
Decoding imagined speech reveals speech planning and production mechanisms 

 

Joan Orpella1, *, Francesco Mantegna1, M. Florencia Assaneo2, David Poeppel1,3,4 

 

1Department of Psychology, New York University, New York, NY, USA. 

2Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Querétaro, 

Mexico. 

3Center for Language, Music and Emotion (CLaME), New York University, New York, NY, USA 

and Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany. 

4Ernst Struengmann Institute for Neuroscience, Frankfurt, Germany. 

 

* Corresponding author (jo1358@nyu.edu) 

Abstract 
 
Speech imagery (the ability to generate internally quasi-perceptual experiences of speech) is a 
fundamental ability linked to cognitive functions such as inner speech, phonological working 
memory, and predictive processing. Speech imagery is also considered an ideal tool to test theories of 
overt speech. The study of speech imagery is challenging, primarily because of the absence of overt 
behavioral output as well as the difficulty in temporally aligning imagery events across trials and 
individuals. We used magnetoencephalography (MEG) paired with temporal-generalization-based 
neural decoding and a simple behavioral protocol to determine the processing stages underlying 
speech imagery. We monitored participants’ lip and jaw micromovements during mental imagery of 
syllable production using electromyography. Decoding participants’ imagined syllables revealed a 
sequence of task-elicited representations. Importantly, participants’ micromovements did not 
discriminate between syllables. The decoded sequence of neuronal patterns maps well onto the 
predictions of current computational models of overt speech motor control and provides evidence for 
hypothesized internal and external feedback loops for speech planning and production, respectively. 
Additionally, the results expose the compressed nature of representations during planning which 
contrasts with the natural rate at which internal productions unfold. We conjecture that the same 
sequence underlies the motor-based generation of sensory predictions that modulate speech perception 
as well as the hypothesized articulatory loop of phonological working memory. The results 
underscore the potential of speech imagery, based on new experimental approaches and analytical 
methods, and further pave the way for successful non-invasive brain-computer interfaces. 
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Introduction 
 
Mental imagery of speech is the internally generated, quasi-perceptual experience of our own or 
others’ speech. Research on speech imagery has a long history in the sciences and philosophy1–5, for a 
variety of reasons. For one, speech imagery is integral to different cognitive functions, such as inner 
speech and phonological working memory, that play an important role in learning, problem-solving, 
and, more generally, development6,7. Speech imagery is also considered an informative model for 
overt speech7–10. As such, it has been employed to test aspects of speech planning, production, and 
motor control, which can be difficult to investigate with overt speech8,9,11–15. Mental imagery (of 
speech, or otherwise) is moreover a paradigmatic example of the generation of sensory 
predictions8,16,17. In speech, the hypothesis is that ‘the little voice in our head’ results from an internal 
prediction of the sensory consequences of planned motor commands18, that is, from a form of internal 
emulation19. These predictions can be used to anticipate sensory inputs, such as other’s speech, which 
facilitates comprehension8. This makes speech imagery an innovative tool to test predictive 
processing theories20, such as predictive coding21,22, Bayesian inference23, and associative learning24–

28. Speech imagery is also clinically relevant. Imbalances between sensory predictions and feedback 
are thought to underlie disorders such as schizophrenia, autism, and stuttering6,7,29. Moreover, 
advances in the decoding of speech imagery are potentially life-changing for individuals that have lost 
the ability to speak due to stroke or illness30–34.  
 
Despite its potential as a research and clinical tool, and despite the success of mental imagery research 
in other domains (e.g., limb motor control35, vision36,37), speech imagery remains poorly characterized. 
This is due to methodological challenges6,38 (e.g., the lack of comparative research, the lack of 
behavioral output, the potential timing misalignment across experimental trials and participants) and 
the absence of suitable paradigms and analytical approaches. Nevertheless, researchers have used 
speech imagery in creative ways, for example to quantify specific aspects of speech motor control 
(e.g., feedback prediction errors13), but the evidence remains indirect and incomplete. For instance, 
the experimental manipulation yielding speaking-induced suppression and its effects on perception 
can only imply the existence of so-called forward models and the precise sensory predictions 
emanating from planned speech13,39,40. The same methodological challenges permeate the attempts to 
decode speech imagery with time-resolved methods38, which have only recently begun to produce 

promising results, albeit restricted 
to state-of-the-art invasive 
(intracranial) recordings and 
complex analysis pipelines (e.g., 
41). 
 
We capitalized on the balance 
between temporal and spatial 
resolution afforded by the non-
invasive method 
magnetoencephalography (MEG), 
paired with a deceptively simple 
speech imagery task (Fig 1) and a 
powerful decoding approach42,43 to 
determine the sequence of neural 
processes underlying speech 
imagery. In short, we decoded 
participants´ imagined speech as it 
unfolds.  
 
Fig 1. Experimental protocol. A. Task. 
Each trial began with a fixation cross of 
variable duration (1-1.5 sec) in the center 
of the screen. One of three syllables (e.g., 
/pa/, /ta/, /ka/) was then presented and 
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remained on the screen for 1 second. Syllable presentation was followed by another fixation cross, lasting 2.5 seconds, after 
which the next trial began. The experiment comprised two conditions, Imagery and Reading, each with 4 blocks of 120 trials 
(40 presentations of each syllable per block), counterbalanced between participants. The total number of trials was 960 (320 
per syllable). Syllable presentation was fully randomized within each block. In the Imagery blocks, participants were 
instructed to imagine producing the visually presented syllable as soon as possible after presentation (event 1) and a second 
time after second fixation cross presentation (event 2). In the Reading blocks, participants were instructed to fixate the center 
of the screen. Prior to the MEG session, participants received a training session: the experimenter explained the task and the 
desired type of imagery (i.e., imagining producing vs. hearing). Participants were also asked to complete a full block using 
overt productions of the syllables. At this time only, participants were given feedback regarding the timings of each 
production. This was critical to ensuring some minimal degree of temporal alignment within participant, as well as 
consensus across the cohort. Additionally, participants were given a link to an online version of the task (available here) to 
practice in their own time. B. Estimating expected time of imagery. On the day of MEG acquisition, each participant 
completed a minimum of 1 practice block (overt productions), which were recorded for subsequent analysis. Here all 
participants’ syllable onset distributions for events 1 and 2 are shown. The medians of these distributions were important for 
reference, to provide temporal boundaries for the times when imagery was to be expected. (See Fig S1 for additional data.) 
C. Grand average MEG data for a participant’s Imagery trials. Participants’ neural activity was recorded during both 
Imagery and Reading trials. These data (157 channels) were decoded for each participant. D. Average electromyographic 
(EMG) data for one participant’s Imagery trials and for the same syllables spoken aloud. To monitor participants’ 
potential micromovements during Imagery, we recorded muscle activity from the upper lip (lower dot) and jaw (upper dot) 
using a MEG-compatible EMG system. The figure exemplifies the magnitude of expected micromovements during imagery 
which, critically, did not differ between the imagined syllables (see Fig S2 – S4 for full analysis). 
 
We recorded MEG signals from participants while they imagined internally producing isolated 
syllables (/pa/, /ta/, and /ka/) prompted on the screen on each trial. We used syllables as the targets of 
speech imagery given recent evidence for syllable-size ‘chunks’ as fundamental units for speech 
perception and production (44 for a review). First, we evaluated the extent to which these signals 
contained information over and above a Reading condition involving the passive viewing of the same 
syllables, and thus identical to Imagery except for the instruction to internally produce the prompted 
syllable. Having established robust differences between the two conditions, we next asked whether 
Imagery trials contained decodable content regarding the specific syllables imagined, that is, whether 
every syllable that participants imagine can be decoded from their neural data. Based on the decoding 
pattern, we then sought to characterize the entire genesis and development of the imagined speech 
events, a sequence which has so far remained elusive. We examined the dynamics of this sequence in 
order to deepen our understanding of how inner speech and sensory predictions are generated and 
ideally to adjudicate between current prevailing models of speech production, notably state feedback 
control (SFC)8,9,23,45,46 and DIVA47. Next, we examined the question of internal and external feedback 
loops for internal speech planning and production by assessing the time courses of auditory and motor 
areas during imagery. Lastly, we validated and extended the decoding results with data from a new 
cohort imagining a different set of syllables (/ta/, /tu/, and /ti/). 
 

 
 
Fig 2. Main experimental hypotheses. A. Temporal Generalization. To discover and quantify syllable decodability in 
imagery, we used a multivariate pattern analysis in which classifiers are trained on a single time sample (rows; y-axis) but 
tested on all time samples of the trial (columns; x-axis). This results in a temporal generalization (TG) matrix that depicts the 
extent to which a given neural pattern is present across time. The TG method is a powerful approach to reveal not only the 
number and approximate times of neural processes but also the nature of the underlying representations (e.g., evolving, 
reactivated, ramping; see42,43 for a full explanation of the method). We expected high decoding accuracy (red circles/ellipses) 
if neural processes underlying speech imagery instantiate decodable representations. The schematic depicts four distinct 
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processes for event 1 with some temporal generalization and two for event 2 as an example. High accuracy was expected for 
distinct neural processes underlying both imagery events (event 1 and event 2). We also expected event 1 representations to 
generalize to event 2 and vice versa. B. Expected sequence of neural processes for speech imagery. Insofar as speech 
imagery mirrors overt speech, we hypothesized that the underlying sequence of neural processes should conform to current 
models of speech production. Inspired by a recent model8,9,45 derived from other areas of motor control, we predicted 1. A 
speech planning stage encompassing visual encoding (visual and inferotemporal cortex), phonological encoding (left 
posterior middle and superior temporal cortex), the parallel activation of auditory and motor targets (auditory and motor 
cortex, respectively), and an ‘internal’ feedback loop for error correction characterized by sensory-motor activity; and 2. A 
production stage involving motor execution (motor cortex), activation of the imagery percept (auditory and somatosensory 
areas), prediction error elicited by the lack of overt auditory feedback (posterior auditory cortex); and a second feedback 
stage (‘external’ feedback) again with sensory-motor interactions. Note that since we are assessing imagery, rather than overt 
speech, the common nomenclature of internal and external loops, which refers to the nature of the feedback, is not strictly 
applicable. However, we decided to keep this nomenclature to link our predictions and results to theoretical formulations of 
the model.    
 
Results 
 
We recorded MEG signals from 21 participants (15 women; mean age = 28.19; std = 6.57) while they 
imagined producing one of three syllables (/pa/, /ta/, and /ka/). On every trial, participants were 
required to internally produce a given syllable as soon as it appeared on the screen (event 1) and a 
second time upon appearance of a fixation cross 1 second later (event 2) (Fig 1A). Electromyographic 
(EMG) data from the upper lip and jaw (Fig 1D) was acquired to measure any micromovements 
participants make during imagery. Although we expected micromovements during Imagery48, in line 
with previous research7, we did not expect these data to discriminate between different syllables. This 
is critical for the validity of syllable decoding results from MEG data. 
 
Participants’ performance on the overt version of the task is summarized in Table S1 (see also Fig 
S1). The median sound onset of syllable 1 (event 1) occurred 439 ms after the presentation of the 
syllable on the screen (Methods). The onset for syllable 2 (event 2) occurred on average 175 ms after 
the fixation cross. These times were taken to suggest the expected imagery onset, under the 
assumption of similar timing during the Imagery condition. Importantly, the interquartile range for the 
two events (syllable 1: 99 ms; syllable 2: 146 ms) indicated that participants were more precise in 
time in the production of the first imagined event than the second. We expected these differences in 
variability to have an impact on decoding, with a greater alignment for event 1 translating into better 
decoding.  
 
Since, by definition, there is no overt behavioral output of imagery, a first step was to measure and 
quantify the difference between the Imagery condition and a control condition matched in all respects. 
In this Reading condition, participants simply passively looked at the syllables and fixation crosses 
appearing at the center of the screen. To evaluate the extent to which Imagery contained information 
over and above Reading, we used a decoding approach (temporal generalization; Fig 2). In addition to 
quantifying existing differences between the two conditions, this approach can track the dynamics of 
neural processes underlying a particular experimental condition42,43. Therefore, to track the 
development of neural processes common to speech imagery (i.e., processes shared by the three 
imagined syllables) as distinct from passive viewing/reading, we trained a linear classifier on the 
Imagery versus Reading contrast at each time point and tested its performance across all timepoints 
within the trial. This analysis was performed for each subject separately, using stratified 4-fold cross-
validation with regularization and Receiver Operative Characteristic Area Under the Curve (ROC 
AUC) as the scoring metric (Methods). The analysis resulted in a temporal generalization (TG) matrix 
per subject, which we then averaged across subjects. We expected areas of higher decoding accuracy 
(i) at the expected imagery onsets (as determined from participants’ overt productions during training; 
Fig S1; Fig 3A upper panel; Table S1) and (ii) before imagined event 1, for motor planning of the 
syllable to be produced in each trial (Fig 2).  
 
Fig 3A shows the average TG matrix across the sample. Clusters of statistically significant decoding 
(p < 0.05; black contour lines) were determined at the second level of analysis via a cluster-based 
permutation test (1000 permutations; two-tailed) across subjects. Large regions of high decoding 
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accuracy (with ROC AUC values up to 0.82) suggest robust and consistent differences over time 
between Imagery and Reading conditions. The extended nature of the clusters suggests that the 
differences are driven both by domain-general processes (such as, perhaps, attention), as well as 
processes specific to speech imagery (i.e., bearing speech content). As expected, a significant degree 
of generalization is observed between the two imagery events within the trial, indicating similar 
neural underpinnings.  
 

 
 
Fig 3. Temporal generalization matrices track the sequence of neural representations during speech Imagery and 
Reading. A. Average TG matrix (N = 21) for the contrast Imagery vs. Reading as well as syllable onset time distributions 
(top inset) for all syllables overtly produced during training by all participants (blue = event 1; orange = event 2), plotted for 
reference as to the expected imagery onset. IQR = interquartile range. ROC AUC = Receiver Operative Characteristic Area 
Under the Curve (chance = 0.5). B. and C. TG matrices for the pairwise contrasts between syllables (pa vs. ka, pa vs. ta, and 
ta vs. ka) for each condition (Imagery and Reading, respectively) first averaged within subject and then across subjects (N = 
21). Black arrows indicate the median syllable onset time of participants’ overt productions during training (event 1 median: 
~436 ms; event 2 median: ~1175 ms). Clusters of statistically significant decoding (p < 0.05; black contour lines) were in all 
cases determined at the second level of analysis via a cluster-based permutation test across subjects (1000 permutations; two-
tailed). Statistical significance indicates consistency across subjects, while high ROC AUC values reflect robust classifier 
performance on discriminating the contrasts.  
 
Decoding participants’ imagined speech from MEG data 
 
Having established that the MEG signals during Imagery contain information distinct from Reading, 
we next asked whether Imagery trials carried discriminable content regarding the three imagined 
syllables (/pa/, /ta/, and /ka/). Here, the TG approach can provide direct evidence for speech imagery, 
if areas of significant decoding are found, but it also provides valuable insight into the nature of the 
neural processes involved, for example, in terms of the number of distinct processes, their times of 
occurrence, and generalizability (Fig 2). We first generated, for each participant and condition, a TG 
matrix for each of the pairwise syllable contrasts (/pa/ vs. /ka/, /pa/ vs. /ta/, and /ta/ vs. /ka/) following 
the same decoding approach as before. These three matrices per participant and condition were then 
averaged within subject and entered into a cluster-based permutation test across subjects (N = 21; 
1000 permutations; two-tailed) to determine clusters of significant syllable decodability (p < 0.05) in 
each of the conditions (Methods). Given that the processing of visual information (i.e., reading the 
syllables) is shared between Imagery and Reading, we expected this analysis to yield some 
similarities in the early stages of event 1. However, direct evidence for speech imagery would also 
require for syllable decodability to extend further in the Imagery condition only in event 1 and stand 
alone in event 2, reflecting the occurrence of the actual speech imagery events.  
 
Clusters of relatively high decoding accuracy (ROC AUC scores up to 0.62, significant at p < 0.05) 
during event 1 reveal a distinct cascade of neural processes during Imagery (Fig 3B). The limited span 
of these successive clusters both on and off diagonal indicates that the representations involved were 
rapidly evolving (50 ms - 60 ms) and highly specific (with limited generalization). This result merits 
special emphasis: it is possible to decode with high time resolution a participant’s internally produced 
and minimally contrasting syllables from non-invasive data. Significant decoding starts immediately 
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after syllable presentation (~120 ms) and extends well beyond the expected imagery onset (Fig 3B 
black arrow at ~436 ms). Syllable decodability during event 2 was sparser, albeit significant in 
clusters immediately before and after the expected imagery onset (Fig 3B black arrow at ~1175ms). 
This replicates the decoding results for event 1 and at times when imagery is only prompted by a 
fixation cross. The sparser decoding for this event and the absence of generalization between events 
likely reflect the temporal misalignments within and between participants’ inner productions, as 
suggested by their overt productions (Fig 1; Fig 3A). As predicted, syllable decodability in the 
Reading condition was significant, if weak, in clusters between ~120 ms and ~450 ms (Fig 3C). This 
suggests a similar succession of neural processes to the Imagery condition up to the imagined event, 
or extended visual processing during Reading. In favor of the latter interpretation, no clusters of 
significant decoding were found during event 2 in the Reading condition when no visual information 
of the syllable was present. 
 
An important concern and classic critique of imagery studies derives from the associated, if small, 
movements that can accompany mental imagery. We took great care to control for that potential 
confound. The analysis of the EMG data by participant indicated, as expected, the presence of 
micromovements (Fig S2 - Fig S4). Micromovements are a common phenomenon during imagery 
and inner speech and are commonly assumed to be a byproduct of motor signals that cannot be fully 
inhibited7. Interestingly, micromovements were present both in the Imagery and Reading conditions. 
We performed an in-depth analysis of the EMG data to ensure our decoding results could not be 
explained by participants’ micromovements. Although small differences were found between Imagery 
and Reading conditions (Fig S2 and Fig S4), the micromovements did in no case discriminate 
between the imagined syllables (Fig S2 and Fig S4).  
 
Neural dynamics underlying speech imagery  
 
So far, we were able to decode participants’ speech imagery and uncover a series of well-defined 
stages leading to the imagined speech event. We next sought to establish the neural correlates of these 
stages. On the one hand, this analysis can adjudicate between theories of speech imagery that posit a 
close parallel between imagery and overt production and theories that conceptualize imagery as a 
byproduct of motor planning (i.e., without primary motor involvement)49. On the other hand, if 
imagery mirrors overt speech, the sequence of neural events underlying imagery can adjudicate 
between current models of speech planning and production (Fig 2B).  
 
To characterize the neural dynamics underlying speech imagery, we first acquired structural MRI data 
from a random subsample of participants in the pa-ta-ka cohort (Methods). Each participant’s 
Imagery condition’s average time series was projected to their native source space and then morphed 
to a common coordinate space (Montreal Neurological Institute) before averaging across participants 
(Methods). The goal of this group analysis was to assess the sequence of neural activity that gives rise 
to speech imagery.  
 
Figure 4 shows the progression of neural activity during Imagery between 120 ms and 610 ms after 
syllable presentation, corresponding to the islands of significant syllable decoding previously 
identified. The analysis was thus guided by the syllable decoding results (Fig 3B) since these inform 
us about the times of relevant mental representations within the trial. (See Fig S6 for the complete 
sequence of neural events.) 
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Fig 4. Clusters of syllable decodability 
reveal a processing cascade during speech 
Imagery consistent with SFC models. 
Response topographies (Imagery) averaged 
over participants (left panel) and activity for a 
subgroup of participants estimated with 
sLORETA (right panel) corresponding to the 
clusters of significant syllable decoding in the 
Imagery condition, event 1 (center panel; from 
Fig 3). Response topographies were 
thresholded at +-20fT. Source space activity 
was thresholded at minima ranging between 
1.88 and 3.34 and maxima between 2.37 and 
4.51 units for display purposes. Time progress 
from bottom to top. 
 
Both source and sensor renderings 
show a clear sequence of distinct 
neural events, starting with visual 
areas (~120 ms) for visual encoding. 
This activity extends to the well-
established ventral visual pathway and 
subsequently to the lateral temporal 
cortex (~180 ms), particularly in the 
left hemisphere, putatively reflecting a 
phonological (re)coding of the 
syllables from their visual form. This 
stage is followed by activity in the 
auditory cortex, the Sylvian parieto-
temporal area, frontal anterior insula, 

and bilateral pre-motor regions between 260 ms and 300 ms, which may relate to auditory-motor 
integration processes and speech motor planning9,47,50,51. Extensive activity over (predominantly left) 
auditory regions can be seen after 440 ms, that is, at and following the expected imagery onset 
(estimated at 436 ms for the entire sample and at 444 ms for the MRI group; Table S1). We conjecture 
this activity to be the neural correlate of the quasi-perceptual experience that defines speech imagery, 
in line with previous research11,15,18. The decoding clusters indicate that this imagery event is flanked 
by two additional distinct stages. First, a stage prior to (internal) production (~300 ms to ~400 ms) 
featuring activity in both premotor/motor and temporo-parietal regions. This is consistent with the 
internal feedback loop of SFC theories, characterized by feedforward-feedback processes for speech 
planning8,9,45; and second, a stage following production (>500 ms) featuring activity in posterior 
auditory as well as bilateral motor regions, consistent with a hypothesized feedback stage following 
motor execution8,9,45. As might be expected, the same analysis performed subtracting the Reading 
condition from the Imagery condition in source space removes much of the visual activity, but the 
exact same sequence can be observed (Fig S7). Note that this is a very conservative analysis 
controlling for neural processes not specific to imagery. The result of this analysis also provides 
additional evidence that syllable decoding in the Reading condition was based on the visual encoding 
of the syllables (visual representations) throughout, in contrast to the Imagery condition. Event 2 did 
not yield as clear a sequence (Fig S8 and Fig S9), as expected from the misalignments within and 
across subjects and the sparser decoding results. It is nevertheless worth highlighting the implication 
of auditory, premotor, and motor areas as well as of the Sylvian parieto-temporal area in this latter 
event, suggesting similar neural dynamics to event 1.  
 
The internal and external loops in State Feedback Control 
 
Our analyses revealed a sequence of neural representations leading to a speech imagery event 
consistent with the SFC architecture (Fig 2). A critical feature that distinguishes SFC from other 
models of speech production is the existence of both an internal and an external feedback loop 
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supported by the interplay between sensory and motor regions planning8,9 (Fig 5A). The internal 
feedback loop, by hypothesis, is critical for speech planning in its ability to issue corrections, before 
motor execution, for discrepancies between the predicted sensory outcomes of planned actions (i.e., 
somatosensory and auditory predictions) and the intended actions/sounds (i.e., somatosensory and 
auditory targets). Note that this comparison is contingent on the early activation of the sensory targets, 
a feature that is also absent in the DIVA architecture. The external loop, in contrast, issues corrections 
for discrepancies between predicted and actual sensory outcomes (i.e., post execution) which can then 
be used to fine-tune the internal forward model used to generate the sensory predictions. 
 
Although the previous analysis clearly shows activity in motor and sensory regions, both prior to and 
following the expected time of inner production, that analysis represents only a snapshot of their 
dynamics. To examine these dynamics more closely, we extracted the time courses spanning event 1 
from three key regions of interest (ROIs) in the left hemisphere, namely motor cortex, primary 
auditory cortex (core), and posterior superior temporal auditory cortex (posterior auditory) (Methods). 
Besides their hypothesized role in the internal feedback loop, this restricted ROI selection was 
motivated by the widely agreed-upon functions of these regions52: it is reasonable to attribute motor 
representations to motor cortical areas and auditory representations to auditory areas. Note that, in 
addition to a core auditory region, we selected a posterior auditory region for its known involvement 
in the computation of auditory feedback53. The anatomical location of the 3 ROIs was based on a 
well-known cortical atlas (Glasser et al.54) (see Methods for the detailed procedure of the selection of 
the ROIs). In short, we selected, for each participant, the MNI coordinates that displayed maximal 
activity within each of the corresponding atlas labels. Around each coordinate point, we then built a 4 
mm sphere and extracted the average time course of the sources within that local volume. We 
determined the times at which time courses therein were consistently activated across participants 
(significantly above their mean baseline activity; Methods) using a cluster-based permutation test 
(1000 permutations; one-tailed). We expected the sequential activation of core auditory (coding for 
the acoustic representation), posterior auditory (coding for the prediction error), and motor areas 
(receiving feedback) to occur at least once before the expected time of imagery (i.e., during speech 
planning), with a similar pattern also occurring after internal production (Fig 5B). 
 
Fig 5C shows the time courses of the selected ROIs (see Fig S10 for the activity of control regions, 
Fig S11 for additional auditory regions, and Fig S12 for somatosensory regions). 
 

 
 

Fig 5. Time courses of auditory and motor regions during speech imagery. A. Feedforward feedback loop for speech 
motor control. SFC theories8,9,45 hypothesize an internal loop for motor planning and an external loop for post-production 
feedback, both characterized by feedforward and feedback processes between motor and auditory regions. Predictions from 
speech motor plans about their auditory consequences are compared with auditory targets (feedforward arrow). Corrective 
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error feedback is sent back to motor regions to refine motor plans (feedback arrow). B. Schematic of expected peaks of 
activity in auditory and motor regions. SFC posits the parallel activation of auditory and corresponding motor plans 
(auditory and motor targets). A forward prediction of the consequences of the selected motor plans is compared to the 
auditory target, generating an error signal commensurate with the discrepancy. The error signal is sent back to and used as 
corrective feedback by motor regions, which ‘execute’ the motor command. Internal motor execution immediately preceding 
the expected imagery onset generates activity in auditory regions (a second feedforward sensory prediction) likely associated 
with the auditory percept (imagery). Since there is no feedback from overt production to match this sensory prediction, a 
second error signal is generated and fed back to motor regions. C. Time courses of auditory and motor regions. The time 
courses of core auditory and motor regions in addition to a posterior auditory region known for its role in sensory feedback 
show activity pre and post internal speech production (vertical dashed line) consistent with the hypothesized double 
feedback loop. Blank segments in the lines indicate times of non-significance. Time courses were low-pass filtered at 20 Hz 
(double pass Butterworth of order 5) for display purposes. 
 
The time courses show an initial peak of activity in auditory areas (~180 ms), in line with an initial 
phonological (re)coding stage, followed by concurrent activity in both motor and core AC regions. 
This activity is consistent with the parallel activation of motor and auditory targets hypothesized by 
SFC models. This is followed by activity in posterior auditory regions and motor activation 
immediately before the expected imagery onset (vertical dashed line), consistent with an inner 
feedback stage and internal motor execution. Following motor activity, core auditory activity rises to 
peak at the expected time onset. We conjecture that this auditory activity (plus activity in secondary 
auditory regions; Fig S11) reflects the inner ‘hearing’ of the imagined spoken syllable. The time 
courses also show that core auditory activity at the expected imagery onset is closely followed by 
posterior auditory and motor activity, consistent with the second feedback loop hypothesized by SFC. 
In all, the dynamics of auditory and motor regions are consistent with an internal feedback loop prior 
to motor execution as well as an external feedback loop following motor execution, both attributes 
predicted by SFC theories8,16,44. The time courses of control ROIs (e.g., left visual cortex and frontal 
pole; Fig S10) show that these auditory and motor group-level dynamics are not a product of the 
analytical procedure. 
 
The nature of the representations in speech imagery 
 
To validate the temporal dynamics of speech imagery and to extend the results beyond the phoneme 
contrasts we employed (/p/, /t/, /k/), we replicated the experiment using a new participant cohort (N = 
9; Methods). This time, however, we asked participants to imagine a different set of syllables, 
specifically /ta/, /tu/, and /ti/, varying in their vowels rather than in the consonants, and therefore with 
a higher contrast in the acoustic than in the articulatory domain. Accordingly, we should see that the 
decoding cluster immediately preceding the expected imagery onset, which corresponds to 
motor/somatosensory activation (Fig 4) and thus presumably reflects the contrast between motor or 
somatosensory representations, is relatively de-emphasized (i.e., less discriminative of the syllables’ 
identities) in the ta-tu-ti set, since the initial position of the articulators for the three syllables should 
now be more similar (Fig 6A top). In contrast, we should find that the decoding cluster immediately 
following the expected imagery onset, which corresponds to auditory activity and presumably reflects 
the contrast between auditory representations, is now relatively emphasized (is more discriminative of 
the syllables’ identities) and extended, echoing the more prolonged nature of the vowel contrast in 
auditory space (Fig 6A bottom). Fig 6B shows the results of the syllable decoding analysis for this 
new set of syllables. (See Fig S13 for the Imagery vs. Reading contrast and the syllable decoding 
analysis in the Reading condition).  
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Fig 6. Analysis of the ta-tu-ti set. A. Schematic of the predictions for the syllable decoding for the ta-tu-ti set compared to 
the pa-ta-ka set. Top: The main decodeable contrasts for syllables /pa/, /ta/, and /ka/ are the initial position of the articulators 
(motor and/or somatosensory representations) and the consonant-vowel transitions (motor, somatosensory, or auditory 
representations) (Schematic shows /ta/ vs. /ka/ only). Bottom: In contrast, the main decodeable contrasts for syllables /ta/, 
/tu/, and /ti/ are the consonant-vowel transitions (motor, somatosensory, or auditory representations) as well as the stable 
parts of the vowels (Schematic shows /ta/ vs. /ti/ only). B. TG syllable decoding matrix (averaged across contrast and 
subjects). Black arrows indicate the median syllable onset time of participants’ overt productions during training (event 1 
median: ~349 ms; event 2 median: ~1098 ms). Clusters of statistically significant decoding (p < 0.05; black contour lines) 
were in all cases determined at the second level of analysis via a cluster-based permutation test across subjects (1000 
permutations; two-tailed). C. Pairwise syllable decoding contrasts (/tu/ vs. /ti/, /ta/ vs. /ti/, and /ta/ vs. /tu/). Shaded regions 
show the standard error of the mean. Vertical dashed lines indicate the expected imagery onsets for each of the imagery 
events. Solid black line indicates chance level. 
 
Several observations can be drawn from these new decoding analyses (Fig 6B and Fig S13). First, 
these new results validate our previous decoding results (for pa-ta-ka) and indicate that the approach 
generalizes beyond the original syllables employed. Second, as predicted, the decoding in the ta-tu-ti 
set prior to the expected imagery onset was relatively weaker than the decoding following the 
expected imagery onset. That is, higher accuracies were obtained at the times when we expected the 
vowel sound contrast (Fig 6BC) than at the times corresponding to the consonant articulation, since 
this was common across the syllables. This is in line with the hypothesis that motor and auditory 
representations are what are primarily identified by the decoding analysis of pa-ta-ka and ta-tu-ti, 
respectively, and corresponding to the times immediately before and after the expected imagery onset. 
The fact that the pairwise contrasts with the syllable /ti/ were the more robust (Fig 6C) represents 
additional evidence for the idea that the decoding in the ta-tu-ti set primarily leverages acoustic 
representations, since the distances in acoustic space between /ta/ and /ti/ and between /tu/ and /ti/ are 
greater than the distance between /ta/ and /tu/55. (See Fig S14 for the pairwise contrasts in the pa-ta-ka 
set). Third, although the contrasts between Imagery and Reading were comparable between the two 
syllable sets, the imagined syllables involving vowel contrasts (/ta/, /tu/, and /ti/) were overall more 
accurately decoded from the neural data than syllables involving consonant contrasts (/pa/, /ta/, and 
/ka/) (Fig S15). This indicates that, although the decoding of motor representations pertaining to 
imagined syllables is possible from non-invasive data, the decoding of auditory representations may 
be more robust, perhaps due to their more prolonged rather than transient nature, which may partly 
correct for trial-to-trial misalignments. And fourth, the identified motor/somatosensory and auditory 
representations in both syllable sets collectively span at least a full syllable’s length (>200ms). This 
contrasts with the rapidly evolving (compressed) representations during speech planning (in the order 
of 50 – 60 ms; Fig 3 and Fig 4). 
 
Discussion 
 
Speech imagery is the capacity to ‘hear’ self-generated (covert, internal) speech. Despite its pervasive 
nature in many aspects of cognition, the study and use of speech imagery in both clinical and 
academic research has been challenging. We characterized the dynamics of a relatively simple speech 
imagery task, by pairing neurophysiological (MEG) data with a novel experimental protocol designed 
to overcome the known methodological difficulties. Using a time-resolved decoding analysis of 
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participants’ imagined utterances, we show that generating imagined speech involves the rapid 
succession of relatively encapsulated neural representations that map in systematic ways onto some 
predictions of current theoretical models of overt production. In particular, the data support the state 
feedback control conceptualization of speech production. 
 
The neural correlates we report for these transient representations are consistent with previous fMRI 
research on speech imagery, inner, and covert speech7,10,56. An advantage of the time-resolved 
approach we pursue is that it provides, in addition, a dynamic characterization of speech imagery, 
which brings us closer to mechanistic understanding. Broadly, the data are consistent with two well-
defined stages during imagery, namely planning and (internal) production (Fig 4). The production 
stage is characterized by widespread left-lateralized auditory activity at the expected syllable onset 
(~400 ms, based on participants’ overt productions of the same syllables), immediately preceded by 
speech motor activity. We hypothesize that this auditory activity corresponds to the percept associated 
with speech imagery11,18. Following the imagined event, the syllable decoding approach identified two 
additional time periods with distinct neural representations, associated with pSTG activity (~500 ms) 
and subsequent bilateral pre/motor activity (~570 ms). This pattern of activity is consistent with a 
hypothesized external feedback loop during overt production, in which errors from comparing the 
predicted sensory consequences of planned articulatory gestures with their actual consequences (i.e., 
auditory feedback) are forwarded to motor regions8,45,47. Indeed, the location of the posterior auditory 
cluster is consistent with fMRI research using altered feedback to identify error-related activity57,58 as 
well as recent ECoG data distinguishing sensory processing (in more anterior regions) from feedback 
error signals53. Activity in bilateral pre/motor regions has also been reported following auditory 
errors57,59, in line with our observations. Interestingly, while error-related activity can be modulated 
experimentally by altering feedback in both overt57,59 and imagined speech13, it is unclear what the 
expectation should be in the case of imagery when no matching or mismatching inputs are given. In 
accord with a recent hypothesis on predictive processing20, our intuition is that, since there is no overt 
auditory feedback to meet predictions (i.e., there is less input than predicted), an error response in 
auditory regions should still be produced. Our results support this hypothesis, highlighting the 
potential of our approach for research on predictive processing. 
 
Regarding speech planning, we identified at least three distinct time periods of significant syllable 
decoding prior to the production stage (Fig 4). The first, ~180 ms after syllable presentation, was 
associated with activity in left posterior temporal cortex and thus consistent, both in time and location, 
with a much-theorized phonological encoding stage9,50,60. Phonological encoding may thus be present 
whether production is internally generated (e.g., from abstract thought) or externally triggered (e.g., 
from reading). The second was characterized by concurrent activity in left auditory and bilateral 
motor regions at ~260 ms. Such activity is predicted by SFC models recently applied to speech motor 
control in which auditory and motor targets are accessed in parallel immediately following 
phonological encoding9. SFC also predicts an internal feedback loop prior to motor execution, in 
which sensory predictions (auditory and somatosensory) are compared to the intended sensory 
targets8,9,45. Although theoretically well-grounded, there is no direct empirical support for an internal 
loop in speech production. Indirect evidence comes from the timing with which individuals correct 
themselves during speech errors, which are too fast for responses to external auditory feedback61. 
Activity at ~300 ms (Fig 4) is consistent with the hypothesized internal feedback loop, featuring the 
posterior auditory cluster, the supramarginal gyrus, and pre/motor regions. This result is further 
supported when examining the time courses of auditory and motor areas during imagery (Fig 5). 
Specifically, the sequence of activations observed for the putative external loop is also present 
immediately before the expected time of imagery, consistent with the monitoring and planning role of 
the internal loop. A tentative hypothesis is that the observed activity in ventral somatosensory and 
supramarginal regions (Fig S12), which closely mimics that of core and posterior auditory areas 
(respectively), reflects a level of speech motor control additional to that subserved by auditory and 
motor interactions, in line with hierarchical SFC models9. By this account, inferior parietal activity 
prior to speech imagery events previously reported in the literature (e.g., 11,15) could relate to this level 
of control. 
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The generation of speech imagery appears to closely mirror that of overt speech, with full-blown 
planning and (internal) execution stages. Our data are thus inconsistent with views of imagery as a by-
product of motor planning (e.g., 49). Moreover, given the presence of unspecific micromovements at 
the expected imagery onsets (Fig S2-S4), our hypothesis is that, during imagery, speech plans are 
executed but aborted (inhibited) at the periphery. In this sense, speech imagery may be seen as 
analogous to concrete (as opposed to abstract) forms of inner speech7.  
 
The properties of the neuroimaging method (MEG) invite care with regard to the accuracy of the 
reported cortical areas. However, although possible in principle, we suspect major inaccuracies are 
unlikely given the close correspondence between the sources of activity in our imagery task and 
previously reported clusters in motor and sensory areas56. This is particularly so in the case of 
auditory regions, which show a consistent pattern of activity at the expected time (Fig S10). A 
possible exception could be the posterior auditory cluster because of its proximity to area Spt (cf., 62). 
Indeed, the behavior of this cluster could be seen as consistent with Spt’s hypothesized role in 
auditory-motor transformations8,63. We also found activity in premotor and motor regions to be in very 
close spatial proximity (Fig 4). It is therefore possible that the activity we attribute to the motor 
cluster pertains to premotor cortex instead. This would be consistent with a hypothesized origin of 
sensory predictions in the premotor cortex in response to inputs (efference copies) from motor areas 
as well as with known inputs of premotor areas to motor cortical regions for production47.  
 
A further noteworthy finding revealed by the decoding analysis is the compressed nature of speech 
representations during planning. These representations appear to change rapidly, every 50 to 60 ms, 
which contrasts with the natural rate at which the internal productions unfold (cf., 64). There is 
evidence that inner speech and speech imagery percepts encode tempo, pitch, timbre, and loudness 
information13,14,39,65 but little is known about the relationship between production and planning stages 
in imagined, inner, or overt speech. This result is particularly relevant for potential brain-computer 
interfaces, which could account for this feature to increase decoding performance.  
 
Finally, we highlight some methodological considerations. In decoding imagined speech, we would 
like to emphasize the importance of aligning responses to reduce the amount of noise in the data with 
which classifiers are trained. We took several measures to improve the alignment of imagined events, 
both within and between participants (Methods). Many difficulties in decoding imagery from 
broadband signals are due to temporal misalignments. Indeed, many speech decoding studies using 
time-resolved methods (e.g., EEG, MEG) have ultimately resorted to frequency analyses (e.g., power 
modulations, cross-frequency coupling)66, loosing temporal resolution. While our objective was not 
decoding per se, we were able to decode participants’ imagined utterances with relatively high 
accuracies from non-invasive data using simple linear classifiers. Although we are optimistic about 
recent invasive approaches and sophisticated analysis pipelines (e.g., 41), we would like to emphasize 
that non-invasive methods and ‘lighter’ analytical procedures can also provide systematic insight.  
 
In sum, combining traditional non-invasive methods and state-of-the-art analytical techniques, we 
show how speech imagery works. This approach opens a wide range of possibilities both for basic and 
clinical research. As an example, we show that speech imagery closely mirrors overt speech planning 
and production with an underlying sequence of neural events consistent with current models of speech 
motor control, and involving (minimally) both motor and auditory representations. Additionally, we 
expose the contrast between the compressed nature of these representations during planning and the 
natural speed at which they unfold during the internal perception of the imagined speech event. These 
findings also sound a note of hope for the development non-invasive speech interfaces.  
 
Methods 
 
Participants 
 
A total of thirty subjects participated in the study. Twenty-one (15 women; mean age = 28.19 years; 
std = 6.57) were tested on syllables pa-ta-ka. From this cohort, we acquired structural MRI data from 
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a random subsample of 10 participants (5 female, mean age = 31.8, std = 6.26). An additional 9 
participants (7 women; mean age = 23; std = 7.94) were tested on the syllables ta-tu-ti. All 
participants were right-handed and self-reported no neurological deficits. They also provided written 
informed consent before participation. The protocol was approved by the local institutional review 
board (New York University’s Committee on Activities Involving Human Subjects). 
 
Task 
 
The speech imagery task (Fig 1) involved imagining (internally producing) a different syllable on 
every trial. Two sets of three different syllables (pa, ta, or ka; and ta, tu, ti) were tested, each on a 
different cohort. The task was identical otherwise. Each trial began with a fixation cross of variable 
duration (1-1.5 sec) in the center of the screen. One of three syllables tested (pa, ta, or ka; or ta, tu, ti) 
was presented and remained on the screen for exactly 1 second. Syllable presentation was followed by 
another fixation cross lasting 2.5 seconds, at which point the next trial began. The experiment 
comprised two conditions, Imagery and Reading, each with 4 blocks of 120 trials (40 presentations of 
each syllable per block), counterbalanced between participants. The total number of trials over the 
course of the experiment was 960 (320 per syllable). Syllable presentation was fully randomized 
within each block. In the Imagery blocks, participants were instructed to imagine producing the given 
syllable as soon as possible after its appearance on the screen (event 1) and a second time on the 
fixation cross (event 2). Each trial, therefore, comprised two imagined events (event 1 and event 2). In 
the Reading blocks, participants were instructed to passively look at the center of the screen. The task 
was scripted and delivered using custom python scripts and Psychopy software.  
 
Pre-screening and training 
 
Participants were required to take part in an informative and training session prior to the MEG session 
(1-7 days), in which the researcher/s explained the nature of the experiment and the desired type of 
imagery (i.e., production-based rather than hearing-based imagery). Participants were familiarized 
with the actual imagery task (Fig 1) and encouraged to practice briefly following the example of the 
researcher and using overt productions rather than imagery to be able to evaluate their grasp of the 
task. At this point only, participants were given feedback regarding the timings of each production 
(i.e., their timing precision). We finally asked participants to complete a pre-screening practice block 
in an isolated sound booth, also using overt production. Their productions were recorded for informal 
analysis. After the practice block, we plotted the onsets of their syllable productions and evaluated the 
adequacy of the participant for further testing based on the dispersion of their distributions. To ensure 
a minimum consensus across the cohort, participants with large IQR (>200ms) in either imagined 
event were discarded for further testing. Participants with smaller IQRs were invited to participate in 
the MEG session. We additionally provided participants with an online version of the task and 
encouraged them to practice in their own time. Lastly, each participant additionally completed a 
minimum of 1 practice block on the day of the MEG acquisition using overt productions which were 
recorded for subsequent analysis (see below). 
 
Analysis of overt speech productions 
 
Participants completed at least one overt practice block immediately before the MEG session in which 
they were instructed to speak the syllables aloud. In an isolated sound booth, participants sat in front 
of a computer with a microphone close to their mouth and performed the task while their productions 
were recorded. This produced an average of 120 wav files per participant which were subsequently 
analyzed using Praat. Each utterance (2 events per trial) was manually annotated for syllable and 
formant transition onsets and offsets by a research assistant blind to the purpose of the experiment. 
Durations for syllables and formant transitions were computed by subtracting offset times from onset 
times. We computed medians and interquartile ranges for onsets and durations for both syllables and 
formant transitions.  
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Syllables onsets were determined based on the characteristic spectrogram signatures of the noise burst 
for each of the unvoiced stop consonants used (i.e., p, t, and k). Unvoiced stop consonants (e.g., p, t, 
k) involve obstructions by the articulators in the vocal tract which have specific acoustic signatures 
corresponding to a silent period (closure) and a noise burst (release). In particular, unvoiced stop 
consonants show clear differences in the shape of the noise burst: /p/ shows a short-lived wide range 
burst (across all spectrogram frequencies) that has lower intensity; /t/ shows a more prolonged burst in 
the upper part of the spectrogram (above 4 kHz) that has higher intensity; /k/ shows an even longer 
burst in the lower part of the spectrogram (below 4 kHz) that also has higher intensity (Kent, Kent, & 
Read, 2002). Syllable offsets were determined based on the speech envelope of each syllable.  
 
Formant transition onsets were determined based on the characteristic spectrogram signatures of the 
noise burst for each of the unvoiced stop consonants used (i.e., p, t, and k), as above. Transitions 
offsets were determined based on the characteristic deflection patterns in the second (F2) and third 
(F3) formants. Formant transitions provide important perceptual cues for the manner (F1) and the 
place (F2 & F3) of articulation. /pa/, /ta/ and /ka/ are all plosives so manner of articulation remains 
constant. In contrast, /pa/ is bilabial, /ta/ is alveolar and /ka/ is velar, which means that the consonants 
differ in terms of place of articulation. As for the place of articulation, therefore, the first formant (F1) 
always raises after a stop consonant for all places of articulation, while the second (F2) and the third 
(F3) formant shape varies according to the place of articulation. For /p/ there is a raise in both F1 and 
F2; for /t/ F1 remains constant while there is a fall in F2; and for /k/ there is a fall in F1 and a raise in 
F2. The exact shape of the formant transitions will vary depending on the neighboring vowel, which 
in our case was also kept constant (/a/). 
 
MEG data acquisition and preprocessing 
 
We acquired neuromagnetic responses from participants using a 157-channel whole-head axial 
gradiometer (KIT, Kanazawa Institute of Technology, Japan) situated in a magnetically shielded 
room, with a sampling rate of 1000Hz. To monitor head position during the recordings, five 
electromagnetic coils were attached to the subject’s head. We registered the location of these coils 
with respect to the MEG sensors before and after each block of the experiment. Participants’ head 
shape was digitized immediately before the MEG recordings using a Polhemus digitizer and 3D 
digitizer software (Source Signal imaging) along with 5 fiducial points, to align the position of the 
coils with participants’ head shape, and 3 anatomical landmarks (nasion, and bilateral tragus), to 
further allow for the co-registration of participant’s MEG data with their anatomical MRI scans. An 
online band-pass filter (1Hz-200Hz) was applied to all MEG recordings. 
 
Data preprocessing was conducted using custom Python scripts and MNE-python software67. Bad 
channels were first selected and interpolated using spherical spline interpolation. A least-squares 
projection was then fitted to the data from a 2-minute empty room recording acquired at the beginning 
of each MEG session and the corresponding component was removed. MEG signals were next 
digitally low-pass filtered at 40Hz using MNE-python’s default parameters with firwin design and 
finally epoched between -1000ms and 2000ms relative to the onset of syllable presentation. 
Detrending and baseline correction (-1000ms to 0) were applied to the epochs. Cardiac and ocular 
artifacts were also corrected via independent component analysis. The epochs resulting from these 
steps were visually inspected and remaining artifactual trials were discarded from further analysis.  
 
The same procedure was also repeated for each condition separately. A 40ms moving average was 
applied to the MEG data after filtering for the temporal generalization analysis by conditions only 
(Fig. 3), as means to increase the signal-to-noise ratio given the smaller number of trials for each 
syllable. This was achieved by convolving the data with a flat kernel of such length. 
 
Temporal Generalization 
 
To characterize the dynamics of neural activity during speech Imagery in relation to Reading, we used 
a TG approach. The analysis was performed at the single subject level (i.e., within-subject). 
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Specifically, we trained a linear classifier to discriminate between Imagery vs Reading trials at each 
time point of the trial and tested its performance across all time-points (i.e., from the presentation of 
the syllable to 2000ms later). We used 4-fold stratified cross-validation to balance the proportion of 
each class in each fold, alpha = 1 regularization, and ROC AUC as a scoring metric. The result of this 
procedure was a TG matrix per subject showing each classifier’s performance over time. Individual 
TG matrices were averaged across subjects to produce a group-level TG (e.g., Fig 3a).  
 
To characterize the dynamics of neural activity during speech Imagery and Reading separately (e.g., 
Fig 3b and 3c), we generated TG matrices for each of the pairwise contrasts between the tested 
syllables (e.g., pa vs. ka, pa vs. ta, and ta vs. ka) following the same procedure described above. The 
three matrices per participant and condition were then averaged within subject and the resulting TG 
matrices (one per participant) were finally averaged across participants. This resulted in a single 
matrix per condition (e.g., Fig 3b and 3c), characterizing the sequence of neural processes for each of 
the two conditions (Imagery and Reading). 
 
Clusters of statistically significant decoding (p < 0.05) across participants were in all cases (Fig. 3abc) 
determined via a cluster-based permutation test (1000 permutations; two-tailed). Note that significant 
decoding indicates consistency across participants over time, while higher ROC AUC scores reflect 
higher decoding accuracy or discriminability between conditions. 
 
Structural MRI data acquisition and source reconstruction 
 
A high resolution T1 MPRAGE image was acquired from a random subsample of the original cohort 
(N = 10) with the following scanning parameters: TR = 2400 ms; TE = 2.24 ms; flip angle = 8º; voxel 
size = 0.80 × 0.80 × 0.80 mm3; 256 sagittal slices; and acquisition matrix = 320 × 300.  
 
Each participant’s Imagery and Reading condition’s MEG data were projected to their native source 
space. We used a forward model based on a 1-layer boundary element model and a minimum-norm 
inverse model (signal-to-noise ratio = 2; loose dipole fitting = 0.2; normal orientation) using a noise 
covariance matrix computed from all sensors averaged over a pre-stimulus baseline period of 1 
second across trials. This inverse model per condition was applied to the participant’s corresponding 
evoked responses using standardized low-resolution brain electromagnetic tomography (sLORETA). 
Each participant’s source reconstructed data was then morphed to a common coordinate space 
(Montreal Neurological Institute) and the 10 participants’ data were finally averaged to produce a 
single time course per vertex in source space (5124 vertices in total) per condition.  
 
Note that close similarity between the larger cohort’s topographies and both the sensor space 
topographies of the MRI sample and the classifier patterns (coefficients) for syllable decoding (cosine 
similarity tests, Fig S5) indicates that the source reconstruction for the subsample is directly relevant 
to imagery. 
 
Time courses of auditory and motor regions of interest 
 
To visualize the interplay between motor and auditory regions during speech Imagery, we plotted 
their time courses over event 1. To arrive at these time courses, we performed the following steps. 
First, we used a well-known anatomical atlas54 to select the MNI sources pertaining to the left primary 
and secondary auditory cortex (A1; lateral and posterior parabelt), the superior temporal gyrus/sulcus 
(A4, A5, dorsal anterior and dorsal posterior superior temporal sulcus), the ventral premotor cortex 
(ventral and rostral BA6, 55b, and PEF), and the motor cortex (BA4), as determined by the labels of 
Glasser et al.54. Since the atlas parcellation is relatively coarse (e.g., the motor cortex is characterized 
as a single region, irrespective of effectors), instead of taking all sources within a label, we selected 
the MNI coordinate points that displayed maximal activity within each area’s time course normalized 
by the mean activity over time across the entire brain (i.e., the maxima relative to average brain 
activity at each time point). Around each coordinate point, we built a 4mm sphere and extracted the 
average time course of the sources within from the raw signal (i.e., non-normalized over time) of each 
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participant (1 second long from syllable presentation to fixation cross, i.e., event 1). In cases where 
the foci of activity were less than 1 mm apart, these regions of interest (ROIs) were merged by 
intersecting their vertices to extract a single time course. These steps resulted in time courses for 6 
ROIs (AC core, mid STG/STS, dorsal posterior STS, posterior AC, ventral premotor cortex, and 
motor cortex) per participant. We determined the times at which these ROIs’ time courses were 
significantly above their mean baseline (1 sec) activity using a cluster-based permutation test (1000 
permutations; one-tail) across participants. 
 
EMG data acquisition and analysis 
 
Participants were instructed to avoid any articulatory movements (jaw, lips, or tongue) during the 
MEG recordings. Muscle movements were continuously monitored using electromyography (EMG). 
We recorded the EMG signal from two electrodes. One electrode was placed at the intersection 
between the right zygomatic bone and the mandible, to record jaw movements. The other electrode 
was placed between the right lower lip and the chin, to record lips movements. The complete setup 
also included a reference electrode placed on the right mastoid bone and a ground electrode placed on 
the right wrist bone. Electrodes were connected to an MEG-compatible BrainAmp DC amplifier 
(Brain Products GmbH, Gilching, Germany). The EMG signal was recorded at a sample rate of 
500�Hz. A 60 Hz notch filter was applied online to remove power line noise. Data was referenced 
online to the right mastoid. Electrode impedance was kept below 25�kΩ.  
 
EMG signals were filtered using a zero-phase, two-pass Butterworth bandpass filter with a 1 Hz high-
pass frequency cut-off and a 50 Hz lowpass frequency cut-off. We segmented the raw signal into 
epochs between -1s before syllable onset and 2s after the syllable cue onset. Time series were down 
sampled to 250 Hz and the EMG signal was detrended. A baseline correction was applied by 
computing the mean of the 1s baseline period preceding syllable cue onset and subtracting this mean 
from the entire trial epoch. We used an auto-reject algorithm (Jas et al., 2017) for automatic artifact 
rejection. This algorithm defines a global threshold for artifact rejection that is specific for each 
participant based on a cross-validation procedure. This choice was motivated by the variability across 
subjects in the EMG data introduced by differences in skin conductance, muscle artifacts, heartbeat 
artifacts, prominence of the bones, etc... On average, 393.03 (± 105.75 std) Imagery trials and 390.48 
(± 90.72 std) Reading trials survived the artifact rejection.  
 
To test for systematic differences in articulatory movements between the Imagery and Reading 
conditions and, more critically, between the imagined syllables we conducted a decoding analysis. We 
used the same procedure described above (see Temporal Generalization). However, we only fitted 
each linear classifier model over the diagonal of the TG matrix (same training and testing time) since 
in this case we were not interested in the generalization across time. This decoding analysis was 
conducted at the single-subject level. Clusters of statistically significant decoding within subjects 
were determined using a cluster-based permutation test. For each timepoint (4ms) the classification 
procedure was repeated 1000 times after permuting the condition labels to build a null distribution. 
Scores falling beyond the 95th percentile of the null distribution were then grouped into clusters 
(minimum cluster size = 10 samples). Next, the values inside the clusters were summed and used to 
compute a cluster statistic distribution. Clusters with p < 0.05 were considered statistically significant. 
Classification performance across subjects was evaluated using a statistical test for ROC AUC scores 
that accounts for the number of trials of each participant (Olivetti et al.; 2012). This was necessary to 
avoid statistical biases introduced by the uneven amounts of trials across participants resulting from 
the artefact rejection step. The statistical test was designed within a Bayesian hypothesis testing 
framework and, therefore, it returns a Bayes Factor as output. 
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