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Abstract 
Aberrant shifts in DNA methylation have long 
been regarded as an early marker for cancer onset 
and progression. To chart DNA methylation 
changes that occur during the transformation 
from normal healthy colon tissue to malignant 
colorectal cancer (CRC), we collected over 50 
samples from 15 familial adenomatous polyposis 
(FAP) and non-FAP colorectal cancer patients, 
and generated 30-70x whole-genome 
methylation sequencing (WGMS) runs via the 
novel Ultima Genomics ultra high-throughput 
sequencing platform. We observed changes in 
DNA methylation that occur early in the 
malignant transformation process, in gene 
promoters and in distal regulatory elements. 
Among these changes are events of hyper-
methylation which are associated with a bivalent 
“poised” chromatin state at promoters and are 
CRC-specific. Distal enhancers show nonlinear 
dynamics, lose methylation in the progression 
from normal mucosa to dysplastic polyps but 
regain methylation in the adenocarcinoma state. 
Enhancers that gain chromatin accessibility in 
the adenocarcinoma state and are enriched with 
HOX transcription factor binding sites, a marker 
of developmental genes. This work demonstrates 
the feasibility of generating large high quality 
WGMS data using the Ultima Genomics 
platform and provides the first detailed view of 

methylation dynamics during CRC formation 
and progression in a model case. 

Introduction 
CRC is the third most diagnosed cancer in men 
and second in women and accounts for 8% of all 
cancer deaths1. Recent improvements in 
colorectal cancer diagnosis and therapeutic 
strategies have increased CRC patient survival 
time while the mortality rate of CRC remains 
high2.  

The molecular pathway causing CRC is the 
conventional adenoma–carcinoma pathway3. 
The pre-malignant to malignant progression of 
sporadic adenoma to carcinoma has been 
described for CRC malignancies and occurs in a 
stepwise fashion3,4. The initiating step in 80-90% 
of colorectal tumors is the loss of adenomatous 
polyposis coli (APC) gene resulting in β-catenin 
stabilization and increased WNT signaling5. 
Subsequent mutations in other cancer driver 
genes such as KRAS, TP53, and SMAD4 result 
in the transformation to carcinoma. Familial 
adenomatous polyposis (FAP) is an autosomal 
dominant inherited disorder caused by a germline 
mutation in the APC gene. The disease is 
characterized by the formation of numerous 
adenomatous polyps mainly in the epithelium of 
the large intestine, typically arising at teenage 
years6,7. This leads to a very high likelihood of 
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malignant transformation in at least one of these 
polyps by the fifth decade, 100% lifetime risk of 
CRC and is only preventable by prophylactic 
removal of the entire colon (colectomy)7. The 
presence of benign and dysplastic polyps in FAP 
patients is thought to reflect the earliest  steps in 
CRC formation, and as such presents a valuable 
and unique system for dissecting the early events 
in CRC tumor initiation and progression in the 
same initial genetic background. 

DNA methylation is one of the most widely 
studied epigenetic modifications. Changes in 
DNA methylation correlate with changes in gene 
expression and cell state8,9, and have been 
observed in virtually every cancer type10. Cancer 
cells typically exhibit global hypo-methylation 
while specific loci such as CpG islands are 
usually hypermethylated11–13. These alterations 
occur very early in the carcinogenesis process, in 
many cases before malignant transformation, and 
increase with tumor progression14,15. DNA 
methylation changes specific to CRC have been 
previously reported in many genomic regions 
including gene promoters, LINE1 repeat 
elements and at regulatory regions bound by the 
Polycomb group protein complex16,17. A 
distinguished type of regulatory regions that 
show increased methylation in cancer, are 
bivalent promoters and enhancers (also called 
poised promoters/enhancers). These regions are 
enriched with activating and repressing 
chromatin modifications that co-occur at the 
same genomic regions and are pre-loaded with 
poised RNA polymerase II to prepare genes for 
rapid activation. Poised promoters are typical for 
developmental genes and were suggested to 
“safeguard differentiation” and thus their 
malfunction is expected to have a harmful impact 
on the cell18–20. 

In recent decades, the availability of next 
generation sequencing technologies has 
profoundly improved our understanding of the 
molecular basis of human disease and enabled 
data-informed drug design, personalized disease 
treatment and improved monitoring of disease 

progression21,22. However, in recent years, the 
decrease in sequencing cost has plateaued and 
has been a limiting factor in both the number of 
samples interrogated and in the scope of data 
collected per sample, especially for individual 
laboratories23. To date, most studies, including 
large cancer genome profiling studies such as 
The Cancer Genome Atlas (TCGA)21 have opted 
to measure genomic methylation status using 
targeted approaches like arrays rather than 
genome wide approaches due to the high cost of 
sequencing associated with whole genome 
methylation sequencing (WGMS) at relevant 
coverage.  

The Ultima Genomics (UG) sequencing platform 
utilizes a new sequencing architecture that 
combines an open flow cell design on a circular 
wafer with large surface area, utilizing rotational 
reagent delivery, optical end-point detection, and 
mostly natural nucleotides without reversible 
terminators. This platform enables sequencing 
billions of reads with high base accuracy (Q30 > 
85%), at significantly reduced cost versus 
conventional sequencing platforms24, thereby 
allowing efficient generation of comprehensive 
WGMS data. In this study we used the UG 
platform to sequence 44 WGMS samples along 
the FAP tumor progression from normal mucosa 
to adenocarcinoma at high coverage (30-60X). 
This broad WGMS dataset allowed us to better 
monitor the transformation happening at the 
early stages of cancer development and discover 
thousands of methylation changes that occur at 
the transition from the normal mucosa stage to 
both the benign and dysplastic stages before 
adenocarcinoma formation. Using WGMS we 
were also able to assess hundreds of thousands of 
CpG methylation changes that occur at distal 
regulatory elements, most of which were not 
previously measured by enrichment and array-
based assays. In addition to presenting this novel 
method and results, the data serve as a valuable 
scientific resource for probing early events 
associated with CRC. 
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Results 
 

Ultima Genomics whole genome methylation 

To compare WGMS data generated by the UG 
sequencer to WGMS methods we sequenced the 
standard reference HG001, HG002 and HG005 
cell-lines using both EM-seq25 and Bisulfite26 
conversion methods and compared our data with 
the recently published Genome in a Bottle 
(GIAB) EpiQC data27. Using the UG sequencer 
we sequenced an average of 922 million reads per 
sample for each of the methods with two to five 
replicates (Supplementary table 1). We first 
examined general mapping statistics such as read 
mappability rate, duplication rate and the percent 
of Lambda (fully unmethylated) and pUC19 
(fully methylated) control DNA spike-ins. 
Overall, UG datasets had high mappability rates 
(95% to 99%) and low duplication rates (15% to 
30%; Supplementary Fig 1a-b). The internal 
controls for methylation (Lambda and pUC19) 
showed high conversion efficiency both for EM-
seq (98.5%) and Bisulfite-seq (97%) (Fig 1a-b) 
and C to T conversion rates at unmethylated 
CpGs were uniform along the read 
(Supplementary Fig 1c).   

We next examined the genomic coverage of CpG 
sites achieved by the UG in comparison to EpiQC 
data. UG achieved comparable coverage 
statistics to EpiQC, with median CpG depth 
demonstrating a linear increase in depth as 
function of numbers of reads (Fig 1c). At the read 
level UG achieved between 4.5 and 5.5 average 
CpG depth per 100 million reads vs 4-7 by 
EpiQC  (Fig 1d, note that UG reads were 
generally slightly shorter than in EpiQC data, 
Supplementary table 1). 

Importantly, the high UG coverage depth 
resulted in a much higher average coverage per 
CpG (Fig 1e). On average, we observed 70% of 
CpGs covered at over 20X leading to smaller 
deviations between replicates when compared to 
lower coverage (Supplementary Fig 1d). 

To compare the methylation calls between the 
two sequencing platforms we first assessed the 
average methylation across all the samples 
sequenced (Supplementary Fig 1e). We observed 
high variability between the different library 
preparation methods (standard deviation between 
methods are 0.7, 1.2, 1.5 for HG001, HG002 and 
HG005), which is higher than the variability 
between the different platforms (standard 
deviation between platforms of EM-seq method 
are 0.57, 0.77, 0.62 for HG001, HG002 and 
HG005). Importantly, we observed that 
methylation patterns around the transcription 
start site (TSS) of all genes and across many 
different genomic features behaved similarly on 
both platforms (Supplementary Figs 1f & 2a).  

To further test agreement between the different 
platforms we measured the correlation of 
methylation levels of all CpGs with >5X 
coverage in both EpiQC data and UG genomics 
data (24.5 M CpGs; Fig 1f). We observed a very 
high correlation (R = 0.94 to 0.96) when 
measuring methylation levels of the same cell 
line with the two technologies. Correlation 
between different conversion methods was 
similar to that of the correlation using the same 
conversion method (R = 0.94 to 0.96) between 
the two sequencing platforms (Fig 1g).  

Finally, we evaluated differential analysis 
performed on the two sequencing platforms by 
identifying differentially methylated regions 
(DMRs) between HG001 and HG002. We found 
an 80% overlap between the detected DMRs of 
the different platforms for both EM-seq and 
Bisulfite-seq conversion (Fig 1h). Further 
inspection demonstrated that most differences in 
detected DMRs were explainable by marginal 
calls near the calling threshold (Fig1 i-j). Overall, 
these results indicate that the technical variation 
between UG and EpiQC is modest (R = 0.95) 
when compared to differences in biological 
samples from different sources (HG001 vs 
HG002; R = 0.82). 
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DNA methylation changes with cancer 
development of Familial adenomatous 
polyposis patients 
We next examined the ability of the UG100 
platform for characterization of genome wide 
methylation changes during the early colon polyp 
formation using FAP samples; n To this end, we 
collected blood and multiple fresh frozen 
samples of colon “normal” mucosa, polyps and 
an adenocarcinoma sample from nine FAP 
patients (Fig 2a; Table 2; Methods). We also 
collected fresh frozen samples from 
adenocarcinoma tissues from six CRC patients. 
Tissue slides of the normal mucosa and polyps 

were examined by a pathologist and defined into 
four categories of increasing severity: normal 
mucosa, benign, dysplastic and adenocarcinoma. 
DNA was extracted from these samples, 
processed using EM-seq, and sequenced to an 
average genomic coverage of ~50 X (25x to 
112x) (Fig 2a and Supplementary Fig 3b).  

To gain insight on the tissue composition of these 
samples we applied a computational method for 
methylation-based cell type deconvolution27 
(methods; Supplementary Fig 3c). This analysis 
revealed that three of the adenocarcinoma 
samples had a negligible colon fraction and one 
of them contained a high fraction of lung cells. 
Pathologist review on Hematoxylin and Eosin 
(H&E) slides taken from FFPE samples from 
some of the same tissues further validated the 
tissue composition estimation for 2 of 3 cases 
(Supplementary Fig 3d) including the 
observation of significant lung cell infiltration in 
one of the samples. To avoid the possible 

confounding effect of significant non-colon 
tissue in the samples we set a threshold of 35% 
colon fraction as the minimal requirement for 
downstream analysis, excluding six samples (3 
AdCa, and 3 normal mucosa polyps) from further 
analysis. 

 

 
Figure 1: Comparison between Ultima Genomics sequencing of to EpiQC EpiQC reference set. (a-b) Average 
methylation levels (y-axis) at control sets, Lambda non-methylated DNA and pUC19 fully-methylated DNA in UG/EpiQC 
EM-seq (enzymatic conversion) libraries, in EpiQC Accel-NGS (bisulfite conversion) libraries and in UG xGen (bisulfite 
conversion) libraries. (c) CpG coverage in UG and EpiQC data, median CpG depth (x-axis) vs. millions of sequenced reads 
(y-axis). (d) CpG median coverage normalized to 100 million reads at all data sets. (e) Fraction of CpGs out of hg38 CpGs 
(29M) that are covered by by at least two replicates in none (gray), both (brown) or each of the two platforms (yellow and 
blue, EpiQC and UG respectively) .  
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DNA methylation changes with cancer 
development of Familial adenomatous 
polyposis patients 

We next examined the ability of the UG platform 
for characterization of genome wide methylation 
changes during the early colon polyp formation 
using FAP samples. To this end, we collected 
blood and multiple fresh frozen samples of colon 
“normal” mucosa, polyps and an 
adenocarcinoma sample from nine FAP patients 
(Fig 2a; Table 2; Methods). We also collected 
fresh frozen samples from adenocarcinoma 
tissues from six CRC patients. Tissue slides of 
the normal mucosa and polyps were examined by 
a pathologist and defined into four categories of 
increasing severity: normal mucosa, benign, 
dysplastic and adenocarcinoma. DNA was 
extracted from these samples, processed using 
EM-seq, and sequenced to an average genomic 
coverage of ~50 X (25x to 112x) (Fig 2a and 
Supplementary Fig 3b).  

To gain insight on the tissue composition of these 
samples we applied a computational method for 
methylation-based cell type deconvolution28 
(methods; Supplementary Fig 3c). This analysis 
revealed that three of the adenocarcinoma 
samples had a negligible colon fraction and one 
of them contained a high fraction of lung cells. 
Pathologist review on Hematoxylin and Eosin 
(H&E) slides taken from FFPE samples from 

some of the same tissues further validated the 
tissue composition estimation for 2 of 3 cases 
(Supplementary Fig 3d) including the 
observation of significant lung cell infiltration in 
one of the samples. To avoid the possible 
confounding effect of significant non-colon 
tissue in the samples we set a threshold of 35% 
colon fraction as the minimal requirement for 
downstream analysis, excluding six samples (3 
AdCa, and 3 normal mucosa polyps) from further 
analysis. 
 
Average genome wide methylation levels show a 
gradual decrease during tumor progression from 
a median of 75% genomic methylation in normal 
tissues to ~65% in adenocarcinoma samples (Fig 
2b; Supplementary Fig 3a) in agreement with 
existing studies11,29. To visualize the change of 
methylation states during disease progression we 
projected the observed global methylation levels 
using the UMAP dimensionality reduction 
technique (Fig 2c). This embedding clearly 
differentiates the blood samples from the colon 
ones and suggests a gradual change that is largely 
consistent with pathological grading of the 
tissues. Pearson correlation of the global 
methylation levels supports similar observations 
(Supplementary Fig 3f).   

To further examine whether this trend is 
consistent in different functional genomic 
regions we measured methylation changes in 

Figure 1. Continue from previous page: (f) Correlation of whole genome methylation sequencing between cell lines in 
platforms. Heatmap shows the Pearson correlation coefficients between each two samples coming from different sources, 
assays and platforms. Top row denotes the source of the sample(orange, brown and yellow for HG001, HG002 and HG005 
respectively). Second row denotes the two platforms (yellow and blue for EpiQC and Ultima Genomics, respectively). Third 
row denotes the two conversion methods (brown and green for EM-seq enzymatic conversion and bisulfite conversion, 
respectively). Fourth row denotes  the library prep methods (red, orange, yellow, green and blue for EM-seq, Accel-NGS, 
Splat, Trueseq and xGen, respectively). (g) Examples of four pairwise correlation plots taken from Fig 1f (border color of 
each image is marked on the correlation map) (h-j) Differentially methylated regions (DMRs) are detected similarly in UG 
and EpiQC platforms. (h) DMRs between HG001 and HG002 genomes were called in both platforms. Venn diagrams show 
the overlap in DMRs between the two platforms, using two replicates from EM-seq (left) and two replicates from Bisulfite 
conversion (right) methods,  (i) Platform-specific DMRs show a similar change in methylation. Shown is  the observed 
methylation delta between each two replicates of HG001 and HG002 genomes in UG (x-axis) and in EpiQC (y-axis), color 
of the points encodes for platform-specificity (yellow and blue for EpiQC specific regions and UG specific regions 
respectively). (j) Observed methylation delta in methylation between each two replicates of  HG001 and HG002 genomes in 
UG (x-axis) and in EpiQC (y-axis) in jointly-called DMRs. 
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CpG Islands/Shores/Shelves (Shores: 2kb around  
the CpG islands, Shelves: 2k-4kb around the 
CpG island), repeat elements and other 
regulatory elements. (Fig 2d-f). In contrast to 
most genomic features, CpG islands exhibit a 
slight increase in methylation during cancer 
progression while the CpG shelves and shores 
show the same decrease as other regions (Fig 
2e)30. 5’ UTR regions that typically contain many 
CpG islands also show a similar increase. Other 
genomic elements that show deviation from the 
global behavior are colon-specific regulatory 
regions and enhancers (Fig 2e and 
Supplementary Fig 3e); these regions lose 
methylation in the progression to dysplastic state 

and regain methylation from dysplastic to tumor 
state. In addition, we observe that the variability 
within genomic features increases with 
progression towards cancer (Fig 2d-f and 
Supplementary Fig 3e) 
 
Tens of thousands of differentially methylated 
regions (DMRs) are found between normal 
mucosa and adenocarcinoma states 
To characterize genomic regions that change in 
methylation during tumor progression we 
performed a pairwise DMR31 test between 
normal mucosa (M) to the pathologist-defined 
sample groups (benign (B), dysplastic (D) and 
adeno (A), B-M, D-M, or A-M, respectively). 

 
Figure 2: Familial adenomatous polyposis samples collected across different pathologist-defined states show changes 
in DNA methylation at malignant states trajectories. (a) Whole genome methylation sequencing at high coverage was 
done from four different pathologist-defined states: normal mucosa, benign, dysplastic and adenocarcinoma. Blood samples 
were collected from the same individuals for reference. (b) Average genome-wide DNA methylation levels at each of the 
pathologist-defined states(red, yellow, light brown, dark brown and black for blood, normal mucosa, benign, dysplastic and 
adenocarcinoma, respectively). (c) UMAP representation of WGMS samples done on CpGs where all samples have at least 
10X coverage per CpG (colored same as in (b)) (d-f) Average DNA methylation levels of all disease states (colored same 
as in (b)) by different genomic features (x-axis). 
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Overall, we found 150,508 DMRs covering   
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Overall, we found 150,508 DMRs covering 
almost 3 million individual CpG sites, one of the 
largest such DMR maps ever reported. 
Partitioning DMRs to regions that lose 
methylation during disease progression (hypo) 
and regions that gain methylation during disease 
progression (hyper), we found that hypo-
methylated DMRs are significantly more 
common than hyper-methylated DMRs (144,284 
vs 6,224) and  that while many hyper-methylated 
DMRs (30%) can already be seen in benign 
polyps, only a small fraction of hypo-methylated 
DMRs (10%) are detected first in the benign 
polyps (Fig3 a-b) suggesting different 
methylation dynamics over disease progression. 
As may be expected, the amplitude of 
methylation changes increases gradually from 
the benign DMRs (90% of the delta = 0.246) to 
the dysplastic and adenocarcinoma DMRs (90% 
of the delta = 0.318 and 0.348 respectively; Fig 
3c). We next examined the differences in 
genomic features in each DMR group and found 
that CpG islands, CpG shelves, promoters and 
regulatory regions were overrepresented at 
hyper-methylated DMRs, while normally “inert” 
functional groups such as repeat elements and 
intergenic regions were over-represented at 
hypo-methylated sites (Fig 3d). This trend was 
consistent among the different disease states. An 
example for a cluster of hyper-methylated DMRs 
is the HOXA locus (Figure 3e). This genomic 
region of 35 kb has multiple DMRs that gradually 
elevate in methylation levels from normal 

mucosa to adenocarcinoma, and are associated 
with reduced accessibility as viewed by ATAC-
seq data (Figure 3e). The expression of three 
HOXA genes is repressed in tumors as seen in 
TCGA data (Supplementary Fig 4a). HOX 
hyper-methylation was observed before in 
colorectal cancer as well as in multiple other 
cancers32.  
We next wanted to test whether the gradual 
changes we observe in the different disease states 
are specific to CRC. To this end we compared the 
average per-CpG methylation change in each of 
the three disease states with the pan-cancer 
methylation changes in the same CpGs in 
hundreds of normal and tumor samples studied in 
TCGA21 (Fig 3f). As expected, the change in 
methylation in adenocarcinoma was mostly 
correlated with methylation changes in COAD 
(Colon adenocarcinoma) and READ (Rectum 
adenocarcinoma) in TCGA (R > 0.8) whereas 
correlation levels with other cancer types were 
lower (R < 0.61). Of note, the change in 
methylation in the intermediate disease states 
(Benign, Dysplastic) were also specifically 
correlated with the same matched tumor types, 
and correlation increased with disease 
progression (Fig.3f). We also observed that 
hypo-methylated markers show a lower overlap 
(<40%) with TCGA data, suggesting that hyper-
methylated regions are more cancer type specific 
than hypo-methylated regions (Fig 3g). 

 

Figure 3: Differential methylated regions during progression from normal to malignant. (a-b) Intersect plot of 
pairwise comparison of normal vs benign, dysplastic and adenocarcinoma where horizontal bars show the size of each 
pairwise DMR set and the horizontal bars show the size of the respective overlap. (a) 144,284 Hypo-methylation DMRs 
between all pairwise tests. (b) 6224 Hyper methylation DMRs between all pairwise tests, 1334 of which occur early in the 
benign stage. (c) Volcano plots of differential methylation levels: shown are methylation differences compared to normal 
mucosa samples (x-axis) and q-value statistical significance (y-axis) of all pairwise comparisons. (d) Genomic annotation 
of different DMRs tests distinguished to hyper- and hypo-methylation. (e) HOXA cluster shows multiple DMR both at 
hyper and hypo methylation. (f-g) comparison to the TCGA dataset. (f) Change in methylation in CRC progression 
specifically matches colorectal adenocarcinoma (COAD) and rectal adenocarcinoma (READ). Shown is the Pearson 
correlation coefficient between the change in methylation from normal mucosa and disease states (color-coded) in our data 
and normal to tumor methylation changes in TCGA data of 450k arrays. Comparison includes 339,977 CpGs. (g) High 
fraction of the hyper-DMRs, but not the hypo-DMRs are differentially methylated in the TCGA dataset. Differential 
methylation in TCGA as determined by DNMIVD33 per CpG site and cancer type, and filtered to include methylation 
difference >15%, adjusted p-value <0.05. Presented is the percent intersection of the CpGs in DMRs we detect among 
differentially-methylated CpGs of TCGA. 
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Lastly we assessed how many of the DMRs that 
we detect are also found as differentially  
methylated in TCGA data33. Among the full set 
of DMRs we detected in all  disease states 
(153,525 regions), only 15% are covered by 
Infinium HumanMethylation450 array (24,067 
regions), occupying 71,462 array marker CpGs. 
Thus, WGMS provides a substantially broader 
view of dynamic DMRs and differentially 
methylated CpGs. 

Poised genes are hyper-methylated during 
cancer progression 

We next explored the relationship between DNA 
methylation dynamics and chromatin 
architecture and their correlated changes during 
cancer progression. We first compared 
methylation levels observed in normal mucosa 
samples to the chromatin accessibility in the 
same regions in normal mucosa34. Grouping 
these regions according to predefined functional 
chromatin state clusters (ChromHMM35) 
captures different behaviors, where most regions 
show negative correlation between methylation 
levels and chromatin accessibility (Fig 4a). For 
example, active regions such as active and 
flanking TSS (groups 1-4) display high DNA 
accessibility levels and very low DNA 
methylation levels. Regions of strong and weak 
transcription (gene bodies, groups 5-6) have high 
DNA methylation levels and low accessibility 
levels. Regulatory regions (enhancers, groups 7-

11) show an intermediate behavior where both 
accessibility and methylation are at intermediate 
levels. Bivalent enhancers and TSSs are the only 
group that demonstrates a different trend 
combining low accessibility levels and low 
methylation levels in normal colon mucosa 
tissues.  

To better understand the relationship between 
chromatin and methylation at CpG islands, 
shelves and shores we clustered the 11,323 
variable regions from 3,825 CpG Islands, 4,821 
CpG shelves and 2,677 CpG shores (Fig 4b). The 
resulting horizontal ordering of the samples 
shows a gradual change in DNA methylation 
from normal mucosa to adenocarcinoma. DMR 
clusters 1-4, containing >75% CpG shores and 
shelves, exhibit a general decrease in DNA 
methylation from normal mucosa to 
adenocarcinoma (Hypo-clusters), while clusters 
5-8, consisting of >75% CpG islands, show an 
increase in DNA methylation from normal 
mucosa to adenocarcinoma (Hyper-clusters) (Fig 
4c). Focusing on the chromatin state in Hyper-
clusters using public ChIP-seq data of four 
histone marks (H3K4me1, H3K4me3, H3K27ac 
and H3K27me3) in normal colon34 we found that 
>85% of the regions in the Hyper-clusters carry 
both an activating mark (H3K4me1) and a 
repressive mark (H3K27me3; Fig 4d) which is a 
hallmark of poised/bivalent genes19. Histone 
marks at the Hypo-clusters show weak ChIP-seq 
levels and thus their chromatin state could not be  

Figure 4: Poised genes are hyper-methylated during cancer progression. (a) DNA accessibility in normal colon samples 
(ENCODE) vs DNA methylation levels in normal mucosa (this study), grouped and colored by ChromHMM chromatin 
state. (b) K-Means (K=8) clustering of 11,323 variable CpG islands/shelves and shores (3825 CpG Islands, 4821 CpG 
shelves and 2677 CpG shores) across all FAP samples. Variability was determined as standard deviation >10 across all 
samples. First row denotes patient identity by color and second row denotes sample pathology label (yellow, light brown, 
dark brown and black for normal mucosa, benign, dysplastic and adenocarcinoma, respectively) (c) Fraction of annotation 
type (CpG island/shelves and shores) in each of the K-Means clusters. (d) Histone marks levels (H3K4me1/3, H3K27ac 
and H3K27me3) sigmoid colon (ENCODE, Normal colon) on clusters 5-8 from panel b. Each row shows the color coded 
histone mark level in the relevant genomic position centered around the CpG island/shore/shelf from low (red) to high 
(blue). Top panels show average marker level.  (e) GO enrichment of genes associated with CpG islands of clusters 5-8 of 
panel b. Circle size correlates with the overlap between the GO term and the genes adjacent to the CpG islands in clusters 
5-8. Circle colors maps the FDR corrected p-value for the enrichment (f) IRF4 genomic track showing gradual increase in 
CpG methylation at the CpG islands next to the TSS and gradual decrease of CpG methylation at the gene body of IRF4. 
First four rows show the chromatin accessibility in the four pathology groups, next four rows show histone modification 
levels in normal mucosa and last panel shows DNA methylation level for the different groups as in panel b. 
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defined (Supplementary Fig 4b). Gene 
enrichment analysis of the genes associated with 
Hyper-clusters (Fig4 e; closest gene (<1000bp)) 
revealed a strong enrichment for general 
developmental programs such as regionalization, 
cell fate commitment and more. TCGA 
expression of the genes associated with the CpG 
islands/shelves and shores in each cluster 
(Supplementary Fig4c) shows a global decrease 
in expression from normal to tumor, with the 
decrease being most significant in clusters 6-7 
that gain methylation and are enriched with CpG 
islands. 

One example for a bivalent gene promoter can be 
seen at  the IRF4 gene that has no observed 
accessibility at the gene promoter region while 
having very strong H3K4me1 and H3K27me3 
signals (Fig 4f). The IRF4 promoter exhibits 
gradual increase in methylation level and its gene 
body region has a gradual decrease in 
methylation levels. These epigenetic 
modifications all occur with small and non-
significant expression changes observable in 
TCGA data (Supplementary Fig 4d). 

 
Enhancer methylation show non-linear 
dynamics during CRC progression 
 
The availability of ATAC-seq data for similar 
FAP samples enables us to follow the dynamics 
of DNA methylation and chromatin accessibility 
in detail. We examined the methylation changes 
at distal regulatory elements by integrating 
accessibility data defined using scATAC from a 
parallel dataset of benign-dysplasia-
adenocarcinoma tumor progression in FAP 
patients36. We first filtered the accessible peaks 
by distance from CpG islands and transcription 
start site (>1 kb from both) and by the number of 
CpGs in each peak (>3 CpGs per peak; 
Supplementary Fig 4e). We then sorted the 
resulting 165,297 peaks based on the observed 
variability in the methylation levels across the 
samples and selected the top 42,593 that had 
>15% change in DNA methylation between 

groups for further evaluation. K-means (K=6) 
clustering of the methylation levels at these 
enhancer regions reveals a strong global change 
in methylation pattern between the groups (Fig 
5a). Most of the variable enhancer regions 
present a non-monotonic methylation dynamic 
consisting of decreasing methylation with the 
progression from normal mucosa to benign and 
dysplastic states but elevated methylation in the 
adenocarcinoma state. Chromatin 
accessibility  changes between the different 
disease states mirror the methylation changes in 
the same regions (Fig 5b). For example clusters 
2 and 5 which gain methylation in tumor samples 
exhibit decreased DNA accessibility, while 
clusters 1,3,4 and 6 that lose DNA methylation 
gain DNA accessibility. Testing for enrichment 
of transcription factor motifs within each of the 
different clusters (Fig 5c) revealed similar 
groupings to the ones reported by analysis of 
single cell ATAC seq data36 with a very strong 
JUN:FOS (AP-1) enrichment at clusters that lose 
methylation (gain accessibility) and CDX, OLIG, 
GATA and NERUOD family transcription 
factors at clusters that gain methylation (lose 
accessibility). Specifically, cluster 5 shows a 
very strong enrichment for the HOX family 
transcription factors and also shows the highest 
level of hyper-methylation in adenocarcinoma 
samples. 

A typical example for an enhancer with non-
monotonic methylation dynamics is the 
IL6R/SHE  enhancer (Fig 5d) which loses 
methylation in the progression from normal 
mucosa to the dysplastic state, but regains 
methylation in adenocarcinoma. Chromatin 
accessibility in these enhancer regions decreases 
with disease progression and the expression of 
associated genes (IL6R and SHE) has been shown 
to decrease in (CRC) tumor (TCGA; Fig 5e). 
These results demonstrate the complex 
choreography of regulatory events that occur 
during early CRC formation and progression. 
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 Discussion 

 
Figure 5: Strong changes in DNA methylation across thousands of colon regulatory elements. (a) K-means (K=6) 
clustering of 42,593 variable regulatory regions (defined by 500 bp-wide scATAC-seq peaks35) of all FAP samples colored 
as in Fig 4b. (b) scATAC-seq accessibility levels inpeaks found in clusters from panel a grouped and colored by pathological 
classification (x-axis; color code as in Fig 4b). (c) Transcription factor position weight matrix (PWM) enrichment in the 15 
peaks with most significant p-values found in each cluster from panel a (TF with statistical significance of log10(p-value) 
>10 are shown). Purple color intensity  codes for log2-enrichment of PWM over background (scATAC-seq peakset). (d) 
Genomic tracks of the IL6R gene loci as in Fig 4f where the lowest panel shows connection of enhancer regions to promoter 
regions. (e) TCGA RNA expression (y-axis) of IL6R and SHE at tumor vs normal COAD samples. 
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Discussion 
 

DNA methylation has long been considered a 
marker for cancer progression, aging and disease 
state37. To date, many large scale landmark 
methylation studies balanced the scope and depth 
of their assays using arrays, RRBS or target 
capture methods21,34,38. Despite the ability of 
these assays  to capture many biologically 
relevant changes along with DNA methylation 
levels, they capture only a fraction of genomic 
CpG sites that exhibit functionally meaningful 
changes in disease and aging. More recent 
studies have demonstrated that whole genome 
methylation sequencing (WGMS) indeed reveals 
many informative regions whose DNA 
methylation changes during aging, cancer 
progression and cell differentiation and provides 
a deeper understanding of biological mechanisms 
39–44.  

Here, we present the utility of a novel sequencing 
technology (UG) that enables cost-efficient 
generation of WGMS data at scale. We validated 
the equivalence of methylation data generated on 
this platform using standard samples and criteria 
defined by the EpiQC consortium  in terms of 
general sequencing criteria, conversion controls 
and genomic coverage. Furthermore, we 
demonstrate that detection of regions of 
differential methylation between two genome-in-
a-bottle cell lines (HG001 and HG002) by UG 
are highly similar to existing reference data. 

Comprehensive WGMS can unlock information 
on the function of genomic regions that have not 
been explored so far. For example, focusing on 
distal regulatory elements we measured changes 
in methylation state of 1,350,249 CpGs in over 
165,000 distal peaks defined by  scATAC-seq. 
Notably, only 63,363 CpGs (<5%) of these are 
represented at the Infinium MethylationEPIC 
array (850k array). Furthermore, we found that of 
the >15% of these CpGs  (224,765 out of 
1,350,249 ) that exhibit significant variability 

explored in our study, only <6% (12,320 out of 
224,765) are covered by the array. 

Familial adenomatous polyposis (FAP) patient 
samples offer a unique and valuable view of 
cancer progression. Although samples are 
collected at the same time point they cover 
multiple stages of tumor progression 
representing the malignancy trajectory and as 
such provide an exceptional resource for 
understanding early events that precede 
adenocarcinoma formation. Using UG sequencer 
we generated a unique dataset of WGMS at high 
coverage (>50X) on 44 samples taken from 15 
patients. In this work we were able to detect 
millions of CpGs that change in the trajectory 
from normal mucosa through benign and 
dysplastic polyps to adenocarcinoma. 
Remarkably, hundreds of thousands of these 
CpGs become differentially methylated already 
in the benign and dysplastic states suggesting that 
many of the cancerous cellular transformations 
occur at this early stage. Although most of the 
differential changes that we detect reflect hypo-
methylation  from the normal mucosa (144,284 
hypo DMRs vs 6224 hyper DMR) only 10% of 
the changes in normal to tumor are observed in 
the early stages while a larger fraction (25%) of 
the normal mucosa to adenocarcinoma hyper-
DMRs are already observed in the benign stage 
(Fig 3a,b). Comparison with TCGA data 
revealed that a larger fraction of the hyper-
methylated CpGs (70% as compared to 40% 
overlap in hypo-DMRs) are specific to colorectal 
tumors, suggesting a more tumor-specific 
behavior in hyper-methylation which occurs at 
tightly-regulated CpG islands. The gradual 
nature of methylation changes during CRC 
progression is observed in the increase in 
correlation with methylation changes in 
colorectal and rectal adenocarcinoma (Figs 3f,g), 
suggesting again that early occurring methylation 
changes are indeed part of the malignant 
transformation. 

By integrating ATAC-seq and WGMS datasets 
we demonstrated the resemblance in these 
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signals both in terms of correlated changes in 
specific regulatory elements as well as similar 
gene sets emerging from the cluster analysis (Fig 
5c; Becker et al 202236). These similarities 
highlight the fact that these two assays mirror 
similar underlying biological changes and to 
suggest that WGMS results can serve as proxy to 
the underlying chromatin state. Furthermore, by 
providing the methylation haplotypes of single 
molecules, WGMS provides further information 
on subpopulation of cells and how they can be 
distinguished from one another.     

Individual sample clustering (Fig4b, Fig5a) 
based on WGMS levels revealed a gradual 
methylation change in pathologist-defined 
malignancy states, but also revealed clustering of 
individuals. Specifically, patients A014 and 
A035 form clusters which include multiple 
malignancy states. This observation may relate to 
the genotype of patient A014, which lacks the 
germline APC mutation45, and the polyps of 
patient A035 which present a sessile phenotype. 
These results mark the complexity of the DNA 
methylation phenotype and its specificity to 
individual patients and their health records. This 
emphasizes the need to combine multiple 
datasets of each individual patient. 

In summary, this study demonstrates the utility 
of  a novel sequencing platform in uncovering 
genome-scale information on the molecular 
mechanisms underlying the trajectory from 
normal mucosa to adenocarcinoma. Although 
analysis of additional samples is required to 
further characterize the physiological impact of 
these changes, we believe that the comprehensive 
dataset produced in this study will serve as a 
valuable resource for future studies and as a 
demonstration of the potential impact of this 
approach.   

 
Methods: 
Patient Selection and Sample collection 

Patient selection and sample collection were done as 
described in Horning et al45. 

NGS Library preparation 

To generate whole genome DNA methylation libraries, 
approximately 200 ng of genomic DNA from each Genome 
in a Bottle (GIAB) reference sample (HG001, HG002, and 
HG005) (Coriell) and FAP samples was mechanically 
sheared to a fragment size of 200-300 bp (short insert) or 
300-400 bp (long insert, EM-seq only) using Covaris. For 
EM-seq libraries, NEBNext® Ultra II DNA Library Prep 
reagents (NEB #E7645) were used to ligate 5mC-protected 
adapters. The NEBNext® Enzymatic Methyl-seq 
Conversion Module (NEB #E7125) was used to perform a 
two-step enzymatic conversion of non-methylated 
cytosines to uracils.  For bisulfite-converted (Bisulfite-seq) 
libraries, fragmented gDNA was denatured and non-
methylated cytosines were converted to uracils using the 
EZ DNA Methylation-Gold Kit (Zymo D5005).  After 
conversion, single stranded library prep was carried out 
using the xGen™ Methyl-Seq DNA Library Prep Kit (IDT 
#10009860). In the final PCR step for EM-seq and 
Bisulfite-seq libraries, Ultima Genomics (UG)-specific 
indexing primers were used.  

For all EM-seq libraries we followed New England Biolabs 
(NEB) recommendations of ~200 bp insert size resulting in 
an average insert size of ~180 bp (Supplementary table 1). 

Ultima Genomics sequencing 

Ultima Genomics sequencing was done as previously 
described in Almogy et al24 

Data processing for GIAB and FAP samples 

Raw reads in FASTQ format were first trimmed for 
Illumina P5 adaptors and base quality using Cutadapt46 ( -
q 20,20 -e 0.2 -m 50 -g ACACGACGCTCTTCCGATCT 
), reads were then mapped to HG38 reference (containing 
pUC19 and Lambda genome) using BWA-Meth47 with 
default parameters. Output BAM file was then 
deduplicated and sorted using MarkDuplicatesSpark from 
GATK48. To call methylation levels we used both 
MethylDackel 
(https://github.com/dpryan79/MethylDackel) and WGBS-
Tools (https://github.com/nloyfer/wgbs_tools). Mbias 
plots were produced using MethylDackel with default 
parameters. 

Analytical methods 

Differentially Methylated Regions (DMRs): 

For DMR analysis we used Metilene31. Input CpG data for 
metilene was first filtered by coverage (>=5 in GIAB 
samples, >=10 in FAP samples) on all CpGs in the pairwise 
test. We ran metilene with the following flags -d 0 -m 5 -v 
0.2, we then filtered the results by >15% methylation diff 
and by either qvalue < 0.05 or KS-test < 0.05. 
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Cell type deconvolution 

Prediction of cell type composition in our FAP and CRC 
data was done using the meth_atlas package 
(https://github.com/nloyfer/meth_atlas)27. To this end, 
WGMS data was reduced to 450 k array format.  

TCGA methylation and expression data 

Processed methylation data from TCGA was obtained from 
the DNA Methylation Interactive Visualization Database 
(DNMIVD)33. Differential methylation was determined per 
CpG site and cancer type, and filtered to include 
methylation difference (tumor vs. normal) > 15%, adjusted 
p-value < 0.05. As TCGA data is of 450 k array, matched 
CpGs were extracted from our WGMS. Sites common to 
all 21 cancer types and our data include 339,977 CpGs. 
Gene expression data of the COAD dataset was 
downloaded as “htseq-counts” from UCSC Xena browser. 

K-means clustering  

K-Means clustering of average methylation across samples 
was done using Kmeans++ algorithm. Clustered data was 
then sorted using hclust both on the samples (horizontal) 
and clusters (vertical). 

Transcription factor enrichment 

To generate motif match matrices, motifs from the curated, 
high-confidence JASPAR2020 vertebrate core database 
were obtained49. We called significant motif matches in 
peaks, or subsets of peaks, using JASPAR motif position 
weight matrices and the function “matchMotifs” from the 
“motifmatchr” and “chromVAR” packages, resulting in a 
binary peaks-by-matches matrix. To compute enrichments, 
we defined foreground (specific cluster) and background 
peak sets (all scATAC-seq peaks), then performed a two 
sided Fisher’s Exact test for the over representation of each 
motif in the foreground set. For K-means cluster motif 
enrichments, we aggregated all peaks from a given K-
means cluster and tallied the total number of matches for 
each motif in the cluster, and we used all of the other 
clusters as the background 

Data Availability 

The datasets used and/or analyzed during the current study 
are available from the corresponding author upon request. 
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