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Summary

In single molecule localization microscopy data (SMLM), individual instances of a 

macromolecular complex come in the form of point sets. Particle averaging, which combines 

localization data from a large number of instances, is often used to overcome experimental 

noise and obtain a refined view of the underlying structure. However, SMLM point sets are 

often heterogeneous due to biological variations in the structure they represent and must be 

partitioned into groups with similar structure before averaging which calls for being able to 

compute structurally-relevant similarity measures between sets of points.

Here we introduce LOMAR (LOcalization Microscopy Analysis in R) a software package for

the R programming language that enables comparison of point sets through implementation 

of several point sets registration methods and similarity measures derived from topological 

data analysis. We demonstrate use of the package on real and simulated SMLM data of 

nuclear pore complexes.
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Introduction

SMLM techniques enable the determination of a fluorophore’s position with a resolution of a 

few nanometers and is increasingly applied to the characterization of macromolecular 

complexes inside cells such as the nuclear pore complex (Sabinina et al., 2021), DNA 

damage repair foci (Sisario et al, 2018) or endocytic structures (Mund et al., 2018). While 

more typical light microscopy techniques produce data in the form of arrays of intensity 

values (i.e. images), SMLM produces sets of coordinates (i.e. point sets) with some additional

information such as channel, precision and number of detected photons. While such data can 

be converted to images and processed using standard image analysis methods, new software 

and methods are have been developed to deal directly with the point cloud nature of SMLM 

data. Most of these focus on the segmentation of individual instances of the macromolecular 

structure of interest by applying clustering techniques to the coordinates data (Wu et al., 

2020). 

Incomplete labelling of structures and the stochastic nature of SMLM data acquisition result 

in noisy point sets with missing data. To overcome this issue, combining large numbers of 

instances with particle averaging (also sometimes called particle fusion) methods is 

increasingly used to refine the characterization of underlying structures. Particle averaging 

assumes that combined instances represent the same compositional and conformational 

structure but this assumption is not satisfied when biological variations contribute to the 

heterogeneity of the point sets obtained by SMLM. Partitioning point sets into structurally 

homogeneous groups is therefore necessary before applying particle averaging. This however

requires being able to evaluate structural similarity between point sets in a manner that is 

robust to noise and missing data.

To help with this challenge, we developed the LOMAR software package which focuses on 

3D point sets comparison by implementing point set registration methods and similarity 

measures based on topological data analysis. LOMAR is written in the R programming 

language. We demonstrate use of LOMAR on the registration of real 3D SMLM nuclear pore

data and on the task of clustering simulated 3D instances of nuclear pores.
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Results

Data input

LOMAR can ingest SMLM 2D and 3D point set data from character-delimited text files. 

Various filters can be applied to select a subset of the points and selected points can be 

further grouped using either cluster membership information included in the input file or by 

applying the DBSCAN clustering algorithm. Point sets can also be read from a series of 

images in TIFF format for use for example when corresponding objects have been obtained 

by image segmentation methods. For visualisation, and sometimes processing, it can be 

advantageous to convert point setss to images. For this, LOMAR implements a histogram 

binning method and an estimated photon count method (Huang et al., 2011).

Point set registration methods

The objective of point set registration methods is to find correspondence between multiple 

point sets and identify the spatial transformation that optimally aligns them. These methods 

have a long history in fields where sensors are in use such as robotics (Pomerleau et al., 

2015). However, many such classical methods are implemented in different and often non-

interoperable specialised software which may limit their adoption for use with SMLM data. 

LOMAR brings together a few of these methods into one package (table 1): iterative closest 

point (ICP, Besl and McKay, 1992), coherent point drift (CPD, Myronenko and Song, 2010), 

and joint registration of multiple point clouds (JRMPC, Evangelidis et al., 2014) and a new 

pairwise registration of Gaussian mixture models using the Wasserstein distance 

(WGMMreg). Only rigid registration (i.e. involving only rotation and translation) is 

implemented for each method because structures produced by deformations should be 

considered as separate from the structures they can be derived from and detecting such 

structural variations is of biological relevance.

Method name  Acronym Characteristics Reference

Iterative closest 
point

ICP  Processes a pair of point sets
 Based on distances between 

matching points
 Fast
 Sensitive to noise, outliers and 

missing points
 Converges to a local minimum

Besl and McKay, 1992
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 Doesn’t make use of additional 
SMLM information

Coherent point 
drift

CPD  Processes a pair of point sets
 Maximises likelihood of a GMM 
 More robust to noise, outliers 

and missing points
 Compromise between accuracy 

and computational complexity
 May not be suitable for 

anisotropic SMLM data

Myronenko and Song, 
2010

Registration of 
Gaussian 
mixture models 
with 
Wasserstein 
distance

WGMMreg  Processes pair of point sets
 Maximises likelihood of a GMM
 Can use most available SMLM 

information
 Slow due to high computational 

complexity

This paper

Joint 
registration of 
multiple point 
clouds

JRMPC  Simultaneously processes 
multiple point sets

 Considers point sets as generated
by a GMM + transformations

 Robust to noise, outliers and 
missing points

Evangelidis et al., 2014

Table 1: Point set registration methods available in LOMAR.

ICP is one of the most used registration methods due to its simplicity. The algorithm is a 

pairwise method that iterates between two steps: 1- given a rigid transformation (translation 

and rotation), assign correspondence between two point sets A and B by finding the closest 

points in A for all points in B, 2- given the points correspondence, find the best rigid 

transformation that aligns B with A. Although ICP is sensitive to starting conditions and 

noise, it is fast and often provides good enough alignments. 

However, better results are often obtained with methods involving Gaussian mixture models 

(GMMs) which allow incorporation of additional information such as level of noise or point 

localisation uncertainty.

Among these, CPD is a widely used pairwise registration method. In CPD, a Gaussian 

mixture model (GMM) is constructed from point set A and points in set B are considered 

observations from this GMM. The GMM centroids are then moved to maximise the 

likelihood of point set B. A coherence constraint is imposed on the movement to preserve the 
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structure of the point sets. Fuzzy point set correspondences and the inclusion of a noise factor

contribute to CPD’s relative robustness to noise and outliers. Additional information can be 

included in the form of a points correspondence weight matrix. However, to ensure 

convergence, the algorithm uses equal isotropic covariances which precludes incorporating 

localization precision in the covariances if it is anisotropic.

To remedy this situation, we developed WGMMreg, an algorithm to register two GMMs by 

minimising the Wasserstein distance between them. An algorithm called GMMreg has 

already been described (Jian and Vemuri, 2011) and is based on the minimization of the L2 

distance between GMMs. However, use of the L2 distance discards information about the 

relative positions of the points. A natural alternative to compare probability distributions is 

the Wasserstein distance. It also has the advantage of including information about the relative

positions of the points due to the computation of an optimal transport map. However, while 

the Wasserstein distance can be computed in closed form between two Gaussian 

distributions, the Wasserstein distance between GMMs (linear combinations of Gaussians) is 

intractable. In our WGMMreg implementation we leverage recent results on the computation 

of a discrete form of a Wasserstein-type distance between GMMs (Delon and Desolneux, 

2020). 

The computational cost of the registration methods described above increases with the 

amount of information included and in particular, our current implementation of WGMMreg 

becomes prohibitive for large point sets although this can be mitigated with downsampling.

In addition, when registering a large number of point sets, the above methods require 

computing registrations between all pairs of points and subsequently using iterative methods 

(for example similar to the Barton-Sternberg algorithm for multiple sequence alignment 

(Barton and Sternberg, 1987)) to obtain a global registration map (see e.g. Heydarian et al., 

2021). This also clearly becomes computationally expensive as the number of point sets 

increases.

For increased performance when many point sets need to be registered, we also implemented 

a method for the joint registration of multiple point clouds (JRMPC, Evangelidis et al., 2014).

In this approach, the point sets are considered generated by a common GMM and both the 

mixture and the registration parameters are estimated via an expectation maximisation (EM) 

algorithm. In addition to the registered point sets, the algorithm returns the transformation 

associated with each point set and the final GMM. A form of model selection can also be 

applied by removing unsupported components of the GMM using a minimum message length

approach (Figueiredo and Jain, 2002). To illustrate use of this method, we applied it to the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.30.493957doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.30.493957
http://creativecommons.org/licenses/by/4.0/


registration of 356 NUP107 nuclear pores obtained by STORM (Heydarian et al, 2021). The 

JRMPC method produces a global registration revealing the 8 subunits structure (figure 1a,b) 

in less than 20 min using only one thread on a 3.6 GHz CPU. In contrast, Heydarian et al. 

report that the all-vs-all registration of the same data takes 2 h using parallelization on a 

GPU. With JRMPC, the resulting GMM can also provide information about the underlying 

structure and potential outliers can be detected from the high variance of the components they

are assigned to. In the case of NUP107 whose primary structure consists of two rings, this 

identifies the between-rings components as outliers with the other components forming a 

double ring structure (figure 1b). Eliminating points associated with the high variance 

components improves the overall registration outcome (figure 1a, compare left and right 

panels). The joint registration of multiple point clouds can also be used to quickly produce a 

good initial state for iterative methods leading to potential gains in computation time. 

Topological data analysis  

In topological data analysis (TDA), a set of data points with a measure of distance between 

them is seen as representing an underlying topological space. Relevant topological 

characteristics can be extracted from such topological spaces using the tools of persistent 

homology (Edelsbrunner and Harer, 2010; Otter et al, 2017, Amézquita et al, 2020). 

Informally, homology counts the number of "holes'' of different dimensions in a topological 

space, i.e. the 0th homology group counts the number of connected components, the first 

homology group counts the number of (2d) holes (i.e. holes inside loops), the 2nd homology 

group counts the number of (3d) voids (i.e. bubbles). Persistent homology efficiently 

computes homology groups at multiple scales. For this, each point set is converted into a 

simplicial complex based on a proximity parameter t. A simplex is an n-dimensional triangle 

and a simplicial complex is a collection of simplices connected by following specific rules to 

ensure that the homology of the underlying topological space is preserved (figure 2a). 

Recording when holes form and get filled over a range of values of t produces a persistence 

diagram (figure 2b). To compute simplicial complexes and persistence diagrams, LOMAR 

relies on the Dionysus library with code borrowed from the TDA package (Fasy et al., 2014). 

With this approach, each point set of a SMLM data set can be represented by a persistence 

diagram that characterises the shape of its underlying structure. Because persistent homology 

relies only on the pairwise distance between points, the shapes captured by persistence 

diagrams are independent of position and coordinate system. Persistent homology is robust to
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noise in the sense that small perturbations to the points positions will minimally affect the 

persistence diagram. Outliers are of more concern since they can have a large effect on the 

persistence diagram. However, as they tend to be further away from other data points they 

can either be detected and removed beforehand or various techniques can be used to deal with

this issue such as de-emphasizing low density regions, for example by the use of a distance-

to-measure function (Chazal et al., 2018).

Similarity measures for point sets

There are several ways of deriving structurally-meaningful similarity between two sets of 

points with LOMAR. One is to make use of registration errors obtained from the application 

of registration algorithms such as those described above. Another is to view the point sets as 

discrete samples from probability distributions and use a suitable measure of similarity 

between probability distributions such as the Wasserstein distance. Point sets shape similarity

can also be evaluated by comparing their persistence diagrams. Conceptually, the first two 

approaches capture shape similarity by evaluating how much displacement is required to 

align the point sets while the TDA approach could be seen as comparing the multi-scale 

“porosity” of the underlying structures. These approaches are therefore complementary.

For compatibility with many machine learning methods which require positive definite 

similarity matrices, LOMAR implements the sliced Wasserstein distance between persistence

diagrams (Carrière et al., 2017) and the persistence scale-space kernel (Reininghaus et al, 

2015). The sliced Wasserstein distance is an approximation of the Wasserstein distance that is

efficiently computed as a sum of Wasserstein distances between 1D projections of the points 

and produces a negative definite distance matrix. The persistence scale-space kernel results 

from mapping the persistence diagrams to a suitable vector space and computing a heat 

diffusion kernel.

Clustering point sets

To illustrate the use of similarity measures for clustering SMLM point sets, we use simulated 

data inspired by the nuclear pore complex. Ground truth data is produced using the method 

from (Theiss et al. 2022) and its acquisition in a typical SMLM experiment is simulated using

the SMAP software (Ries, 2020). 

For TDA-based clustering, a persistence diagram of sublevel sets of the distance to measure 

function is computed for each point set then the matrix of (sliced) Wasserstein distances 
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between persistence diagrams is computed. For registration-based clustering, the 

(symmetrized) matrix of registration errors obtained from the pairwise application of the cpd 

algorithm is used as a distance matrix.

Following (Huijben et al. 2021), the distance matrix is used to embed the point sets into a low

dimension space using multidimensional scaling. Clusters are then recovered by Gaussian 

mixture modelling of the data points in this space. To evaluate clustering quality, we assign 

to each cluster the label of the class most represented in that cluster and compare assigned 

labels to the ground truth class of origin.

NPCs tagged on different subunits produce structures with different ring diameters or 

different distances between the two rings (Sabinina et al., 2021). To illustrate how such 

structures can be separated, we produced 3 classes of simulated NPC structures that differ by 

their average ring diameter or by the average distance between the two rings (figure 3a). 

Using TDA, the three classes can be separated with an average accuracy of 91% (figure 3b) 

while registration-based methods fail to separate the two classes that differ by their ring 

diameter (figure 3c).

NPCs typically have rings with an 8-fold radial symmetry but a small proportion may have a 

9-fold symmetry (Hinshaw and Milligan, 2003). To demonstrate clustering of SMLM 

structures in the presence of class imbalance, we simulated an NPCs data set in which 15% of

the structures have a 9-fold symmetry (figure 4a). Here the TDA-based approach succeeds 

with an accuracy of 99% (figure 4b) while registration-based clustering fails to separate the 

two classes (figure 4c).

Conclusion

We developed the LOMAR package to enable comparison of structures generated by single 

molecule localisation microscopy. To this end, LOMAR implements three sets of 

functionalities: reading of SMLM data, point set registration methods and persistent 

homology-based measures of similarity between point sets. While the motivation for its 

development was the analysis of 3D single molecule localization microscopy data, most 

functions are generic and can be applied to any 2D or 3D point sets.
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Availability

The LOMAR package is available on the R package repository CRAN: https://cran.r-

project.org/package=LOMAR and the source code is available from a GitLab repository at 

https://git.embl.de/heriche/lomar.

Data and code notebooks used to produce material for the figures are available at  

https://git.embl.de/heriche/lomar_use_examples.
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Figure legends

Figure 1: Joint registration of NUP107 point sets

a) Joint registration of the 356 NUP107 point sets from Heydarian et al. rendered as an image

using the histogram method. Left panel: without denoising, right panel: after denoising by  

removal of points associated with high variance components of the model.

b) Model of NUP107 obtained by joint registration of all point sets. High variance 

components are shown in red.

Figure 2: Persistent homology.    

a) Building a simplicial complex out of data points. The Vietoris-Rips complex for parameter

t is built by including an edge between two points if they are within distance t of each other 

(i.e. the circles of diameter t centred on each point overlap). A higher dimensional simplex is 

included if all its possible edges are present, i.e. all the points that are members of the 

simplex are within distance t of each other. Here only 2-simplices (colored triangles) are 

shown. 

b) Persistence diagram of the point set shown in (a). Dots represent the 0D homology group 

(connected components) and triangles represent the 1D homology group (holes). Birth and 

death values are the values of t at which a feature respectively is formed and disappears.
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Figure 3: Clustering of multiple classes of simulated nuclear pore complexes

a) Registered examples of point sets from 3 classes. Top row: top view, bottom row: side 

view. Class 1: reference class, average ring diameter: 60 nm, average inter-ring distance: 60 

nm, class 2 :  average ring diameter: 60 nm, average inter-ring distance: 30 nm, class 3: 

average ring diameter: 38.4 nm, average inter-ring distance: 60 nm.

b) Clustering using TDA. Left panel: Points sets embedded in the first two dimensions of the 

multidimensional scaling feature space. Colours indicate the classes. Right panel: cluster 

composition.

c) Clustering using registration. Left panel: Points sets embedded in the first two dimensions 

of the multidimensional scaling feature space. Colours indicate the classes. Right panel: 

cluster composition.

Figure 4: Clustering with class imbalance

a) Registered examples of point sets from 2 classes. Class 1: rings with 8-fold symmetry, 

class 2 : rings with 9-fold symmetry.

b) Clustering using TDA. Left panel: Points sets embedded in the multidimensional scaling 

feature space. Colours indicate the classes. Right panel: cluster composition.

c) Clustering using registration. Left panel: Points sets embedded in the first two dimensions 

of the multidimensional scaling feature space. Colours indicate the classes. Right panel: 

cluster composition.
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