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Abstract: The development of single-cell multi-omics technologies profiles DNA, mRNA,
and proteins at a single-cell resolution. To meet the demand, we present scMinerva for
single-cell multi-omics integration utilizing graph convolutional networks and a new random
walk strategy, which outperforms existing methods on various datasets. Our method is
especially robust on high-noise more-omics data and is lightweight concerning speed and
memory. scMinerva can effectively perform downstream tasks, such as biomarker detection
and cell differentiation analysis. We extensively interpret the robustness of scMinerva by
analyzing components’ occurrence frequency in walks during training at omics level, cell-
type level, and single-cell level.
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Background
Many single-cell technologies are now developed to measure the biological systems, revealing a significant
heterogeneity across specific cell types and cell states. Starting from the transcriptome analysis [1],
such as RNA sequencing or RNA micro-array, the measurement tools have rapidly been extended to
multi-omics in recent years, such as protein or DNA content [2]. This trend greatly enhances the
biological discoveries at the single-cell level and can provide a more comprehensive molecular mechanism
by integrating multi-omics data.

However, the inherent characteristics of single-cell multi-omics data make it difficult to analyze.
First, single-cell data is extremely sparse due to the lack of expression of genes in specific cell types
and the relatively shallow sequencing of some droplet-based technologies [3]. Second, the data is highly
noisy due to current technical limitations, including amplification bias, low capture rate, dropout, etc
[4]. Also, the high-dimension features produced by the multiplexing and throughput of multi-omics data
lead to remarkably expensive computational overhead.
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To address these problems, some methods have been proposed for single-cell multi-omics data
integration. They can be classified into three categories:

1) Latent-space inference methods. This type of methods regards each omics as a view of the
underlying relationship of cells and assumes a common latent space shared by all the omics. Latent
space approaches target at the feature level by matrix factorization and manifold alignment. Typical
methods include MOFA [5] , scAI [6], and MOFA+ [7]. However, matrix factorization methods ([5]) are
under a linear operation that does not suit the characteristics of the data sparsity, while the assumption
of Manifold alignment methods ([6] - [8]) that requires the globally matched distributions are often too
strong, as different omics are derived from different tissues and cell types.

2) Correlation-based methods. Such correlation-based methods focus on the (dis)similarity measu-
res that correlate different components to each other. In this setting, for example, Seurat 4.0 [9] utilized
weighted nearest neighbor analysis. CiteFuse [10] implemented the similarity network fusion, and Conos
[11] used the graph-correlation to identify nearby cells. But these methods ([9][11]) designed for unpaired
data require a separate feature selection step before integration for dimension reduction, and the perfor-
mance is sensitive to the genes selected. Also, similarity measurement is especially memory-consuming
and thus not scalable to gigantic single cells datasets.

3) Deep learning-based methods. These approaches utilize the capability and flexibility of Neural
Networks to model complex data. Some of these methods are unsupervised such as TotalVI [8] and
DeepMAPS [12], while there also exist some semi-supervised or supervised methods, like scJoint [13].
But most existing works are based on Convolutional Neural Networks (CNN), which did not consider
nodes’ spatial information and failed to capture the correlations between cells effectively.

Besides, there are also some common limitations shared by the existing methods. 1) Cannot take
advantage from different omics when dealing with high-noise more-omics datasets (i.e., three-omics).
Most of the existing methods are only designed for datasets with two omics and cannot fully utilize the
other ones, e.g. Seurat 4.0 [9]. Forcibly integrating other omics cannot benefit the result and even impair
the performance. 2) High memory consumption. Many existing methods, like CiteFuse [10], have very
expensive memory demands. The computational complexity is not affordable for users with standard
devices. 3) Lack of interpretability. This is especially common in existing deep learning methods. Some
of them straightly apply neural networks to the framework which mostly produce a “black-box” model
and their functionalities hardly form biological meaning. The lack of interpretability obstructs their
wider usage in realistic settings.

To address these limitations, we propose scMinerva, a more flexible multi-omics integration fra-
mework that can adapt to any number of omics with efficient computational consumption. Considering
the structure and biological insight of this multi-omics integration problem, to learn the cell property on
top of multi-omics information and the cell neighbors, we accordingly design the model on a new random
walk strategy. It allows our framework to process any number of omics and has an explicit probabilistic
interpretability, and a Graph Convolutional Network (GCN), which considers the spatial information of
nodes and endows the method a strong robustness to noises.

Specifically, 1) to effectively take advantage from any number of omics, we construct a heterogene-
ous graph among all the omics and implement GCN to strengthen the model’s robustness. We first build
topology for each omic as a sub-graph and then link nodes from the same cell across all the omics. By our
new random walk strategy, we replenish our knowledge space to the neighbors of one cell concerning all
the available omics. The GCN will jointly benefit the model by adjusting the weights of omics-transition
links to eliminate noises from different omics and reduce the negative influence from data sparsity. Our
framework therefore shows an remarkable robustness on high-noise more-omics datasets.

2) scMinerva is also computationally efficient. Our new walking strategy is a variant of node2vec
[14]. Node2vec is a combination of random walk and word2vec model [15]. For our new walking strategy,
instead of combining Deep-First Search and Breadth-First Search as node2vec, we add another dimension
as “Omics-First Search”, which guarantees the visit to its mapping nodes on the sibling omics. On the
one side, as a variation of it, our method shares a fairly low computational efficiency as node2vec in
terms of both space and time requirements [14]. On the other side, our method only trains the GCN
to obtain the weights of omics-transition links with a linear time complexity in terms of the number of
cells.

3) scMinerva is designed from the start to be more interpretable. Since GCN is hard to be straightly
interpreted, we implement random walk which is a transparent probabilistic model and word2vec [15]
which is better-studied under maximum likelihood estimation. They jointly build a possible “window” to
the “black-box” of GCN so that we can semi-transparently learn how GCN functions on our problem. In
summary, we analyze the changes on generated walks during training from the perspective of word2vec’s
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mechanism. These changes indicate that GCN effectively integrates information from different omics
by providing a more reasonable omics-transition probability for random walk. Moreover, by evaluating
the occurrence frequency of nodes in walks, we found that GCN overcomes the problem of the data
sparsity by assigning higher weights to nodes with high feature expression level. It reveals a potential on
detecting high gene expression cells and justifies scMinerva’s output as they are formed from anchoring
representatives in cell types.

To summarize, our main contributions are

• we present an unsupervised integration method scMinerva for single-cell multi-omics data. It is
flexible to integrate any number of omics and scalable to large-scale single-cell datasets with low
time complexity and memory consumption.

• we extensively evaluate the proposed method among a wide range of data and downstream tasks,
which proves its effectiveness and robustness, especially in high-noise more-omics cases.

• we interpret the effectiveness of GCN on handling the sparsity and high noises of single-cell data.
Specifically, we analyze the changes on generated walks during training under the mechanism of
word2vec and further conclude scMinerva’s potential on detecting high gene expression cells.

Result

scMinerva is designed for multi-omics intergration problem
In this study, we introduce scMinerva, an unsupervised Single-Cell Multi-omics INtegration method with
GCN on hEterogeneous graph utilizing RandomWAlk. Its framework is shown in Figure 1. In single-cell
multi-omics data, each cell has its expression vectors on different omics which measure different aspects
of its biological process. Accordingly, if we solely build topology for each omics, a cell will have a mapping
node on each of them. Inspired by this, scMinerva is designed to generate latent embeddings for cells by
integrating the information of their neighbors across all the omics. For an easier discussion, we assume
there is an “explorer” on the graph who is integrating information about neighbors of a cell. Intuitively,
when the explorer is trying to learn the neighbors’ information of the cell’s mapping node in one omics,
we allow it “jump” to the cell’s mapping nodes in other omics to build better insight into that cell stage.
Below we introduce each step in detail.

We formulate the integration as a graph learning problem where graph nodes are heterogeneously
from different omics. After preprocessing, we first separately build a weighted K-nearest neighbor (KNN)
graph for each omics by their Euclidean similarity matrix and name them as sub-graphs. Then, we build
a heterogeneous graph by linking the mapping node of a cell in one sub-graph with its mapping nodes
in the other sub-graphs. To remark, the graph is directed and therefore the transition probability from
node A to node B might differ from its opposite.

With the heterogeneous graph, we develop a new walking strategy to fit this biological problem.
It can be regarded as a promoted version of node2vec [14]. Briefly, node2vec learns the graph topology
by random walk and introduces two parameters named p and q, where p controls the likelihood of
immediately revisiting a node in the walk and q allows the search to differentiate between “inward” and
“outward” nodes [14]. In our strategy, in addition to providing p and q, we introduce a third parameter
z to control an inter-omics transition within the frame. Hence, the explorer is not restricted from the
partial information in one omics but can learn neighbors of nodes from the same cell in all the omics.
These parameters define the transition probability and complete the set-up for random walk.

Then, we input walks into the word2vec model and obtain the node embeddings of the hetero-
geneous graph. Notably, word2vec will form embeddings to ensure the biologically similar cells to have
a small distance in the embedding space. And to optimize the embeddings, we input them and the
heterogeneous graph’s topology (i.e, edge list) into the GCN model. Here, we utilize the loss function
from DeepCluster which disperses different clusters detected by K-means [16] and GCN with output
the trained omics-transition weight matrix. After the training, we decode the nodes in walks from an
omics-specific manner to the original cells and generate embeddings by word2vec in a low-dimension
space for downstream works. The training details of the GCN model can be referred in Method Model
Training.

The embeddings are used to classify different cell types and produce predicted labels. With the
predictions, we can perform multiple downstream tasks, such as detecting marker genes in various cell
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Figura 1: Framework of scMinerva. scMinerva is a method designed for single-cell multi-omics integra-
tion and is adaptive to any number of omics. It formulates the setting as a graph learning problem,
solely builds topology for each omics and learns the graph structure on a reconstructed heterogeneous
graph. The main framework can be divided into two parts: random walk and Graph Convolutional
Network(GCN) training. In the random walk phase, we provide a new walking strategy to allow an
inter-omics transition and obtain embedding by inputing walks into word2vec’s model. In the training
phase, we input the embeddings and the heterogeneous graph’s topology into the GCN model to search
for an optimal transition probability which contributes to the graph in the next epoch to achieve a better
random walk. After training, the learned embeddings are validated in various downstream tasks, such
as label classification, biomarker detection, cell differentiation analysis, etc.. We also interpret GCN’s
effectiveness by evaluating the changes on walks during training at omics level, cell-type level and single-
cell level.

states and analyzing potential cell differentiation in a single-cell resolution. More interestingly, with
the help of random walk and the probabilistic property of word2vec model, we interpret reasons of
the robustness of scMinerva and how GCN functions in the framework. By analyzing the occurrence
frequency of the component of the walks at omics level and cell-type level, we conclude that GCN benefits
the model by providing a more reasonable omics-transition probability. Furthermore, at the single-cell
level, we observe that the output of the framework relies more on nodes with higher feature expression
level. This explains the effectiveness of our model on sparse data and reveals the potential for detecting
high feature expression cells.
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scMinerva shows a linear time complexity and low memory con-
sumption
Our method is computationally efficient in terms of both space and time requirements. The main features
of scMinerva are random walk and a GCN model. For an easier demonstration later, assume the dataset
has n samples and c omics. Denote the constructed heterogeneous graph as G. And G = (V, E) where V
is the node set and E ⊆ (V × V,R) is the weighted edge set.

For random walk, the space complexity of every node in the graph is O(|E|) which only stores the
immediate neighbors of the node. Based on our walking strategy, the probabilistic model is a 2nd-order
Markov chain. It is necessary to store the connecting edges as well as the transition probability between
the neighbors of a node and itself. Thus, the space complexity is O(a2|V|), where a is the average
degree of the graph. The heterogeneous graph is built by the KNN algorithm with added omics-to-omics
links on every node. Suppose we choose k neighbors during the construction on KNN, the nodes of the
heterogeneous graph will have an average degree of k + c − 1. Therefore, a is bounded as a reasonably
low constant. Overall, the space complexity of random walk is O(|E| + (k + c − 1)2|V). Furthermore,
considering the time complexity of the strategy, since we impose the graph connectivity in the general
process, the sampled walks are reusable across different source nodes. Assume each random walk is of
length l, for w < l, we can generate w samples for l − w nodes from its Markovian nature. Therefore,
the complexity on time is O( l

w(l−w) ) for each sample.
For the GCN, its efficientness on time complexity and space complexity is broadly studied [17].

To further reduce the complexity, the proposed method does not need to train all the edge weights,
which are of complexity O(n2). Instead, we only require GCN to train the omics-to-omics links in the
heterogeneous graph. Therefore, the output is of size O(n), and the coefficient of complexity is c(c+ 1).
Since the number of omics c is always small in practice, we greatly reduce the requirement on complexity
to a linear case to achieve efficient computation.

scMinerva has an impressive anti-noise ability on simulated four-
omics datasets

Tabela 1: Performance comparison on simulated data where the first column gives number of samples in
datasets. Bold indicates the best method, and the underline indicates the second-best method. scMinerva
outperforms the second-best method by around 30% across all the metrics.

#Sample Method ACC F1-weighted F1-macro ARI

2k

scMinerva 0.911 0.913 0.913 0.781
MOFA+ 0.474 0.464 0.462 0.127
Conos 0.627 0.616 0.615 0.307

Seurat 4.0 0.263 0.209 0.211 0.004

5k

scMinerva 0.972 0.972 0.972 0.913
MOFA+ 0.547 0.548 0.548 0.198
Conos 0.764 0.764 0.656 0.449

Seurat 4.0 0.411 0.408 0.407 0.099

10k

scMinerva 0.957 0.957 0.957 0.895
MOFA+ 0.691 0.686 0.686 0.41
Conos 0.719 0.714 0.714 0.450

Seurat 4.0 0.220 0.165 0.164 0.001

30k

scMinerva 0.978 0.978 0.978 0.947
MOFA+ 0.675 0.676 0.677 0.377
Conos 0.447 0.446 0.446 0.134

Seurat 4.0 0.256 0.230 0.230 0.007

Initially, we evaluate our method on simulated datasets. As far as we know, among all the existing
real-world datasets, there is currently no publicly available four-omics single-cell data. However, it is
a common agreement that there is a rapid trend in the development of experimental methods which
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jointly profile three or more omics [18]. And consequently, more flexible computational algorithms for
more-omics data will be greatly required to adapt to this phenomenon. Therefore, we validate scMinerva
using simulated four-omics data. It was produced by a single-cell RNA (scRNA) data simulator, splatter
[19]. We took the RNA-seq of GSE156478-CITE [20] as an input to obtain simulated RNA-seq. To learn
realistic mappings, we trained neural networks with real-world datasets as the input. Three networks were
trained by mapping GSE156478-CITE RNA-seq to its ADT, GSE156478-ASAP ATAC-seq to its ADT,
and sci-CAR RNA-seq to its ATAC-seq. By inputting the simulated RNA-seq to the above networks,
we generate four-omics datasets with 5 classes and sample number 2k, 5k, 10k, and 30k, respectively.
The simulated RNA-seq, ATAC-seq, ADT from RNA-seq, and ADT from ATAC-seq data are of feature
number 815, 2613, 227, and 227 respectively. Full details on data simulation can be referred to Method
Data Simulation.

The results are listed in Table 1, where we compared the performance with Seurat 4.0 [9], MOFA+
[7], and Conos [11]. To note, TotalVI [8], CiteFuse [10], and DeepMAPS [12] are not capable of processing
more than two omics and are thus not included here. But they will be compared in the later section on
2-omics real-world datasets. We examine the performance with accuracy, F1-weighted score, F1-macro
score, and adjusted rand score (ARI). Details on these metrics are in Appendix Evaluation metrics.
Among all the metrics and all the datasets, our method shows around 30% improvements over the
second-best method.

As we have demonstrated before, most of the existing methods cannot fully take advantage of
all the omics when encountering more-omics datasets(i.e. more than two omics). Therefore, they are
strongly lagged back by the low-quality omics in datasets and perform terribly. The huge gap between
scMinerva and other existing methods comes from the differences in the anti-noise ability. scMinerva
guarantees robustness on anti-noise as it is not sensitively affected by the low-quality omics in datasets.

After extensively interpreting the model, we find that our model’s anti-noise ability comes from
taking advantage of the more reliable omics in a cell-specific manner. In general, for each cell, the
difficulty level to correctly classify it is different under different omics. We name the omics that can
easily perform a correct classification on some cell as a “high-quality” omics to this cell while the opposite
is a “low-quality” omics to it. Intuitively, when learning the neighbors of this cell on the heterogeneous
graph, GCN will assign a higher transition probability from its mapping node on the low-quality omics
to the counterpart on the high-quality omics and lower the transition probability of its opposite. So we
can mostly learn from the cell’s neighbors on the sides which are easier for classification and diminish the
negative influence of low-quality omics. This observation comes from interpreting GCN by analyzing the
changes in walks’ components under the mechanism of the word2vec model. We will further demonstrate
it in the later sections.

scMinerva achieves state-of-the-art performance on six real-world
datasets over five existing methods
Furthermore, we evaluate our method on real-world datasets. Their sample sizes range from 1k to 64k.
We run the experiments on CITE-seq (GSE128639 [21], GSE156478-CITE [20], COVID-PBMC [22]),
ASAP-seq (GSE156478-ASAP [20]), SNARE-seq [23], and scNMT-seq [24]. For the COVID-PBMC
dataset, we take the healthy samples and critical symptom samples separately, and form the COVID-
non-covid dataset and COVID-critical dataset, respectively. We extract these two datasets for the
convenience of the later analysis. All datasets were under standard pre-processing and quality-control
(details in Method Preprocessing). Most of these datasets have a more than 90% dropout rate and a
shallow measurement depth, which is listed in Figure 3.

The existing methods, DeepMAPS, CiteFuse, totalVI, and Seurat 4.0, were all run with their
default settings. For MOFA+ and Conos, the dimension of their embeddings needs to be adjusted to
a large dataset. So we set the dimension of their output embeddings to 200 to reserve enough latent
information as other methods. Notably, MOFA+ was restricted by memory limitation. We failed to run
the originally preprocessed data on it with a 32G RAM when the number of samples is greater than
10k. Thus, we apply PCA on the data with 300 components on MOFA+ for dataset GSE128639. Also,
DeepMAPS, CiteFuse, and TotalVI are unsuitable for three omics cases, and therefore they are not listed
in the chart for COVID-PBMC, scNMT, and GSE128639. With the generated embeddings, we evaluated
the classification performance by fitting a K-nearest Neighbor (KNN) Classifier with the number of
neighbors as 30 for datasets containing more than 5k samples, and with the number of neighbors as 8
for datasets smaller than 5k using the sklearn library [25]. The details for data preprocessing are listed
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Figura 2: Classification performance on real-world datasets. a. The sequencing technique for Peripheral
blood mononuclear cells to obtain three-omics data. b. Classification accuracy comparison on four three-
omics datasets with six sets of annotations. Each row contains three ticks which represent a method’s
performance on a dataset with test sizes 95%, 90%, and 80% from left to right, respectively. Our method
outperforms all the experiments and is not sensitive to the test size compared to other methods. c.
Visualization on three-omics dataset GSE128639 with 30k cells and 27 classes for scMinerva, Conos,
Seurat 4.0, and MOFA+. scMinerva’s visualization has the clearest boundary and separates clusters
properly. d. The classification performance on two-omics datasets for scMineva and five exiting methods.
scMinerva always shows both great and stable ability even on SNARE which has one extremely noisy
omics. e. Visualization on dataset GSE156478-ASAP with 5k cells and 8 classes. The scatter is colored
by ground-truth labels. It is obvious that scMinerva nicely has the most dispersed clustering which best
matches the ground-truth clusters.

in Appendix Preprocessing.
As annotating single-cell data is extremely labor-intensive and time-consuming, it is expected that

the method can still be effective with only a few ground-truth labels for classification. Therefore, we fit
the KNN classifier using the annotated data with the sizes of only 5%, 10%, and 20% of the whole training
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set to evaluate the performance. For full details on classification, please refer to Method Classification.
The results are shown in Figure 2.

Except for scNMT-seq, which measures the differentiation of mouse embryonic stem cells, most
of the existing three omics datasets are built on human peripheral blood mononuclear cells (PBMC).
Normally for embryonic stem cells, the ATAC-seq, RNA-seq, and DNA Methylation levels are measured.
But for PBMC consisting of lymphocytes (T cells, B cells, NK cells) and monocytes, T cell receptor
(TCR) and B cell receptor (TCR) measurements are available as well as a rich expression level on
surface protein as shown in Figure 2a.

We list the performance on accuracy of different methods in Figure 2b, and the performance on
other three metrics in Appendix 7. We observe that scMinerva outperforms the compared integration
methods on all the classification tasks of all test proportions. As a remark, Conos failed to work in
COVID-critical datasets with a very sparse omics matrix obtained by Hash Tag Oligonucleotide (HTO)
[26]. Notably, when using annotations with 10% of the data size as the training set, scMinerva improves
the classification accuracy by 7% on average and up to 20% on GSE128639 when classifies to 27 classes
compared with the second-best method. Also, it shows the stability when only 5% labels were used for
training. From Figure 2b, it can be easily observed that our method not only has the best performance
but also has the least variance compared with others. The power of scMinerva is sparkled by easy
fine-tuning and is not sensitive to the size of the training set.

We also visualize the embeddings of the GSE128639 dataset produced by scMinerva, Conos, Seurat
4.0, and MOFA+ via t-SNE [27] in Figure 2c. GSE128639 has 30k cells across 27 cell types and cell states.
From the scatter colored by the ground truth labels, it can be seen that scMinerva clusters samples from
the same type together and shows clear boundaries between different types. MOFA+ shows a disperse
gathering for samples that are supposed to be in the same cluster, while in the visualizations of Seurat
4.0 and Conos, the embeddings of different cell types overlapped, showing that Seurat 4.0 and Conos are
not able to effectively discriminate different cell types.

Moreover, in Figure 2d, we list the performance of methods on two-omics datasets. To better
show the differences, we start the y-axis from 0.5 and omit bars below this value. GSE156478-CITE and
GSE156478-ASAP are two-omics PBMC datasets whose omics are of relatively high quality. As they are
easier for classification, most of the existing methods perform well on them. From the results in Figure
2d, scMinerva only achieves a slightly better performance on these two datasets than the second-best
method. For the other two methods that achieve similar performance with scMinerva, Seurat 4.0 and
CiteFuse, CiteFuse is not adaptive to datasets containing more than two omics while Seurat 4.0 also
shows a poor performance on the high-noise dataset, such as SNARE. The embedding of GSE156478-
ASAP are visualized in Figure 2e, colored by ground-truth labels. scMinerva, Seurat 4.0, MOFA+, and
CiteFuse are listed. The embedding of scMinerva is clearer than the other three methods as shown in
the plot.

However, in another 2 omics dataset, SNARE, scMinerva strongly out-performs all of these existing
methods on classification with an around 15% promotion. This performance gap occurs for the dataset
with high noise caused by the excellent anti-noise ability of scMinerva. It can effectively handle situations
where there is a severe quality gap between different omics. In this case, from the result listed below
in Figure 3, we can observe a severe quality gap between two omics of the SNARE dataset, as the
performance of ATAC-seq is very poor. However, our method is not affected by the poor quality of certain
omics and shows strong robustness. But for all the other methods, including TotalVI, DeepMAPS, Seurat
4.0, and MOFA+, they tend to mess up all samples to one class, while CiteFuse is strongly encumbered
by the high noise in ATAC-seq. scMinerva achieves an accuracy of over 80% and has a 20% improvement
on ARI over other methods.

The excellent performance of scMinerva compared to existing methods is because it is specially
designed for single-cell data that is highly noisy and sparse. In the last section, we discussed how GCN
functions on high-noise datasets. So here, we will further give an intuition on how GCN functions on
data sparsity.

It is mentioned in the background that single-cell data is extremely sparse due to the low expression
level and some artifact dropout. Therefore, the valid information in the matrix as known as the high
expression level cells is more than important for data integration in this case. We have observed that,
with our random walk strategy, after training, nodes with higher feature expression levels have a higher
chance to be included in a walk. This discovery comes from analyzing nodes’ occurrence frequency during
training and is especially important for the integration of sparse data. GCN assigns a higher “attention”
to those more “valuable” cells with rich gene expression. Consequently, we can make full use of their
expression information as an anchor when generating walks and embeddings.
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This fact strengthens our method’s robustness by fully taking advantage of those nodes that are
less affected by dropout as well as data sparsity.

Integration on multi-omics data is robust and always better than
any single omics on classification

Figura 3: Ablation study results on real-world datasets. The clustered histograms represent results from
the same datasets, and below them, we list their sample sizes, measurement depths, and dropout rates.
It shows that scMinerva achieves the best performance under most of the cases and efficiently integrates
valid information from different omics. In some cases, scMinerva without GCN training will produce a
lower performance than the best single omics data. However, with a GCN implemented, the performance
mostly beats any single omics and is promoted to a higher level.

To validate the robustness of integrating different omics, we perform an ablation study on real-
world datasets. The performance of the proposed multi-omics integration method is compared with that
of the single-omics data. For each omics, we separately build the graph topology, run random walk
without the omics-transition parameter, generate embeddings, and fit a KNN classifier for classification.
To enable a fair comparison, the data split across all omics is from fixed random seeds with the same
proportion and hyper-parameters. Also, to validate the necessity of using GCN, we compared the results
before and after training with all other components fixed.

The results in Figure 3 show that with the GCN, combining multi-omics data can obtain better
performance than using any one of the single omics data in 8 out of 9 datasets. The only exception is in
scNMT for 8-way classification but only has a 3% drop compared to the best-performance omics. It is
possibly caused by a serious homogeneity of cell-states on the other two omics except for RNA-seq. In
this case, the graph topologies from ATAC-seq and DNA-meth are nearly random under a KNN graph
construction. Our method might be influenced when start walking from some extremely low-quality
nodes. Therefore, in most cases, scMinerva efficiently captures the valid information from different
omics and obtains a more comprehensive inference.

As we demonstrated before, in practice, we found that it is the GCN model that greatly benefits
the framework and strengthens its robustness. Our framework’s robustness is built on the following two
aspects:

1) For different cells, GCN will effectively increase the probability of walking on its high-quality
omics and reduce the chance of walking on its low-quality omics.

2) GCN will weigh nodes with higher feature expression levels heavier for the later random walk
and help to fully utilize information from these nodes that are not sparse and less influenced by dropout.

Therefore, in the following two sections, we will illustrate how we conclude the above observations
and provide an extensive insight into scMinerva’s interpretability.
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The component proportion changes at omics level and cell-type
level interpret GCN’s effectiveness on anti-noise ability
In this section, we investigate the reason behind the performance: why does integrating different omics
result in better performance, and how scMinerva integrate them.

In general, single-omics data has limited information compared to multi-omics data as they cannot
fully reflect the biological system which is a collaboration among different omics. Take the natural killer
cell (NK cell) as an example. NK cell has some special surface proteins among immunocytes that are
broadly expressed in most NK cells including immature NK cells (iNK) and mature NK cells (mNK) [28].
So in the real world, researchers tend to weigh surface protein (i.e. ADT) higher when distinguishing
NK cells from other cell types [29]. However, some initial stage immature NK cells or NK-cell precursors
(NKP) are short of typical NK-cell protein markers. This shortage will further mislead the classification
results without information from other omics.

Under the above general perspective, we conclude that scMinerva’s strong robustness shown in
the classification experiments is based on bridging the information gap among different omics. The gap
might be caused by artifact error or gene expression lags. But with the GCN, we can effectively mitigate
the gap and lead to a more comprehensive insight. Our experiment is as the follows: we analyze 428 NK
cells’ differentiation tendency on dataset GSE156478 [20], take out cells that are short of typical NK-cell
protein markers, and observe whether scMinerva can correctly classify them with the help of other omics
and how it performs on these cells during training.

We first analyze the NK cells’ ADT raw matrix and calculate their library size which is the total
sum of counts across all the ADT features. Then, we cluster these cells by fitting the distribution of
normalized library size with Gaussian Mixture Model (GMM). Since NK cells can be generally classified
as NKP, iNK, and mNK cells, the number of components of GMM is set to be 3. After fitting the model,
in Figure 4a, the scatter visualizes NK cells by the cluster they belong to. We can observe that most
of the cells are in cluster 1 and cluster 2 which is the main body of NK cells, but some dispersed cells
are classified in a different cluster, cluster 0. Also, the histogram shows the normalized library size of
these NK cells. We can find that cells from cluster 1 and cluster 2 are of reasonably high library size.
However, cells from cluster 0 are of a low library size which means their ADT expression is more sparse
than the average of NK cells.

To further figure out what kind of surface proteins cluster 0 is short of, we draw the volcano plot
between cells from cluster 0 and cluster 2, which has the highest library size, and run gene enrichment
analysis on those highly upregulated genes as Figure 4b. To remark, the volcano plot shows the statistical
significance (P-value) versus the magnitude of change (fold change). It can reflect the down/up-regulated
genes between different groups of cells. We take the cutoff P-value as 1e-7 and the cut-off logarithm fold
change as 3

2 . From the volcano plot, we found that most of the genes in cluster 2 show an upregulated
compared to cluster 0. And based on these upregulated genes, we can find that these upregulated genes
are lying on the response to viruses (i.e. Zika), influenza, and tumor cells (i.e. TNFAIP3). Especially,
cluster 2 shows a strong level of Nkg2C which is upregulated in NK cells except for NK-cell precursors
(NKP) [29]. The result is consistent with our hypothesis before: the NK cells from cluster 0 are short of
feature expression which might be caused by artifact errors or their cell stage. To simplify the discussion,
we name cells from cluster 0 as “outliers” since they have an abnormal distance from most of the NK
cells.

Next, we run scMinerva on this dataset to observe GCN’s functionality for the framework following
the hyperparameter listed in Method Framework Hyper-parameters. Briefly, we generate walks for 20
times on each node with 42 as the walk length. And by comparing the classification result before and
after training, we find that all the 30 cells from cluster 0 are correctly classified after training while only
6 of them are correct before training.

We visualized NK cells and Naive CD4 T cells from GSE156478 by RNA data, ADT data, and the
trained embeddings from scMinerva as listed in Figure 4c. The first row is the complete graph while the
second row is a zoom-in view only preserving the outliers to show their local positions. The reason we
also visualized Naive CD4+ T cells is that, as shown in the zoom-in view of ADT’s visualization, outliers
are close to Naive CD4+ T cells since Naive CD4+ T cell is in an under-differential stage which is short
of important surface proteins. The close spatial relation between the outliers and Naive CD4+ T cells
reflects the low ADT expression of the outliers. But in the RNA plot, the outliers share an in-bound
similarity with other NK cells and can be easily classified to the correct label. The visualization result
after training also shows that scMinerva effectively classifies the outliers as NK cells as they are gathered
with the main body of NK cells.
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Figura 4: Model interpretability. a. We take 428 Natural Killer cells(NK cells) and cluster them by
fitting their normalized library size with Gaussian Mixture Model. The scatter shows that most of the
NK are in cluster 1 and 2 which have a reasonably high library size as shown in the histogram. Cells
in cluster 0 have an extremely low library size. b. The gene expression level analysis between cluster 0
and 2. Cells from cluster 0 are short of important surface proteins on immune-system process. c. The
visualization of NK cells on raw RNA data, raw ADT data, and scMinerva’s embeddings. Cells from
cluster 0 are plot in the second row after zooming-in. They are closer to CD4 Naive T cells in the plot of
raw ADT which is misleading for classification d. The occurrence frequency for different omics on walks
containing cluster 0 cells. After training, the random walk generates more walks on the RNA side which
leads to a correct classification. e. Same as d, but is occurrence frequency for different cell types. After
training, walks contain more NK cells and less CD4 Naive T cells which benefit the output embeddings.
f. Nodes expression level on marker gene before training. There is no significant differences between the
20 cells with the most frequent occurrence in walks and the least 20. g. Same as f but for walks after
training. The top 20 nodes show a strong upregulation on marker genes while the last 20 express weakly.
This fact interpret scMinerva’s robustness on sparse data.

To interpret why scMinerva works and how GCN benefits the framework, we will analyze GCN’s
function by evaluating the changes on generated walks during training. Since GCN is hard to be straight-
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forwardly interpreted, in our framework’s design, we implement random walk which is a transparent
probabilistic model and word2vec [15] which is better studied under maximum likelihood estimation.
Random walk and word2vec jointly build a possible “window” to the “black-box” of GCN, so that we can
learn the effectiveness of GCN on this problem semi-transparently.

Before everything starts, we first need to briefly demonstrate the mechanism of the word2vec
model. For each walk, we name the nodes it contains as its “steps”, i.e., a walk of length 42 has 42 steps.
In our framework, we input the generated walks into the word2vec model and word2vec will output
embeddings for nodes contained in the walks. Notably, word2vec will form embeddings to ensure the
close neighbors in walks and nodes that occur in the same walk have a small distance in the embedding
space under maximum likelihood estimation. Therefore, to obtain a more reasonable embedding of
nodes for the later classification, the input walks are supposed to form a high-quality neighborhood for
each step. In other words, we need nodes from the same cell type to form steps more frequently and
consecutively in a walk, so that they can be assigned to similar embeddings by word2vec and classified
to the same class by KNN.

In the case of NK cells, we have concluded that the graph of RNA side has a better neighborhood
for the outliers, while on the ADT side, the outliers are closer to Naive CD4 T cells. To avoid the outliers
from being classified as Naive CD4 T cells, we need the generated walks containing the outliers to have
more nodes from the same cell type with them (i.e., NK cells). Consequently, as visualized in Figure 4c,
to include more NK cells in consecutive steps of walks containing them, we need these walks to generate
more steps on the RNA side whose neighborhood is rich in NK cells instead of the ADT side.

To examine GCN with the above purpose, we extract walks containing the outliers before and after
training with amounts 16251 and 17226, respectively, and analyze the changes in occurrence frequency
of components at the omics level and cell type level.

Figure 4d shows the counting proportion of ADT and RNA on average for all the walks containing
the outliers. The x-axis represents steps. And the y-axis represents the omics occurrence proportion in
one step as we count the occurrence for different omics and normalize results to a sum of 1. From the
most left bar of the plot, we can first observe that before training, there are about 65% walks containing
these outliers starting from the RNA side while after training there are around 60% walks starting
from the RNA side. However, before training, even though these walks have a better start under the
randomness of random walk, they have a higher chance to “jump” to the ADT side with the initial
transition probability. But, after training, the walks containing these outliers are more likely to learn
and explore their neighbors on the RNA side as shown in the right bar chart. This trend strongly meets
our analysis before as GCN will help to adjust the omics-transition probability and generate walks more
on the “high-quality” omics side for these NK cells.

Similarly, Figure 4e shows the counting proportion concerning cell types on average for all the
walks containing the outliers. The x-axis represents steps. And the y-axis represents the occurrence
proportion of cell types in one step as we count the occurrence for different cell types and normalize
results to a sum of 1. We are most concerned about the changes in NK cells and Naive CD4+ T cells. It
can be observed that, before training, more walks are starting from the Naive CD4+ T cells containing
these outliers and result in a high proportion of Naive CD4+ T cells in walks. But after training, the
proportion of Naive CD4+ T cells is greatly reduced and NK cell becomes the most frequently appeared
cell type in walks. As we mentioned in the mechanism of word2vec, with such a result, word2vec can
more accurately produce similar embeddings to the outliers as other NK cells, so that they are correctly
classified as “NK cells” after training.

This phenomenon probably comes from the loss function we select. Intuitively, it disperses different
clusters detected by K-means and leads to a better local gathering on the whole graph. We set the cluster
number k to be slightly larger than the actual clusters which will better separate nodes under a smaller
cluster size. Therefore, the cluster containing those outliers is pushed away from the cluster containing
the Naive CD4 T cells. And as a result, GCN adapts the transition probability which leads to a more
comprehensive result after training.

The component proportion changes at single-cell level interpret
the effectiveness of GCN on sparse data
In the last section, we evaluate the effectiveness of GCN by analyzing walks at the omics level and cell-
type level. It looks like walks only take advantage of the nodes’ neighbor relationship. But surprisingly,
we will now further reveal the bond between single-cell occurrence frequency in walks and their biologic
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Figura 5: Biomarker detection on PBMC cells from GSE129639. a. The detected marker genes in 5
general types. b. The comparison of the expression level between the the top 5 detected biomarkers in
the corresponding cell type and the rest of the cell types. c. Violin graph of the expression level of the
biomarkers in fine-grained 27 subclasses. d. Dot graph showing the mean expression on ADT proteins
expressed from some biomarkers in 5 cell types. The brackets in the upper of the graph indicate the
detected high expression proteins for the corresponding cell types.

content expression level. This fact interprets the robustness of scMinerva on sparse data.
Our motivation is the following: if we consider the walks in a more fine-grained manner, each

step of a walk is mapped to its cell type. Therefore, instead of only having the walks obtain steps, we
can also obtain its mapping sequence of cell types each of which can be viewed as the state of the step.
Now, we can compute the probability for a state to emit to some specific node. In another word, we
group nodes by their cell types and count their occurrence frequency in walks for their cell type. We also
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run experiments on walks containing those outliers as discussed in the last section. To repeat, there are
16251 walks and 17226 walks before and after training, respectively.

Intuitively, during the transition and the walk generation, the nodes with a reasonably high feature
expression level are like a “Key Opinion Leader” in the graph network. They are normally recognized
as anchor nodes in node classification tasks, such as in the KNN algorithm. Therefore, we are curious
about their effect during the random walk, especially for the sparse single-cell data which is short of high
library size cells.

To examine this intuition, we compute nodes’ occurrence frequency in these walks and check the
marker genes’ expression level as detected in Figure 5. Since some of the genes are not listed in the raw
data, we only contain the reserved genes in the figure. In general, we conclude that, after training, the
generated walks as well as the output embeddings, are more obviously influenced by nodes with high
feature expression levels. Figure 4f is the expression level of the highest occurrence frequency of 20 nodes
and the least 20 nodes before training. It is observed that their gene expression levels have no significant
differences between the top 20 and the least 20. However, after training, as listed in Figure 4g, we found
that the top 20 nodes are mostly under a high gene expression level while the last 20 cells are all under
a low gene expression level.

The comparison strongly reflects that, after training with GCN, nodes with a higher occurrence
frequency have a higher probability to upregulate the marker genes compared to the low occurrence
frequency nodes. If we assume nodes that have a higher chance to be walked as have a higher priority,
GCN will assign a higher priority to high expression level nodes and more frequently utilize information
from its neighbor. These nodes are especially important in the sparse single-cell data as they reserve
more valid information concerning their cell type. In another word, our method tends to broaden its
knowledge space from these more valuable cells in single-cell data, so that its output is more reasonable
as it is strongly benefited by the representatives of different cell types in the graph network.

This discovery builds a bridge between our framework to this biological problem. It points out
that the effectiveness of GCN has biological support with respect to nodes’ expression levels. As we
have mentioned in the last section, the GCN model helps random walk to learn from the high-quality
omics according to different cells to achieve an anti-noise ability. In this section, our discovery further
concludes that, under the sparse single-cell data, random walk also will assign a higher “priority”, as
known as the transition probability, to nodes with higher feature expression levels. These nodes are less
influenced by the data sparsity or dropout.

Overall, scMinerva’s process more relies on the nodes and omics which can most benefit its per-
formance. With the strong interpretability, our method is practical for various downstream tasks. Here,
we apply it to biomarker detection and cell-differentiation analysis to examine its practical value.

Predictions of scMinerva identify biomarkers of PBMC cells accu-
rately
Biomarker acts as an indicator of biological processes and plays a vital role in disease detection [30].
With the predictions by scMinerva, we detect biomarkers on the predicted clusters by SCANPY [31].
Experiments are conducted on the GSE128639 dataset, which is a PBMC dataset containing 5 general
cell types and 27 subclasses across T cell, B cell, progenitor cell, NK cell, and Mono/DC cell.

We first detected genes that are highly expressed in the 5 general cell types, shown in Figure 5a.
The X-axis represents the rank of their expression level in this cell type. To further demonstrate the
detected genes are more highly expressed in the specific cell types than that in the rest of the cell types,
we selected the top 5 marker genes in each cell type and plotted violin graphs for each cell type showing
the comparison of the expression level. As shown in Figure 5b, the blue color represents the expression
of the genes in this cell type, and the orange color represents the sum of expression in the rest cell types.
It can be seen that the expression level of the detected marker genes is much higher than that in the rest
of the cell types.

From a practical perspective, the detected biomarkers can reveal latent information on their rela-
tive biological processes. For example, the gene MALAT1, detected to be ranking 5 in B cells, is shown
to be suitable to act as a biomarker, as it correlates with larger tumor size, advanced tumor stage and
overall poor prognosis [32]. This evidence mutually confirms the effectiveness of the biomarker detection
of scMinerva.

To demonstrate that the prediction of scMinerva can also be used to detect biomarkers in more fine-
grained classes, we perform experiments on the 27 subclasses. In Figure 5c, the vertical axis represents
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the 27 subclasses and the horizontal axis indicates the detected marker genes. The color of the violin
graphs indicates the expression level of these genes in the corresponding cell types. For example, it
can be observed that gene LYZ is highly expressed in cell type GMP, Prog-DC, and cDC2, which is
also confirmed by [33, 34]. The detected genes are wildly applied in clinics or research to track the
changes in the biological system of cells. For example, the activation of IL7R can initiate precursor
B-cell acute lymphoblastic leukemia [35], KLRB1 shows a suppression in human cancer tissues [36], and
NKG7 regulates cytotoxic granule exocytosis and inflammation [37].

Finally, in Figure 5d, we use a dot plot to show the mean expression of the expressed protein
for detected genes per cell type. The upper brackets on the graph indicate the high expression of ADT
protein for the corresponding cell types. The brighter color indicates a higher expression level of the
specific genes in the corresponding cell type, which aligns with the detection results shown in Figure 5a
and 5b.

Predictions of scMinerva reveal potential differentiation changes
after of naive immune cells infected COVID-19
In this section, with the predictions from scMinerva, we take human blood immune cells from dataset
COVID-PBMC [22] to compare the differences in cell differentiation between cells infected with SARS-
CoV-2 (COVID-19) and healthy cells. Our observations are also based on MELD [38]. By inputting
the feature matrix of cells from the same cell type, we can infer their differentiation level in a single-cell
resolution by MELD. Here, we are interested in the potential differentiation trend of Naive T cells for
patients. The selected infected cells are from critical symptoms of human beings and can reflect the
changes in the long run.

Generally, we first show that in this task, predictions of scMinerva greatly approximates the
results obtained by ground-truth labels. Then, with our prediction, we will analyze the Naive T cells
differentiation trend concerning different cell types. Finally, we will run gene enrichment analysis on cells
from different cell types as well as on the same types of cells from healthy and infected tissues.

T cells are in an extremely important position for human immunity. However, most of the existing
analyses on the influences for T cells caused by COVID-19 are on a cluster level. Researchers deduce the
impact from the cell-type proportion changes observed in different symptom duration. But in our study
here, we analyze the potential differentiation tendency of Naive CD4 T cells in a single-cell resolution by
MELD and conclude results that strongly confirm some lately-proposed hypotheses at a single-cell level.

To avoid repeating, we only take CD4+ T cells in this section including CD4+ Naive, CD4+ TCM,
CD4+ IL− 22, CD4+ prolif, CD4+ TH1, CD4+ TEM, CD4+ TH2, CD4+ TFH, MAIT and CD4+ Treg

to observe the potential cell differentiation changes after infection.
Firstly, we analyze the healthy cells. We input the raw expression data and the predicted labels

from scMinerva into MELD and obtain the sample density for each cell concerning different cell types.
The “sample density” is a kernel density estimate which estimates the likelihood of the sample label given
the data. Its rows are cells and columns are cell types. Each entry of the sample density represents the
kernel density estimate for a cell on some specific cell type. In our case, we input 10 cell types in the
label uniquely, then the sample density will have ten columns concerning these types. Simply, the cell
type that a cell obtains the highest sample density is the most likely type that the cell will differentiate
to. Then we extract only CD4+ Naive cells and run Gaussian Mixture Model(GMM) with the number of
components as 10 to sample density of these cells on CD4+ Naive column. The result is shown in Figure
6a. We can observe that, most of the cells have a high sample density on CD4+ Naive and only very few
of them are below 0.05. In Figure 6b, we run the same procedure as before but only replace the input
labels from ground-truth labels with predicted labels of scMinerva. It is obvious that the inference from
our predictions greatly matches the annotations.

Followed this, in Figure 6c, we visualized the sample density score on some important functioning
CD4 T cell types with predictions of scMinerva. For the healthy cells, there is no active differentiation
tendency in most of the cell types. And the sample density from different cell types is all nearly average
as shown in the Figure 6c. We provide a full graph concerning all ten classes in Appendix 8.

Then we run the same procedure on COVID-19 infected cells. Similarly, Figure 6d,e compare
the GMM modeled sample density on CD4+ Naive column by ground-truth label and predictions of
scMinerva respectively. Our prediction also shows a great approximation to the annotations. Followed
this, we visualized the differentiation tendency on some important functioning CD4 cell types in Figure
6f. It can be observed that infected cells are under a prosperous differentiation in comparison to healthy
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Figura 6: Cell differentiation analysis on CD4 Naive T cells on healthy samples and COVID-19 infected
samples. a. The clusters fitted by Gaussian Mixture Model(GMM) on healthy tissues inferred by
annotations. b. Same as a, but is inferred by predictions of scMinerva. Our method shows a strong
approximation to the results of annotations. c. Differentiation likelihood interred by predictions. The
differentiation is not active on nearly all cell types. d. The clusters fitted by GMM on infected cells
inferred by annotations. e. Same as d, but is inferred by predictions of scMinerva. Our method shows
a strong approximation to the annotations. f. Differentiation likelihood inferred by predictions. The
differentiation to CD4+ TCM, CD4+ TFH, CD4+ prolif are activated. g. Gene expression differences
on CD4 Naive cells with different differentiation tendency between MAIT and CD4+ TEM, and between
CD4+ Naive and CD4+ Treg. We labeled some (down)upregulated genes in plots. h. Gene expression
analysis between healthy cells and infected cells on CD4+ IL− 22 and CD4+ Treg. Infected cells perform
a more active expression on Coronavirus-related genes.

cells especially to CD4+ prolif, CD4+ TFH, CD4+ TEM, CD4+ TCM and CD4+ Treg. We provide full
graph with respect to all ten classes in Appendix 9.

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.493838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.28.493838
http://creativecommons.org/licenses/by-nc-nd/4.0/


The result is consistent with the observations from Jung J.H. et.al. [39]. They found a significant
amount of cells differentiated into diverse memory subsets, comprising CD4+ TEM and CD4+ TCM

compared to healthy tissue. Notably, their conclusions are from the observations at a bulk level. In our
study here, we further confirm it from the single-cell level and reveal this phenomenon in the under-
differential CD4+ Naive cells. The proliferation is fully supported by other functioning T cells including
CD4+ TH1, CD4+ TH2 and CD4+ TFH. Cell proliferation is observed in various symptom duration.
But it is more obvious for critical patients because of a T cell apoptosis [40].

In Figure 6g, we run gene expression difference analysis on CD4+ Naive cells clustered by their
maximum likelihood on differentiation tendency between MAIT and CD4+ TEM, and between CD4+

Naive and CD4+ Treg. We observed some upregulated and downregulated genes as labeled in the plot.
The difference is not as obvious as in mature cell types, however, on some significant marker genes,
such as the detected marker gene CCL5 in Figure 5, there still have a large change fold among high
genes expression cells. Bruth K.P. et.al. reported an approach to resolving unchecked inflammation and
reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis [41]. These genes reflect
the biological system changes and reveal significant potential for clinical research.

To observe the influences of COVID-19 infection more precisely, we analyzed the gap in gene
expression levels between healthy tissue and infected tissue. The expression differentiation of CD4+

IL− 22, and CD4+ Treg cells are listed as Figure 6h. Researchers have established a strong bond between
coronavirus and murine hepatitis virus, such as A59 (MHV-A59). For the severe cases of COVID-19, it
induces an extended inflammatory response that contributes to the increased morbidity [42]. A study
on murine hepatitis virus helps to build knowledge of SARS-CoV-2 as well. From the results, it can
be observed that the detected top differential genes significantly contribute to the immune process of
MHV-A59 and other SARS viruses. Also, it shows that these upregulated genes are highly associated
with a long COVID-19 symptom duration such as the middle-stage and late-stage.

Conclusion
In this study, we present scMinerva, an unsupervised single-cell multi-omics integration algorithm. It
can flexibly handle any number of omics and is scalable to large datasets with efficient computational
consumption. The experiments demonstrates its effectiveness on classification, especially the superiority
on datasets with high noises and more omics.

We interpret the robustness of the model by analyzing the walks at omics level, cell-type level
and sample level. The first two levels reveals the effectiveness of GCN on anti-noise while the analysis
on the third level explains how GCN functions on sparse data. Also, to address its practical value, we
performed biomarker detection of immune cells and analyze the changes in cell differentiation between
healthy samples and samples infected with COVID-19 in a single-cell resolution.

Method

Problem Formulation
As different omics depict different aspects of a sample, scMinerva aims to integrate sample information
from different omics together so that different biological counting can complement each other by being
aware of the neighborhood. The whole framework is shown in Figure 1,

Naturally, the underlying relationship between different omics can be modeled by a graph structure
and processed by graph convolution networks (GCN) [43]. Hence, we treat the embedding generation
process as a multi-modal unsupervised graph merging and graph representation learning problem. As-
sume a dataset with c omics and n samples. Denote the samples set S = {si}, i ∈ [1, n], where n is
the number of samples. In our setting, for each omics, there is firstly a separate graph Oj , j ∈ [1, c]
constructed based on K-Nearest Neighbor (KNN) distance of the coordinates of each spot, where the
spots are regarded as nodes whose attributes are gene expression, protein counting, etc. (if applicable).

For Oj ∈ {O1,O2, · · · ,Oc}, Oj = (Vj , Ej) where Vj refers to its node set and Ej ⊆ (Vi×Vj ,R) is the
set of weighted edges. The feature matrix of all the nodes is denoted as Xj = {x1j , x2j , ..., xnj} ⊆ Rn×Fj ,
where Fj is the dimension of node features.

Denote o(x) to be the index of omics which node x belongs to and srj is the mapping node of
sample sr in the jth omics. Therefore o(srj) = j for a sample sj .
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With {Oj |j ∈ [1, c]}, we build a directed heterogeneous graph G = (V, E) where V is the node set
and E ⊆ (V × V,R) is the edge set. For node u, v ∈ G, the weight from node u to node v is denoted as
wuv while the opposite is wvu. G contains all the nodes from {Oj |j ∈ [1, c]} and therefore its node set
size |V| = nc. The feature matrix of all the nodes is denoted as X = {x1, x2, ..., xkn} ⊆ Rkn×F , where F
is the dimension of node features.

For Graph Convolutional Networks (GCNs), let Â denote the normalized adjacency matrix and
H(l−1) denote the embedding of layer l − 1. The propagation of the GCNs is defined as H(l) =
σ(ÂH(l−1)Wl), where Wl is a learnable weight matrix and σ is a non-linear activation function.

The training can be divided into three stages: heterogeneous graph construction, random walk
and the training stage. In heterogeneous graph construction phase, separately constructed graph and
an omics-to-omics transition weight matrix are used for constructing the heterogeneous graph G. G is
a weighted directed graph constructed from {Oj |j ∈ [1, c]} that contains a global graph topology of all
the omics. In the random walk stage, the heterogeneous graph G is input. We run random walk on the
graph with a defined transition probability P and obtain the embeddings by inputting walk matrix J
into the word2vec model [15]. In the training stage, the embedding X produced from last stage and the
graph adjacency matrix of {Oi} is input into the GCN(·) model. The model outputs the optimized
omics-to-omics transition matrix T′ ⊆ Rnc × c(c+ 1) to continue the iteration.

Heterogeneous Graph Construction
With the omics specific graphs {Oj |j ∈ [1, c]} and a omics-to-omics transition matrix T as inputs, we
build a heterogeneous graph G. For all srt and srl, where r ∈ [1, n] and t ̸= l, assign

wsrvsrl = T[r][j · k + l].

In the initialization of the first epoch, we by default set T = an×k(k+1) where a is a constant. Therefore,
T is a matrix filled by a constant value a of shape (n, k2−k). In another word, we first link all the nodes
from the same sample in different omics together and assign an initial weight a to these edges. the new
graph satisfies

|V| =
k∑

j=1

|Oj | and |E| =
k∑
1

|Ei|+ nc(c+ 1).

To emphasize, G is a directed, weighted graph. the initialized constant weights will be adjusted
to an optimal stage by the GCN feature which is demonstrated later.

Random Walk
In random walk, we define a transition probability function P (u|v) represents the transition probability
from source node u to the next node v. We generate m walks of length l started from each graph node.
In total, there are ncm walks generated and each has length l. It can be represented as a walk matrix
J ⊆ Rncm × Rl.

On network G, we simulate random walks of a fixed length l on given source node u. Denote wi

as the ith node in the walk starting from w0 = u. For some g ∈ [1, l], nodes {wg} are generated by

P (wg = x|wg−1 = v) =


πvx

Z
if(v, x) ∈ E

0 otherwise
(1)

where πvx is the unnormalized transition probability from node v to node x, and Z is a normalizing
constant.

The normalizing constant Z need to be carefully selected which can guide the search to explore
different types of neighborhoods. Instead of node2vec which exhibited a mixture of Breadth-First Se-
arch(BFS) and Depth-First-Search(DFS), we define a 2nd order random walk with three parameters p, q
and z which guide the walk: Consider a random walk that just traveled from node t to node v. The walk
now are determining the next step so it evaluates the transition probability πvx on edge (v, x) leading
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from v. We set the unnormalized transition probability as πvx = αpqz · wvs, where

αpqz(t, x) =



1

p
if o(t) = o(x) and dtx = 0

1 if o(t) = o(x) and dtx = 1

1

q
if o(t) = o(x) and dtx = 2

1

z
ifo(t) ̸= o(x)

(2)

and dtx represents the shortest distance between node t and node x.
To recall, m is the amount of walks generated from each graph node. So when the random walk

finishes, these are |V| ·m walks in total. Since each walk is of length l, the walk matrix J ⊆ (|V| ·m)× l
and is the input of the word2vec model. Let f : S → RF be the mapping function from sample sets to
embeddings of dimension F . We aim to learn such representations for the downstream prediction task.
For source node u ∈ V, define Nsample(u) ⊂ V are the neighborhood of node u generated through a
sample of walks. With a skip-graph architecture, we are trying to find the f gives

max
∑
u∈V

logPr(Nsample(u)|f(u)). (3)

The above objective function maximizes the log-probability of observing Nsample(u) for node u
conditioned on its mapping after function f . Here, by assuming a conditional independence among
observing different neighborhood node given the feature representation of the source, Eq. 3 can be
simplified to:

max
f

∑
u∈V

[− logKu +
∑

ni∈Nsample(n)

f(ni) · f(u)]. (4)

where Ku =
∑

v∈V exp(f(u) ·f(v)) is the partition function for nodes. Solve Eq. 4 using stochastic
gradient ascent (SGD) over the model defining the features f . The output feature representations from
f is denoted as M ∈ R|V|×F .

Model Training
A GCN of β layers is built here by stacking multiple convolutional layers. Each layer is defined as

Ll+1 = g(L(l),A) = σ(l)(ALlW(l)), (5)

where L(l) is the input of the lth layer and W(l) is the weight matrix of the lth layer. σ(·) denotes
an activation function which is non-linear. Since the output is edge weight, σ(·)(β) is a non-negative
activation function.

The adjacency matrix Â is rewrote by Kipf and Welling [43] as

Â = D̂− 1
2 ÂD̂− 1

2 = D̂− 1
2 (Â+ I)D̂− 1

2 . (6)

D̂− 1
2 is the diagonal node degree matrix of Â and I is the identity matrix. We build adjacency

matrix from the edge list E and input it to GCN model with embedding M. Here, A ∈ R|V|×|V| and
M ∈ R|V|×F . The output edge weight matrix can be written as:

T′ = GCN(M, Â). (7)

To guide the GCN(·), we adopt the loss function from DeepCluster [16] which supervises the model
by producing pseudo-labels. For the output embeddings M, we run k-means to take a set of vectors as
input and cluster them into k different groups based on the geometric neighborhood. Therefore, each
node sij is associated with a label lij in {0, 1}k. k-means jointly formulate a F × k centroid matrix ν
and cluster nodes by solving:

min
ν∈Rd×k

1

|V|

|V|∑
i=1

∥fθ(xn)− νyn∥2 such that yTn1k = 1. (8)
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Here, 1k represents a all one vector of length k. Solving Eq. 8 provides a set of optimal pseudo-
labels (l∗ij). First, a Student’s t-distribution kernel is used to calculate the soft assignment probability
qij of the embedding Mi to the cluster centroid νi

qij =
(1 + ||Mi − νi||2)−1∑
j′ (1 + ||Mi − νj′ ||2)−1)

. (9)

Next, based on qij , a target distribution P is calculated to help learn from the assignments with
higher scores

pij =
q2ij/

∑
i qij∑′

j(q
2
ij′

/)
∑

i qij′
. (10)

Finally, the loss function is defined as

LKL = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

. (11)

After training, the output T ′ ∈ R|V|×c(c+1).
After training, with the walks generated on G, we map the nodes in walks back to its sample

index.
ŵi = sj if wi = sjr (12)

where j ∈ [1, n] and i ∈ [1, k]. Input the remapped Ŵ to word2vec model. Let f : S → RF be the
mapping function from sample sets to embeddings of dimension F . With a skip-graph architecture, we
are trying to find the f gives

max
∑
u∈S

logPr(Nsample(u)|f(u)). (13)

With the optimal f , the output embedding is f(S) ∈ R|S|×F .

Framework Hyper-parameters
Random Walk

We run random walk on the heterogeneous graph with three transition controlling parameters named p,
q and z, where p controls the likelihood of immediately revisiting a node in the walk, q allows the search
to differentiate between “inward” and “outward” nodes, and z controls an inter-omics transition within
the frame. By default, we set p = 1, q = 2 and z = 0.7. Also, to ensure a rich connection between omics
and avoid zero division during normalizing, we also introduce a hyper-parameter δ to smooth the graph.
In another word, the omics-transition links will have a small enough default value equals to δ before
normalizing. We set δ to 0.1.

After setting up the transition probability, on each node of the graph, we run random walk start
from it for 20 times. Each time it will generate a walk of length 42. With the generated walks, we input
them to word2vec under algorithm CBOW and window size 10. Word2vec will output embeddings of
dimension 64 for nodes contained in walks.

GCN Model

We input the embeddings as well as the edge list of the heterogeneous graph into the GCN model and
GCN will output the weight matrix of omics-transition links. The GCN in scMinerva consists of two
fully connected layers. The first layer has 64 nodes, while the second layer has 16 nodes. The ReLU
function, defined as ReLU(x) = max(0, x) , is used as the nonlinear activation function after the linear
transformation.

The GCN is led by a deep clustering loss function. Suppose the input dataset has c omics and t
cell types, we run k-means with the number of class equal to t·(c+1) and the number of time the k-means
algorithm will be run with different centroid seeds equal to 5. Then we calculate target distribution by
Equation 10 and calculate the loss value by Equation 11. Both of the calculations have a smooth value
1e-6 on the denominator to avoid the zero division. We update the target distribution every 4 epochs.
For the optimizer, we use SGD optimizer with the learning rate as 1e-4 and the momentum coefficient
m is 0.1. We train the GCN for 20 epochs.

The hyper-parameters are determined using grid search with cross-validation.
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Classification
We conduct experiments to evaluate the classification of scMinerva and other methods on simulated
data and real-world data, and scMinerva outperforms others in each set. For two-omics data, we can see
that scMinerva has the best performance on accuracy (ACC), F1-macro, and ARI (adjusted rand index)
(Figure 2a. Intuitively, the clusters generated by scMinerva are clearer and have smoother edges (Figure
2b). We also demonstrate these methods on four three-omics datasets with six sets of annotations.
Firstly, we implement each method to obtain the embedding of the corresponding dataset, and we split
each one into training sets and testing sets. The training set is fed to a KNN classifier, and we validate
the model on the corresponding test set. We evaluate four approaches only using a training set 95%,
90%, and 80% respectively. scMinerva outperforms other methods on ACC (Figure 2d and appendix
Figure 7). It demonstrates that scMinerva can integrate multi-omics effectively with a extremely low
requirement on training labels. To further demonstrate the robustness of scMinerva, we simulate several
four-omics datasets and scMinerva still has a better performance compared with other methods (Table
1).

We use accuray, weighted F1-score, macro F1-score and adjusted rand index to fully evaluate the
classification performance of methods, details of the metrics can be found in appendix section Evaluation
metrics.

Data Simulation
We generate a four-omics dataset based on the synthetic RNA-seq generated by Splatter [19]. To maintain
the mapping between different modalities, we train three Feedforward Neural Networks (FNN) to simulate
the mapping between different modalities, including mappings from scATAC-seq to scRNA-seq, from
scRNA-seq to ADT matriX, and from scATAC-seq to ADT matrix. We utilize the real-world datasets
mentioned below to train these three GNNs. Firstly, we create synthetic scRNA-seq by Splatter, the
dimension of which is equal to scRNA-seq from sci-CAR [44]. Then we map the generated scRNA-seq to
scATAC-seq by the FNN we trained upon sci-CAR. Similarly, we generate two other ADT matrices from
simulated scRNA-seq and scATAC-seq. These two models are trained with scRNA-seq, scATAC-seq, and
ADT matrices from GSE156478 and we utilize PCA to make the dimension of scRNA-seq and scATAC-
seq consistent with sci-CAR so that we can generate a set of data. We developed four sets of data, with
five classes and sample number 2k, 5k, 10k, and 30k, respectively. The simulated RNA, ATAC, ADT
from RNA and ADT from ATAC data are of feature number 815, 2613, 227 and 227 respectively.
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Appendix

Preprocessing
GSE128639

The expression matrices was used as quantified in the original experiment [45]. For gene expression,
standard log-normalization with default parameters in Seurat [21] was conducted. The only difference
with the original implement in paper is that we take the raw data of HTO separately from the dataset
as the third omics. HTO is an extremely sparse data so that with this as a third omics, the performance
of Seurat 4.0 will be strongly lagged back.

GSE156478

The control and stimulated CITE-seq were filtered based on the following criteria: mitochondrial reads
greater than 10%; the number of expressed genes less than 500; the total number of UMI less than
1000; the total number of ADTs from the rat isotype control greater than 55 and 65 in the control
and stimulated conditions respectively; the total number of UMI greater than 12,000 and 20,000 for the
control and stimulated conditions respectively; the total number of ADTs less than 10,000 and 30,000 for
control and stimulated conditions respectively. The cells that were classified as doublets in the original
study were filtered out. For the ASAP-seq data, cells with a number ADTs more than 10,000 and number
of peaks more than 100,000 were filtered out. Finally, 4502 cells (control) and 5468 cells (stimulated)
from ASAP-seq, 4644 cells (control), and 3474 cells (stimulated) from CITE-seq were included in the
downstream analysis. The number of common genes across the four matrices is 17441 and the number
of common ADTs is 227 [13].

scNMT

Gene counts were quantified from the mapped reads by featureCounts [46], and gene annotations were
pbtained from Ensembl version 87 [47]. Only protein-coding genes mathcing canonical chromosomes
were considered. For methylation and accessibility pseudo-bulk profiles, the values were averaged using
running windows of 50 bp. The information from multiple cells was combined by calculating the mean
and the standard deviation for each running window. Accessibility profiles were processed with each cell
and gene in +/- 200 bp windows around the TSS. Only genes covered in at least 40% of the cells with a
minimum coverage of 10 GpC sites were considered [24].

SNARE

SNAREseq [23] consists of chromatin accessibility and gene expression. The data is collected from a
mixture of human cell lines: BJ, H1, K562, and GM12878. We reduce the dimension of the data by
PCA. The size of the resulting matrix for scATAC-seq is of 1047×1000 and 1047×500 for the gene matrix.
We use the code provided by the author to generate annotations for BJ, H1, K562, and GM12878.

COVID-PBMC

We mostly follow the preprocessing of the original paper as [48]. Briefly, FASTQ files were generated from
raw sequencing reads by Cell Ranger mkfastq pipeline. Cell Ranger count pipeline (v3.1) was utilized
to perform alignment, filtering. barcode counting, and UNI counting. GRCh38 was denoted as genome
reference. To remove dead and dying cells, Cells with mitochondrial gene percentages higher than 12%
and cells with less than 200 genes was filtered out. For CITE-seq samples, the cells were demultiplexed
and hashing adt COUNTS were removed. The remaining counts were normalized by library size and
square. For TCR data, the raw sequencing reads of the T cell receptor (TCR) libraries were prcessed by
the Cell Ranger V(D)J pipeline by 10x Genomics. Only V(D)J contigs with high confidence defined by
cell ranger were considered. The cells of one beta chain contig and zero or one alpha chain contig were
remained [48].

Evaluation metrics
ACC We denote Positive as P , Negative as N , True positive as TP , False negative as FN ,
False positive as FP , and True negative as TN . Then we can define accuracy (ACC) [49] as
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ACC =
TP + TN

P +N
. (14)

F1 score Here, F1 score can be calculated [50] as:

F1 score =
TP

TP + 1
2 (FP + FN)

. (15)

The F1-macro is the arithmetic mean of all the per-class F1 scores, and F1-weighted is computed
by taking the mean of all per-class F1 scores considering the weight. Weight refers to the number of
actual occurrences of the class in the dataset.

ARI Adjusted rand index (ARI) is used to measure the similarity between the predicted labels and
ground truth. The Rand Index (RI) calculates a similarity measure between two clusterings, taking all
pairs of samples into consideration. It counts pairs that are assigned in the same or different clusters in
the predicted and actual clusterings. ARI is a corrected-for-chance version of the Rand index defined as

ARI =
RI − E[RI]

max[RI]− E[RI]
(16)

where RI = TP+TN
TP+TN++FP++FN and E is the expectation value.

Figura 7: Comparison of classification F1-weighted score, F1-macro score and ARI on four datasets
with six set of annotations. Each row contains three ticks which represent a method’s performance on a
dataset with test size 95%, 90% and 80% respectively.
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Figura 8: The cell differentiation tendency analysis on healthy cells. a. The differentiation score on
CD4 Naive cells to different cell types inferred from ground-truth label. b. Same as a but is interred
from scMinerva’s predicted label. In all the cell types, our method shows a strong approximation to the
annotation’s result.
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Figura 9: The cell differentiation tendency analysis on infected cells. a. The differentiation score on
CD4 Naive cells to different cell types inferred from ground-truth label. b. Same as a but is interred
from scMinerva’s predicted label. In all the cell types, our method shows a strong approximation to the
annotation’s result.
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