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ABBREVIATIONS 

IDPs, intrinsically disordered proteins; IDRs, intrinsically disordered regions; NMR, nuclear mag-

netic resonance spectroscopy; SAXS, small-angle X-ray scattering; SMF, single molecule fluores-

cence; PDB, Protein Data Bank; MC-SCE, Monte Carlo Side Chain Ensemble; smFRET, single mole-

cule fluorescence resonance energy transfer; CSSS, custom secondary structure sampling; Rg, ra-

dius of gyration; Ree, end-to-end distance; FFT, FastFloppyTail; RMSD, root-mean-squared devia-

tion; aSyn, alpha-synuclein; I-2, inhibitor-2.  
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ABSTRACT 

The power of structural information for informing biological mechanism is clear for stable folded 

macromolecules, but similar structure-function insight is more difficult to obtain for highly dynamic 

systems such as intrinsically disordered proteins (IDPs) which must be described as structural en-

sembles. Here we present IDPConformerGenerator, a flexible, modular open source software plat-

form for generating large and diverse ensembles of disordered protein states that builds conformers 

that obey geometric, steric and other physical restraints on the input sequence. IDPConformerGen-

erator samples backbone phi (φ), psi (ψ), and omega (ω) torsion angles of relevant sequence frag-

ments from loops and secondary structure elements extracted from folded protein structures in the 

RCSB Protein Data Bank, and builds side chains from robust Monte Carlo algorithms using expanded 

rotamer libraries. IDPConformerGenerator has many user-defined options enabling variable frac-

tional sampling of secondary structures, supports Bayesian models for assessing agreement of IDP 

ensembles for consistency with experimental data, and introduces a machine learning approach to 

transform between internal to Cartesian coordinates with reduced error. IDPConformerGenerator 

will facilitate the characterization of disordered proteins to ultimately provide structural insights 

into these states that have key biological functions.   
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INTRODUCTION 

Disordered states of proteins, including unfolded states, intrinsically disordered regions (IDRs) of 

otherwise folded domains, as well as full intrinsically disordered proteins (IDPs) are increasingly rec-

ognized for the roles they play in folding kinetics1 aggregation propensity2,3, critical biological func-

tions4, and pathological disease states5. Structural insights are needed to better understand these 

disordered protein states, and a variety of solution experiments have been developed to enable 

structural and dynamic descriptions of disordered proteins using nuclear magnetic resonance 

(NMR), small angle X-ray scattering (SAXS), single molecule fluorescence (SMF) and other data 

types6–11. However, solution experimental data for disordered states are averaged over a very large 

number of heterogeneous interconverting conformations, leading to greater challenges in struc-

tural interpretation than for folded proteins. Thus, specific computational approaches are required 

to bridge the gap between experiment and structural ensembles for disordered protein states. 

 

The overall general approach begins with a large set of potential fractionally populated confor-

mations and then either selects a subset of these and/or assigns weights to conformational sub-

populations that best agree with the available, but highly averaged, experimental restraints. These 

two components have typically been considered separate problems and a number of methods exist 

for each. TraDES12,13, Flexible-meccano14, FastFloppyTail15 and other methods16 are available to gen-

erate conformer pools, based primarily on the statistical distributions found in folded protein struc-

tures from the RCSB Protein Data Bank17,18. TraDES builds trajectories of 3 C positions at a time 

based on the probabilities in a set of non-redundant structures from the PDB and then fills in the 

rest of the chain. Flexible-meccano builds chains by selecting φ/ψ torsion angles based on amino-

acid specific conformational potentials derived from the PDB. FastFloppyTail also utilizes a three-

residue fragment-based approach, with a bias towards the loop regions of the PDB. An approach 

from the group of Bernado16 similarly uses data from the PDB extracted as tripeptide segments. 
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Another approach builds on Flexible-meccano but uses tripeptide conformers derived from MD sim-

ulations19.  

 

Because the structural ensembles provided by these methods are agnostic to experiment, a sepa-

rate step is used to select a subset of the conformations, or more generally reweight the conformers 

in the pool to define ensembles that best represent information about the disordered state from 

solution experiments. These include, among others, ENSEMBLE20, ASTEROIDS20,21, X-EISD22,23, 

BME24, and BW25/VBWSS26, with a number utilizing Bayesian statistics22–24 and/or maximum en-

tropy24,27 to address inherent uncertainties in experiment and back-calculations from a disordered 

structural ensemble. Molecular dynamics simulations can provide conformers that are biased by the 

physicochemical interactions included in the force fields28–31, and represent Boltzmann weighted 

states, and have been used with NMR biases2 and a reweighted hierarchical chain growth algo-

rithm32 to generate disordered ensembles.  

 

Together these approaches have all been valuable for both creating and ultimately characterizing a 

variety of disordered proteins, however a number of challenges remain. In particular, for disordered 

proteins having preferential sampling of fractional secondary structure and tertiary contacts, espe-

cially for longer sequences, the starting pool sample becomes the more limiting factor for successful 

identification of subsets for reweighted ensembles that can fit experimental data. While a number 

of these tools can generate conformers biased by known secondary structure distributions, most of 

these tools are not flexible as to how users can generate disordered conformer ensembles, as well 

as evaluating them with respect to experimental data.   

 

Here, we report the open source software platform, “IDPConformerGenerator”, for generating dis-

ordered protein conformations, utilizing a wide range of new and novel methods and models within 
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a single software suite. IDPConformerGenerator begins with backbone builds based on torsion angle 

distributions of phi (φ), psi (ψ), and omega (ω) found in the RCSB Protein Data Bank (PDB) and then 

enables the build of side chain ensembles using Monte Carlo Side Chain Ensemble (MC-SCE) that 

completes the all-atom description by including hydrogens. IDPConformerGenerator has significant 

flexibility in user-defined options for size of peptide fragments used to build the backbone, amino 

acid substitutions, secondary structure biases, steric clash criteria, and energy biasing using force 

fields. Additional stand-alone and integrated algorithms within IDPConformerGenerator extend the 

fundamental internal coordinate conformer ensemble builds with state-of-the-art transformations 

to Cartesian coordinates using Int2Cart33, which yields more correct valence geometries and re-

duces steric clashes. Finally, the generated ensembles can be evaluated with stand-alone and inte-

grated software modules such as the X-EISD Bayesian model for assessing agreement with many 

different experimental data types including NMR, SAXS, and single molecule fluorescence resonance 

energy transfer (smFRET)22,23. What makes IDPConformerGenerator distinct from other tools is its 

flexibility as a user-friendly toolkit to explore different computational strategies and protocols for 

rationally defining conformational ensembles of (intrinsically) disordered protein sequences.  

 

We demonstrate that IDPConformerGenerator can efficiently calculate ensembles of proteins up to 

at least 440 residues in length with a variety of secondary structural distributions and tertiary con-

tact patterns. Many of these have reasonable RMSDs from experimental solution data, particularly 

some generated with bias for fractional secondary structure based on NMR chemical shifts. These 

results support the utility of IDPConformerGenerator for creation of initial conformer pools that are 

more physically representative and more readily optimized by using experimental restraints with X-

EISD22,23 or ENSEMBLE20. 

METHODS AND MODELS 
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Design of IDPConformerGenerator. We set out to design a tool to efficiently generate conformers 

that realistically sample likely conformational space of intrinsically disordered sequences from sta-

tistical sampling of backbone torsion angles (φ, ψ, and ω) of short protein segments in the PDB that 

are identical or similar in sequence to the protein under investigation. This led to our choice to 

exploit the PDB for sampling of torsion angle space to generate more physically meaningful con-

formers, a choice also utilized by TraDES12,13, Flexible-meccano14, FastFloppyTail15 and others. Given 

these physically sound backbone conformations, we also provide side chain building algorithms such 

as MC-SCE that can generate ensembles of different rotamer states that are Boltzmann weighted 

and further all-atom representations by including hydrogens. The resulting sets of conformations 

are intended to be utilized as inputs to downstream approaches to define ensembles that best agree 

with experimental data, such as those that select subsets (e.g., ENSEMBLE20, ASTEROIDS20,21), re-

weight conformers (e.g., BME24), or both (X-EISD22,23).  

 

Building conformational ensembles. IDPConformerGenerator starts by creating a protein sequence 

database annotated with φ, ψ, and ω torsion angles and secondary structure per residue. We use 

non-redundant lists of structures such as those generated by Dunbrack PISCES database34. Hence, 

IDPConformerGenerator builds structures by extracting φ, ψ, and ω backbone torsion angles from 

the database, fragment-by-fragment (with fragments being peptides of variable length), using tor-

sion angles matching the input sequence for each fragment or matching a user-defined residue tol-

erance (or substitution) dictionary. While other tools utilize rigid fragment sizes, IDPConformerGen-

erator allows users to configure the size and probability of the peptide fragments used to build the 

IDP chain stepwise, modulating the sampling strategy to explore. IDPConformerGenerator uses 

DSSP nomenclature35,36 to annotate residues by secondary structure elements. Because of this, us-

ers can define the secondary structural classes that IDPConformerGenerator will sample, either 
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across the sequence or in a residue-specific manner, based on knowledge such as from NMR chem-

ical shifts for fractional populations of secondary structures as a function of residue37–39 . We provide 

several methods to sample bond geometries when converting from internal to Cartesian coordi-

nates. The most important one is the recently published Int2Cart methodology33 that predicts bond 

lengths and angles for a set of torsion angles and residue identities. Instead of using hard-spheres 

to model atom volumes, IDPConformerGenerator computes the whole Lennard-Jones (LJ) potential 

to tolerate small clashes that can be compensated by favorable interactions, with user-defined 

thresholds to direct acceptance of a fragment or backtracking to rebuild. To generate full side 

chains, IDPConformerGenerator has integrated the Monte Carlo Side Chain Ensemble (MC-SCE) al-

gorithm,  originally developed for the more difficult case of folded proteins but which works easily 

for disordered states40.  

 

Associated and Integrated tools. IDPConformerGenerator is designed as a platform to facilitate gen-

eration of disordered protein conformations, including analysis of resulting ensembles and scoring 

or re-weighting with respect to experimental data. Tools for analysis of structure are integrated 

within IDPConformerGenerator, including for secondary structure, torsion angle distributions, ra-

dius of gyration (Rg), end-to-end distances, asphericity (deviation from spherical shape of the con-

formers), and C - C distance and distance difference matrices. The software easily enables use of 

downstream tools for scoring, re-weighting or sub-setting to fit experimental data, and will serve as 

a future platform for integrating these tools, including the simple ENSEMBLE approach and the X-

EISD Bayesian model.   

 

The IDPConformerGenerator software platform. To facilitate its development and use, IDPCon-

formerGenerator is open source and extensively documented and the architecture is modular to 

allow easy extension with other modules and strategies (https://github.com/julie-forman-kay-
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lab/IDPConformerGenerator). IDPConformerGenerator is written in Python, and all its automated 

functionalities are available as command line commands. In addition, all IDPConformerGenerator’s 

functionalities are available through the Python interpreter and can be imported and used inde-

pendently by more advanced users. Also, all IDPConformerGenerator pipelines are distributable 

across multiple CPU cores. IDPConformerGenerator’s software design facilitates a flexible approach 

to building conformers with numerous user parameters that enable very different realistic ensem-

bles to be built, with the design philosophy and options discussed here. The overall workflow of 

IDPConformerGenerator is described in detail next, and is schematized in Figure 1. 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

10 

 

 

Figure 1. Schematic diagram of the IDPConformerGenerator approach. Generating conformers re-
quires creation of a reusable database of backbone torsion angles and input of the primary se-
quence, with optional user-defined parameters including for amino acid substitutions, secondary 
structure sampling and fragment size probabilities. An example of a peptide of 2 residues (frag-
ment size 2) that is used to build inhibitor-2 is shown with backbone torsion angles labeled, an hel-
ical secondary structure with all-atom side-chains of an I-2 conformer, as well as an illustrative set 
of 100 generated conformations for inhibitor-2. Conformers generated can then be scored or re-
weighted based on experimental data. 
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Backbone conformer generation. IDPConformerGenerator requires a torsion angle database from 

which to build backbone conformers. User can provide custom-made lists of the PDB chains to as-

semble the torsion angle database, thus allowing tuning for resolution and diversity. IDPCon-

formerGenerator considers only continuous chains and selects the atoms with the highest occu-

pancy for those with alternative locations. The IDPConformerGenerator parser works with both the 

older PDB format as well as newer mmCIF files. For the results reported here, we employed a fixed 

non-redundant database of PDB structures from the Dunbrack PISCES database34 (October 15th, 

2020), including high-resolution structures with resolution better than or equal to 2.0 Å and R-factor 

of 0.25 or lower with a maximum mutual sequence identity of 90%.  

 

Conformer backbones are built fragment-by-fragment, where fragments can be configured for dif-

ferent lengths (described below). Physical validation of the conformers (for example, steric clash 

check) is parametrizable via forcefields and threshold parameters. If a clash is found, IDPCon-

formerGenerator will delete the last fragment and attempt a new one. If no new fragment can be 

added without steric clash, the building process will backtrack to delete additional fragments. This 

process is repeated until the whole backbone is complete. With the default parameters, some se-

quences can be built very fast, while others require extensive sampling times, also dependent on 

length (see below).  

 

Including peptide bond ω torsion angle. One of the major differences between IDPConformerGen-

erator and previous backbone sampling tools is that IDPConformerGenerator includes peptide ω 

torsion angles in the sampling and building regime. The ω torsion angle is considered to be part of 

the torsion angle set for each residue in the order ω/φ/ψ. The decision to include ω is fundamental 

to our strategy to explore the IDP landscape by addition of multiple residue-sized fragments, and 

since ω angles can vary up to 20° in loop regions of high-resolution structures (Figure 2), including 
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ω in the generator increases the accuracy of the extracted fragment. Note that this variation is not 

dependent on the resolution of the structure but that helices have narrower ω torsion angle distri-

bution (Supplementary Figure 1). Accurate ω torsion angles are also critical for future incorporation 

of folded domains within otherwise disordered chains. 

 

 

 

Figure 2. Histogram of ω (omega) dihedral angle distributions for structures found within the IDPCon-
formerGenerator database. PDBs from the 24,003 PDBID database were used, with sets of this with resolu-
tions better than 1.5Å (~5,000 structures), better than 1.8Å (~16,000 structures) and better than 2.0Å (full 
set). The deviations from an ω torsion angle of 180° (trans) is plotted centered around 0° to facilitate visual-
ization of the distribution, rather than the actual ω angles. Cis peptide bonds are ignored for visualization 
purposes.  

 

Sequence-specificity of chosen torsion angles: IDPConformerGenerator builds structures based on 

extracting backbone torsion angles from the torsion angle database, using torsion angles either (i) 

only from residues that exactly match the input sequence (when possible, see below) or (ii) from 

residues that match user-defined residue substitutions, i.e., isoleucine matching either isoleucine 

or leucine. The ability to explore a narrow or broader sequence space of the PDB with user-defined 

flexibility is an important feature of IDPConformerGenerator. Utilizing the exact sequence to find 

torsion angles in the PDB-derived database will guide IDPConformerGenerator to choose torsion 

angles that reflect the structural biases of that sequence. This capitalizes on the PDB-derived data-

base as an "empirical force field" and is expected to generate local and secondary structure biases 
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based on the sequence dependence of these structures. Enabling substitution of residues for similar 

residues, with a user defined substitution list, recognizes the availability limits of exact sequence 

matches in the PDB, and extends the potential torsion angles possible to be sampled.  

 

IDPConformerGenerator has the ability to extract substitution lists based a table derived from the 

EDSSMat50 IDP-specific substitution matrix41 (see Supplementary Table S1A), with the user speci-

fying the columns to be used to define how conservative or liberal to make the substitutions. Users 

can also provide specific substitution lists through the command line (with example shown) `-subs 

{“A”: “AG”}`, with substitutions described in the form of a Python dictionary where keys are the 

residues to replace, and values are the list of residues to include.  

 

Peptide fragment sizes: IDPConformerGenerator enables users to define the size and probability of 

the peptide fragments used to build the IDP chain stepwise, modulating the sampling strategy to 

explore. By default, IDPConformerGenerator samples fragment sizes of 1, 2, 3, 4, and 5 residues 

with 10%, 10%, 30%, 30%, and 20% probabilities, respectively. Users can freely configure these val-

ues in any given manner. Therefore, IDPConformerGenerator can emulate previously published al-

gorithms that build conformer chains by single residue or tripeptide additions while allowing full 

select countless other strategies. Shorter fragments (such as one residue at a time) disregard the 

sequence context of residue torsion angle frequencies, while with larger fragment sizes, information 

about cooperative structure (helical, turn, or extended strand-like elements) from the PDB is in-

cluded in the growing disordered protein chain. In practice, fragment sizes up to pentapeptides are 

most valuable as it is hard to find sequence matches for longer segments, and cooperative struc-

tures found in disordered proteins generally do not extend beyond five residues (although there can 

be regions of longer cooperative helix). If a sequence match for the requested fragment size is not 

found, IDPConformerGenerator reduces the fragment size, one residue at a time, until a sequence 
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match is found in the database, taking into account residue substitutions. Fragments are reduced 

until single residue additions are sampled. Regardless of the size of the fragment, if a proline residue 

in the input sequence follows the selected fragment, IDPConformerGenerator tries to expand the 

fragment sequence to include the proline as well because prolines impose severe torsion restraints 

on preceding residues, a strategy used by other disordered chain-generating tools.16,42,43 

 

Secondary structural sampling: IDPConformerGenerator uses DSSP nomenclature35,36 and the 

IDPConformerGenerator-created torsion angle database can be configured to annotate residues by 

DSSP or any other third-party software (via the IDPConformerGenerator `sscalc` interface) that clas-

sifies secondary structure elements. Because of this, the secondary structural classes of the PDB 

database that are sampled can be defined by users. A logical approach for generating disordered 

ensembles is to sample the loop regions of folded structures, which dominate most IDPs/IDRs. 

FastFloppyTail focuses on these regions and others have noted an increased ability to fit local struc-

tural experimental data to ensembles derived from the coil or loop regions of PDBs44, even though 

these regions can be poorly defined45.  Using loops will bias to irregular structural elements found 

in the PDB that most likely represent disordered states, and also include short helical and extended 

elements. However, significantly populated helical elements and other secondary structural ele-

ments are found in disordered proteins states, so other DSSP codes are valuable to include. There-

fore, IDPConformerGenerator allow users to sample any residues regardless of secondary structure 

annotation (“ANY” flag) or to specifically sample loops, helices, extended structures, poly-proline II 

helices or individual or combinations of any DSSP secondary structure code. 

 

The secondary structure bias can be done uniformly across the sequence or in a residue-specific 

manner, using knowledge such as from NMR chemical shifts for fractional populations of secondary 
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structures as a function of residue37–39. Depending on user choice, IDPConformerGenerator can pri-

oritize building with the secondary structures of interest over the full sequence, leading to sampled 

fragments consisting only of residues matching a single secondary structure annotation, or can com-

pletely disregard secondary structures while building to allow the inherent secondary structure pro-

pensities observed in the PDB database to emerge. In this way, for example, ABC could be a frag-

ment in which A and B residues are annotated as loop and C is annotated as a helix (with C being 

the first residue of a helix following a loop). Moreover, custom secondary structure sampling based 

on experimental knowledge of the fractional populations of secondary structures can be used, 

which can in turn override the database bias to build conformers to match known structural proba-

bilities. For bias of secondary structure on a per-residue basis, building utilizes a custom secondary 

structure sampling database file containing fractional propensities for different secondary struc-

tures as a function of residue derived from NMR chemical shift data (using csssconv with 2D38 or 

CheSPI39). If the chemical shift data are not available but other knowledge of sampling of helical or 

extended/-strand regions exists (or if users want to explicitly define these), users can specify where 

significant sampling of helical or extended/-strand regions are and sample the rest of the con-

former without bias. Combining the rich ability to sample torsion angles from specific secondary 

structure annotations with the residue type substitutions that increase matching tolerance and 

specification of fragment sizes, users can sample highly restrictive or very broad conformational 

spaces. 

 

Sidechain Building: During the backbone building process immediately after each backbone frag-

ment is created, alanine sidechains are added onto all residues, except for glycines and prolines for 

which the full residue is added. These dummy alanines serve as coarse grain representations of the 

real sidechain. They avoid building backbone conformations that are too compact to fit sidechains 
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without steric clashes, yet the volume of the alanine sidechain is small enough to allow the back-

bone to sample packed conformations, enabling exploration of sidechain packing. 

 

However full side chains must be added, and IDPConformerGenerator adds sidechains using the 

Monte Carlo Side Chain Ensemble (MC-SCE) algorithm by sending backbone atom coordinates only 

and excluding any alanine and proline sidechains. The MC-SCE algorithm is a Monte Carlo approach 

for building side chain conformations on a predefined backbone structure40 that utilizes a conver-

gent Rosenbluth sampling scheme and an augmented Dunbrack library for side chain rotamer sam-

pling.40 The MC-SCE algorithm was originally written in Fortran but was fully rebuilt in Python to 

interface with IDPConformerGenerator to build side chain structures. Given a backbone structure, 

MC-SCE builds the side chains by aligning the backbone N, Cα and C’ atoms of the Dunbrack tem-

plates with the backbone from IDPConformerGenerator. The side chains are then rotated according 

to the sampled torsion angles, and this sampling procedure is the key to the Monte Carlo nature of 

the algorithm.  

 

MCSCE can be used as both a stand-alone option (https://github.com/THGLab/MCSCE) and as two 

modes for working within IDPConformerGenerator. The simple mode provides an option for rapidly 

adding side chains to a backbone structure without introducing clashes, but the conformations 

might be energetically sub-optimal. Conversely, the exhaustive mode generates side chain confor-

mations via user defined total number of trials for parallel execution of the building process, with 

the all-atom structure having the lowest energy of these returned to IDPConformerGenerator, but 

takes longer to run. (See Supplementary Information for more details.)  
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The FASPR40 algorithm to build side chain structures is also an integrated option. This stand-alone 

software for sidechain packing performs quickly for folded proteins. Note that FASPR does not in-

clude hydrogens, leading to a need to identify an optimal approach to build them afterwards. We 

have opted for MC-SCE as our preferred approach as it generates a complete all-atom description 

of conformers, including hydrogens, which is an important advantage over FASPR. 

 

Internal to Cartesian Coordinate Transformations. The design of IDPConformerGenerator as a 

builder based on torsion angle sampling, rather than based in Cartesian coordinate space, has ben-

efits and drawbacks. One clear benefit is that building with secondary structural biases, such as from 

NMR chemical shifts and backbone 3J-coupling data, is "native" to the builder. Building with tertiary 

contact biases, such as from NMR 1H-1H NOE or PRE data, is not. Importantly, energy calculations 

are made on Cartesian coordinates. In order to facilitate energy calculations, the conformers based 

on internal coordinates must be back-transformed to Cartesian coordinates.  

 

The original approach used for most of the work reported here uses statistical sampling of bond 

angles for the set of matched fragments and average values for bond lengths based on the identity 

of the previous and next residue to the residue being built. The currently recommended approach 

which improves upon the aforementioned strategy uses Int2Cart developed by Li and co-workers33 

a deep learning model that better predicts the correlations between the whole sequence, and bond 

lengths and bond angles for a given set of ω, φ, and ψ torsion angles to yield more accurate Carte-

sian coordinates. This very recent implementation can be used as both a stand-alone option 

(https://github.com/THGLab/int2cart) and is also integrated within IDPConformerGenerator di-

rectly.  
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Energy considerations. Instead of using hard-spheres to model atom volumes, IDPConformerGener-

ator computes the whole Lennard-Jones (LJ) potential to create conformers that are self-avoiding 

polymers.  The default LJ parameters are the Amber14SB force field, which were used for the results 

generated here, but are also user-definable. Computing the whole LJ potential allows the building 

engine to tolerate small clashes that can be compensated by favorable interactions. and compen-

sates for the fact that rigid conformers are created, i.e., no flexible minimization is performed at any 

stage. Severe clashes will, nonetheless, have a profound impact on the energy term, and thus the 

energy threshold for rejection can be defined by users, with higher values allowing exploration of 

broader conformational space. This feature is useful when modeling sequences with reduced rep-

resentation in the database. 

 

IDPConformerGenerator can build backbone-only or full sidechain-containing conformers. For this 

reason, two energy threshold parameters are implemented, one to control the tolerance for back-

bone atoms ("-etbb"), and another to control the energy threshold in all-atom conformers with 

sidechains ("-etss"). The energy thresholds to accept or reject a conformer can be calculated pair-

wise (atom-by-atom) or over the full structure, based on user choice. For each fragment built, the 

energy is computed; if below the threshold, the fragment is accepted, and otherwise, it is rejected. 

If sidechains are being built, once the backbone is complete, IDPConformerGenerator attempts to 

place the sidechains. If successful (energy term below threshold) the conformer is saved to disk. 

Otherwise, the backbone conformation is considered to be too restrictive to build sidechains, the 

whole conformer is discarded, and creation of a new conformer starts. Since the energy threshold 

for acceptance after sidechain addition is distinct from the threshold controlling backbone building, 

a user can accept all sidechain packing results by providing a large number for the sidechain energy 

threshold.  
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X-EISD Bayesian model. IDPConformerGenerator is designed as a platform and supports direct in-

corporation of calculated ensemble into downstream tools for scoring and re-weighting based on 

experimental data. The internal integration of these tools is envisioned in the near future. Of par-

ticular interest is X-EISD22,23, a method which calculates the maximum log-likelihood of a protein 

structural ensemble by accounting for the uncertainties of a wide range of experimental data and 

back-calculation models from structures. These data include NMR chemical shifts, J-couplings, re-

sidual dipolar couplings (RDCs), hydrodynamic radii, nuclear Overhauser effects (NOEs), and para-

magnetic resonance enhancements (PREs), smFRET, and SAXS curves.22,23 We also have introduced 

new data types, R2 relaxation rates and S2 order parameters, for the selection of an IDP ensemble 

consistent with NMR dynamics data46. Given the ensembles created with IDPConformerGenerator, 

the X-EISD model can be used as a scoring function that helps reweight the IDP ensembles for best 

agreement with experimental data given the different experimental and back-calculation uncertain-

ties. 

 

Analysis tools. There are a number of commands currently integrated within IDPConformerGenera-

tor that can enable analysis of resulting ensembles. These include analysis of the resulting fractional 

secondary structure. In addition, a set of complementary analysis tools were utilized to ask specific 

research questions regarding the ensembles (see below, available as stand-alone scripts). These in-

clude the root-mean-squared deviations (RMSDs) from experimental data restraints and ENSEMBLE 

and X-EISD scores; pair-wise RMSDs of atomic coordinates; measures of local structure: secondary 

structure, φ/ψ/ω distributions; measures of hydrodynamic properties: radius of gyration (Rg), end-

to-end distances, asphericity (deviation from spherical shape of the conformers); and measures of 

tertiary contacts: C - C distance and distance difference matrices. 
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Additional user-defined parameters are available, including random seeds to control reproducibility. 

IDPConformerGenerator runs are deterministic, i.e., the same results can be achieved by providing 

the same initial database, the same input parameters and the same random seeds, on the same 

machine. Users can also specify the number of cores of a multi-processor computer. 

 

 

RESULTS 

In order to demonstrate the utility of IDPConformerGenerator and ask questions regarding the op-

timal parameters for building diverse and physically meaningful ensembles, we have used a set of 

intrinsically disordered proteins (IDPs) of various sizes: Sic47, alpha-synuclein48, inhibitor-249 and 

Tau50, as well as the unfolded state of the N-terminal SH3 domain of the Drosophila signaling protein 

Drk (drkN SH3)51.  

• Sic1 is a yeast cell-cycle regulator that inhibit a cyclin-dependent kinase and is degraded fol-

lowing ubiquitination due to binding the ubiquitin ligase substrate-binding domain (Cdc4 WD40 do-

main) in a dynamic complex dependent on multi-site phosphorylation47. The N-terminal 92 residues 

of Sic1 are necessary and sufficient for binding and have been extensively characterized by NMR, 

SAXS and smFRET, and this fragment is therefore used here6,52–54.  

• Human alpha-synuclein (aSyn, 140 residues) is highly abundant in the brain where it is found 

largely in the axon terminals of presynaptic neurons to regulate synaptic vesicle trafficking and sub-

sequent neurotransmitter release48. In the presence of membrane vesicles (or other lipid environ-

ments), alpha-synuclein forms a helical structure, but in the absence of lipid it is highly disordered 

with minimal propensity for helical or other secondary structure. It has been studied in both states, 

but for testing purposes we utilize NMR and SAXS data from the disordered state15,21,55–60.  
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• Inhibitor-2 (I-2, 159 residues) is an inhibitor of protein phosphatase 1 (PP1), forming a dy-

namic complex with PP1 that only orders a limited portion of I-2 upon binding, based on crystallo-

graphic data49. In the absence of PP1, I-2 is disordered yet has significant population of helices, 

based on characterization by NMR61,62.  

• Tau (microtubule-associated protein tau) is a 758-residue IDP with numerous functional an-

notations, including promotion of microtubule assembly and stability and roles in establishing and 

maintaining polarity of axons in neurons50. It is an RNA-binding protein that phase separates in vitro 

and is found in cellular biomolecular condensates, consistent with its lower complexity sequence63. 

We use the first 441 residues as a test system since a fragment encompassing these residues has 

been studied using NMR64,65. Short Tau peptides have also been studied15 and we similarly utilize a 

Tau peptide as a test system.  

• Finally, the drkN SH3 domain exists in a dynamic equilibrium between folded and unfolded 

states, with the unfolded state extensively studied as a model disordered protein for development 

of ensemble calculation methods due to the large number of experimental NMR, SAXS and smFRET 

restraints available and its small size (59 residues)22,46,62,66. 

 

Sequences for these proteins and fragments are given in Supplementary Table S1B. Note that 

there are some peptide sequences of aSyn and Tau in the PDB database we use (Supplementary 

Table S1C), many in complex with antibodies. It may be valuable to include structures of the pro-

tein of interest or homologous proteins, such as complexes of folded proteins with the disordered 

protein of interest (or its fragments), to provide conformations that are likely to be sampled at 

some level. Alternatively, users may choose to exclude such structures to avoid potential bias. Ei-

ther approach is possible because IDPConformerGenerator allows users to assemble custom-made 

databases of torsion angles from user-defined input PDB lists. The number of sequence matches 
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for different fragment sizes of the drkN SH3 domain in our database for different secondary struc-

ture sampling, including exact matches or with substitutions, is given in Supplementary Table S1D 

to provide concrete examples of how torsion angles are chosen in IDPConformerGenerator. The 

`stats` sub-client calculates the sequence matches in the database, for an input sequence and con-

sidering the input parameters of the building process. In this way, users can easily assess the num-

ber of angles available for each chunk and identify possible bottle necks were residue tolerance 

might be needed. 

 

Here we characterize multiple aspects of IDPConformerGenerator: computational speed for gener-

ating ensembles, the diversity of conformer sampling, the presence or absence of secondary struc-

ture (especially helical fraction), how well these unoptimized disordered ensembles recapitulate 

experimental data, and comparisons to other structural ensemble generators such as TraDES and 

FastFloppyTail. 

 

Computational Timings: The speed of conformational ensemble generation is significant, particu-

larly for larger proteins, as a large and conformationally diverse input pools are valuable for further 

reweighting or sub-setting. We compared speeds for generating disordered conformers using 

IDPConformerGenerator with different fragment sizes and different secondary structure option for 

all of the test systems. For these, we generated backbones for each protein, a 100 kJ backbone 

energy threshold and MC-SCE for side-chains. The goal was to yield 1000 successful full conformers 

for each protein such that timings were normalized on a per successful conformer basis. Exact tim-

ings and percentage of successful conformers from the generated backbones can be found in Sup-

plementary Table S2A.  
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Figure 3. Timings for IDPConformerGenerator with MC-SCE and dependencies on fragment length, secondary 
structure sampling, and protein test system size. Speed is defined as number of conformers per hour. (A) 
Speeds for variable secondary structure sampling methods on IDPs with different lengths, shown for sampling 
with custom secondary structure propensities (CSSS, yellow), “ANY” secondary structure (grey), different 
combinations of loops, helices, and strands (orange), and only loops (blue). Speeds are shown for selected 
ensembles of the drkN SH3 domain unfolded state (59 amino acids, aa), the Sic1 N-terminal targeting region 
(92 aa), alpha-synuclein (aSyn, 140 aa), inhibitor 2 (I-2, 159 aa). Speeds for all conformer ensembles 
generated including for the Tau fragment (441 aa) are in Supplementary Table S2A. (B) Speeds for variable 
fragment sizes and secondary structure sampling methods for Sic1 are shown for sampling with only loops 
with substitutions (grey), only loops without substitutions (orange), and “ANY” secondary structure (blue). 
Default fragment length probabilities are 0.1, 0.1, 0.3, 0.3, 0.2 for fragment lengths of 1, 2, 3, 4, 5, 
respectively.  

 

Figure 3A demonstrates the general trend of faster conformer generation for shorter length chains, 

as expected, with a non-linear dependence. Building with only helices or extended strands is usually 

faster than building with loops or mixtures of loops with helical or extended structures, such as with 

CSSS or ANY, as loops increase the likelihood of steric clashes and difficulties in sidechain packing, 

although helices and strands are not as representative of disordered states (Supplementary Table 

S2A). As shown in Figure 3B, increasing the fragment size significantly increases the speed of con-

former generation for the proteins investigated, and varying the secondary structure sampling 

method alters the speed for different fragment sizes. In most cases, using substitutions was also 

found to be faster, likely due to more fragment matches in the database. Overall, conformer gener-

ation is reasonably efficient but strongly dependent on chain length, with speeds of 400-500 con-

formers per hour per computer node for the drkN SH3 domain unfolded state (59 residues, res), 

200-275 for Sic1 (92 res), 50-100 for aSyn (140 res), 40-75 for I-2 (159 res) and about 5 for Tau (441 

res), using one node on the Graham supercomputing resource. For this, and all other calculations 
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unless otherwise specified, we used one node of the Graham resource of Compute Canada (now 

Digital Research Alliance of Canada) with 2x Intel E5-2683 v4 Broadwell @ 2.1GHz CPUs and with 

125GB of RAM per node.  

 

We also tested the intersection of the impact of sequence length and the diversity of amino acid 

residues in the sequence on the speed of conformer generation. Low complexity IDRs using fewer 

amino acids are increasingly understood to have a functional role in facilitating phase separation 

within biomolecular condensates or membrane-less organelles67,68. Of our test proteins, the Tau 

fragment is the longest (441 res) and is known to phase separate63. It is also lower in complexity 

than the other test proteins, with the first 300 residues annotated as having compositional bias by 

CAST and being low complexity by SEG, respectively69,70. Such low complexity sequences are not 

found in the folded proteins in our database and we explored if they would take longer to build. We 

quantified speed of conformer generation in minutes per amino acid on the multiprocessor server. 

Tau was segmented into three segments of 147 res to compare with I-2 (159 res) and aSyn (140 res), 

and five segments of ~90 residues in order to compare with Sic1 (92 res). We found that the central 

147-res segment of the Tau fragment was the fastest to build, but that there were no clear trends 

on the basis of complexity when comparing Tau to aSyn or I-2 (Supplementary Figure S2). 

 

The sidechain addition step is much longer than backbone generation, with our preferred sidechain 

packing algorithm MC-SCE taking a larger fraction of the time as chain length increases. MC-SCE was 

initially optimized for packing sidechains onto the backbone of folded proteins. Although the suc-

cess rate decreases with longer backbone lengths, we found that the settings in MC-SCE could be 

optimized for IDPs by reducing the number of attempts/trials spent on packing sidechains onto 

backbones from 128 to 32. For Tau, using 32 trials increased the speed per conformer by 3 to 4.4 

times depending on secondary structure sampling (Supplementary Table S2B). Another observation 
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based on these benchmarks is that the success rate increases with an increased number of backbone 

conformers available as input to MC-SCE. 

 

For methodological purposes, we also asked what the optimal energy flags for speed of calculation 

of conformers that do not have significant steric clashes in order to facilitate rapid building of struc-

tural ensembles. We built sets of 1000 backbone conformers of I-2 with loops or other secondary 

structure sampling with either 100 or 250 kJ pairwise energy thresholds and used MC-SCE for 

sidechains, with average times of 68 and 38 minutes, respectively. The ~78.9% increase in time for 

the 100 kJ threshold only led to an ~10% gain in clash free conformers. We observed similar results 

for aSyn, with average times of 45 and 25 minutes, respectively, and an ~80.0% increase in time for 

the 100 kJ threshold and only an ~16% gain in clash free conformers. Thus, increasing the energy 

threshold can speed up the full conformer generation time for proteins at least as long as I-2. (Sup-

plementary Table S2C). 

 

Sampling depth: Next, we interrogated the depth of the torsion angle space in ensembles built from 

torsions derived from the PDB dataset. When building proteins with a specific sequence, particularly 

for fragment sizes of 3, 4 and 5, the finite size of the PDB-derived database leads to minimal torsion 

angle options as only sequence matches of the defined fragment size can be used to build. This leads 

to what we call torsion angle bottlenecks for specific residues. Figure 4 shows the φ distributions 

for Sic1 generated using loops with various fragment sizes, demonstrating decreasing numbers of 

distinct torsion angles as fragment size increases. For fragment sizes of 5 between residues 20-30 

essentially one set of backbone torsion angles was used over all these 1000 structures. Supplemen-

tary Figure S3 shows histograms of how many segments of the drkN SH3 domain sequence for var-

ious fragment sizes are present in the database, demonstrating the minimal data for fragment sizes 

of 6 and 7, with values also provided in Supplementary Table 1D. In order to avoid such torsion 
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angle bottlenecks, mixtures of fragment sizes are optimal when requesting exact sequence matches. 

The default of probabilistic sampling of fragment sizes of 1, 2, 3, 4, and 5 in the ratios of 1:2:3:3:1 

enables contribution from larger fragment sizes with cooperative structural elements while mini-

mizing torsion angle bottlenecks, as seen in the bottom rows of Figure 4. Using substitutions can 

help avoid bottlenecks, with the right panels of Figure 3 showing greater torsion angle coverage 

than the left. Increasing the number of DSSP codes utilized can also be beneficial (Supplementary 

Figure S4), as using only helices or only strands yields limited torsion angle sampling (and is not 

realistic for disordered chains). Being agnostic to secondary structure annotation is another ap-

proach, as seen for the difference between using loops only or all possible annotations for the drkN 

SH3 domain sequence (Supplementary Figure S5).  

 

Figure 4. Phi (φ) torsion angles in Sic1 ensembles sampled using different fragment sizes, with and without 
substitutions. Calculations were for 1000-conformer ensembles generated by sampling loops only, with 
fragment sizes of 1, 2, 3, 4, 5, and default fragment size probabilities. The left and right columns are for the 
Sic1 sequence without or with substitutions, respectively. Substitutions are derived from columns 5, 3, and 
2 of the EDSSMat50 amino acid substitution matrix. Plot generated with the `--plots` flag in `idpconfgen 
torsions` CLI. 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

27 

We then looked for the optimal parameters (fragment size, secondary structure flags) for increasing 

diversity of calculated structures, as measured by average pair-wise RMSDs, hydrodynamic param-

eters, and asphericity. Rg, end-to-end distance (Ree) and asphericity are all measures of the shape of 

a conformation, with smaller Rg and Ree values and asphericity approaching 0 implying more spher-

ical, compact chains, while large values reflect irregular, less compact shapes. As expected, we note 

that it is critical to incorporate loop regions to build diverse structural ensembles of disordered pro-

tein states, since with only helical or extended DSSP flags, long helices or strands are built, not rep-

resentative of disordered conformations (Figure 5, Supplementary Figure S6 and Supplementary 

Table S3). This is seen by the much higher Ree and asphericity values, such as for those built with 

helices only having asphericity values of >0.8 and with strands only having Ree values 1.5 to 2 times 

as large as for those built with loops. To further increase the diversity of calculated structures, the 

“ANY” secondary structure flag is optimal, as it will use the natural secondary structure propensities 

of the entire PDB database and not limit to user-defined secondary structures that restrict sampling 

of conformational space (see below). 
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Figure 5. Diversity analysis of conformational ensembles of the drkN SH3 domain unfolded state and I-2. 
Radius of gyration (Rg), end-to-end distance (Ree), asphericity (A) and pairwise root-mean-squared-deviations 
of atomic positions (pwRMSDs), are shown as a function of secondary structure sampling parameters for 
1000-conformer ensembles generated with different secondary structure sampling, including loops (L+), 
loops and helices (L+H+), loops, helices and extended strands (L+H+E+), all torsion angles agnostic to second-

ary structure (ANY) and biased by 2D chemical shifts (CSSS), or with FastFloppyTail (FFT), for the drkN SH3 
unfolded state (row 1) and I-2 (row 2). Standard deviations for Rg, Ree, A and pwRMSD are also shown as bars. 
Supplementary Figure S5 shows similar data for other protein systems. * is for the standard protocol which 
for this case treats the protein as a mixture of ordered and disordered, while the other is for a modified 
protocol in which the protein is considered to be fully disordered. 

 

Plotting pairwise RMSDs as a distribution (Figure 6) demonstrates that the ensembles are smoothly 

sampled, with no significant clusters of similar structures, consistent with our goal of generating 

diverse conformers. Varying secondary structure sampling approaches can also increase the variety 

of conformational space explored, as the custom secondary structure sampling shifts the RMSD his-

togram to larger values. As seen in plots of pairwise RMSD distance matrices (Supplementary Figure 
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S7), no regions of lower pairwise RMSDs are seen, indicating that the generated conformers have 

large variability in C backbones. Pairwise RMSD is correlated to protein length, with RMSD values 

ranging from above 5Å to 30Å for the shorter disordered drkN SH3 domain unfolded state (59 res) 

and from 15Å to above 50Å for I-2 (159 res), indicating significant heterogeneity in conformational 

sampling. 

 

 

Figure 6. Pairwise RMSD distributions for ensembles of the (A) drkN SH3 domain unfolded state and (B) I-2. 
Calculations were for different ensembles of 1000 conformers each, plotted with bin sizes of 5Å. “ANY” 
indicates sampling the database without biasing secondary structures, “nosub” indicates no substitutions, 
“sub532” indicates amino acid substitutions from columns 5, 3, and 2 of the EDSSMat50 amino acid 

substitution matrix,  and “CheSPI” or “2D” indicates custom secondary structure sampling (CSSS) pools 

biased by CheSPI or 2D estimations of secondary structure propensities.  

 

We were also interested to see if IDPConformerGenerator is able to effectively capture local struc-

tural changes with amino acid sequence changes. We used a 16-mer peptide from the Tau K18 frag-

ment previously studied by Stelzl and coworkers; reweighted hierarchical chain growth was used to 

generate Tau ensembles recapitulating structural details that were identified by NMR to have mi-

crotuble binding capacity and that are lost upon mutation of position P30132. To investigate the 

conformation diversity explored by IDPConformerGenerator and the variation in conformations for 

single-site mutations, we generated sets of 10,000 conformers for wild-type (WT), P301L, P301S, 

and P301T for the Tau fragment sequence: DNIKHVP301GGGSVQIVY. We sampled considering only 
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sequence matching, disregarding secondary structure annotations, and allowed no residue substi-

tutions for sequence matching. 

 

 

Figure 7: Local structural variations between the Tau K18 16-mer WT and different mutants. (A) Distribution 
of the distance between V300 O and G303 N atoms in 10,000-conformer ensembles generated with no 
substitutions. (B) Torsion angle distributions for position 301 of the different conformers in these WT and 
mutant ensembles, with ω representing the torsion angle N-terminal to the φ, as is our convention (typically 
denoted as ω of the preceding residue). 

 

One of the structural parameters explored in the Stelzl study is the distance between V300 O and 

G303 N. Figure 7A shows distributions for this O-N distance for the different variants. In agreement 

with the Stelzl study, we observe a considerable fraction of conformers for the WT with distance 

below 4Å, reflecting a turn structure and likely hydrogen bond, while for mutants these occurrences 

are much rarer. Each mutant reveals different patterns of O-N distances, showing that IDPCon-

formerGenerator can capture local conformational diversity from single point mutations and that 

these will be incorporated into the larger disordered chain. Figure 7B shows the torsion angles for 

residue 301 in the variants. Here, we also observe very different profiles. Note the presence of con-

formers with a cis-prolyl peptide bond for P301 reflecting the natural tendency of cis-Pro in the 
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context of this sequence but absent in the mutants lacking proline. These results demonstrate that 

IDPConformerGenerator can effectively sample realistic local conformations in a sequence-specific 

manner, consistent with its design. Another approach to sampling particular turn types or other 

structures that is available with IDPConformerGenerator is to utilize a amino-acid substitution 

dictionary to incorporate residues with known propensities for these structures.  

 

 

Figure 8. Fractional secondary structure in Sic1 ensembles. Analyses were performed on 1200-conformer 
pools of Sic1 generated with different combinations of secondary structure sampling consisting of loops, 

helix, and extended strands. Orange indicates -helix detected by DSSP (solid) and the -region on the Ra-

machandran (Rama.) diagram (dashed). Blue indicates extended strand for DSSP (solid) and -region on the 
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Ramachandran diagram (dashed). Black indicates coil/loop for DSSP (solid) and other regions on the Rama-
chandran diagram (dashed). 
 

Fractional secondary structure: An obvious question regards the impact of the secondary structure 

flags on the ultimate fractional secondary structures in the ensembles built. We generated 1200-

conformer ensembles of Sic1 using different combinations of secondary structure sampling with 

loops (activated by default), helices, and strands. IDPConformerGenerator can pool together DSSP 

codes T (hydrogen-bonded turn), S (bend), B (-bridge), P (PPII helix), I (pi-helix) and ' ' (blank, 

loops/irregular) as loop (L), H (-helix) and G (3-10 helix) as helix (H), and only E (extended strand, 

participating in β-ladder) as strand (E). For all our calculations, we utilized this pooled set of DSSP 

codes. We generated Sic1 ensembles due to its lack of inherent significant biases in secondary struc-

tural propensity52,53 (Figure 8). Restricting to loops only or loops and strands, similar sampling is 

observed with greater sampling of the  region of the Ramachandran diagram, but since there are 

no hydrogen-bonded interactions, DSSP catalogs these as loops. There is also significant sampling 

of the  region and some low amounts of cooperative helix observed. With strands only, sampling 

of the  region of the Ramachandran diagram is dominant, with no strands defined by DSSP, again 

due to lack of hydrogen bonds. Restricting sampling to helices, however, leads to dominant sampling 

of the  region of the Ramachandran plot and, as expected, these structures show up as -helix as 

defined in the DSSP. With loops and helices there are also significant cooperative helices generated. 

Similar results were seen for the drkN SH3 unfolded state (Supplementary Figure S8).   
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Figure 9. Comparison of torsion angle sampling for L+/H+/E+ and ANY. Ensembles of 1000 conformers each 
of drkN SH3 domain unfolded state were generated with sampling a combination of loops (L), helix (H), and 
extended strands (E) or sampling without biasing secondary structure with the ANY flag. Phi and psi (φ and 
ψ) torsion angle distributions for each conformer pool are shown as a scatter plot in the first two rows. The 
third row depicts fractional secondary structure based on DSSP (dark solid lines) or the Ramachandran 

(Rama.) diagram (dashed lines), with orange indicating -helix for DSSP and -region of the Ramachandran 

diagram, blue indicating extended strand for DSSP and -region of the Ramachandran diagram, and black 
indicating coil/loop for DSSP and other regions of the Ramachandran diagram. 

 

Sampling with all three secondary structure options in combination (loop, helix, strand) is not the 

same as sampling with the ANY flag (`--dany`), as the latter samples based solely on the sequence 

matching patterns disregarding secondary structure annotations, thus reflecting the inherent struc-

ture propensities of the input sequence fragments as present in the database. The explicit listing of 
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secondary structure codes limits to sampling fragments with the same secondary structure code for 

all residues, while with the ANY flag this is not a requirement, so we wondered if there would be 

significant differences in emerging structural patterns. Analysis of ensembles of the drkN SH3 do-

main unfolded state demonstrates no significant visual differences in torsion angle distributions, 

but the ANY pools do have greater psi ranges between residues 22 and 29 and there are greater 

helical propensities for the LHE pool compared to the ANY pool (Figure 9). Although the general 

trends of secondary structure propensities seem similar between the LHE and ANY pools, small dif-

ferences demonstrate that these options generate different conformer pools. We recommend the 

ANY flag to build IDP conformer ensembles with sampling of torsion angles based on frequencies 

observed in the PDB. To maximize sampling of torsion angle space, we recommend sampling with 

both ANY and LHE to minimize torsion angle bottlenecks. 

 

Importantly, we were interested in whether our design of IDPConformerGenerator to exploit the 

secondary structural propensities found in the PDB would match experimentally measured propen-

sities from NMR chemical shifts. Two sets of 3000 conformers each of the drkN SH3 domain un-

folded state were generated using a backbone energy threshold = 100 kJ, with the “ANY” flag and 

with the CSSS flag to do custom secondary structure sampling based on 2D38 calculations from 

NMR chemical shift data71 on a per-residue basis.  As seen in Figure 10 (left), there are natural sec-

ondary structure propensities for -helix particularly for residues 16-29) based on 2D predictions 

for secondary structure propensities38. At residues 58 and 59, the predicted probabilities of second-

ary structure are set to 1/3 as no chemical shift data are available. Although extended -strand 

regions have also been predicted with 2D, DSSP defines extended strands based on both torsion 

angle ranges (the same ones as used for segmenting the Ramachandran space) and hydrogen bonds, 

and there are minimal cases of tertiary contacts satisfying  hydrogen bonds in these disordered 

ensembles. However, sampling in the -region of the Ramachandran diagram is plentiful. (Note that 
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it may be valuable to utilize a different definition of strand pairing besides DSSP that is more per-

missive for local backbone geometries to characterize potential -strands.) This ensemble shows 

that helical structure is oversampled relative to what is found experimentally. However, the regions 

where significant -helical secondary structure is sampled does overlap the observed secondary 

structure propensities identified by 2D. With custom secondary structure sampling, in contrast, 

there is very good agreement for the -helical and coil/loop structure on a per-residue basis to that 

suggested by 2D (Figure 10, left). Sampling in the -region is consistent, with no observed -strand 

H-bonding structure seen using DSSP. Overall, biasing the sampling for torsion angles in the PDB 

based on secondary structure yields an ensemble with an overestimate of helical structure com-

pared to the 2D estimates, while directing the sampling by NMR data, as expected, yields an en-

semble in much closer agreement to these data.  

 

 
Figure 10. Custom secondary structure sampling. (left) For the drkN SH3 domain unfolded state, two sets of 
3000 conformers each were generated and (right) for inhibitor-2 (I-2), two sets of 1500 conformers each 
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were generated, with (A, B) the “ANY” flag or with (C, D) the CSSS flag to do custom secondary structure 

sampling based on 2D calculations from NMR chemical shift data. (A, C) Plots of fractional secondary struc-

ture based on DSSP (dark solid lines), the Ramachandran (Rama.) diagram (dashed lines) or 2D (light solid 

lines). Orange indicates -helix for 2D and DSSP, and -region on the Ramachandran diagram. Blue indi-

cates extended strand for 2D and DSSP, and -region on the Ramachandran diagram. Black indicates 

coil/loop for 2D and DSSP, and other regions on the Ramachandran diagram. (B, D) Aligned conformers of 
the ensembles using PyMOL. 

 

Similar results were found for I-2, which has significantly populated helices around residues 85-99 

and 121-145, based on NMR chemical shifts71 with 2D assignments. These peaks match with sam-

pling from the -region of the Ramachandran plot in the ANY ensemble (Figure 10, right) but there 

is significant helical structure throughout. Biasing by the NMR data, we can generate an ensemble 

with near-exact agreements of the secondary structure propensities calculated by 2D to the sec-

ondary structure propensities of the conformer ensemble calculated by DSSP (Figure 10, right). 

While sampling torsion angles in the PDB using the ANY flag may provide some insight to the natural 

propensities for  or  regions of the Ramachandran diagram, biasing the sampling based on exper-

imental NMR data can yield conformer pools that are more likely to be representative of the disor-

dered protein. Additional plots of residue-specific fractional secondary structures for calculated en-

sembles are provided in Supplementary Figures S9-S12. 

 

Comparison with experimental data: Beyond the chemical shift-derived secondary structure, we 

were interested in the ability of the generated ensembles to match experimental data. While the 

goal is to build diverse conformer pools that have the potential to fit experiment following a sub-

setting or re-weighting procedure, such as with ENSEMBLE20 or X-EISD22,23, an initial match to ex-

periment clearly demonstrates this potential. Using RMSD from experimental data (Figure 11 and 

Supplementary Figure S13) and ENSEMBLE and X-EISD scores as metrics (Supplementary Table S4), 

we found that IDPConformerGenerator ensembles are not in close agreement with the experi-

mental data, as expected, but that the deviation is not large for many restraints types, such as SAXS, 
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chemical shifts, 3-bond 1HN-1Ha J-couplings and RDCs. While there are larger deviations for those 

representing tertiary contacts, PREs and 1H-1H NOEs, it is difficult to directly compare the RMSD 

values for the different experimental data types as the range of data varies considerably. An RMSD 

of ~4Å for PRE, a measurement that goes out to 20 or 30 Å, may be closer than an RMSD of ~0.8 

ppm C chemical shifts, a measurement that varies less than 2 ppm. CSSS generally provides en-

sembles in better agreement with C and C chemical shift restraints, as expected, particularly for 

proteins with known significant sampling of secondary structure, such as I-2.  

 

 

Figure 11. Root-mean squared deviations (RMSDs) of back-calculated values from conformational ensembles 
to experimental data for the drkN SH3 domain unfolded state. Analyses of 1000-conformer ensembles gen-
erated using various secondary structure sampling and using FastFloppyTail (FFT). RMSDs are given for SAXS, 

chemical shifts (Carbonyl, C, C, H), PRE, 3JHN-HA, and NOE if available. Sources of experimental data are 
provided in Methods. * is for the standard protocol which for this case treats the protein as a mixture of 
ordered and disordered, while the other is for a modified protocol in which the protein is considered to be 
fully disordered. 
 
 

A significant measure of the ability to match experimental restraints is effective sampling of various 

tertiary contacts. Comparison of the C - C distance matrices for fragment sizes of 1, 3, and 5, as 

well as the default fragment size sampling, for Sic1 show that there is a relatively smooth sampling 
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of longer distances (Figure 12, top row).  Significant differences are observed between ensembles 

generated with the three different fragment sizes, as seen in the difference distance matrices be-

tween ensembles, demonstrating that mixtures of fragment sizes are valuable for sampling a diverse 

set of tertiary contacts (Figure 12, bottom row). In addition, there are significant differences in ter-

tiary contacts for Sic1 ensembles generated with loops and with "ANY" (Supplementary Figure S14). 

Together, these results provide evidence that using a large combined input pool of conformations 

created with varying fragment sizes, secondary structure sampling and other parameters would en-

able re-weighting or subsetting to fit distance restraint and other data types. 

 

 

 

Figure 12. Analysis of tertiary contacts for Sic1 ensembles. (top row) C - C distance matrixes (lower) with 
deviations (upper) for 1000-conformer ensembles of Sic1 generated with the loops only flag for secondary 
structure, with substitutions from columns 5, 3, and 2 of the EDSSMat50 amino acid substitution matrix and 

with variable fragment lengths. (bottom row) Significant differences between C - C distance matrixes 

(lower) and deviations (upper), (P < 0.05 from a Mann-Whitney U test). 

 

Comparison to other disordered chain generating tools: One of the early motivations for building 

IDPConformerGenerator is the significant number of steric clashes found in TraDES12,13 conformers. 
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The definition of a “clash” depends on whether only the repulsive portion of the LJ potential is con-

sidered or the whole LJ potential is used, allowing closer distances which are compensated by fa-

vorable interactions. We generated a set of 1000 Sic1 conformers using default TraDES parameters 

and used Chimera to check for steric clashes72 using a stringent criterion based largely on distance 

(similar to the repulsive portion of the L-J). With criteria of no backbone clashes and <=5 sidechain 

clashes, this TraDES ensemble had no conformers meeting the criteria. In contrast, 1000-conformer 

IDPConformerGenerator ensembles of Sic1 built using custom secondary structure sampling and 

default fragment sizes had 324/1000 conformers meeting these criteria. A similar drkN SH3 domain 

unfolded state pool had 395/1000 conformers meeting these criteria. Chimera’s clash definition is 

more stringent than the one we utilize in IDPConformerGenerator and MC-SCE, which allows close 

contacts if compensated by favorable L-J energy, thus all these IDPConformerGenerator conformers 

are arguably physically realistic conformations. IPDConformerGenerator does generate many more 

conformers with fewer steric clashes as defined by Chimera than does TraDES. 

 

We also calculated a set of FastFloppyTail15 ensembles to enable comparison with IDPCon-

formerGenerator. While there are different parameters for running FastFloppyTail, it is not user 

customizable in terms of sampling specific secondary structures or various fragment lengths, with 

the exception of using 3-mer and/or 9-mer fragment libraries. We therefore used the recommended 

protocol for each system, with 3-mer fragment libraries, and with an additional run to force the 

drkN SH3 domain to be disordered throughout (see Supplementary Information for details). We 

measured the speed, diversity, sampling of secondary structure and match to experimental data 

(Figures 5, 11, Supplementary Figures S6, S9-S13, and Supplementary Tables S2, S3, S4). For the 

quantitative speed comparison, we only considered the time of the calculation following set up with 

the initial files. For IDPConformerGenerator, initial set up includes the generation of the initial tor-

sion angle database, which we only needed to do once for all the systems, and providing the specific 
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protein sequence with input parameter files. Generating the initial torsion angle database took 37 

minutes on a desktop computer using 63 of the 64 cores, 20-30 minutes for downloading, while 

processing and generating the database were fast. The time is very dependent on the internet con-

nection speed and number of cores since the process is embarrassingly parallel. For FastFloppyTail, 

there is no ability to define multiple processors, and there are a number of steps and files required 

before the conformer generation process, including the prediction of disordered regions and sec-

ondary structure and creating a fragment library, which is required for each protein. The predictions 

require multiple external websites or programs. For the test systems, we could utilize the premade 

files on the FastFloppyTail website but for other proteins this would not be the case. For the drkN 

SH3 domain, Sic1, aSyn and I-2, the fragment libraries took between 11 and 16 minutes each to 

calculate on the HPC system we used for ensemble generation, while for Tau it was about 45 

minutes (Supplementary Table S2). Another issue with FastFloppyTail is that disordered proteins 

that are not predicted to be disordered can yield challenges in setup. In particular, the unfolded 

state of the drkN SH3 domain has a sequence that is not predicted to be disordered, leading to our 

testing both the recommended algorithm and one defining it as disordered (see Supplementary In-

formation). Alpha-synuclein is known to fold into a long -helix in the presence of lipid or micelles 

and different predictive algorithms have variable success in predicting its disordered state73, and 

the authors of FastFloppyTail noted a need to find a predictor which correctly identified its disor-

dered state15.  

 

The results demonstrate that IDPConformerGenerator is faster than FastFloppyTail for chains 

shorter than 200 residues with default parameters. There is generally minimal difference in the di-

versity of the ensembles between the two tools, although asphericity values are higher for IDPCon-

formerGenerator and FastFloppyTail ensembles are often more compact. The secondary structure 

sampling for FastFloppyTail ensembles often falls between IDPConformerGenerator ANY and CSSS 
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biased by NMR chemical shifts, with FastFloppyTail having higher populated secondary structure 

than suggested by experiment. Matches to experimental data are more variable, with IDPCon-

formerGenerator run using different secondary structural sampling approaches giving lowest RMSD 

values for different data types for different systems, often lower than the FastFloppyTail ensemble, 

particularly for the CSSS with chemical shifts, although not always. A clear distinction is that IDPCon-

formerGenerator enables users to flexibly define different approaches for generation of conform-

ers, including for diversifying the resulting ensembles.  

 

DISCUSSION AND CONCLUSIONS 

A range of theoretical and computational approaches for generating disordered ensembles ex-

ist10,74, each of which has strengths and unique features based on the design philosophy. Testing of 

IDPConformerGenerator on our set of model disordered proteins demonstrates that this tool is ex-

tremely flexible and can function as a platform to enable generating various initial conformational 

pools built with different biases and parameters, valuable for addressing a range of scientific needs. 

It is computationally efficient depending on sequence length and parameters, and can enable sam-

pling using the frequencies of secondary structures within the PDB database provided or the exper-

imental secondary structural propensities from NMR experiments. The resulting ensembles are not 

far from fitting experimental data, including those for local structure, tertiary contacts and overall 

hydrodynamic properties. Future work will explore the optimal parameters for sampling structures 

to facilitate identification of subsets or re-weighting to best fit these tertiary contact restraints. 

However, the current results strongly suggest that using an input pool with a combination of en-

sembles generated with different approaches, including with and without substitutions, varied frag-

ment sizes and combinations, and varied secondary structure sampling including bias with NMR 

chemical shift-derived probabilities, can effectively sample a range of conformational space to facil-

itate fitting experimental data with subsets or re-weighting.  
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Scientific software is often created by scientists and not software engineers, leading to tools that 

are not as user-friendly, generalizable, easy to maintain or thoroughly documented as desired. A 

larger goal of developing IDPConformerGenerator was to design it to be easy-to-use so that it would 

be widely used, not only to generate disordered protein ensembles as starting pools for subsetting 

or re-weighting but also to enable it to function as a platform for adding existing functionality or 

future approaches to define ensembles that best fit experimental data, for computational experi-

ments testing various ideas and for analyses of resulting ensembles. There are a number of straight-

forward extensions of IDPConformerGenerator planned, including the ability to build disordered 

regions around a folded domain, an important functionality (and one that motivated the creation 

of FastFloppyTail). Due to IDPConformerGenerator’s modularity, analysis tools can easily be built 

utilizing current functions.  Currently available functions include those to analyze ensembles for 

fractional secondary structure and torsion angle distributions and to analyze the database for the 

number of available sequence matches and for identifying structures with select keywords. Further 

additions, such as the analysis of tertiary contacts, could be implemented with ease and are planned 

for a future release. We envision that IDPConformerGenerator will be the basis for an expanding 

platform of tools to facilitate structural characterization of IDPs and IDRs consistent with solution 

experimental data. Ultimately, the resulting ensembles should provide physical insights into how 

these dynamics states regulate and carry out their critical biological functions and how disease var-

iants in IDPs/IDRs lead to pathology. 
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SUPPORTING INFORMATION DESCRIPTION 

The following files are available free of charge. 

Supplementary Information in the file IDPConfGen_Supplementary_Information.pdf (PDF) 

Supplementary Tables in the file IDPConfGen_Supplementary_Tables.xlsx (Excel) 

Analysis Scripts in the file analysis_scripts_IDPConfGen.zip (zip file with Python .py files) 

 

 

ACKNOWLEDGEMENTS 

J.D.F.-K. and T.H.-G. acknowledge funding from the National Institute of Health under Grant 

5R01GM127627-04. J.D.F.-K. also acknowledges support from the Natural Sciences and Engineering 

Research Council of Canada (2016-06718) and from the Canada Research Chairs Program. We 

acknowledge Sean Reichheld and Simon Sharpe for beta testing. We thank P. Andrew Chong and 

Alan Moses for critical reading of the manuscript. 

 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

44 

REFERENCES 

(1)  Faísca, P. F. N.; Nunes, A.; Travasso, R. D. M.; Shakhnovich, E. I. Non-Native Interactions Play 
an Effective Role in Protein Folding Dynamics. Protein Science 2010, 19 (11), 2196–2209. 
https://doi.org/10.1002/pro.498. 

(2)  Vendruscolo, M. Proteome Folding and Aggregation. Curr Opin Struct Biol 2012, 22 (2), 138–
143. https://doi.org/10.1016/j.sbi.2012.01.005. 

(3)  Jahn, T. R.; Radford, S. E. Folding versus Aggregation: Polypeptide Conformations on Com-
peting Pathways. Arch Biochem Biophys 2008, 469 (1), 100–117. 
https://doi.org/10.1016/j.abb.2007.05.015. 

(4)  Kulkarni, P.; Bhattacharya, S.; Achuthan, S.; Behal, A.; Jolly, M. K.; Kotnala, S.; Mohanty, A.; 
Rangarajan, G.; Salgia, R.; Uversky, V. Intrinsically Disordered Proteins: Critical Components 
of the Wetware. Chem. Rev. 2022, 122 (6), 6614–6633. 
https://doi.org/10.1021/acs.chemrev.1c00848. 

(5)  Biesaga, M.; Frigolé-Vivas, M.; Salvatella, X. Intrinsically Disordered Proteins and Biomolecu-
lar Condensates as Drug Targets. Curr Opin Chem Biol 2021, 62, 90–100. 
https://doi.org/10.1016/j.cbpa.2021.02.009. 

(6)  Thomasen, F. E.; Lindorff-Larsen, K. Conformational Ensembles of Intrinsically Disordered 
Proteins and Flexible Multidomain Proteins. Biochem Soc Trans 2022, 50 (1), 541–554. 
https://doi.org/10.1042/BST20210499. 

(7)  Fisher, C. K.; Stultz, C. M. Constructing Ensembles for Intrinsically Disordered Proteins. Curr 
Opin Struct Biol 2011, 21 (3), 426–431. https://doi.org/10.1016/j.sbi.2011.04.001. 

(8)  Czaplewski, C.; Gong, Z.; Lubecka, E. A.; Xue, K.; Tang, C.; Liwo, A. Recent Developments in 
Data-Assisted Modeling of Flexible Proteins. Frontiers in Molecular Biosciences 2021, 8. 

(9)  Gong, X.; Zhang, Y.; Chen, J. Advanced Sampling Methods for Multiscale Simulation of Disor-
dered Proteins and Dynamic Interactions. Biomolecules 2021, 11 (10), 1416. 
https://doi.org/10.3390/biom11101416. 

(10)  Shea, J.-E.; Best, R. B.; Mittal, J. Physics-Based Computational and Theoretical Approaches to 
Intrinsically Disordered Proteins. Current Opinion in Structural Biology 2021, 67, 219–225. 
https://doi.org/10.1016/j.sbi.2020.12.012. 

(11)  Ramanathan, A.; Ma, H.; Parvatikar, A.; Chennubhotla, S. C. Artificial Intelligence Techniques 
for Integrative Structural Biology of Intrinsically Disordered Proteins. Curr Opin Struct Biol 
2021, 66, 216–224. https://doi.org/10.1016/j.sbi.2020.12.001. 

(12)  Feldman, H.; Hogue, C. A Fast Method to Sample Real Protein Conformational Space. Pro-
teins: Structure, Function, and Bioinformatics 2000, 39, 112–131. 
https://doi.org/10.1002/(SICI)1097-0134(20000501)39:2%3C112::AID-PROT2%3E3.0.CO;2-
B. 

(13)  Feldman, H. J.; Hogue, C. W. V. Probabilistic Sampling of Protein Conformations: New Hope 
for Brute Force? Proteins 2002, 46 (1), 8–23. 

(14)  Ozenne, V.; Bauer, F.; Salmon, L.; Huang, J.; Jensen, M. R.; Segard, S.; Bernadó, P.; Charavay, 
C.; Blackledge, M. Flexible-Meccano: A Tool for the Generation of Explicit Ensemble Descrip-
tions of Intrinsically Disordered Proteins and Their Associated Experimental Observables. 
Bioinformatics 2012, 28 (11), 1463–1470. https://doi.org/10.1093/bioinformatics/bts172. 

(15)  Ferrie, J. J.; Petersson, E. J. A Unified De Novo Approach for Predicting the Structures of Or-
dered and Disordered Proteins. J. Phys. Chem. B 2020, 124 (27), 5538–5548. 
https://doi.org/10.1021/acs.jpcb.0c02924. 

(16)  Estaña, A.; Sibille, N.; Delaforge, E.; Vaisset, M.; Cortés, J.; Bernadó, P. Realistic Ensemble 
Models of Intrinsically Disordered Proteins Using a Structure-Encoding Coil Database. Struc-
ture 2019, 27 (2), 381-391.e2. https://doi.org/10.1016/j.str.2018.10.016. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

45 

(17)  Bank, R. P. D. RCSB PDB: Homepage. https://www.rcsb.org/ (accessed 2022-03-26). 
(18)  Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. 

N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research 2000, 28 (1), 235–242. 
https://doi.org/10.1093/nar/28.1.235. 

(19)  Pietrek, L. M.; Stelzl, L. S.; Hummer, G. Hierarchical Ensembles of Intrinsically Disordered 
Proteins at Atomic Resolution in Molecular Dynamics Simulations. J. Chem. Theory Comput. 
2020, 16 (1), 725–737. https://doi.org/10.1021/acs.jctc.9b00809. 

(20)  Krzeminski, M.; Marsh, J. A.; Neale, C.; Choy, W.-Y.; Forman-Kay, J. D. Characterization of 
Disordered Proteins with ENSEMBLE. Bioinformatics 2013, 29 (3), 398–399. 
https://doi.org/10.1093/bioinformatics/bts701. 

(21)  Salmon, L.; Nodet, G.; Ozenne, V.; Yin, G.; Jensen, M. R.; Zweckstetter, M.; Blackledge, M. 
NMR Characterization of Long-Range Order in Intrinsically Disordered Proteins. J. Am. Chem. 
Soc. 2010, 132 (24), 8407–8418. https://doi.org/10.1021/ja101645g. 

(22)  Lincoff, J.; Haghighatlari, M.; Krzeminski, M.; Teixeira, J. M. C.; Gomes, G.-N. W.; Gradinaru, 
C. C.; Forman-Kay, J. D.; Head-Gordon, T. Extended Experimental Inferential Structure Deter-
mination Method in Determining the Structural Ensembles of Disordered Protein States. 
Commun Chem 2020, 3 (1), 1–12. https://doi.org/10.1038/s42004-020-0323-0. 

(23)  Brookes, D. H.; Head-Gordon, T. Experimental Inferential Structure Determination of Ensem-
bles for Intrinsically Disordered Proteins. J. Am. Chem. Soc. 2016, 138 (13), 4530–4538. 
https://doi.org/10.1021/jacs.6b00351. 

(24)  Bottaro, S.; Bengtsen, T.; Lindorff-Larsen, K. Integrating Molecular Simulation and Experi-
mental Data: A Bayesian/Maximum Entropy Reweighting Approach. Methods Mol Biol 2020, 
2112, 219–240. https://doi.org/10.1007/978-1-0716-0270-6_15. 

(25)  Fisher, C. K.; Huang, A.; Stultz, C. M. Modeling Intrinsically Disordered Proteins with Bayes-
ian Statistics. J. Am. Chem. Soc. 2010, 132 (42), 14919–14927. 
https://doi.org/10.1021/ja105832g. 

(26)  Fisher, C. K.; Ullman, O.; Stultz, C. M. Efficient Construction of Disordered Protein Ensembles 
in a Bayesian Framework with Optimal Selection of Conformations. Pac Symp Biocomput 
2012, 82–93. 

(27)  Mantsyzov, A. B.; Maltsev, A. S.; Ying, J.; Shen, Y.; Hummer, G.; Bax, A. A Maximum Entropy 
Approach to the Study of Residue-Specific Backbone Angle Distributions in α-Synuclein, an 
Intrinsically Disordered Protein. Protein Science 2014, 23 (9), 1275–1290. 
https://doi.org/10.1002/pro.2511. 

(28)  L. Fawzi, N.; Phillips, A. H.; Ruscio, J. Z.; Doucleff, M.; Wemmer, D. E.; Head-Gordon, T. Struc-
ture and Dynamics of the Aβ21–30 Peptide from the Interplay of NMR Experiments and Mo-
lecular Simulations. J. Am. Chem. Soc. 2008, 130 (19), 6145–6158. 
https://doi.org/10.1021/ja710366c. 

(29)  Ball, K. A.; Phillips, A. H.; Nerenberg, P. S.; Fawzi, N. L.; Wemmer, D. E.; Head-Gordon, T. Ho-
mogeneous and Heterogeneous Tertiary Structure Ensembles of Amyloid-β Peptides. Bio-
chemistry 2011, 50 (35), 7612–7628. https://doi.org/10.1021/bi200732x. 

(30)  Ball, K. A.; Phillips, A. H.; Wemmer, D. E.; Head-Gordon, T. Differences in β-Strand Popula-
tions of Monomeric Aβ40 and Aβ42. Biophys J 2013, 104 (12), 2714–2724. 
https://doi.org/10.1016/j.bpj.2013.04.056. 

(31)  Ball, K. A.; Wemmer, D. E.; Head-Gordon, T. Comparison of Structure Determination Meth-
ods for Intrinsically Disordered Amyloid-β Peptides. J. Phys. Chem. B 2014, 118 (24), 6405–
6416. https://doi.org/10.1021/jp410275y. 

(32)  Stelzl, L. S.; Pietrek, L. M.; Holla, A.; Oroz, J.; Sikora, M.; Köfinger, J.; Schuler, B.; Zweckstet-
ter, M.; Hummer, G. Global Structure of the Intrinsically Disordered Protein Tau Emerges 
from Its Local Structure. JACS Au 2022. https://doi.org/10.1021/jacsau.1c00536. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

46 

(33)  Li, J.; Zhang, O.; Lee, S.; Namini, A.; Liu, Z. H.; Teixeira, J. M. C.; Forman-Kay, J. D.; Head-Gor-
don, T. Learning Correlations between Internal Coordinates to Improve 3D Cartesian Coordi-
nates for Proteins; arXiv:2205.04676; arXiv, 2022. 
https://doi.org/10.48550/arXiv.2205.04676. 

(34)  Wang, G.; Dunbrack, R. L., Jr. PISCES: A Protein Sequence Culling Server. Bioinformatics 
2003, 19 (12), 1589–1591. https://doi.org/10.1093/bioinformatics/btg224. 

(35)  Joosten, R. P.; te Beek, T. A. H.; Krieger, E.; Hekkelman, M. L.; Hooft, R. W. W.; Schneider, R.; 
Sander, C.; Vriend, G. A Series of PDB Related Databases for Everyday Needs. Nucleic Acids 
Research 2011, 39 (suppl_1), D411–D419. https://doi.org/10.1093/nar/gkq1105. 

(36)  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geo-
metrical features - Kabsch - 1983 - Biopolymers - Wiley Online Library. https://onlineli-
brary.wiley.com/doi/10.1002/bip.360221211 (accessed 2022-03-29). 

(37)  Ackerman, M. S.; Shortle, D. Robustness of the Long-Range Structure in Denatured Staphy-
lococcal Nuclease to Changes in Amino Acid Sequence. Biochemistry 2002, 41 (46), 13791–
13797. https://doi.org/10.1021/bi020511t. 

(38)  Camilloni, C.; De Simone, A.; Vranken, W. F.; Vendruscolo, M. Determination of Secondary 
Structure Populations in Disordered States of Proteins Using Nuclear Magnetic Resonance 
Chemical Shifts. Biochemistry 2012, 51 (11), 2224–2231. 
https://doi.org/10.1021/bi3001825. 

(39)  Nielsen, J. T.; Mulder, F. A. A. CheSPI: Chemical Shift Secondary Structure Population Infer-
ence. J Biomol NMR 2021, 75 (6–7), 273–291. https://doi.org/10.1007/s10858-021-00374-
w. 

(40)  Bhowmick, A.; Head-Gordon, T. A Monte Carlo Method for Generating Side Chain Structural 
Ensembles. Structure 2015, 23 (1), 44–55. https://doi.org/10.1016/j.str.2014.10.011. 

(41)  Trivedi, R.; Nagarajaram, H. A. Amino Acid Substitution Scoring Matrices Specific to Intrinsi-
cally Disordered Regions in Proteins. Sci Rep 2019, 9 (1), 16380. 
https://doi.org/10.1038/s41598-019-52532-8. 

(42)  MacArthur, M. W.; Thornton, J. M. Influence of Proline Residues on Protein Conformation. J 
Mol Biol 1991, 218 (2), 397–412. https://doi.org/10.1016/0022-2836(91)90721-h. 

(43)  Ting, D.; Wang, G.; Shapovalov, M.; Mitra, R.; Jordan, M. I.; Dunbrack, R. L. Neighbor-De-
pendent Ramachandran Probability Distributions of Amino Acids Developed from a Hierar-
chical Dirichlet Process Model. PLoS Comput Biol 2010, 6 (4), e1000763. 
https://doi.org/10.1371/journal.pcbi.1000763. 

(44)  Shen, Y.; Roche, J.; Grishaev, A.; Bax, A. Prediction of Nearest Neighbor Effects on Backbone 
Torsion Angles and NMR Scalar Coupling Constants in Disordered Proteins. Protein Science 
2018, 27 (1), 146–158. https://doi.org/10.1002/pro.3292. 

(45)  van Beusekom, B.; Joosten, K.; Hekkelman, M. L.; Joosten, R. P.; Perrakis, A. Homology-
Based Loop Modeling Yields More Complete Crystallographic Protein Structures. IUCrJ 2018, 
5 (5), 585–594. https://doi.org/10.1107/S2052252518010552. 

(46)  Naullage, P. M.; Haghighatlari, M.; Namini, A.; Teixeira, J. M. C.; Li, J.; Zhang, O.; Gradinaru, 
C. C.; Forman-Kay, J. D.; Head-Gordon, T. Protein Dynamics to Define and Refine Disordered 
Protein Ensembles. J. Phys. Chem. B 2022, 126 (9), 1885–1894. 
https://doi.org/10.1021/acs.jpcb.1c10925. 

(47)  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication 
| Nature. https://www.nature.com/articles/35107009 (accessed 2022-03-26). 

(48)  Bridi, J. C.; Hirth, F. Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson’s Dis-
ease. Frontiers in Neuroscience 2018, 12. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

47 

(49)  Hurley, T. D.; Yang, J.; Zhang, L.; Goodwin, K. D.; Zou, Q.; Cortese, M.; Dunker, A. K.; DePaoli-
Roach, A. A. Structural Basis for Regulation of Protein Phosphatase 1 by Inhibitor-2. J Biol 
Chem 2007, 282 (39), 28874–28883. https://doi.org/10.1074/jbc.M703472200. 

(50)  Higuchi, M.; Lee, V. M.-Y.; Trojanowski, J. Q. Tau and Axonopathy in Neurodegenerative Dis-
orders. Neuromol Med 2002, 2 (2), 131–150. https://doi.org/10.1385/NMM:2:2:131. 

(51)  Raabe, T.; Olivier, J. P.; Dickson, B.; Liu, X.; Gish, G. D.; Pawson, T.; Hafen, E. Biochemical and 
Genetic Analysis of the Drk SH2/SH3 Adaptor Protein of Drosophila. EMBO J 1995, 14 (11), 
2509–2518. 

(52)  Mittag, T.; Orlicky, S.; Choy, W.-Y.; Tang, X.; Lin, H.; Sicheri, F.; Kay, L. E.; Tyers, M.; Forman-
Kay, J. D. Dynamic Equilibrium Engagement of a Polyvalent Ligand with a Single-Site Recep-
tor. Proceedings of the National Academy of Sciences 2008, 105 (46), 17772–17777. 
https://doi.org/10.1073/pnas.0809222105. 

(53)  Mittag, T.; Marsh, J.; Grishaev, A.; Orlicky, S.; Lin, H.; Sicheri, F.; Tyers, M.; Forman-Kay, J. D. 
Structure/Function Implications in a Dynamic Complex of the Intrinsically Disordered Sic1 
with the Cdc4 Subunit of an SCF Ubiquitin Ligase. Structure 2010, 18 (4), 494–506. 
https://doi.org/10.1016/j.str.2010.01.020. 

(54)  Liu, B.; Chia, D.; Csizmok, V.; Farber, P.; Forman-Kay, J. D.; Gradinaru, C. C. The Effect of In-
trachain Electrostatic Repulsion on Conformational Disorder and Dynamics of the Sic1 Pro-
tein. J. Phys. Chem. B 2014, 118 (15), 4088–4097. https://doi.org/10.1021/jp500776v. 

(55)  Das, T.; Eliezer, D. Probing Structural Changes in Alpha-Synuclein by Nuclear Magnetic Reso-
nance Spectroscopy. Methods Mol Biol 2019, 1948, 157–181. https://doi.org/10.1007/978-
1-4939-9124-2_13. 

(56)  Ahmed, M. C.; Skaanning, L. K.; Jussupow, A.; Newcombe, E. A.; Kragelund, B. B.; Camilloni, 
C.; Langkilde, A. E.; Lindorff-Larsen, K. Refinement of α-Synuclein Ensembles Against SAXS 
Data: Comparison of Force Fields and Methods. Frontiers in Molecular Biosciences 2021, 8. 

(57)  Auluck, P. K.; Caraveo, G.; Lindquist, S. α-Synuclein: Membrane Interactions and Toxicity in 
Parkinson’s Disease. Annu Rev Cell Dev Biol 2010, 26, 211–233. https://doi.org/10.1146/an-
nurev.cellbio.042308.113313. 

(58)  Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. Map-
ping Long-Range Interactions in α-Synuclein Using Spin-Label NMR and Ensemble Molecular 
Dynamics Simulations. J. Am. Chem. Soc. 2005, 127 (2), 476–477. 
https://doi.org/10.1021/ja044834j. 

(59)  Bertoncini, C. W.; Jung, Y.-S.; Fernandez, C. O.; Hoyer, W.; Griesinger, C.; Jovin, T. M.; Zweck-
stetter, M. Release of Long-Range Tertiary Interactions Potentiates Aggregation of Natively 
Unstructured Alpha-Synuclein. Proc Natl Acad Sci U S A 2005, 102 (5), 1430–1435. 
https://doi.org/10.1073/pnas.0407146102. 

(60)  Sung, Y.; Eliezer, D. Residual Structure, Backbone Dynamics, and Interactions within the 
Synuclein Family. J Mol Biol 2007, 372 (3), 689–707. 
https://doi.org/10.1016/j.jmb.2007.07.008. 

(61)  Dancheck, B.; Nairn, A. C.; Peti, W. Detailed Structural Characterization of Unbound Protein 
Phosphatase 1 Inhibitors. Biochemistry 2008, 47 (47), 12346–12356. 
https://doi.org/10.1021/bi801308y. 

(62)  Marsh, J. A.; Dancheck, B.; Ragusa, M. J.; Allaire, M.; Forman-Kay, J. D.; Peti, W. Structural 
Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regula-
tors. Structure 2010, 18 (9), 1094–1103. https://doi.org/10.1016/j.str.2010.05.015. 

(63)  Zeng, Y.; Yang, J.; Zhang, B.; Gao, M.; Su, Z.; Huang, Y. The Structure and Phase of Tau: From 
Monomer to Amyloid Filament. Cell Mol Life Sci 2021, 78 (5), 1873–1886. 
https://doi.org/10.1007/s00018-020-03681-x. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


 

48 

(64)  Bibow, S.; Ozenne, V.; Biernat, J.; Blackledge, M.; Mandelkow, E.; Zweckstetter, M. Struc-
tural Impact of Proline-Directed Pseudophosphorylation at AT8, AT100, and PHF1 Epitopes 
on 441-Residue Tau. J. Am. Chem. Soc. 2011, 133 (40), 15842–15845. 
https://doi.org/10.1021/ja205836j. 

(65)  Melková, K.; Zapletal, V.; Narasimhan, S.; Jansen, S.; Hritz, J.; Škrabana, R.; Zweckstetter, M.; 
Ringkjøbing Jensen, M.; Blackledge, M.; Žídek, L. Structure and Functions of Microtubule As-
sociated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019, 9 (3), 
105. https://doi.org/10.3390/biom9030105. 

(66)  Mazouchi, A.; Zhang, Z.; Bahram, A.; Gomes, G.-N.; Lin, H.; Song, J.; Chan, H. S.; Forman-Kay, 
J. D.; Gradinaru, C. C. Conformations of a Metastable SH3 Domain Characterized by SmFRET 
and an Excluded-Volume Polymer Model. Biophys J 2016, 110 (7), 1510–1522. 
https://doi.org/10.1016/j.bpj.2016.02.033. 

(67)  Borcherds, W.; Bremer, A.; Borgia, M. B.; Mittag, T. How Do Intrinsically Disordered Protein 
Regions Encode a Driving Force for Liquid-Liquid Phase Separation? Curr Opin Struct Biol 
2021, 67, 41–50. https://doi.org/10.1016/j.sbi.2020.09.004. 

(68)  Ruff, K. M.; Pappu, R. V.; Holehouse, A. S. Conformational Preferences and Phase Behavior 
of Intrinsically Disordered Low Complexity Sequences: Insights from Multiscale Simulations. 
Curr Opin Struct Biol 2019, 56, 1–10. https://doi.org/10.1016/j.sbi.2018.10.003. 

(69)  Harrison, P. M. Exhaustive Assignment of Compositional Bias Reveals Universally Prevalent 
Biased Regions: Analysis of Functional Associations in Human and Drosophila. BMC Bioinfor-
matics 2006, 7 (1), 441. https://doi.org/10.1186/1471-2105-7-441. 

(70)  Wootton, J. C. Non-Globular Domains in Protein Sequences: Automated Segmentation Using 
Complexity Measures. Computers & Chemistry 1994, 18 (3), 269–285. 
https://doi.org/10.1016/0097-8485(94)85023-2. 

(71)  Marsh, J. A.; Forman-Kay, J. D. Ensemble Modeling of Protein Disordered States: Experi-
mental Restraint Contributions and Validation. Proteins 2012, 80 (2), 556–572. 
https://doi.org/10.1002/prot.23220. 

(72)  Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; 
Ferrin, T. E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. 
Journal of Computational Chemistry 2004, 25 (13), 1605–1612. 
https://doi.org/10.1002/jcc.20084. 

(73)  Alderson, T. R.; Pritišanac, I.; Moses, A. M.; Forman-Kay, J. D. Systematic Identification of 
Conditionally Folded Intrinsically Disordered Regions by AlphaFold2. bioRxiv February 18, 
2022, p 2022.02.18.481080. https://doi.org/10.1101/2022.02.18.481080. 

(74)  Bhattacharya, S.; Lin, X. Recent Advances in Computational Protocols Addressing Intrinsi-
cally Disordered Proteins. Biomolecules 2019, 9 (4), 146. 
https://doi.org/10.3390/biom9040146. 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493726doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493726
http://creativecommons.org/licenses/by-nc/4.0/

