2 855

µM. It is important to note that for most, if not all, of the char- 856

acterized reporter strains, 2 µM was the maximum discernable 857

concentration before the signal saturates. Therefore, it is possi- 858

ble the concentration of malathion is higher than 2 µM, however 859

that range cannot be detected by our reporter library. 860

Discussion 861

It is often the case that biologists seek to identify key genes which 862

show variation for the biological process of interest. Many tools 863
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a b c0x 1x 8x Spectracide

Collect irrigation 

flow-through
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Filter and induce 

Malathion reporters

Figure 7: Irrigation water containing malathion from an agricultural setting activates transcriptional reporters
and allows for inference of environmental malathion concentration. (a) Three cabbage plants are sprayed with a solution
of 0, 1, and 8 times the working concentration of Spectracide, respectively. The flow-through is first captured and filtered and then
used to induce transcriptional activity in the malathion reporter strains. Using previously characterized response curves for each
reporter, an inference for the malathion concentration can be made. (b) The average per cell fluorescence (arbitrary units) of 9 out
of the 15 malathon reporters, after 24 hours of induction, showed activation due to the soil runoff solution containing malathion.
The working concentration of Spectracide is instructed as 1oz of Spectracide to 1 gallon of water. The error bars represent the
sample standard deviation from the mean across three biological replicates. (c) The concentration of malathion present in the
irrigation water is inferred using the signal from (b) and the fitted response curves from Figure 4d.

have been developed or adapted to meet this need e.g. differen-864

tial expression, principal component analysis, and gene regula-865

tory network reconstruction to name only a few. However, when866

using the current tools, there is potential to measure features867

that are redundant which can lead to wasted time and resources.868

Furthermore, traditional tools do not provide the capability of869

optimal gene selection for downstream targeted gene profiling.870

Therefore, we developed an efficient method that ranks the fea-871

tures for optimal gene selection. The method combines dynamic872

mode decomposition (DMD) and observability of dynamical sys-873

tems to provide a systematic approach for the discovery of genes874

which act as biomarkers for the perturbation-inducible cell state.875

To extract optimal perturbation sensitive promoters from our876

model, we showed that genes which contribute highly to observ-877

ability inform the design of transcriptional reporters that exhibit878

condition specific sensing.879

We introduced DMD as a novel tool for analysis of transcrip-880

tome dynamics. In this case, we studied bulk transcriptome881

dynamics at the minutes resolution and showed that the low-882

dimensional DMD representation accurately predicts the dynam-883

ics and clusters genes based on temporal behavior. Our results884

suggest that DMD is a capable tool for analysis of transcriptomic885

data and warrants further exploration in single-cell RNA-seq and886

other ’omics technologies that aim to infer cell trajectories, pseu-887

dotime, and single-cell regulatory networks.888

The identification of transcriptional genetic sensors was posed889

as a design challenge, where a subset of genes are selected to890

maximize the observability of the cell state. It was shown that a891

large fraction of genes contribute insignificantly to the cell state892

observability when only few time points are measured, further893

validating the common knowledge that genetic networks possess894

redundancies and are noisy. We also showed that it is signifi-895

cantly more beneficial to measure a sparse set of genes for more896

time points than to measure more genes for fewer time points.897

Our results suggest future joint experimental and computational898

approaches which limit the amount of resources required to get899

a full description of the system dynamics. A natural extension900

of our work is to determine how well measurements from a small901

library of reporters recapitulate the bulk cell state under unseen 902

conditions. Such studies will inform how RNA-seq data should 903

be collected in the future in order to maximize the reconstruction 904

accuracy and minimize labor and experimental costs. 905

The machine learning driven selection of genetic reporters was 906

shown to produce 15 functional genetic reporters with a vari- 907

ety of malathion dose-response curves. We demonstrated how 908

to aggregate information from each reporter to create a pooled 909

reporter. Moreover, we showed that the genetic reporters can be 910

used to detect malathion in environmental settings, closing the 911

design-build-test loop. More generally, our results and method- 912

ology offer an innovative approach that can be used to to identify 913

perturbation-inducible gene expression systems. We emphasize 914

that our approach takes advantage of the largely untapped re- 915

sources present in native host genomes and we anticipate that 916

techniques like the one developed here will accelerate the opti- 917

mization of parts for synthetic biologists to build useful devices 918

from. 919

Our approach makes no assumptions on the nature of the un- 920

derlying system. In that sense, the framework we have devel- 921

oped is general and can be applied to data generated from other 922

’omics techniques and from any organism. In the case that a lin- 923

ear response model is insufficient for capturing the transcriptome 924

dynamics, it can be extended to a variety of nonlinear models to 925

capture nonlinear modes of response [56,66]. 926

Due to only analyzing the transcriptome of SBW25 under spe- 927

cific environmental conditions, our approach cannot guarantee 928

that the identified sensor promoters respond directly to the tar- 929

get analyte of interest. Our approach to biosensing is to view 930

a proxy of the entire cell state, which is a function of the en- 931

tire underlying network. While this approach is novel, it also 932

implies that the identified sensor promoters may not work in a 933

different host or environmental context. Further refinement of 934

the list of biomarker genes could be obtained by fusing ChIP- 935

seq (chromatin immunoprecipation followed by sequencing) with 936

RNA-seq measurements to discover transcription factors, how- 937

ever such an experimental assay can be prohibitively expensive. 938

The DNA binding sites measured by ChIP-seq alone are not suffi- 939
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cient to infer regulation of transcription. However, together with940

RNA-seq, the set of biomarkers which causally drive the condi-941

tion specific response can be uncovered. We envision that our942

method will accelerate the discovery and design of biosensors in943

novel host organisms for synthetic biology applications. 944

Methods

Rapid culture sampling. For each biological replicate, Pseu-
domonas fluorescens SBW25 glycerol stock was scraped and inocu-
lated in 5 mL of fresh LB broth (Teknova Catalog no. L8022) and
was incubated and shaken at 30◦C and 200 r.p.m. for 15 hours. The
OD600 of the 5 mL culture was measured and the entire culture was
transferred to 50 mL of fresh LB broth, which was then proceeded by
incubation and shaking. Once the OD600 of the 50 mL culture reached
0.5, the culture was again passaged into 300 mL of fresh LB broth. The
300 mL culture was grown until OD600 of 0.5. Then the culture was
split into two 150 mL cultures (one for malathion induction and one for
the negative control). The two cultures were sampled at evenly spaced
intervals in time (see Supplementary Table 1 for sampling volumes
and times) and after the 0 minute sample, malathion (Millipore Sigma
Catalog no. 36143) was introduced to the positive condition at 1.83
mM. To separate the media from the cells, a vacuum manifold with
3D printed filter holders was constructed and utilized (Supplementary
Figure 10). 0.45 µm PVDF membrane filters (Durapore Catalog no.
HVLP04700) were placed on the filter holders, a vacuum pump was
turned on, and the culture sample was dispensed onto the center of
the filter, quickly separating the media from the cells. The filter with
the cells was then placed into a 50 mL conical centrifuge tube (Fisher
Scientific 1495949A) using sterile tweezers. The tube with the filter
was then submerged into a liquid nitrogen bath for 10 seconds to flash
freeze the sample. The sample were then stored -80 ◦C.

RNA extraction. To extract the RNA, first the filter-harvested cells
were resuspended in 2 mL RNAprotect Bacterial Reagent (Qiagen Cat-
alog no. 76506), then pelleted in a centrifuge. To lyse the cells, the pel-
let was then resuspended in 200 µL of TE Buffer containing 1 mg/mL
lysozyme. The RNA was then extracted from the lysed cells using
Qiagen RNeasy Mini Kit (Catalog no. 74104), and the samples were
DNase treated and concentrated using Zymo RNA Clean and Concen-
trator (Catalog no. R1019).

RNA library preparation and sequencing. Bacterial rRNA was
depleted using NEBNext Bacterial rRNA Depletion Kit (Catalog no.
E7850X). The indexed cDNA library was generated using NEBNext
Ultra II Directional RNA Library Prep (Catalog no. E7765L) and
NEBNext Multiplex Oligos for Illumina (Catalog no. E6609S). In to-
tal, 40 samples (two biological replicates, 10 time points, two condi-
tions) were prepped and sequenced. The library was sequenced at the
Genetics Core in the Biological Nanostructures Laboratory at the Uni-
versity of California, Santa Barbara on an Illumina NextSeq with High
Output, 150 Cycle, paired end settings.

Pre-processing of sequencing data. The raw reads were trimmed
for adapters and quality using Trimmomatic [67]. The reads were then
pseudoaligned with Kallisto [68] to the Pseudomonas fluorescens
SBW25 transcriptome generated using GFFRead [69] and GenBank
genome AM181176.4. The normalized gene expression of transcripts
per million (TPM), which takes into account sequencing depth and
gene length, are used for modeling and analysis. Genes with an aver-
age TPM less than 100 in all experimental conditions were discarded
from our analysis.

Malathion reporter library cloning. For the reporter plasmid
cassette design, first, the closest intergenic region to the gene target
larger than 100 base pairs (bp) was identified based on the open reading
frame of the sequenced genome of Pseudomonas fluorescens SBW25
(GenBank genome AM181176.4). Primers were designed to include the
entire intergenic region in order to capture any transcription-regulator
binding sites surrounding the promoter (Figure 4a). The identified
intergenic regions were amplified using the primers and this is what
we refer to as ’promoter regions’ following the terminology of [70].
The promoter regions were cloned into a cassette on the plasmid back-
bone pBHVK (Supplementary Figure 5) containing a bicistronic ribo-
some binding site and super folder GFP (sfGFP) as the reporter gene.

Lastly, a cloning site was placed in the cassette so that the cloned
promoter controls transcriptional activity of sfGFP.

The promoters were assembled onto the plasmid backbone pBHVK
(see Supplementary Fig. 5) via Golden Gate Assembly [71] using
NEB Golden Gate Assembly Kit (Catalog no. E1601S). Because of
the potential of arcing during electrotransformation of Pseudomonas
fluorescens SBW25 with Golden Gate reaction buffers, the plasmids
are first subcloned into E. coli Mach1 (Thermo Fisher Scientific Cat-
alog no. C862003) following the manufacturer’s protocol for chemi-
cal transformation. Between three and six colonies are selected for
each strain and the reporter cassette was sent for sequencing at Eu-
rofins Genomics. Then the plasmid DNA was prepared from cultures
of transformed Mach1 cells using Qiagen Spin Miniprep Kit (Catalog
no. 27106) followed by chemical transformation into SBW25. SBW25
was made chemically competent by washing a culture at OD600 of
0.3 with a solution of 10% glycerol two times, then resuspending in
500 µL of 10% glycerol. The plasmid DNA is added to 80 µL of the
cell suspension and kept at 4◦C for 30 minutes, then the cells were
electroporated with 1600 V, 200 Ω, and 25 µF. The cells were immedi-
ately resuspended in 300 µL of SOC Broth (Fischer Scientific Catalog
No. MT46003CR), recovered for 2 hours at 30◦C in a shaking incu-
bator, and plated onto 1.5% LB Agar plates with 50 µg

mL
Kanamycin.

Again, three to six colonies of each strain have their reporter cassette
sequenced at Eurofins Genomics and simultaneously glycerol stocks of
each colony is prepared for long term storage.

Photobleaching of Spectracide. Spectracide malathion insect
spray concentrate (Spectracide Catalog no. 071121309006) was uti-
lized as the environmentally relevant source of malathion for the re-
porter library testing and contains 50% malathion. Spectracide is an
opaque liquid. We found that we can remove the opaque substances
by photobleaching a 5% Spectracide solution (in LB) in a Synergy H1
plate reader (Biotek), at 30◦C and 800 r.p.m. OD600 and fluorescence
(excitation 485nm, emission 528nm) were measured every 3 minutes for
8 hours. To ensure malathion remained in solution after photobleach-
ing, the mass spectrum was analyzed at the University of California,
Santa Barbara Mass Spectroscopy Facility. From this we determined
that malathion is stable for the course of the photobleaching (Supple-
mentary Figures 11 to 23).

Plate reader assays to measure response curves and doubling
times. Scrapes of culture from glycerol stocks of each strain were used
to inoculate 3 mL of LB (Kanamycin 50 µg

mL
) in 10 mL 24 deep-well

plate sealed with a breathable film (Spectrum Chemical Catalog no.
630-11763) and grown at 30◦C overnight in a shaker incubator. The
overnight cultures were diluted to an OD600 of 0.1 in 2 mL of LB and
the cultures were grown for an additional 2 hours. 250 µL of this cul-
ture was then transferred to a 96 well optically-transparent microtiter
plate. Photobleached spectracide (50% malathion) is then introduced
(if relevant) to the cultures in the wells to give the desired concentra-
tion of malathion, and grown in a Synergy H1 plate reader (Biotek), at
30◦C and 800 r.p.m. OD600 and sfGFP (excitation 485nm, emission
528nm) was measured every 3 minutes for 48 hours. Each data point
in a response curve was generated by normalizing the sfGFP signal
(arbitrary fluorescence units) by the OD600 to give the average per
cell fluorescence, and only the data points before cell death (due to
nutrient depletion or media evaporation) are used. The strain growth
rates were calculated as ln(initial OD600/final OD600)/(tfinal−tinitial),
where the initial OD600 is the first measurement within the exponential
phase and final OD600 is the last measurement within the exponential
phase. Then the strain doubling times were calculated as ln(2) divided
by the growth rate.

Collection and cleanup of irrigation water treated with Spec-
tracide. Three cabbage plants were each potted in 5 gallon buck-
ets with fresh soil and a water catchment tray was placed under the
plants to catch flow through. The first plant was sprayed with water
containing no malathion and the flow through was collected in a 1 L
pyrex bottle. The second plant was sprayed with a Spectracide (50%
malathion) solution at a concentration of 1 fluid ounce per of gallon
water – the maximum working concentration of Spectracide as recom-
mended by the manufacturer. Lastly, the third plant was sprayed with
the solution at 8 fluid ounces per gallon of water. Each plant was
sprayed for one minute and the collected flow through from each plant
were first strained using a 40 µm cell strainer (VWR 76327-098) to re-
move large microorganisms and large particles. The strained samples
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were then centrifuged to separate dense, soil particles from the Spec-
tracide solution. Finally, the supernatant was vacuum filtered through
a 0.22 µm membrane before induction of the reporters. The protocol
for induction of the reporters with the irrigation water is the same as
above.

Computing the dynamic mode decomposition. We now discuss
the details of applying dynamic mode decomposition (DMD) to time-
series data obtained from sequencing. As mentioned previously, many
algorithms have been developed to compute the DMD modes, eigen-
values, and amplitudes, and a key requirement of almost all of the
techniques is that the time points are spaced uniformly in time. In our
work we begin by collecting the data for a single experimental condi-
tion into a time-ordered matrix, X, which contains a total of m × r
data snapshots for a data set with m time points and r replicates. For

response to malathion, each x
(j)
i corresponds to the gene expression

vector at time i in replicate j and is in the ((i+m)× j)th column of
the data matrix X where i ∈ {0, 1, . . . ,m − 1} and j ∈ {1, 2, . . . , r}.
For gene expression data obtained from RNA-seq, each data snapshot
typically contains thousands of rows denoted by n. The n × rm data
matrix for the response to malathion is then given by

Xmalathion =

x
(1)
0 x

(1)
1 . . . x

(1)
m−1 x

(2)
0 . . . x

(2)
m−1 . . .


(5)

where each xi ∈ Rn represents the gene expression given in transcripts
per million (TPM) from the malathion condition. Similarly, the data
matrix for the control condition is constructed. The fold change data
matrix, Z, is subsequently computed as Z = Xmalathion � Xcontrol,
where � denotes the Hadamard (element-wise) division of two matri-
ces. Next we compute the mean-subtracted and standard deviation-
normalized data matrix Z̄

Z̄ =

[
z0 − µ0:m−1

σ2
0:m−1

z1 − µ0:m−1

σ2
0:m−1

. . .
zm−1 − µ0:m−1

σ2
0:m−1

]
(6)

where µ0:m−1 is the vector of time-averages of each gene and σ2
0:m−1

is the vector of time-standard deviations of each gene. The divisions
in Eq. (6) are performed element-wise. We see that Ẑ is obtained by
removing the time-averages from each gene and standardizing the time-
variances of each gene. The mean subtraction operation is motivated
by the fact that the mean of the data corresponds to the eigenvalue
λ = 1, which is always an eigenvalue of the Koopman operator, the
operator that DMD ultimately aims to approximate [72], and not one
we are particularly interested in. The normalization by the standard
deviation is performed so that the magnitude of the fold change has
no implication on the connectivity of the learned dynamical system.

The algorithm we make use of to compute the dynamic mode decom-
position (and the approximation of the Koopman operator) is exact
DMD [37], which aims to identify the best-fit linear relationship be-
tween the following time-shifted data matrices

Z̄p =
[
z̄0 z̄1 . . . z̄m−2

]
, Z̄f =

[
z̄1 z̄2 . . . z̄m−1

]
such that

Z̄f = KZ̄p + r (7)

where r is the residual due to K only providing an approximation of
the actual dynamics. Note that there are n2 unknown parameters in
K and n×m equations in Eq. (7). The residual is then minimized by
Exact DMD (in the least squares sense) by first considering the reduced
singular value decomposition (SVD) of Ẑp = UΣT> where Σ ∈ Rk×k.
As the number of time points, m, obtained from sequencing is typically
much less than the number of genes, n, we keep k ≤ m singular values.
Recognizing that minimizing the residual requires it to be orthogonal
to the left singular vectors, we can pre-multiply (7) with U> to obtain

U>Z̄f = KUΣT>. (8)

Rearranging the above equation, it is shown that K is related to K̂
through a similarity transformation as shown in Eq. (9)

K̂ = U>Z̄fTΣ−1 = U>KU (9)

meaning that the eigenvalues of K̂, λ, are equivalent to the k leading
eigenvalues of K while the eigenvectors of K̂, s, are related to the k
leading eigenvectors of K, v, by v = Us. This eigendecomposition

then allows the fold change response to be written as the following
spectral decomposition

ẑi =

k∑
j=1

vjλ
i
jbj = VΛib (10)

where V is a matrix whose columns are the eigenvectors (DMD modes)
vj , and b is a vector of amplitudes corresponding to the gene expression
at the initial time point as b = V†ẑ0. Here † represents the Moore-
Penrose pseudoinverse of a matrix.

Using the above spectral decomposition, the modes can then be evolved
in time for m − 1 time steps to reconstruct the data from knowledge
of the initial condition. Evolving past the mth time point allows for
forecasting of the fold change response. To measure the accuracy of
reconstruction we use the coefficient of determination

R2 = 1−
∑m
i=0(ẑi − z̃i)∑m
i=0(ẑi − z̄)

(11)

where z̄ is the vector of each gene’s mean expression, formally z̄(j) =∑m
k=0 ẑ

(j)
k , and z̃k = Kkẑ0 is the prediction of ẑk given by the model

starting from the initial condition.

Computing the gene sampling weights. Here we describe our
methodology for ranking genes based on their contribution to the ob-
servability of the dynamical system learned via dynamic mode decom-
position. We start by introducing the energy of a signal in discrete-time
as

Ey =

∞∑
i=0

y>i yi (12)

which is closely related to the idea of energy in the physical sense
and where y = Wz̄ are measurements of the system state and W ∈
Rp×n. Rewriting the signal energy (12) using the recursion for y given
as yt = WKtz̄0, we can reveal the connection between energy and
observability

Ey =
∞∑
i=0

z̄>0 Ki>W>WKiz̄0

= z̄>0 (
∞∑
i=0

Ki>W>WKi)z̄0

= z̄>0 Xoz̄0

(13)

where Xo is the infinite-horizon observability gramian, a symmetric
matrix that is unique if the eigenvalues of K all have magnitude less
than 1. The observability gramian describes how much gain will be
attained by a system’s output, y, given an initial condition z̄0. It
simultaneously gives a measure of how well the initial condition z̄0 can
be estimated given only measurements of the system state y [61].

We use the observability gramian along with the measure of energy it
provides to optimize for the gene sampling weights in the rows of W
that maximize the signal energy Ey . Formally, the objective function
is given as

max
W∈Rp×n

z̄>0 Xoz̄0

subject to WW> = Ip×p.
(14)

where we seek the matrix W that maximizes the observability of the
cell state z̄0. The constraint above enforces the following three points,
i) the length of each row vector in W is not important, we are only
concerned with the direction and the constraint sets the length of each
row vector to be equal to 1, ii) the maximization problem is well-posed,
i.e. the objective cannot blow up to infinity with the length constraint,
and iii) the rows of W form p vectors of an orthonormal basis for Rp,
i.e. WW> = Ip×p. Each row vector in W can then be viewed as a set
of weights, each orthogonal to one another, that rank genes based on
their contribution to the observability of the system. The optimization
problem (14) represents a quadratic program with linear constraints,
and the rows of W which maximize the objective are the p eigenvectors
corresponding to the p eigenvalues with highest magnitude of the Gram
matrix

G =

∞∑
i=0

Kiz̄0z̄>0 Ki> . (15)
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Since G ∈ Rn×n is a sum of quadratic forms, the result is that G
has non-negative, real-valued eigenvalues. If the eigendecomposition is
G = QDQ−1, then the solution to the optimization problem Eq. (14)
is

W =


q>1
...

q>p

 (16)

where q1 through qp are the top eigenvectors of the Gram matrix G.
The proof of the solution to the optimization problem is provided in
the Supplementary Information (Section 1.1). The single set of gene
sampling weights that maximize the observability are precisely q1 and
from here on out we call these weights w.

Since transcriptomic data sets typically have few initial conditions, i.e.
biological and technical replicates, before solving for w we enrich our
data set with N synthetic initial conditions that are randomly sampled

as Uniform(min(z̄
(j)
0 ),max(z̄

(j)
0 )) where j in {1, 2, ..., r} and r is the

number of replicates. The motivation for the artificial data generation
is given in [73], where it is shown that artificially generated data points
improved the estimate of the DMD model when the data set is affected
by noise. N is chosen to be equal to the number of genes to ensure
the matrix of initial conditions has full rank. Another issue that we
have addressed are the instabilities present in the DMD eigenvalues.
Consequently, the observability gramian is not unique and the sum in
Eq. (15) diverges to infinity. To mend this issue, we compute the
finite-horizon Gram matrix, where the sum in Eq. (13) and Eq. (15)
is from 0 to m. This allows for the computation of the finite-horizon
signal energy from Eq. (13) where the bounds on the sum are now
from i = 0 to i = m.

Once w is obtained by solving Eq. (14), then measurements yt, for t
in {0, 1, ..., T}, are generated from yt = w>Ktz̄0 while keeping only
the q elements of w with largest magnitude as nonzero. All other
elements of w are set to zero to simulate the sampling of only selected
genes. To reconstruct z̄0 using only the measurements, we form the
following observability matrix from the known sampling weights, w
and the dynamics matrix K

y0

y1

y2

...
yT

 =


w>

w>K
w>K2

...
w>KT

 z̄0 = OT z̄0 (17)

and using the Moore-Penrose pseudoinverse we can obtain an estimate
of the initial condition as follows

O†T


y0

y1

y2

...
yT

 = ẑ0 ≈ z̄0. (18)

Increasing q while keeping T constant results in increasing reconstruc-
tion accuracy until a critical value of q such that the reconstruction
accuracy plateaus; a similar scenario holds for keeping q constant and
increasing T . When both T and q surpass the critical values, perfect
reconstruction may be achieved.

When the computation of the Gram matrix, G, is not computationally
feasible, as can be the case when the dimensionality of the data are rel-
atively high compared to that of bacterial transcription networks that
we are dealing with here, the reduced order dynamics given by DMD
can be used to compute an approximation to the leading eigenvalues
and eigenvectors. The reduced order G is then given by

G̃ =

∞∑
i=0

K̂iU>z̄0z̄>0 UK̂i> (19)

where K̂ and U are given in Eq. (9). Supplementary Figure 4 shows
the approximation of the leading eigenvalues and eigenvectors of G by
G̃.

Data availability

The data generated from RNA sequencing
are available at GEO Accession GSE200822:

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200822. The
DNA sequencing data for the reporter strains and the kinetic
data generated from the spectrophotometer are available at:
https://github.com/AqibHasnain/transcriptome-dynamics-dmd-
observability.

Code availability

All codes used in this study are available at:
https://github.com/AqibHasnain/transcriptome-dynamics-dmd-
observability or available from the author’s upon request. The git
repo hash key associated with this manuscript is 2aaa256.
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Malathion reporter Locus tag Molecular function Act./Rep. ymin ymax KM n

atpB PFLU 6124
• proton-transporting ATP synthase

activity, rotational mechanism
Activated 1467 1783 0.6 4.5

petA PFLU 0841

• 2 iron, 2 sulfur cluster binding,

• metal ion binding

• ubiquinol-cytochrome-c reductase

activity

Activated 853 1125 1.4 2.4

sucC PFLU 1823

• ATP binding

• magnesium ion binding

• succinate-CoA ligase activity

Activated 257 337 0.2 1.9

rpoA PFLU 5502

• DNA binding

• protein dimerization activity

• DNA-directed 5’-3’ RNA

polymerase activity

Activated 1256 1542 0.9 3.0

fabA PFLU 1836
• dehydratase activity

• isomerase activity
Activated 292 373 0.2 1.1

anti-sigma 28 factor PFLU 4736
• Negative regulator of

flagellin synthesis
Activated 339 535 0.7 1.5

Uncharacterized protein I PFLU 3761 Activated 2465 3110 0.5 2.7

cspA2 PFLU 4150 • major cold shock protein Activated 706 1186 1.5 5.3

Putative ABC transport

protein
PFLU 0376 • ligand-gated ion channel activity Activated 584 1083 1.0 2.0

gltA PFLU 1815 • citrate (Si)-synthase activity Activated 238 458 0.9 1.9

lpxC PFLU 0953
• metal ion binding

• deacetylase activity
Activated 1017 2418 0.4 7.4

Uncharacterized protein II PFLU 1358 Repressed 1073 3387 0.3 1.9

capB PFLU 1302A • cold shock protein Repressed 9616 10543 0.9 2.9

Putative outer membrane

porin A protein
PFLU 4612 • porin activity Activated 642 1172 0.6 1.5

acrA PFLU 1380 • transmembrane transporter activity Activated 354 682 0.9 2.9

Table 1: Sensor promoter library metadata and transfer curve parameters for the fitted Hill equations in Fig. 4d.
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