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Abstract 

Microbiomes are composed of hundreds to thousands of species of microorganisms living on and 

in our body and also in our environment. Elucidating the sources of these community members 

has been of great interest in the field to understand underlying ecological and colonization 

dynamics. Microbiomes are likely mixtures of several other microbiomes. The estimation of the 

contribution of various source microbiomes to a given community is known as source tracking. 

While emphasis has been placed on source tracking using species composition, single nucleotide 

variants (SNVs) within species may be more informative because rare variants can be highly 

specific to certain sources. However, to date, SNV frequencies have not been leveraged for 

source tracking despite their success with strain tracking, in which individual strains per species 

rather than contributions from whole communities are tracked. We assess the ability of SNVs 

versus species in a previously designed source tracking algorithm FEAST (Shenhav et al., 2019) 

and find that SNVs can more accurately identify sources and their contributions. With SNV 

source tracking, we recapitulate previous findings that transmissions from mothers to their 

infants decreases with the age of the infant and that the built environment of NICUs play an 

important role in seeding infant microbiomes. Additionally, with SNV source tracking, we track 

migration of microbes across oceanic regions, including across the Suez and Panama canals, and 

observe a distance-decay relationship in the source contribution, which we do not observe with 

species source tracking. In sum, source tracking with SNVs can offer new insights into 

microbiome transmission and colonization sources that species cannot.  
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Introduction 

Understanding how microbiomes are formed has important implications for human and 

environmental health, such as determining the impact of a hospital environment on the early 

infant gut microbiome, and in quantifying the extent of exchange of microorganisms over large 

distances and long spans of time. Approaches for determining the proportion of a microbiome of 

interest (the “sink”) that is attributed to different microbiomes (the “sources”) is known as 

“source tracking” (Knights et al., 2011; Shenhav et al., 2019). Source tracking is useful for 

forensics, categorization of samples, and tracing transmissions between different hosts or 

environments.  

Current approaches for quantifying the microbiome as a mixture of other source 

microbiomes include SourceTracker (Knights et al., 2011) and more recently FEAST (Shenhav 

et al., 2019). These source tracking methods are designed to use the species abundance profile of 

the sample of interest (the sink) and of putative sources, and compute percentages of the 

microbiome of interest that are traced to each putative source. Microbiome source tracking is 

analogous to estimation of human admixture, which seeks to quantify the proportion of a 

person’s genome that is attributable to different ancestries (Alexander et al., 2009; Chiu et al., 

2022).  

16S amplicon sequencing data, which is used to determine abundance of species, has 

been an appealing datatype to use with current source tracking methods (Knights et al., 2011; 

Shenhav et al., 2019) because of the low cost of sequencing and the availability of this data in 

public repositories. However, 16S data is often limited to providing abundance information at the 

species-level, but rarely at the sub-species level (Callahan et al., 2016). By contrast, species are 

comprised of thousands of single nucleotide variants (SNVs) and hosts are frequently colonized 

by their own genetically distinct set of strains (Schloissnig et al., 2013), making SNVs an 

appealing source of high-resolution information about transmission patterns. While whole 

metagenomic sequencing data has been used to quantify species counts for purposes of 

estimating source contributions (McGhee et al., 2020),  single nucleotide variants (SNVs) have 

not been leveraged to date.  

Previous studies have used SNVs to determine sharing of strains for tracking 

transmission between hosts. For example, (Nayfach et al., 2016) quantified vertical transmissions 

from mother to infant by tracking the sharing of SNVs private to mothers and their infants. They 
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found that private SNV sharing decreases over the first year of life while species sharing 

increases. This suggests that while the infant microbiome increasingly resembles the adult 

microbiome ecologically, sources other than the mother also colonize the infant. Thus, species-

level resolution may obscure true underlying ecological dynamics and true sources of microbes 

while SNVs more adequately represent actual transmission from sources to the infant. Other 

studies have also used private SNVs to detect transmission of strains between hosts (Korpela et 

al., 2018; Li et al., 2016; Schmidt et al., 2019). Additionally, many studies have inferred strain 

haplotypes to track transmission (Asnicar et al., 2017a; Brooks et al., 2017; D. W. Chen & 

Garud, 2021; Enav & Ley, 2021; Ferretti et al., 2018; Hildebrand et al., 2021; Mitchell et al., 

2020; Olm et al., 2021; Yassour et al., 2018). 

 Current approaches to strain tracking are limited because they do not provide a quantity 

of source contributions and instead provide a binarization of whether a strain transmission 

occurred per species. Some of these studies quantify strain sharing as a percentage but only 

between the host of interest and one source of interest at a time (Asnicar et al., 2017a; Ferretti et 

al., 2018; Nayfach et al., 2016; Olm et al., 2021). By contrast, with source tracking, the 

proportions for multiple sources contributing to a given sink (e.g. 25% from mother, 10% from 

dog, 30% from unknown, etc), integrated over all community members in the sink, can be 

inferred simultaneously (Knights et al., 2011; Shenhav et al., 2019).  

Additionally, most source tracking studies have focused on human systems where 

transmission of strains have occurred in more recent time scales. However, it is less clear how 

these methods perform in systems where strain migrations may have occurred in the more distant 

past, such as across different oceans. A study on travel times and mixing in the ocean using 

satellite-tracked surface drifting buoys found that drifters in the Southern Ocean could take up to 

13 years to travel to the Mediterranean (Laso-Jadart et al., 2021). Another study found that travel 

times between different oceanic regions could be over two decades (O’Malley et al., 2021). A 

benefit of using SNVs in the ocean microbiome is that SNVs can track fragments of DNA that 

have moved due to horizontal gene transfer in the distant past rather than relying on inference of 

whole genomes or presence of private SNVs that may been transmitted in the recent past. This 

global-level source tracking is analogous to admixture estimation with human genotypes.  

Here, we evaluate the ability of FEAST with SNVs (SNV-FEAST) to accurately estimate 

true sources in simulated mixtures and to detect trends in source estimates along time and 
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distances, and compare this performance to FEAST with species abundance profiles (species-

FEAST). We show that SNVs can be used directly for source tracking, allowing us to estimate 

the percentage of the sink microbiome explained by different sources without having to identify 

discrete taxonomic units. FEAST is faster and more accurate than previous source tracking tools 

(Knights et al., 2011; Shenhav et al., 2019), and therefore, is ideal for adaptation to SNV source 

tracking. Because there are potentially millions of polymorphic sites of interest across all present 

species, we introduce a method within SNV-FEAST to determine informative SNVs to use as 

input into the original FEAST algorithm. This both reduces memory requirements and 

computation time in the FEAST estimation, allowing us to optimally estimate the source 

contribution of a sink. We find that SNV-FEAST and species-FEAST yield different outcomes 

when applied to fecal samples from infants in the first year of life, fecal samples from infants in 

the neonatal intensive care unit (NICU), and water samples from world oceans. We show use of 

genetic variants to trace migration across oceanic regions, particularly across the Suez Canal and 

across the Panama Canal and find a distance decay-relationship between source and sink with 

SNVs but not species. In sum, we show that SNVs can be used to estimate transmission across 

hosts and across environments. 

 

Results 

FEAST algorithm 

The goal of source tracking is to estimate the contribution of various sources to a sink. 

This requires defining a probabilistic model for inferring mixture proportions for both known 

and unknown sources. Current methods estimate source contributions of sinks using species 

abundance profiles from a set of potential source microbiomes. SourceTracker (Knights et al., 

2011) estimates these contributions using a Bayesian approach with Gibbs sampling to identify 

sources and their proportions using species counts for the sources and sink. Shenhav et al. later 

introduced an expectation maximization algorithm, FEAST (Shenhav et al., 2019). FEAST 

models the species read counts in the sink as a mixture of multinomial distributions that 

represent the sources. The inferred mixture parameters are the relative contributions of sources to 

the sink. FEAST is both faster and more accurate than Source Tracker (Knights et al., 2011), 

enabling the use of larger feature sets and a larger number of input sources.  
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The intuition behind the estimation process is that sources with similar species 

distribution to the sink would have higher estimated contributions to the sink. For example, a 

source and a sink harboring a species private to these two samples would increase the estimated 

contribution of that source. However, in many cases, the same species are found in multiple 

sources simultaneously. The algorithm does not uniquely assign each species to a source, but 

rather, utilizes all the species together to infer the source contributions.  

 

SNV-FEAST 

FEAST was originally tested and evaluated with species data but not with SNVs. Yet, 

SNVs can potentially provide higher resolution information. Our objective here is to assess 

whether source contributions estimated with SNVs are more accurate than with species by 

utilizing two approaches we designate as SNV-FEAST and species-FEAST (Shenhav et al., 

2019), respectively.  

 A computational challenge, though, is that the number of different species comprising a 

microbiome can range from a few hundred to a few thousand, while the number of possible 

SNVs for a given species alone can be in the thousands (Schloissnig et al., 2013). This can result 

in runtimes that last several hours instead of a few minutes. Additionally, more features do not 

necessarily increase accuracy as the same FEAST estimates could potentially be obtained with 

much less data. Thus, to reduce the number of SNVs for source tracking with FEAST, we used a 

likelihood approach to define a ‘signature score’ for each SNV (see Methods). A signature score 

quantifies the extent to which SNVs in the sink that are most likely derived from one of the 

sources. This is analogous to identifying SNVs private to sources and their sinks, but more 

generalized to include SNVs that may be found in multiple sources, albeit at high frequency in 

one of the sources (see Methods).  

 

Simulations 

To compare the accuracy of species-FEAST and SNV-FEAST, we performed simulations 

mimicking mother-infant transmissions with the goal of estimating contributions of different 

sources to an infant sink. Concretely, we tested the ability of SNVs and species to recapitulate 

the true source composition in synthetic samples comprised of a mixture of reads drawn from 
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multiple real fecal adult samples. To construct these synthetic infant microbiomes, we leveraged 

the metagenomic data from mothers sampled in a mother-infant dataset  (Bäckhed et al., 2015). 

The difficulty of source tracking increases with the number of contributing sources 

(Shenhav et al., 2019). Thus, we simulate infants that have a low (<=4) versus high (5 – 10) 

number of contributing sources with different proportions ranging from 5 - 90% 

(Supplementary Table 1). A single unknown source (e.g. a randomly selected unrelated 

mother) was also selected to contribute to the simulated infant. However, this unknown source 

was not presented to FEAST as a potential known source. 

Additionally, not all species in a mother are transmitted to the infant (Asnicar et al., 

2017b; Ferretti et al., 2018; Korpela et al., 2018; Sprockett et al., 2020; Yassour et al., 2018).  

Thus, in our simulations, species transmission rates were determined using a beta distribution, 

which is a natural model for values between (0,1) and often proposed for microbial abundance 

data (E. Z. Chen & Li, 2016; Martin et al., 2020; Sloan et al., 2006, 2007) (see Methods). We 

thus consider four simulated scenarios: a combination of low versus high number of sources and 

low versus high transmission rates (see Methods).  

In Figure 1, our results show the performance of SNV-FEAST and species-FEAST in 

estimating the true contribution of sources. Generally, SNVs outperform species in most 

scenarios, especially when transmission rates are low. SNVs have a lower root mean squared 

error (RMSE) compared to species in three of the four scenarios and higher Spearman correlation 

between true and estimated contributions in all four scenarios. The difference in these 

correlations for SNVs versus species is significant in an unpaired Wilcoxon rank sum test (p = 

0.01429, but p = 0.06 when paired test is used). These results suggest that SNVs may offer useful 

signatures of transmission.  
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Figure 1: Ability of SNV and species-FEAST to recapitulate true contributions in 

simulations. Estimated known and unknown source proportions for infant microbiomes 

simulated with in silico mixtures of real maternal fecal microbiomes under different scenarios: 

either low number of contributing sources (1-4) or high number of sources (5-10), and high 

transmission rate of species or low transmission rate. Transmission rate is the probability of an 

infant being colonized by a given species, simulated using a beta distribution centered on the 

relative abundance of species in sources (Methods). Ten infants were simulated with low 

number of sources and 18 infants were simulated with high number of sources (Table S1). The 

black line indicates the ground truth for proportions. For each simulated infant, there are 11 

8
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points plotted, whereby 10 correspond to known sources (some of which have zero contribution), 

and one corresponds to an unknown source.  

 

Source tracking in infants over the first year of life 

We estimated the contribution from the true mother over time to the infant with SNV and 

species-FEAST. We once again analyzed the Backhed et al. 2015 dataset, composed of 

metagenomic samples from infants collected at four days, four months, and 12 months after 

birth, as well as their mothers at the time of delivery. Previous analyses on this data have shown 

that infants and their mothers share fewer proportions of strains over time, even while species 

similarity increases (Nayfach et al., 2016). Thus, SNVs belonging to strains shared only by the 

infant and their mother may be more revealing of the true source compared to species.  

When applying FEAST with species, the input sources included samples from the mother 

at birth, three randomly selected unrelated mothers, as well as samples from previous time points 

when applicable (sample at birth when sink is four months, samples at birth and four months 

when sink is 12 months). We utilized all species present in the infant whereas SNV-FEAST used 

signature SNVs from only a subset of species (mean for 4 days, 4 months, 1 year). Shown in 

Figure S1 are the distribution of species included in species and SNV FEAST.  

We estimated the contribution of the mother to the infant over the first year of life with 

species and SNV-FEAST (Figure 2). Consistent with previous findings made with species and 

SNV (Nayfach et al., 2016), species-FEAST estimates an increasing contribution of the mother 

over time (p = 5.1 x 10-4), but SNV-FEAST estimates a decrease over time (p = 0.063).  

We also assessed the ability of species and SNV-FEAST to distinguish the true mother 

from three randomly selected unrelated mothers. We find that species-FEAST estimates an 

increasing contribution of unrelated mothers over time (p= 0.014) while SNV-FEAST estimates 

no significant change over time (p = 0.59) (Figure 2).  

 We also estimated contributions from unknown sources, i.e. the portion of the infant 

microbiome not explainable by the true mother or the three randomly selected unrelated mothers. 

Interestingly, species-FEAST estimates a sharp decline in contribution of unknown sources 

(p=7.1 x 10-12) (Figure 2), whereas SNV-FEAST estimates little change in the contribution of 

unknown (p = 0.49) (Figure 2).  
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Figure 2. Source tracking in the infant gut microbiome over the first year of life. For infants 

at birth, four months, and twelve months, we utilize species-FEAST and SNV-FEAST to 

estimate the contribution of (A, B) mother, (C, D) unrelated mothers and (E, F) unknown 

sources. The black line and inset statistics pertain to the linear regression fit for the source 

estimates as a function of age of the infant. Figure S1A shows the species that were included in 

species-FEAST and Figure S1B shows the species for which SNVs were included in SNV-

FEAST.  

10
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Contribution of the NICU built environment to infant microbiomes 

Brooks et al. 2017 studied the contribution of the hospital environment to the infant gut 

microbiome in the neonatal intensive care unit (NICU). They sampled the microbiomes of infant 

stool, as well as their rooms at frequently touched surfaces, sink basins, the floor, and isolette-top 

(Brooks et al., 2017) over an 11-month period. We re-analyzed this data with SNV and species-

FEAST to assess the contribution of the infant’s own NICU room as well as a different NICU 

room (see Methods) in the vicinity, to estimate possible transmissions across rooms. 

Concordant with the findings of Brooks et al., both SNV and species-FEAST detected 

that the most common source contributing to the infant microbiome was the floor and isolette-top 

from the infant’s own room. SNV-FEAST found Infant 18 also had large contributions from 

their own room’s touched surfaces at multiple time points (Figure 3), which may be explained 

by a finding by Brooks et al. that three strains found in Infant 18 perfectly matched (> 99.999% 

average nucleotide identity) strains found in the touched surfaces samples of Infant 18’s own 

room. Lastly, we found Infant 6’s microbiome was explained almost entirely by samples from a 

different room including a sizeable contribution from the sink basin in this different room. This 

is concordant with Brooks et al. finding of multiple cases of strain sharing across rooms of Infant 

6 and 12 for the different surfaces. SNV-FEAST was able to quantify the extent to which Infant 

6’s microbiome was influenced by strains present in the built environment.  

Through application of SNV and species-FEAST, we are able to quantify any trends over 

time in the influence of the built environment on the infant microbiome. For example, both SNV 

and species-FEAST estimated a large unknown component for all four infants, with Infant 18 

showing the largest mean unknown component across the NICU stay based on SNVs. This 

unknown component is important because it signifies the extent to which other sources such as 

the mother and diet are impacting infant gut colonization. In assessing the known sources, we 

found that SNV-FEAST shows more consistency in the contribution from different sources 

compared to species-FEAST over multiple time points. 
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Figure 3: SNVs estimate more diverse sources of infant microbiomes in the NICU. Each bar 

represents one sampling day in the NICU stay of an infant. Infants 3 and 6 as well as Infants 12 

and 18 stayed in the same NICU room at different times, respectively. The contribution of a 

different room are determined by using samples from Infant 12’s room for Infants 3 and 6, and 

samples from Infants 6’s room for Infants 12 and 18 for each of the categories of surfaces per 

infant: touched surface, sink basin, or floor and isolette top surface.  

 

Global source tracking of ocean microbiomes 

The ocean microbiome is a complex community that displays biogeography at the species 

and functional levels (Nayfach et al., 2016; Sunagawa et al., 2015). To further understand global 

migration patterns of ocean microbiomes, we applied SNV-FEAST and species-FEAST to the 

Tara Oceans microbiome dataset (Sunagawa et al., 2015). Tara Oceans is composed of 182 

whole metagenomic sequencing samples derived from 64 stations at multiple depths. Previous 

research indicates that temperature is one of the highest drivers of variability in microbial 

composition in the ocean ((Ladau et al., 2013; Sunagawa et al., 2015). For this reason, we 

restricted the source tracking analysis to sinks and sources from the same temperature range: 
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above 20 degrees Celsius. We additionally focused on samples from the surface water layer at an 

average of five meters below the surface. 

 

Figure 4. Microbial source tracking in the Tara Oceans dataset with SNV and species-

FEAST. World map indicating the location of sampling sites (A). Source tracking estimates for 

the contribution of different oceans to the South Pacific (n=16) (B) and Indian Oceans (n=16) 

(C) are depicted with vertical bars. In each experiment, all stations around the world excluding 

those from the “sink” ocean are considered potential sources. Light blue, for example, represents 

the total contribution of four stations from the Mediterranean Sea. 
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Figure 5. Distance decay in contribution of a “source” ocean to a “sink” ocean. (A) 

Estimated contribution of Mediterranean station 7 to various Indian Ocean samples as a function 

of geographic distance. (B) Estimated contribution of Indian Ocean station 41 to various 

Mediterranean samples as a function of geographic distance. (C) Estimated contribution of North 

Atlantic station 142 to various South Pacific samples as a function of geographic distance. (D) 

Estimated contribution of South Pacific station 112 to various North Atlantic samples as a 

function of geographic distance. Inlaid text shows the linear fit for contribution as a function of 

distance (slope, adjusted R-squared, and p-value for slope).  

 

First, we performed source tracking between oceans using SNV and species-FEAST. We 

treated each station around the world as a sink and estimated the contribution of different oceans 

around the world to that sink (Methods). Unknown represents any portion of the microbiome in 
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these sink samples that cannot be explained by any of the provided source samples. We found 

that species and SNV-FEAST estimate different amounts of sharing between oceans, where 

SNVs estimate a higher unknown on average. The finding that SNV-FEAST estimates a higher 

unknown contribution on average is most evident in the North Pacific, North Atlantic, South 

Atlantic, and Mediterranean oceans (Figure S1). Additionally, in some oceans, SNVs identify 

contributions from oceans that species-FEAST does not detect (Figure 5, Figure S1).  For 

example, in applying FEAST to Indian Ocean samples we find that there is measurable sharing 

of microbes with the Mediterranean Sea, but this is not detected with species (Figure 4C). Such 

differences were found in samples from other oceans as well (Figure S1).  

 Second, we assessed whether source tracking estimates display a distance-decay 

relationship. Previous studies found that genetic distance, such as that represented by fixation 

index FST, increases with geographic distance between populations (Cavalli-Sforza & Feldman, 

2003; DeGiorgio & Rosenberg, 2013). Based on these findings, our expectation was that samples 

that are further away from a given station will have a lower contribution from that station.  

To assess this distance-decay relationship, we focused on sharing between the Indian 

Ocean and Mediterranean Sea, which are connected by the man-made Suez Canal. Migration 

from the Red Sea to the Mediterranean Sea, known as Lessepsian migration, is well-documented 

for not only microorganisms but also macroorganisms like fish (Bentur et al., 2008; Bianchi & 

Morri, 2003; Golani, 2009). Additionally, recent studies suggest that anti-Lessepsian migration 

of bacteria (Mediterranean to Red Sea) may be more common than Lessepsian migration 

(Elsaeed et al., 2021). We hypothesized that the source estimates for the Indian Ocean will show 

a large contribution from Mediterranean-derived microbes detected by SNV source tracking, 

consistent with anti-Lessepsian migration through the Red Sea.  

We assessed the changing contribution of Mediterranean-derived microbes in the SNV and 

species profiles to the Indian Ocean with distance (Figure 5A). We also assessed contributions 

in the opposite direction from the Indian Ocean to the Mediterranean Sea (Figure 5B). Only in 

the Mediterranean to Indian Ocean direction (Figure 5A) do we observe a distance decay 

relationship (p= 0.72 for SNV-FEAST and p=0.43 for species-FEAST) for the estimated 

contribution of a sample from Mediterranean station 7 to Indian Ocean samples. By contrast, the 

estimated contribution of a sample from Indian Ocean station 41 to Mediterranean samples 

shows little change over distance for both SNV and species-FEAST. Despite there being a 
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distance decay relationship detected with both species and SNVs from the Mediterranean to IO, 

the contribution from species is overall very low (0.04% mean contribution across all 

Mediterranean stations, 1% max) compared to that of SNVs (3.4% mean across all 

Mediterranean stations, 33.4% max).  

Additionally, we examined distance-decay relationships between the North Atlantic and 

South Pacific, which are connected by the man-made Panama Canal. Migrations are more 

commonly recorded along the Suez compared to the Panama Canal. It has been previously 

suggested that the low salinity of the Panama Canal waters could be a barrier to migration of 

organisms across the canal (Menzies, 1968). However, migrations of certain microogranisms 

have been detected in either direction (Carlton et al., 2011).  

Figure 5C shows the estimated contribution of a sample from North Atlantic station 142 to 

South Pacific samples. SNV-FEAST finds a distance decay relationship between a North 

Atlantic sample and South Pacific stations ( p = -0.19) while species-FEAST does not (p = 0.81). 

In Figure 4D, we show the estimated contribution of a sample from South Pacific station 112 to 

samples in the North Atlantic. For both SNV and species-FEAST, the mean contribution of 

North Atlantic to South Pacific is higher than South Pacific to North Atlantic with a mean 

estimated contribution of North Atlantic samples to the South Pacific of 3.2 % (SNV-FEAST) 

and 5.6 % (species-FEAST) and mean contribution of South Pacific to North Atlantic of 0.26 % 

(SNV-FEAST) and 2.3 % (species-FEAST).  

 

Discussion 

Source tracking provides insight into source contributions to a metagenomic sample as 

well as similarities between metagenomic samples. While species abundances have been 

informative in source tracking in several studies (Flores et al., 2011; Knights et al., 2011; 

McGhee et al., 2020; Shenhav et al., 2019), they may be limited in their resolution. SNVs 

provide a potential alternative because of their ability to distinguish sources of strain 

transmissions. Here we compared the ability of a previously published source tracking algorithm 

FEAST using species versus SNVs as input data. In application of species and SNV-FEAST to 

three case studies, we confirm that SNVs indeed can provide insight into the ecological 

processes shaping microbial communities that species information alone cannot. 
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In the first case study, we confirm previous findings that SNV sharing between mothers 

and infants decreases over the first year of life while species sharing increases (Nayfach et al., 

2016), suggesting that while the infant microbiome matures to resemble adults, sources other 

than the mother may seed the infant over time. In the second case study, we confirmed source 

contributions from the NICU built environment to the infant microbiome (Brooks et al., 2017), 

and found that SNVs detect a more consistent estimate in source contributions overtime 

compared to species as well as detecting contribution from sources not detect by species-FEAST. 

Finally, in the third case study in the TARA oceans dataset, we found SNVs but not species 

display a distance decay relationship, paralleling recent results made with gene content 

(Dlugosch et al., 2022). This last case study provides novel insight into sharing of microbiomes 

across oceans. While previous studies have examined the biogeography of the ocean using 

species profiles, genes (Dlugosch et al., 2022; Nayfach et al., 2016) or amino acid variants from 

a single species (SAR11) (Delmont et al., 2019), for the first time, we leverage the use of SNVs 

across all detected prevalent species in the ocean microbiome to identify proportions of sharing 

across oceans. 

Several previous studies have relied on tracking transmissions of strains with private 

SNVs shared only between the sink and putative source (Bäckhed et al., 2015; Korpela et al., 

2018; Nayfach et al., 2016; Schmidt et al., 2019). While this has been an effective way to track 

transmissions, such analyses are restricted to a binary quantification of sharing or not sharing for 

each species. We instead used any SNV with an informative distribution across sources as 

determined by our signature scoring method (see Methods) and are able to quantify the relative 

contribution of all the sampled environments. Additionally, with source tracking, we can 

quantify the contribution of unknown sources. For example, with SNV FEAST applied to ocean 

samples, we found an overall higher proportion attributable to “unknown” sources compared to 

findings made with species FEAST. This unknown component suggests that a significant 

fraction of marine biodiversity may be endemic, as previously noted in the Mediterranean 

(Katsanevakis et al., 2014).  

Another popular approach used to track strain transmissions is to resolve haplotypes and 

then identify matches with high average nucleotide identity (ANI). However, this approach may 

miss strain sharing of lower-abundance strains whose haplotypes cannot be confidently resolved. 

For example Brooks et al.’s study of strain transmission was restricted to only strains whose 
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presence in a sample was defined with an ANI > 99.999% and genome breadth > 90%. As a 

result, many potentially informative strains may not have been considered. The benefit conferred 

by using SNVs however, is that we bypass computationally intensive phasing of haplotypes and 

maximize use of the data. Moreover, with strict requirements of high ANI between samples, 

transmissions of fragments of DNA arising from recombination may not be detected. However, 

SNV tracking would potentially reveal such transmission events. This feature of SNV tracking 

resembles work in human genetics estimating admixture proportions by tracking transmission of 

genetic fragments across generations (Alexander et al., 2009; Chiu et al., 2022).Thus, tracking 

SNV frequencies may be important in detecting genetic heterogeneity over long spans of time, 

especially when gene-specific sweeps or movement of mobile genetic elements could be 

important contributors to gene flow (Bendall et al., 2016; Reveillaud et al., 2019). 

A drawback, however, with using SNVs over species is deeper, whole genome 

sequencing is required to accurately call SNVs. Moreover, even when there is sufficient 

coverage, there is still the challenge of a large number of SNVs. We demonstrate one way to 

subset SNVs that uses a scoring method for informativeness, but there may yet be other methods 

for filtering SNVs to the most informative set. Another potential caveat of SNV filtering is that 

not all species present will be represented in the final informative SNV set (Figure S1).  

However, we show that not all species need to contribute informative SNVs in order to make 

accurate inferences.  

Ascertainment of SNVs from metagenomic data in a high-throughput manner, especially 

common SNVs with microbiome genotyping technology (Shi et al., 2021), is becoming an 

increasing priority for the field as metagenomic datasets become more abundant. A genotyper for 

prokaryotes has already been developed and tested on a catalog of over 100 million SNVs in 

order to characterize population structure (Shi et al., 2021). Such a catalog of informative SNVs 

could be invaluable for source tracking. With source tracking enabling us to characterize samples 

by their relationship to known samples, we have a powerful tool to explore samples in new 

contexts we have yet to discover. 
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Methods 

Data 

For simulations and analyses of infant microbiomes in the first year of life (Bäckhed et 

al., 2015), we downloaded the raw shotgun metagenomic sequencing reads from public read 

archives under accession number PRJEB6456. We downloaded the raw sequence reads for the 

NICU analysis (Brooks et al., 2017) from accession number PRJEB323631, and the equivalent 

for the Tara Oceans analyses (Sunagawa et al., 2015) were downloaded from accession number 

PRJEB402. 

 

Estimation of species and SNV content of metagenomic samples 

We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2, 

downloaded on November 21, 2016 (Nayfach et al., 2016) to estimate species abundance and SNV 

content per species in each metagenomic shotgun sequencing sample. The database we used to apply 

MIDAS consisted of 31,007 bacterial genomes that are clustered into 5,952 species. The parameters we 

used to estimate species abundances and SNVs were described in (Garud et al., 2019). A species was 

considered present if there are at least 3 reads mapping to a set of single copy marker genes on average. 

To call SNVs, we used the default MIDAS settings in order to map reads to a single representative 

reference genome. The mapping was done with Bowtie 2 (Langmead & Salzberg, 2012): global 

alignment, MAPID≥94.0%, READQ≥20, ALN_COV≥0.75, and MAPQ≥20, where species with reads 

mapped to less than 40% of the genome were excluded from the SNV calls. 

 

Application of FEAST algorithm 

FEAST, originally introduced by Shenhav et al., is an R-based method that models the 

mixture proportions for various “source” microbial samples for a given “sink” (Shenhav et al., 

2019). This method utilizes Expectation Maximization to estimate the proportions when given 

any sort of count-based feature matrix representing the sources and sinks. The intuition behind 

the estimation process is that a source with a similar species distribution to the sink would have a 

higher contribution estimate to the sink. A species with non-zero counts only in source j and the 

sink would increase the estimated contribution of source j. However, in many cases, the same 

species are found in multiple sources simultaneous. The algorithm does not uniquely assign a 

species to a source but rather simultaneously utilizes all species information to infer the source 

contributions. The method was originally tested and evaluated on species and not previously 
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tested on more fine scale genetic data such as SNVs. The number of different species, on 

average, range in number from a few hundred to a few thousand, while the number of possible 

nucleotide sites that vary across different sources can number in millions. For this reason, a 

SNV-filtering process is necessary so that the algorithm can run within a reasonable time and 

with reasonable memory requirements.  

For both species and SNV-FEAST, the same set of sources and sinks were fed into the 

FEAST algorithm. In the case study of infants in the first year of life (Bäckhed et al., 2015), the 

sink consisted of the infant fecal sample at either four days, four months, or 12 months and the 

sources consisted of fecal samples from the true mother, three randomly selected mothers from 

the same dataset, and also any previous time points for the infant. For the case study of infants in 

the NICU (Brooks et al., 2017),  the sink consisted of the fecal sample of the infant at a given 

time point and the sources consisted of pooled reads from the touched surfaces, the sink basin 

and the floor and isolette top from both the infant’s own room as well as a different room. The 

different room was Infant 12’s room for Infants 3 and 6, Infants 6’s room for Infants 12 and 18. 

For the Tara Ocean (Sunagawa et al., 2015) samples, the sink consisted of the surface water 

sample from the ocean station of interest while the sources consisted of surface water samples 

from every other station from every other ocean in the world. 

To obtain single nucleotide variation, we applied MIDAS (Nayfach et al., 2016) at the 

“species” and “snps” step to the publicly available fastq files provided by each publication. The 

merge_midas.py script was applied to process the final “snps” output with the following 

parameters: sample depth 5, site depth 3, min samples 1, site prevalence 0 and threads 7. 

 

Determining the signature SNV set 

To find the signature SNVs, the following steps are followed: 

(1) Minimum coverage filtering: only sites of the genome with at least the required number 

of reads mapping to the site are considered. In the case study of infants in the first year of 

life (Bäckhed et al., 2015) and infants in the NICU (Brooks et al., 2017), the minimum 

coverage requirement is 10 across the sink and J sources. For the Tara Ocean (Sunagawa 

et al., 2015) samples, the minimum coverage is five reads (Sunagawa et al., 2015). 

Additionally, sites that are biallelic must have more than one read mapped to each allele 

to be considered.  
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(2) Signature score calculation: Two hypotheses are compared for each SNV: (1) only source 

i out of J possible sources explains the observed sink’s distribution of reference and 

alternative alleles in the reads and (2) all other sources except i (sources � � i ) explain 

the observed distribution of reads in the sink. Given n reads with the reference allele and 

m reads with the alternative reads in the sink and learned parameter θ for the reference 

allele frequency, the binomial log-likelihood for the observed read count distribution is 

calculated as follows: 

���� � 	 log 
 � � log �1 � 
� 

Allele frequency θ  for the sink is learned using one of two hypotheses: 

Hypothesis 1: Source i explains the allele counts in the sink 

� � �� 

where ��  is the allele frequency in source i. 

Hypothesis 2: The combination of all sources except source i explain the allele counts in 

the sink. 

� �  � ����

�

� ��

 

where ��  is the allele frequency in source j and ��  is the mixing parameter representing 

how much of source j explains the allele frequency in the sink. The j length vector � is 

learned by applying a solver implemented in scipy.minimize() with Sequential Least 

Squares Programming and subject to the constraint of summing to 1 with bounds of 0 to 1 

inclusive. 

 

A likelihood ratio is calculated as ����� � ����� representing the ratio of the likelihood of 

hypothesis 1 to hypothesis 2 for each source j of interest such that there are J likelihood 

ratios. The maximum of the likelihood ratios calculated for all J sources is saved as the 

one signature score for that SNV, representing how favorably one source explains the 

sink better than all other sources. All the scores are ranked across SNVs and SNVs with 

scores that are greater than two standard deviations over the mean signature score within 

each 200 kbp window of the genome are retained as signature SNVs. This window size 

was chosen for to optimize run time and memory requirements. 
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Note, if only one source passes minimum coverage filtering, ����� � 0  resulting in a 

very high likelihood ratio as represented by ����� for the one source . These SNVs are 

more likely to pass the signature score filtering. One exception for SNVs that are 

included in the signature SNV set without passing signature score filtering are SNVs with 

an allele that is completely unique to the infant, as these represent SNVs that are 

potentially derived from an unknown source. Signature SNVs are obtained from the SNV 

profile of every species for which we have MIDAS output for.  

 

Simulating mother to infant transmission 

The mixture proportions for 28 simulated infants is shown in Table S1. Four possible 

scenarios are simulated using a combination of either low or high number of sources and low or 

high transmission probabilities of species. High transmission of species was simulated by 

drawing separate transmission probabilities for each species in each contributing source based on 

a beta distribution with a mean equal to the species relative abundance and variance equal to 0.1, 

a value selected to emulate Backhed et al.’s mean relative abundance and variance. For the low 

transmission scenario, transmission probabilities were drawn from a beta distribution with mean 

0.1 times the relative abundance and variance at 0.1. To determine if a species from each source 

was transmitted to a given infant, a binomial draw was performed J times, where J = number of 

sources, and the probability of a mother transmitting the species is pj based on the beta-drawn 

transmission probability. If any of the draws yields a one, that species is transmitted to the infant 

from all sources. The same simulated data under these scenarios is used for both SNV and 

species source tracking.  

The source tracking estimates are compared to the true mixing proportions using 

Spearman correlation. The significance of correlation is calculated using the stat_cor function in 

the ‘ggpubr’ package (CRAN - Package Ggpubr, n.d.).  

 

Distance Decay Analysis 

To study the relationship between source tracking estimates and geographic distance, we 

selected a single station from the Red Sea and North Atlantic by which to compute the distance 

to stations in the ocean of interest, namely, the Indian Ocean and South Pacific. To compute 
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geographic distance between stations, we applied the Haversine distance to the longitude and 

latitude of the sampling sites provided by (Sunagawa et al., 2015) using the package “geosphere” 

(Hijmans et al., 2021). Source tracking estimates were computed as described above using either 

SNV-FEAST or Species FEAST. 
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