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Abstract 11 

Ribozymes are RNA molecules that catalyze biochemical reactions. Self-cleaving ribozymes are 12 

a common naturally occurring class of ribozymes that catalyze site-specific cleavage of their 13 

own phosphodiester backbone. In addition to their natural functions, self-cleaving ribozymes 14 

have been used to engineer control of gene expression because they can be designed to alter 15 

RNA processing and stability. However, the rational design of ribozyme activity remains 16 

challenging, and many ribozyme-based systems are engineered or improved by random 17 

mutagenesis and selection (in vitro evolution). Improving a ribozyme-based system often 18 

requires several mutations to achieve the desired function, but extensive pairwise and higher-19 

order epistasis prevent a simple prediction of the effect of multiple mutations that is needed for 20 

rational design. Recently, high-throughput sequencing-based approaches have produced data sets 21 

on the effects of numerous mutations in different ribozymes (RNA fitness landscapes). Here we 22 

used such high-throughput experimental data from variants of the CPEB3 self-cleaving ribozyme 23 

to train a predictive model through machine learning approaches. We trained models using either 24 

a random forest or long short-term memory (LSTM) recurrent neural network approach. We 25 

found that models trained on a comprehensive set of pairwise mutant data could predict active 26 

sequences at higher mutational distances, but the correlation between predicted and 27 
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experimentally observed self-cleavage activity decreased with increasing mutational distance. 1 

Adding sequences with increasingly higher numbers of mutations to the training data improved 2 

the correlation at increasing mutational distances. Systematically reducing the size of the training 3 

data set suggests that a wide distribution of ribozyme activity may be the key to accurate 4 

predictions. Because the model predictions are based only on sequence and activity data, the 5 

results demonstrate that this machine learning approach allows readily obtainable experimental 6 

data to be used for RNA design efforts even for RNA molecules with unknown structures. The 7 

accurate prediction of RNA functions will enable a more comprehensive understanding of RNA 8 

fitness landscapes for studying evolution and for guiding RNA-based engineering efforts. 9 

 10 

Introduction 11 

RNA enzymes, or ribozymes, are structured RNA molecules that catalyze biochemical reactions. 12 

One well-studied class of ribozymes are the small self-cleaving ribozymes that catalyze site 13 

specific cleavage of phosphate bonds in their own RNA backbone (Ferré-D’Amaré and Scott, 14 

2010). These self-cleaving ribozymes are found in all domains of life, and their biological roles 15 

are still being investigated (Jimenez et al., 2015). In addition to their natural functions, these 16 

ribozymes have been used as the basis for engineering biological systems. For example, several 17 

small ribozymes (hammerhead, twister, pistol and HDV) have been used as genetically encoded 18 

gene regulatory elements by combining them with RNA aptamer and embedding them into 19 

untranslated regions of genes (Groher and Suess, 2014; Dykstra et al., 2022). This approach 20 

continues to gain attention because of the central importance of controlling gene expression and 21 

the simple design and build cycles of these small RNA elements. Nevertheless, ribozymes often 22 

need optimization for sequence dependent and cell specific effects. This can be achieved by 23 

modifying the sequence of the ribozymes, but this often requires multiple mutational changes 24 

and the vast sequence space requires extensive trial and error. Given this large sequence space, 25 

even the most high-throughput approaches can only find the optimal solutions present in the 26 

sequences that can be explored experimentally, which is a fraction of the total possible 27 

sequences. The engineering of ribozyme-based systems could benefit from accurate prediction of 28 
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the effects of multiple mutations in order to narrow the search space towards optimal collections 1 

of sequences.  2 

One way to think of the ribozyme optimization problem is in terms of fitness landscapes. 3 

Molecular fitness landscapes of protein and RNA molecules are studied by measuring the effects 4 

of numerous mutations on the function of a given reference molecule (Athavale et al., 2014; 5 

Blanco et al., 2019). Recently, the fitness landscapes of RNA molecules have been studied 6 

experimentally by synthesizing large numbers of sequences and using high-throughput 7 

sequencing to evaluate the relative activity of the RNA in vitro, or the growth effect of the RNA 8 

in a cellular system, both of which are termed “RNA fitness” (Kobori and Yokobayashi, 2016; Li 9 

et al., 2016; Pressman et al., 2019). The goal of in vitro evolution is often to find the highest peak 10 

in the landscape, or one of many high peaks, by introducing random mutations and selecting for 11 

improved activity. However, the RNA fitness landscapes that have been experimentally studied 12 

so far have revealed rugged topographies with peaks of high relative activity and adjacent valleys 13 

of low activity. Landscape ruggedness is an impediment to finding desired sequences through in 14 

vitro evolution approaches (Ferretti et al., 2018). Epistasis, defined as the non-additive effects of 15 

mutations, is the cause of ruggedness in fitness landscapes, and epistasis has been used to 16 

quantify the ruggedness of fitness landscapes (Szendro et al., 2013). More frequent and more 17 

extreme epistasis indicates that a landscape is more rugged. Importantly, more epistasis also 18 

means that the effect of combining multiple mutations is challenging to predict even if the effects 19 

of each individual mutation are known. In addition, experimental fitness landscapes can only 20 

study a limited number of sequences, except for very small RNA molecules (Pressman et al., 21 

2019). It is often not possible to know if the process of in vitro evolution discovered a sequence 22 

that is globally optimal, or just a local optimum. For these reasons, it has become a goal to 23 

accurately predict the activity of sequences in order to streamline RNA evolution experiments 24 

and to study fitness landscapes in a more comprehensive manner (Groher et al., 2019; Schmidt 25 

and Smolke, 2021). 26 

Here, we use high-throughput experimental data of mutational variants of a self-cleaving 27 

ribozyme to train a model for predicting the effect of higher-order combinations of three or more 28 

mutations. The ribozyme used in this study is the CPEB3 ribozyme (Figure 1A). This ribozyme 29 

is highly conserved in the genomes of mammals, where it is found in an intron of the CPEB3 30 
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gene (Salehi-Ashtiani et al., 2006). For training purposes, we generated a new data set that 1 

includes all possible individual and pairs of mutations to the reference CPEB3 ribozyme 2 

sequence (Figure 1B). These mutations were made by randomization of the CPEB3 ribozyme 3 

sequence with a 3% per nucleotide mutation rate during chemical synthesis of the DNA 4 

template. We reasoned that given the extensive amount of pairwise epistasis in RNA (Bendixsen 5 

et al., 2017), this data set might be sufficient for predicting higher-order mutants. In addition, we 6 

used a second, previously published data set that included 27,647 sequences comprised of 7 

random permutations of mutations found in mammals that include up to 13 mutational 8 

differences from the same reference ribozyme (Bendixsen et al., 2021). This second data set not 9 

only contains higher-order mutational combinations, but also a broad range of self-cleaving 10 

activity (Figure 1D). In both data sets, the relative activity of each sequence was determined by 11 

the deep sequencing of co-transcriptional self-cleavage data, as previously described. Briefly, the 12 

mutated DNA template was transcribed in vitro with T7 RNA polymerase. The transcripts were 13 

prepared for Illumina sequencing by reverse transcription and PCR. Relative activity was 14 

determined as the fraction cleaved, defined by the fraction of sequencing reads that mapped to a 15 

specific sequence variant in the shorter, cleaved form relative to the total number of reads for 16 

that sequence variant.  17 

We set the goal of being able to predict the activity of the higher-order mutants in the 18 

phylogenetically derived fitness landscape (Figure 1D). In addition, we wanted to guide future 19 

experiments aimed at producing additional data for training models of ribozyme-based systems. 20 

The number of possible sequences increases exponentially with the number of variable 21 

nucleotide positions. In addition, the probability of finding active ribozymes at higher mutational 22 

distances becomes increasingly unlikely. Experiments aimed at training predictive models will 23 

need to choose realistic numbers of sequences that can have the highest impact on model 24 

performance. We therefore evaluated the effect of adding to the training data sequences with 25 

increasing mutational distances from the wild-type sequence as well as the effect of reducing the 26 

number of sequences in the training data. The results of these experiments were expected to be 27 

useful in guiding the choice of which sequence variants, and how many, to analyze 28 

experimentally in order to produce effective training data sets. 29 

 30 
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 5 

Results 1 

We first evaluated our new training data set that contained all single and double-mutants of the 2 

CPEB3 ribozyme. We found that the data did in fact contain full coverage of the possible 207 3 

single mutants and the 21,114 double mutants. While the number of reads that mapped to each of 4 

these sequences varied, we found that, on average, 170 reads mapped to each double mutant, and 5 

~18,000 reads mapped to each single mutant (Supplemental Figure 1). This read depth was 6 

sufficient for the determination of the fraction cleaved for all single and double mutants (Figure 7 

1B). Mapping the fraction cleaved to base paired structural elements showed expected patterns of 8 

activity caused by compensatory base pairs. Mutations that break a base pair typically showed 9 

low activity, but a second mutation that restored the base pair showed high activity. To further 10 

evaluate this data, we calculated the non-additive pairwise epistasis in this data set (Figure 1C). 11 

Together, this analysis indicated that this data set contained a wide range of ribozyme activity 12 

and the effects of all pairwise intramolecular epistatic interactions. 13 

In order to determine the training potential of the comprehensive double-mutant data, we first 14 

trained models using only the fraction cleaved data for sequences with two or fewer mutations 15 

including the wild-type reference sequence. We then tested the models’ performance in 16 

predicting the fraction cleaved for sequences with increasing numbers of mutations. We trained 17 

two models with two approaches (see Materials and Methods). The first approach used a 18 

Random Forest regressor. In the second approach, we added a Long Short-Term Memory 19 

(LSTM) recurrent neural network to extract hidden features from the data. We then fed the 20 

hidden features with associated fraction cleaved to a Random Forest regressor. We will refer to 21 

this approach as “LSTM”. We found that models trained on 2 or fewer mutations with Random 22 

Forest outperformed LSTM at predicting the activity of sequences with five or fewer mutations 23 

(Figure 2 A-C), but LSTM performed better when predicting the activity of sequences with six or 24 

more mutations relative to the wild-type (Figure 2 D-I). However, both approaches showed a 25 

decrease in the correlation between predicted and observed when challenged to predict the 26 

activity of sequences with higher numbers of mutations, and both resulted in relatively low 27 

correlation (Pearson r < 0.7) for sequences with seven or more mutations when trained only on 28 

this double mutant data (Figure 2 and Supplementary Table 2). We concluded that models 29 

trained on simple random mutagenesis containing all double mutants can be useful for predicting 30 
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 6 

lower mutational distances, but we anticipated that additional data might improve the ability to 1 

predict the effect of higher numbers of mutations. 2 

To determine the effect of adding higher-order mutants to the training data, we divided the 3 

phylogenetic derived sequence data by mutational distance and re-trained models with increasing 4 

orders of mutations in the training set. As expected, adding higher-order mutants improved the 5 

predicted to observed correlation at higher mutational distances (Figure 3 and Supplemental 6 

Figures 2-14). Interestingly, we found that the Random Forest approach outperformed the LSTM 7 

approach when sequences with more mutations were included in the training data. This is 8 

especially apparent for predicting the activity of sequences with 8-10 mutations. The Random 9 

Forrest approach resulted in models with high correlation between predicted and observed for all 10 

mutational distances when trained with data from sequences with four or more mutations (Figure 11 

3 A-C). For both approaches, the largest improvements in the correlations occurred when 12 

sequences with 3 mutations (relative to wild-type) were added to the data. Subsequently 13 

appending additional sequences with greater numbers of mutations had diminishing 14 

improvements on the correlation. We note that all the testing data was set aside prior to training 15 

and identical testing data was used for all models. The results demonstrate that adding higher 16 

order mutants to the training data improves the Pearson correlation of sequences at higher 17 

distances in this data set. It is important to note that the phylogenetically derived data has 18 

different numbers of sequences for each class of mutations (Table 1), and sequences with higher 19 

numbers of mutations in our data show mostly low activity (Supplementary Figure 15). This 20 

helps interpret the effect of sequentially adding higher-order mutant sequences to the training 21 

data. It is also important to note that the phylogenetic derived sequences only contain mutations 22 

at thirteen different positions. The higher order sequences in this data are therefore combinations 23 

of the lower order sequences. For example, a sequence with six mutations can be constructed by 24 

combining two sequences with three mutations, both of which would be in the “3 mutations” 25 

training data. Our model is therefore predicting the effects of combining sets of mutations, and 26 

adding precise sets of lower order mutations that re-occur in higher order mutations clearly 27 

improves the correlations between prediction and experimental observation in our data. 28 

In order to inform future experiments for collecting training data, we next set out to determine 29 

the effect of decreasing the amount of data in the training sets. Starting from the 80% of data 30 
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 7 

used as prior training data, we randomly sampled sequences from this data to create new training 1 

data sets with 60%, 40%, 20%, 10% and 1% of the total data. These subsampled data sets were 2 

used to train models using the random forest regressor. The same testing data was set aside for 3 

all models and used to compare the Pearson correlation coefficient of each model trained with 4 

decreasing amounts of data. As an illustrative example, we focused on a model trained with 5 

sequences with 5 or fewer mutations relative to wild-type used to predict the activity of 6 

sequences with 7 mutations (Figure 4 and Supplementary Table 1). We chose this example 7 

because it achieved very high correlation (Pearson  r = 0.99) when trained with 80% (25,733 8 

unique sequences) of the data and therefore provided an opportunity to observe how rapidly the 9 

correlation decreased with less data. We found that the models trained on 5 or fewer mutations 10 

predicted with high correlation when as little as 40% (12,866) of the data was used for training 11 

(Pearson r = 0.97). With only 20% (6,433) and 10% (3,217) of the data, the model still showed 12 

good prediction accuracy with a Pearson correlation r @ 0.9. Surprisingly, we still observed 13 

reasonably high correlation when including only 1% (322) of the training data, and this was 14 

reproducible over five different models trained with different random samples of the data 15 

(Pearson r = 0.81, stdev = 0.046, n = 5). Similar results were observed with other training and 16 

testing scenarios. To illustrate general trends, we have plotted the Pearson correlation for the 17 

same model trained on 5 or fewer mutations when predicting the activity of sequences with 6, 7, 18 

8 or 9 mutations, and for a model trained on 9 or fewer mutations used to predict sequences with 19 

5, 6, 7, or 8 mutations (Figure 4). This analysis suggests that the total amount of training data is 20 

not critical for predicting the activity of sequences in our data set. When combined with the 21 

diminishing returns of adding more higher order mutations (Figure 3), this analysis emphasizes 22 

the importance of collecting appropriate experimental data sets for training that include 23 

ribozymes with more mutations that still maintain relatively high activity. However, given the 24 

low probability of finding higher-order sequences with higher activity, an iterative approach with 25 

several cycles of predicting and testing might be necessary to acquire such data. 26 

While the primary goal was to predict the relative activity of RNA sequences, we wondered if 27 

the models might also be useful for predicting structurally important nucleotides. To address this 28 

question, we analyzed the “feature importance” in several of our Random Forest models. Feature 29 

importance is a method to assign importance to specific input data. Because our data only uses 30 
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 8 

sequence as input, the features in our data are specific nucleotides (A, G, C or U) at specific 1 

positions. We found that for the Random Forest models, the most important feature all clustered 2 

around the active site of the ribozyme (Supplemental Figures 16 and 17). Further, the CPEB3 3 

ribozyme uses metal ion catalysis and several of the most important features were nucleotides 4 

that have been observed coordinated to the active site magnesium ion in the CPEB3 ribozyme, or 5 

the analogous nucleotides in the structurally similar HDV ribozyme (Kapral et al., 2014; 6 

Skilandat et al., 2016). For example, for all the models trained with some higher order mutants, 7 

the most important feature was G1, which positions the cleaved phosphate bond in contact with 8 

the catalytic magnesium ion. The second most important feature was G25, which forms a wobble 9 

base pair with U20 (Lévesque et al., 2012), another important feature (top 4-6), and this 10 

nucleotide pair coordinates the active site magnesium ion through outer sphere contacts. The 11 

catalytic nucleotide C57 binds the same catalytic magnesium as the G25:U20 wobble pair, and 12 

had a high feature importance similar to U20. Most of the other important features are involved 13 

in base pairs that stack or interact with the metal ion coordinating bases. Interestingly, we found 14 

that nine of the ten most important features were identical for models trained with only single 15 

and double mutants or with increasing amounts of higher-order mutants. However, the G1 and 16 

G25 features became increasingly more important as sequences with higher mutational distance 17 

were added to the training data. This indicates that the higher-order mutants in the training data 18 

helped emphasize structurally critical nucleotides. We conclude that the machine learning 19 

models presented identified nucleotides involved in forming the active sites of the CPEB3 20 

ribozyme. Because we did not use structural data to train our models, the results suggest that 21 

similar data could identify active sites in RNA molecules with unknown structures.  22 

 23 

Discussion 24 

We have shown that a model trained on ribozyme activity data can accurately predict the self-25 

cleavage activity of sequences with numerous mutations. This approach can be used to guide 26 

experiments based on a relatively small set of initial data. Importantly, the approach did not use 27 

structural information such as X-ray crystallography or cryo-EM, and used only sequence and 28 

activity data, which can be obtained with common molecular biology approaches (in vitro 29 
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transcription, RT-PCR, and sequencing). In addition, the training data starts with small amounts 1 

of synthetic DNA. The comprehensive double mutant data and the phylogenetic derived data 2 

each started from a single DNA oligo synthesis that used doped phosphoramidites at the variable 3 

positions. Each data set was collected on a single lane of an Illumina sequencer. The approach 4 

presented in this paper is therefore accessible, rapid and inexpensive as compared to approaches 5 

that use structural data to train their models.  6 

Sequence conservation of naturally occurring RNA molecules has been another useful data type 7 

for training models to predict RNA structure from sequence (De Leonardis et al., 2015; Weinreb 8 

et al., 2016). This approach is based on the observation that nucleotide positions that form a base 9 

pair often show co-evolutionary patterns of sequence conservation. In some cases, this co-10 

evolutionary data has been combined with thermodynamic predictions or structural data from 11 

chemical probing, such as SHAPE experiments (Calonaci et al., 2020). Numerous ribozymes, 12 

aptamers and aptazymes have been discovered through in vitro evolution experiments and 13 

conservation data is not available unless sequencing experiments were applied during the 14 

selection process. Our approach could be used to expand functional information of non-natural 15 

RNA molecules which could then be used to guide structure prediction of these molecules in a 16 

way similar to how naturally occurring sequence conservation has been used. In addition, 17 

sequence conservation does not necessarily predict relative activity. For example, while the 18 

CPEB3 ribozyme is highly conserved in nature, not all of the sequence are equally proficient at 19 

catalyzing self-cleavage (Chadalavada et al., 2010; Bendixsen et al., 2021). Our approach using 20 

machine learning from experimentally derived data may prove useful for guiding experiments 21 

with non-natural RNA molecules discovered through in vitro selection or SELEX-like 22 

approaches. However, adopting this machine learning approach will require that each 23 

experimenter acquire specific data for their system necessary to train and test sequences with the 24 

functions they are investigating.  25 

With future work, it may be possible to produce more general models of ribozyme activity. For 26 

example, a model trained on data sets from several different self-cleaving ribozymes with 27 

different nucleotide lengths might learn to predict the activity of sequences of arbitrary length 28 

and sequence composition. In fact, recent advances in RNA structure prediction have used the 29 

crystal structures of several different self-cleaving ribozymes as training data to develop 30 
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predictive modes that achieve near-atomic level resolution of arbitrary sequences (Townshend et 1 

al., 2021). Alternatively, models trained on ribozymes with different activities beyond self-2 

cleavage might be able to classify sequences as ribozymes of various functions. There has been 3 

some success with generating general models for predicting protein functions. The latent features 4 

identified by deep generative models of protein sequences are being used to better understand the 5 

complex, higher-order amino acid interactions necessary to achieve a functional protein structure 6 

(Riesselman et al., 2018; Detlefsen et al., 2022). We hypothesize that latent features could aid in 7 

the identification of generalized parameters that govern the epistatic interactions of higher-order 8 

mutants of RNA sequences as well. We hope that the accuracy and accessibility of the approach 9 

presented here will inspire others to carry out similar experiments and initiate the data sharing 10 

that will be needed to develop more general models, similar to what is being accomplished for 11 

protein functional predictions (Biswas et al., 2021). 12 

One challenge to our predictive models appears to be the low frequency of active sequences at 13 

higher mutational distances. In our phylogenetically derived data the vast majority of sequences 14 

have very low activity (Figure 1D), and the probability of finding sequence with high fraction 15 

cleaved decreases with the number of mutations relative to wild-type. As a consequence, models 16 

trained on lower-order mutant variants tend to overestimate the activity of sequences at higher 17 

mutational distances. It has been previously observed that experimental RNA fitness landscapes 18 

are dominated by negative epistasis, which means that mutations in combination tend to have 19 

lower fitness than would be expected from the additive effects of individual mutations 20 

(Bendixsen et al., 2017). The overestimation of fraction cleaved at higher mutational distances 21 

suggests that our models have a difficult time learning to predict negative epistasis. It has been 22 

previously observed that mutations with “neutral” or “beneficial” effects on protein function 23 

often have destabilizing effects on protein structure (Soskine and Tawfik, 2010). We postulate 24 

that the same effect is causing negative epistasis in the RNA data. This suggests that additional 25 

information, such as measurements or estimates of thermodynamic stability of helices, might be 26 

necessary for increasing accuracy at even higher distances beyond those offered by this data set 27 

(Groher et al., 2019; Yamagami et al., 2019). For example, we have recently demonstrated that 28 

our sequencing based approach to measuring ribozyme activity can be extended to include 29 

magnesium titrations in order to evaluate RNA folding/stability (Peri et al., 2022). In the future, 30 
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combining structural and functional information might be the best approach to accurately design 1 

RNA molecules with desired functional properties. 2 

 3 

Materials and Methods 4 

Ribozyme activity data 5 

Ribozyme activity was determined as previously described (Bendixsen et al., 2021). Briefly, 6 

DNA templates were synthesized with the promoter for T7 RNA polymerase to enable in vitro 7 

transcription. Templates were synthesized with mixtures of phosphoramidites at variable 8 

positions. For the comprehensive double-mutant data set, templates were synthesized with 97% 9 

wild-type nucleotides and 1% each of the other three nucleotides. For the phylogenetic derived 10 

data set, the template was synthesized with an equal mixture of the naturally occurring 11 

nucleotides that were found at 13 positions that varied across 99 mammalian genomes. During in 12 

vitro transcription, RNA molecules self-cleaved at different rates. The reaction was stopped at 30 13 

minutes, and the RNA was concentrated and reverse transcribed with a 5’-RACE protocol that 14 

appends a new primer site to the cDNA of both cleaved and uncleaved RNA (SMARTScribe, 15 

Takara). The cDNA was PCR amplified with primers that add the adaptors for Illumina 16 

sequencing. This procedure was done in triplicate with unique dual-indexes for each replicate. 17 

DNA was combined equimolar and sent for sequencing (GC3F, University of Oregon). 18 

Sequencing was performed on a single lane of a HiSeq 4000 using paired-end 150 reads.  19 

Ribozyme activity from sequence data 20 

FastQ sequencing data were analyzed using custom Julia and Python scripts. Briefly, the scripts 21 

identified the reverse transcription primer binding site at the 3’-end to determine nucleotide 22 

positions and then determined if the sequence was cleaved or uncleaved by the absence or 23 

presence of the 5’-upstream sequence. For the single and double mutants, all possible sequences 24 

were generated and stored in a list, and reads that matched the list elements were counted and 25 

cleaved or uncleaved was determined by the presence or absence of the 5’-upstream sequence. 26 

For the phylogenetically derived data, nucleotide identities were determined at the expected 13 27 

variable positions by counting the string character position from the fixed regions. Sequencing 28 
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reads were discarded if they contained unexpected mutations in the primer binding site, the 1 

uncleaved portion, or the ribozyme sequence. For each unique genotype in the library the number 2 

of cleaved and uncleaved sequences were counted and ribozyme activity (fraction cleaved) was 3 

calculated as fraction cleaved = countscleaved/(countscleaved + countsuncleaved). 4 

Machine Learning 5 

Random Forest regression uses an ensemble of decision trees to improve prediction accuracy. 6 

Each tree in the ensemble is created by partitioning the sequences within a sample into groups 7 

possessing little variation. Each sample is drawn with replacement and the resulting trees are 8 

aggregated into forests that best predict the cleavage rates of the sequences. The Random Forest 9 

regression was performed using the python package scikit-learn. Each sequence was transformed 10 

into a 69 by 4 one-hot encoding representation of the sequence. Each of the four possible 11 

nucleotides within the sequence was represented by a vector of length 4 possessing a uniquely 12 

located “1” within the vector to signify the nucleotide’s identity. Each sequence in the training 13 

set was fit using scikit-learn’s RandomForestRegressor ensemble module. Feature importance 14 

was computed via a forest of randomized trees using the features_importances function in the 15 

module under default settings. Briefly, the relative importance of a feature was determined by the 16 

depth of the feature when it was used as a decision node in a tree. Features used at the top of the 17 

tree contribute to the final prediction decision of a larger fraction of the input samples. The 18 

expected fraction of the samples they contributed to was used as an estimate of the relative 19 

importance of the features. 20 

LSTM is a recurrent neural network commonly used for the predictive modeling of written text 21 

data, which has sequential dependencies. Here we used an LSTM to compute a set of hidden 22 

features given a set of nucleotide sequences. These hidden features are learned by the LSTM in a 23 

supervised way for the purpose of relating the nucleotide sequence to the corresponding 24 

ribozyme activity (fraction cleaved).  The LSTM network has an architecture where each cell C 25 

outputs the next state ht (1 ≤ t ≤ n) by taking in input from the previous state ht-1 and the 26 

embedding xt of the current nucleotide in the sequence. The output hn of the last cell of the 27 

LSTM is then used as input to a Random Forest regressor to predict the sequence functional 28 

activity rate. The LSTM model was built using PyTorch’s open-source machine learning 29 
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framework. Sequences were trained using an LSTM layer with 32 hidden dimensions and a 1 

dropout rate of 0.2. Each sequence was embedded in a 69 by 4 tensor (where 4 is the size of the 2 

nucleotide embedding) and then batched in groups of 64 sequences for input to the model. The 3 

gradient descent was performed using PyTorch’s built-in Adam optimizer and MSELoss 4 

criterion. Twenty-five training epochs were performed on each training set. 5 

Training and Test Data 6 

The data set containing the fraction cleaved data from the 27,647 phylogenetically derived 7 

sequences was binned based on the number of mutations relative to the wild-type ribozyme. For 8 

each bin, a portion of the data (20%) was chosen at random and set aside as test data. This 9 

resulted in test data sets that were also separated by the number of mutations relative to the wild-10 

type sequence. Training data sets were created from the 80% of data in each mutational bin that 11 

was not set aside for testing. Training data sets were created by combining bins at a given 12 

number of mutations to all the bins with lower numbers of mutations. Training data included 13 

100% of the single and double mutant data. For reduced training sets were created by randomly 14 

sampling different numbers of sequences from the original full training data sets. 15 

Data Availability 16 

Sequencing reads in FastQ format are available at ENA (PRJEB51631). Sequence and activity 17 

data and computer code is available at GitLab (https://gitlab.com/bsu/biocompute-public/ml-18 

ribo-predict.git). 19 
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Figure 1. The CPEB3 ribozyme and data prediction challenge. (A) Secondary structure diagram 1 

of the CPEB3 ribozyme. The white arrow indicates the site of self-cleavage. Nucleotide color 2 

indicates the average relative activity of the three possible point mutations at each position. 3 

Boxes indicate nucleotide positions mutated in the phylogenetically derived higher-order mutants 4 

(B) Heatmap representation of comprehensive single and double-mutant data. Each pixel in the 5 

heatmap shows the ribozyme activity for a specific double mutant indicated by the nucleotide 6 

positions on the top and right of the heatmap. Insets show base paired regions and specific 7 

mutations. Ribozyme activity is determined as the fraction of total reads that map to each 8 

sequence that are in the cleaved form (fraction cleaved) relative to the wildtype fraction cleaved. 9 

(C) Distribution of pairwise epistasis from double mutant data. Epistasis was calculated as ε = 10 

log10 (WAB*Wwt / WA*WB), where Wwt is the fraction cleaved of the wild-type ribozyme, WA and 11 

WB are fraction cleaved of sequences with individual mutations and WAB is the fraction cleaved 12 

of the sequence with both individual mutations. (D) Higher mutational distance variants of the 13 

CPEB3 ribozyme represented as a fitness landscape. Ribozyme activity (fraction cleaved) is 14 

shown for 27,647 sequence variants derived from permutations of naturally occurring mutations. 15 

Each node represents a different sequence and the size and color of the node is scaled to the 16 

ribozyme activity. Edges connect nodes that differ by a single mutation. Sequences are binned 17 

into quintiles of ribozyme activity and the number of genotypes reports the number of sequences 18 

in each quintile. 19 
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 1 

Figure 2. Prediction accuracy of models trained on comprehensive individual and pairs of 2 

mutations. (A-I) Scatter plots of Predicted (fraction cleaved from the models) and Observed 3 

(fraction cleaved from experiments). The models were trained on the experimentally determined 4 

fraction cleaved for the wild-type and all possible sequences with one mutation (207 sequences) 5 

or two mutations (21,114 sequences). Insets report Pearson correlation coefficients r for the 6 

model trained by the Random Forest approach (orange) and the LSTM-RF approach (blue). The 7 

sequences used to compare prediction vs. observed were separated by the number of mutations 8 

relative to the wild-type, as indicated by the title of each graph. 9 
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 1 

Figure 3. Improvement in prediction accuracy when including sequences with increased 2 

mutational distances in the training data. Changes in Pearson r, R2, and mean squared error 3 

(MSE) of prediction-observed correlation (y-axis) with increasing numbers of max mutations 4 

within the training data (x-axis). Training sets included all sequences up to and including the y-5 

axis value. (A-C) Results obtained for the random forest model. (D-F) Results from the LSTM 6 

model. For each plot, colors indicate the numbers of mutations in sequences in the test data (see 7 

key). Insets show changes to the same prediction accuracy measurement with the 3-7 mutation 8 

training data, to allow more visual resolution. 9 
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 1 

Figure 4. Effects of reducing the number of sequences in the training data. (A-F) Scatter plots of 2 

Predicted (fraction cleaved from the models) and Observed (fraction cleaved from experiments) 3 

for models trained with decreasing amounts of sequences with 5 or fewer mutations using the 4 

random forest approach and predicting the fraction cleaved of sequences with 7 mutations. The 5 

percent of the total sequence used in the training data is indicated in the title of each plot, and the 6 

number of unique sequences in the training data is reported in parentheses. Pearson correlation 7 

coefficients r are indicated as insets. (G) The correlation between predicted and observed for a 8 

model trained with decreasing amounts data from sequences with 5 or fewer mutations (“Train 9 
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5”) and predicting the activity of sequences with increasing numbers of mutations (Predict 6-9). 1 

(H) Predicting the activity of sequences with 9 mutations (“Predict 9 Mutations”) with models 2 

trained on different reduced data sets.  3 

 4 

 5 

Table 1. Counts of sequences in training and testing data sets. 6 

No. of mutations Training Testing 

1 207 --- 

2 21114 --- 

3 414 104 

4 1240 310 

5 2650 662 

6 4162 1040 

7 4867 1217 

8 4241 1060 

9 2720 680 

10 1249 312 

11 389 97 

12 74 18 

13 6 2 

 7 
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